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ABSTRACT

Federated learning allows each client to keep its data locally when training ma-
chine learning models in a distributed setting. Significant recent research estab-
lished the requirements that the input must satisfy in order to guarantee conver-
gence of the training loop. This line of work uses averaging as the aggregation rule
for the training models. In particular, we are interested in whether federated learn-
ing is robust to Byzantine behavior, and observe and investigate a tradeoff between
the average/centroid and the validity conditions from distributed computing. We
show that the various validity conditions alone do not guarantee a good approxi-
mation of the average. Furthermore, we show that reaching good approximation
does not give good results in experimental settings due to possible Byzantine out-
liers. Our main contribution is the first lower bound of min{n−t

t ,
√
d} on the cen-

troid approximation under box validity that is often considered in the literature,
where n is the number of clients, t the upper bound on the number of Byzantine
faults, and d is the dimension of the machine learning model. We complement
this lower bound by an upper bound of 2min{n,

√
d}, by providing a new anal-

ysis for the case n < d. In addition, we present a new algorithm that achieves
a
√
2d-approximation under convex validity, which also proves that the existing

lower bound in the literature is tight. We show that all presented bounds can also
be achieved in the distributed peer-to-peer setting. We complement our analyti-
cal results with empirical evaluations in federated stochastic gradient descent and
federated averaging settings.

1 INTRODUCTION

Federated learning (McMahan et al., 2016; 2017) is a decentralized technique for training machine
learning models based on sharing model parameters while keeping the training data locally. In this
work, we are particularly interested in the setting where the clients share updates — namely either
the gradients in case of federated stochastic gradient descent (FedSGD) or the model parameters in
case of federated averaging (FedAvg) — with a trusted central server. After the server has received
the updates, it aggregates the results, updates the model parameters, and then shares the new model
parameters with the clients for the next training round. This technique is popular when data privacy
requirements prevent clients from sharing their data directly with the server (Zhang et al., 2021;
whi, 2013; Kairouz et al., 2021). The most common aggregation rule used to select a representative
vector (gradient or model parameters) is averaging (McMahan et al., 2016; 2017; Zhao et al., 2018;
Reddi et al., 2021; Karimireddy et al., 2020; Mitra et al., 2021; Wang et al., 2020; Li et al., 2020;
Jhunjhunwala et al., 2023; 2022). However, when averaging is used, training can fail if some clients
do not behave as expected. In particular, a single faulty vector can arbitrarily shift the average in
any direction, leading to erroneous updates of the model parameters. Especially in the context of
federated learning, it is crucial to be robust to malicious behavior and Byzantine faults, which is
also the focus of our paper. In the case of homogeneous training data, it is usually possible to
use similarities between vectors to exclude such outliers (Fang et al., 2022; Yang & Bajwa, 2019;
El-Mhamdi et al., 2020). If the data is heterogeneous, such similarities may not exist.

Previously proposed Byzantine-tolerant FL methods for heterogeneous datasets focus on showing
convergence of the training process and apply statistical methods for vector aggregation (Data &
Diggavi, 2021; Li et al., 2019; Ghosh et al., 2019). To mitigate Byzantine behavior, their methods
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remove outliers from the data and make additional assumptions on the input vectors of the clients.
An alternative approach is to use the absolute or average distance to the average to evaluate federated
learning algorithms (El-Mhamdi et al., 2021). This absolute measure, however, only allows one
to analyze the worst-case Byzantine attack. Another measure that incorporates Byzantine vectors
is (f, κ)-robustness Allouah et al. (2023). In Appendix A, we show that this robustness measure
misclassifies optimal solutions under Byzantine failures. Recently, a new approximation measure
was introduced to estimate the quality of an aggregated average in a Byzantine environment (Cambus
& Melnyk, 2023) for approximate agreement algorithms. This approximation measure allows one
to not only analyze the worst-case input setting, but rather estimate the quality of an algorithm based
on the given input distribution.

In this work, we transfer the idea of approximating the average vector to the traditional FL setting
with n clients and one trusted server. In distributed computing, validity conditions are used to restrict
an algorithm from terminating on arbitrary inputs. We investigate the trade-off between the validity
conditions and the approximation of the average vector for federated learning. This allows us to
present aggregation algorithms that perform well under different input distributions.

The benefits of average approximation. We consider the approximation of the average to evaluate
the quality of our algorithms. As we motivate in the following, a low average approximation ratio
implies that an algorithm performs well for a given input distribution. Formally, given n vectors, up
to t of which can be Byzantine, an optimal choice of the average vector under Byzantine attacks is
defined as the midpoint of the smallest ball B that encloses each average obtained from every subset
of n − t vectors. When t clients are Byzantine, exactly one of these averages was computed from
only non-faulty vectors. Therefore, the midpoint minimizes the maximum distance to the non-faulty
average vector in the worst case. The approximation ratio is then defined as the ratio between the
distance from the aggregation vector to the non-faulty average, and the radius of B.

The main advantage of this approximation ratio is that it is defined relative to the input setting:
In scenarios with heterogeneous training data, Byzantine vectors cannot be differentiated from non-
faulty vectors. That is, a large radius of the minimum covering ball either represents “bad” Byzantine
behavior, or a “bad” initial configuration where each client has vastly different input. In such a
scenario, no aggregation algorithm can choose a representative average vector. The large ball radius
prevents one from punishing an algorithm for a large absolute distance to the average vector. A small
radius, on the other hand, represents “benign” Byzantine behavior and very similar inputs. In such
a scenario, an aggregation algorithm should be able to choose an aggregation vector that is close to
the original average. Figure 1 visualizes the continuous change in the ball radius depending on the
input vectors of the clients.

Contributions. We first show that known validity conditions from the literature do not guaran-
tee good approximation of the average. We then show that under weak and strong validity condi-
tions, both of which only require the server to output the same vector as the non-faulty client if all
non-faulty clients send the server the same vector, a constant approximation of the average can be
achieved.

Our first main contribution is almost tight bounds for algorithms that satisfy box validity, where
the aggregation vector lies in the coordinate-parallel hyperbox of non-faulty vectors. We present a
lower bound of min{

√
(n− t)/t,

√
d} for the centroid approximation and show that the existing

Box algorithm can achieve an approximation of 2
√
min{n, d} by providing a new upper bound

proof for the case n < d. Our second main contribution is a tight upper bound (a 2d-approximation)
for convex validity, where the aggregation vector lies in the convex hull of all vectors. Note that
this setting is only of theoretical interest, as it requires the number of clients to be larger than the
dimension of their input vectors (n > (d + 1) · t), while in FL the dimension of the data is usually
much larger than the number of clients. We show that all presented bounds can also be achieved
in the distributed peer-to-peer setting. The agreement algorithms presented differ from (El-Mhamdi
et al., 2021; Cambus & Melnyk, 2023), since only exact agreement is considered in this paper.

Finally, we extend our analytical results with simulations. In this evaluation, we differentiate be-
tween the settings where the gradients (FedSGD) and the model parameters (FedAvg) are aggregated,
and show how selected algorithms perform under different failure scenarios.
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(a) Distribution of the input vectors (b) Radius of the ball of averages

Figure 1: This figure shows how the radius of the smallest ball containing all averages depends on
different distributions of the inputs. There are 6 clients, one of which is possibly Byzantine. On the
left, the points represent fixed input vectors. The three stars represent three different scenarios of
the input of the sixth client. The circles represent the smallest balls containing all possible averages
on subsets of five points. On the right, the radius of the minimum covering ball is presented when
the x-coordinate of the last client is moved from −4 to 0. Observe that the radius of the minimum
covering ball cannot be zero, as any of the points in the figure are also potentially Byzantine. The
yellow scenario is a “bad” input setting where there is either one non-faulty client with very distinct
data, or a Byzantine party tries to disrupt the training process. The dark red scenario is a benign
setting where an aggregation algorithm should be able to output a vector close to the actual centroid.
Accordingly, the radius of the ball is small in this scenario.

1.1 RELATED WORK

Dean et al. (2012) proposed a first distributed solution to train a large machine learning model on tens
of thousands of CPU cores. Their work initiated a study of asynchronous algorithms for distributed
stochastic gradient descent (SGD) that focus on scalability and communication efficiency (Li et al.,
2014a;b; Zhang et al., 2013; Shamir et al., 2014). The synchronous version of SGD has been pro-
posed by Chen et al. (2016). We refer to this framework as FedSGD. FedSGD has also been con-
sidered under Byzantine adversaries, both in synchronous (Alistarh et al., 2018; El Mhamdi et al.,
2018) and asynchronous settings (Damaskinos et al., 2018). While the mentioned work assumes
homogeneous data distributions, some efforts have also been made to incorporate data heterogene-
ity (Li et al., 2019; Xie et al., 2019; Ghosh et al., 2019; Data & Diggavi, 2021). To tackle Byzantine
behavior of the clients, these approaches make use of homogeneity of the data, apply statistical
methods, or try to detect Byzantine behavior.

Federated averaging was introduced by McMahan et al. (2016; 2017) to perform training where the
data is private, unbalanced, non-IID, and distributed across mobile devices. Here, model parameters
instead of gradients are exchanged with a server. We refer to this framework as FedAvg in this paper.
Much of the follow-up work has focused on showing convergence of the models in this framework
without failures (Mitra et al., 2021; 504, 2021; Wang et al., 2020; Jhunjhunwala et al., 2023; 2022;
Jee Cho et al., 2022). Byzantine-tolerant approaches have been introduced also for this setting,
where the goal is to remove Byzantine behavior via stochastic quantization and outlier detection
mechanisms (So et al., 2021).

In contrast to previous work, we do not focus on removing Byzantine clients from the training pro-
cess, as such a process may influence the accuracy when the data is heterogeneous and no malicious
behavior is present in the system. Instead, we use the approximation definition for the average from
Cambus & Melnyk (2023) that naturally incorporates Byzantine clients. In contrast to (Cambus &
Melnyk, 2023), we consider a stronger model without agreement, which makes our lower bound
results more powerful, and introduce new algorithms that achieve an optimal approximation.

2 MODEL AND DEFINITIONS

We consider a client/server setting with one server and n clients. The goal is to train a global neural
network on the server with data spread heterogeneously among clients. In order to train the global
model without gathering data from clients, each client possesses its own copy of the model and then
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shares only vectors generated from their local data and model with the server. The server then needs
to aggregate the received vectors to advance the training of the global model. The training process
is performed in synchronous rounds.

On top of the training set-up, we consider that up to t < n/3 of the clients can be Byzantine, i.e.,
they can behave arbitrarily and are not bound to following the protocol. The aggregation algorithms
used by the server hence need to account for this. Note that we use the standard assumption from
distributed computing that Byzantine clients are not differentiable from non-faulty clients as long as
they follow the protocol and only lie about their input. We treat all clients equally, assuming no size
difference in the local data, in order to restrict the power of the Byzantine clients.

The focus of this work is on the aggregation function. Consider a specific communication round, in
which each client sends a vector to the server, and the server aggregates those vectors. To account
for the potential presence of Byzantine clients in the system, the aggregation algorithm used by the
server needs to compute an aggregation that is as little influenced by Byzantine vectors as possible.
In this work, we focus on the most common aggregation rule in FL – the averaging aggregation rule.
Since Byzantine clients can be present in the system and are undetectable, it is impossible for an
aggregation algorithm to determine the centroid of vectors of non-faulty clients. We are therefore
interested in the quality of the computed aggregated vector.

Centroid approximation. We assume that the server receives up to m vectors {vi, i ∈ [m]},
where n − t ≤ m ≤ n. Each vector v is in the normed vector space

(
Rd, ∥ · ∥2

)
, where ∀x =

(x1, . . . , xd) ∈ Rd, ∥x∥2 =
√∑d

k=1 x
2
k and the distance between any two vectors v and w is their

Euclidean distance dist(v, w) = ∥v − w∥2. When not specified, ∥ · ∥ refers to the 2-norm. We use
the following definition of the average/centroid:

Definition 2.1 (Centroid). The centroid of a finite set of k vectors {vi, i ∈ [k]} is 1
k

∑k
i=1 vi.

We define the centroid approximation as in (Cambus & Melnyk, 2023). Let Cent⋆ be the centroid
computed from non-faulty vectors only. Note that there can be up to n non-faulty vectors as t is only
an upper bound on the number of Byzantine clients. In the following, we define the set of candidate
centroids, which are computed based on the worst case where exactly t vectors are Byzantine.

Definition 2.2 (Set of candidate centroids). The set SCent containing all centroids of n − t input
vectors is defined as

SCent :=

{
1

n− t

∑
i∈I

vi

∣∣∣∀I ∈ [n] s.t. |I| = n− t

}
.

Due to the assumption that Byzantine clients are not differentiable from non-faulty clients as long
as they follow the protocol, we can only define the centroid approximation based on the worst case
where exactly t clients are Byzantine. We define the point minimizing the maximum distance to all
vectors in the set of candidate centroids defined above is the center of the following ball:

Definition 2.3 (Minimum covering ball). The minimum covering ball Ballcov(SCent) is the smallest
ball containing all vectors in SCent. Its radius is denoted Radcov.

Finally, the centroid approximation is defined as follows:

Definition 2.4 (Centroid approximation). Given an input layout L = {vi, i ∈ [n]}, let OA be the
output of an algorithm A computing an approximation of the centroid of non-faulty vectors. The
approximation ratio of A given L is the smallest α s.t.

dist(OA,Cent
⋆) ≤ α · Radcov.

The algorithmA is said to compute an α-approximation of the centroid if, for all input layout L, the
approximation ratio of A given L is upper bounded by α.

In order to compute the approximation ratio of a certain type of algorithms, we need to consider a
less restrictive area than the minimum covering ball:

Definition 2.5 (Centroid hyperbox). The centroid hyperbox CH is the smallest coordinate-parallel
hyperbox containing SCent.
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Validity conditions. We noted above that a Byzantine client can shift the centroid of vectors of all
clients arbitrarily, and thus it can also shift the midpoint of the minimum covering ball arbitrarily
far away from Cent⋆. Just choosing the center as the centroid approximation might not be sufficient
to ensure that we can trust the output of a certain algorithm. We hence take inspiration from the
distributed agreement algorithms and use validity conditions to get additional guarantees on the
output of different algorithms, complementing the guarantees given by the centroid approximation
ratio.

A validity condition is satisfied when the output of an algorithm is guaranteed to be in a specific
area, depending only on the input layout. In this work, we focus on common validity conditions
from the literature:
Definition 2.6 (Validity conditions). Given are n vectors, up to t of which are Byzantine. An algo-
rithm A satisfies

weak validity (Civit et al., 2022; 2021; Yin et al., 2019) if, when all clients are non-faulty and all
input vectors vi are equal to a single vector v, the output of A is v;

strong validity (Bar-Noy & Dolev, 1988; Bracha, 1987; Bracha & Toueg, 1983) if, when all non-
faulty input vectors vi are equal to a single vector v, the output of A is v;

box validity (Cambus & Melnyk, 2023; Dolev et al., 1986; Melnyk & Wattenhofer, 2018) if the output
of A is inside the smallest coordinate-parallel hyperbox containing all non-faulty input vectors
(Notation 1);

convex validity (Abbas et al., 2022; Mendes et al., 2015; Wang et al., 2019) if the output of A is
inside the convex hull of all non-faulty input vectors.
Notation 1. The smallest coordinate-parallel hyperbox containing only non-faulty vectors is called
the trusted hyperbox and denoted TH.

Note that the trusted hyperbox cannot be computed in practice. However, we prove in Section 3
(Theorem 3.2) that an algorithm satisfies the box validity condition if and only if it agrees inside a
hyperbox called the trimmed trusted hyperbox (TTH):
Definition 2.7 (Trimmed trusted hyperbox). Let v1, . . . , vm be the received input vectors, where m
is the number of received messages. The number of Byzantine values for each coordinate is at most
m − (n − t). Denote ϕ : [m] → [m] a bijection s.t. vϕ(j1)[k] ≤ vϕ(j2)[k],∀j1, j2 ∈ [m]. The
trimmed trusted hyperbox is the Cartesian product of TTH[k] :=

[
vϕ(m−(n−t)+1)[k], vϕ(n−t)[k]

]
for

all k ∈ [d].

In a similar manner, it is proved in (Cambus & Melnyk, 2023) that, in order to satisfy the convex
validity condition, an algorithm must agree inside the following area:
Definition 2.8 (Safe area (Mendes et al., 2015)). Consider n vectors {v1, . . . , vn} =: V , t <
n/(max{3, d + 1}) of which can be Byzantine. Let C1, . . . , C( n

n−t)
be the convex hulls of every

subset of V of size n− t. The safe area is the intersection of these convex hulls:
⋂

i∈[( n
n−t)]

Ci.

3 CENTROID APPROXIMATION IN BYZANTINE-TOLERANT FEDERATED
LEARNING

In this section, we first consider approximation guarantees that are given by validity conditions
only. We show that only the box validity condition guarantees a bounded approximation ratio of the
Cent⋆. In the second part, we consider the best possible approximation that can be achieved under
various validity conditions. We provide tight approximation bounds for each validity condition,
apart from the box validity condition, where a gap remains for some specific values of n and d. We
conclude this section with a discussion on how our results can be transferred to federated learning
in a peer-to-peer network.

3.1 APPROXIMATION GUARANTEES GIVEN BY VALIDITY CONDITIONS

In Appendix B.1, we show that weak, strong, and convex validity conditions are not sufficient to
guarantee that an algorithm achieves a bounded approximation ratio of Cent⋆ (see Lemma B.1—
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Lemma B.3). This is because it is possible to build specific inputs for which there exists an algorithm
satisfying the respective validity condition such that the output of the algorithm is at a nonzero
distance from the centroid of non-faulty vectors and the minimum covering ball is reduced to a
single point. Thus, satisfying the validity condition alone is not sufficient for an algorithm to be
guaranteed to have a bounded approximation ratio of the centroid of non-faulty vectors. On the
other hand, box validity allows one to achieve a t/(n− t) · 2 ·

√
d-approximation in the worst case

(Lemma B.4).

3.2 UPPER AND LOWER BOUNDS FOR CENTROID APPROXIMATION

In this section, we present upper and lower bounds for centroid approximation under different va-
lidity conditions. An overview of these results is presented in Table 1. Note that most bounds are
tight. Only in the case n < d, there is a gap for approximation under box validity that remains to
be investigated. Due to their simplicity or prior knowledge, the bounds for weak and strong validity
are presented in the appendix (Lemma B.5—Lemma B.7). In (Cambus & Melnyk, 2023), a lower
bound of 2d has been presented for convex validity for the worst case where n = (d + 1)t. In
Appendix B.2, we generalize this bound to hold for any n ≥ (d + 1)t (see Lemma B.8). We next
give an upper bound result for the box validity condition. Note that there are two algorithms in the
literature that achieve the same approximation ratio.

validity
condition LB for n > (d+ 1)t LB for n < (d+ 1)t upper bound

weak 1 1 1 (Lemma B.5)

strong 2 (Cambus & Melnyk, 2023) 2 (Cambus & Melnyk, 2023) 2 (Lemma B.6)

box
√
d (Lemma 3.3) min{n−t

t ,
√
d} (Lemma 3.3) 2

√
min{n, d} (Lemma 3.1)

convex 2d ((Cambus & Melnyk, 2023), Lemma B.8) not possible (Mendes et al., 2015) 2d (Lemma 3.4)

Table 1: This is an overview of the results established in this section. Already known results are
cited in the respective cells. The lower bound on weak validity follows from the definition of ap-
proximation.

Lemma 3.1 (Upper bound for box validity). One round of the Box algorithm (Cambus & Mel-
nyk, 2023) or the RB-TM algorithm (El-Mhamdi et al., 2021) achieves an approximation ratio of
2
√

min{n, d}.

Proof. Note that both algorithms were presented to solve approximate agreement. We can however
let the server run one round of these algorithms as if the server were one of the nodes in the dis-
tributed network. In (Cambus & Melnyk, 2023), it was shown that the output vector of one node at
the end of a round is inside the intersection of CH and TTH. This condition is sufficient to achieve
a 2
√
d-approximation (Cambus & Melnyk, 2023). This solves the case n > d.

We next consider the case n < d. Note that if CH has dimension n, the diagonal length argument
from (Cambus & Melnyk, 2023) implies a 2

√
n bound on the approximation ratio. Suppose that CH

has dimension d′ where n < d′ ≤ d. Since there are n input vectors and all elements of SCent are
computed from those vectors, Conv(SCent) has to be contained in a subspace Uinput of dimension n.
The hyperbox CH of dimension d′ is the smallest possible hyperbox containing the convex polytope
Conv(SCent). Hence, Conv(SCent) has to intersect all 2d′ faces of CH, otherwise there exists a
hyperbox strictly contained in CH that contains Conv(SCent). For the sake of simplicity, assume that
CH is the unit hypercube of dimension d′ placed at the origin with non-negative coordinates only.
Note that translation and rotation of all points do not influence the approximation ratio. Further, all
following computations can be adjusted with the length of the longest edge of CH to achieve the
same result in the general case.

Observe that Conv(SCent) has to intersect all faces of CH that contain the origin. Consider the
set of centroids in SCent that lie on these d′ faces. Any two such centroids that lie on different
faces are linearly independent. Since Conv(SCent) spans at most an n-dimensional subspace, at
most n centroids in this set can be linearly independent. Note that the radius of Ballcov(SCent)
is maximized when the centroids lie on intersections of many faces. Consider the largest subset
of linearly independent centroids that intersect the d′ considered faces (this subset can be chosen
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greedily). On average, each centroid in this subset lies in the intersection of at least d′/n faces.
Thus, at least one of these centroids must lie in the intersection of at least d′/n faces of the unit
hypercube. This implies that the radius of the minimum covering ball is at least

√
d′/n/2 (the

intersection of k faces is at distance
√
k/2 from the center of the hyperbox).

However, since the centroid of non-faulty vectors has to be contained inside Conv(SCent) ⊆ CH,
the distance between the output of an algorithm agreeing inside CH and Cent⋆ centroid is at most√
d′, hence the approximation ratio is at most 2·

√
n. Hence, the approximation ratio of the hyperbox

algorithm is at most 2 ·
√
min{n, d}.

Before addressing the lower bound for algorithms satisfying box validity, we first prove:
Lemma 3.2. An algorithm satisfying box validity has to agree inside the trimmed trusted hyperbox.

Proof. We assume that t Byzantine parties follow the algorithm with their own (worst-case) input
vectors, thus being undetectable. Let us consider a consensus algorithm such that the output vector v
always satisfies box validity. For the sake of contradiction, suppose this output vector is outside the
trimmed trusted hyperbox. By definition of the trimmed trusted hyperbox, there exists a coordinate
k for which v[k] is strictly larger than n − t of the input vectors at coordinate k. Since Byzantine
clients are undetectable, these n − t input vectors could be the non-faulty ones. This implies that
the output vector v is not in the trusted box, thus violating the box validity condition. This is a
contradiction. Hence, the output vector of any algorithm satisfying the box validity condition must
be in the trimmed trusted hyperbox.

Lemma 3.3 (Lower bound for box validity). The approximation ratio of any algorithm satisfying
box validity is at least

√
1/2 ·min{⌊(n− t)/t⌋, d}.

Proof. In order to prove the lower bound on the approximation ratio, we present a construction
where the trimmed trusted hyperbox consists of just one vector. Consider a setting where n − t −
min

{
⌊n−t

t ⌋t, dt
}

input vectors are at coordinate (0, . . . , 0). We further assume that t vectors are
at coordinate ek = x · uk,∀k ∈

[
min

{
⌊n−t

t ⌋, d
}]

, where uk is the kth unit vector. Suppose the t
Byzantine vectors choose their input vectors to be (0, . . . , 0). Then, the trimmed trusted hyperbox
is (0, . . . , 0).

The centroid of non-faulty vectors is t
n−t

∑min{⌊(n−t)/t⌋,d}
k=1 ek and the distance between the

trimmed trusted hyperbox and Cent⋆ is

dist
(
Cent⋆, (0, . . . , 0)

)
=

√∑min{⌊(n−t)/t⌋,d}

k=1

(
t

n− t
· x
)2

=

√
min

{⌊
n− t

t

⌋
, d

}
·
(

t

n− t
· x
)2

=

√
min

{⌊
n− t

t

⌋
, d

}
· tx

n− t
.

Now the radius of the minimum covering ball is at most the largest distance between two possible
centroids:

Radcov ≤

∥∥∥∥∥
min{⌊(n−t)/t⌋,d}∑

k=2

(
t

n− t
· ek
)
−
min{⌊(n−t)/t⌋,d}−1∑

k=1

(
t

n− t
· ek
)∥∥∥∥∥

2

= 2 ·

√(
tx

n− t

)2

.

Hence, the approximation ratio is at least

dist
(
Cent⋆, (0, . . . , 0)

)
Radcov

≥
√

1/2 ·min{⌊(n− t)/t⌋, d}.

We finally consider convex validity. Note that no guarantees can be given for algorithms satisfying
convex validity in the case n > max{3, d + 1} since the safe area cannot be guaranteed to exist
in such cases. The results presented here are therefore only of interest in applications where the
number of clients surpasses the dimension of the training model.
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Lemma 3.4 (Upper bound for convex validity). Consider the algorithm that outputs a vector con-
tained in the safe area that minimizes the distance to the center of Ballcov(SCent). This algorithm
computes a 2d-approximation of the centroid.

Proof. Observe that the algorithm computes at most a 2-approximation of Cent⋆ if the safe area
and Ballcov(SCent) intersect. This is because the algorithm then chooses a vector in Ballcov(SCent).

Now we consider the remaining case, where the safe area and Ballcov(SCent) are disjoint. Let x
denote the distance between the safe area and Ballcov(SCent) and let S denote the closest point
of the safe area to Ballcov(SCent) and B the closest point of Ballcov(SCent) to the safe area, so
that the distance between S and B is x. We start by projecting all input vectors orthogonally onto
S,B. The approximation ratio of the algorithm is computed as (x+Radcov)/Radcov. Observe that
the distance between any two centroids after their orthogonal projection onto S,B cannot increase
due to the triangle inequality, while the distance between S and B remains unchanged. Therefore,
the distance between any two projected centroids onto S,B is a lower bound on the diameter of
Ballcov(SCent). To simplify the discussion on distances, we assume that S is at coordinate 0 and B
is at coordinate x.

In the following, we will lower bound the size of Radcov and upper bound the size of x. Let the
projection of the vectors v1, . . . , vn be denoted p1, . . . , pn such that the vector projected on the
smallest coordinate is denoted p1 and the one projected on the largest coordinate is pn. Note that
there must be at least t + 1 vectors pi having negative coordinates, otherwise there would exist a
convex hull of n − t vectors that would project onto only strictly positive coordinates, which is a
contradiction. There are also at least t + 1 vectors pj that have coordinate at least x. If this was
not true, there would exists a centroid with a smaller coordinate than x, which is a contradiction.
Further, there are at most td vectors with a positive coordinate (see proof of Lemma 3.5).

Let l denote the number of vectors pi with negative coordinates. Let r denote the number of vectors
pi with a larger coordinate than x, and let y1, . . . , yr denote the coordinates of these vectors in
increasing order. Further, we say that the smallest r − t coordinates have an average value of
ymin while the largest t coordinates have an average of ymax. The average of all vectors pi with
coordinates between 0 and x is defined to be a.

Observe that x is upper bounded by the coordinate of any possible centroid. We choose the following
centroid to upper bound x: the average of some t+1 vectors with negative coordinates, all the vectors
between 0 and x, and the remaining smallest r− t vectors with coordinates larger than x. This gives
the following bound:

x ≤ 1

n− t

(∑r−t

i=1
yi + a · (n− r − l)

)
≤ 1

n− t
(n− t− l) · ymin

Note that we upper bounded all vectors with coordinates smaller than 0 by 0.

To lower bound the diameter of Ballcov(SCent), we consider the difference between its largest and
smallest coordinates:

Radcov ≥
1

2(n− t)

(
n∑

i=t+1

pi −
n−t∑
i=1

pi

)
≥ 1

2(n− t)

(
t · ymax −

t∑
i=1

pi

)
≥ t

2(n− t)
· ymax

where 1
n−t

∑t
i=1 pi ≤ 0 since there are at least t+ 1 vectors pi with negative coordinates.

The approximation ratio achieved by the algorithm can now be upper bounded by:

x

Radcov
+ 1 ≤

1
n−t (n− t− l) · ymin

t
2(n−t) · ymax

+ 1 ≤ 2(n− t− l)

t
+ 1 ≤ 2dt

t
+ 1 = 2d+ 1.

The last inequality holds because there can be at most dt vectors with positive coordinates, i.e.,
n− t− l ≤ dt.

Lemma 3.5. Assume that the safe area is a q-dimensional convex polytope, where 1 ≤ q ≤ d.
Consider the q-dimensional subspace in which the safe area is defined. Let H be a hyperplane that
touches the safe area and divides the q-dimensional space into two subspaces. Then, there can be at
most qt points on the opposite side of H wrt. the safe area.
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Proof. Consider a vertex sv of the safe area that lies at the intersection of the safe area with the
hyperplane H . Note that at least one such vertex must exist since the safe area is a convex polytope.

Observe that exactly q (q − 1)-faces of safe area meet in sv . Each of these faces are hyperplanes ,
denoted H1, . . . ,Hd, and go through sd, each of them defined by a face of the safe area. The safe
area is defined such that, for each face Fi, at most t vectors can lie outside of safe area and thus on
the opposite side of H w.r.t. safe area. In total, at most qt can lie on the opposite side of H . And at
least n− qt > n− dt vectors must lie inside safe area.

3.3 FEDERATED LEARNING IN PEER-TO-PEER NETWORKS

The results presented in this paper also hold for federated learning in synchronous peer-to-peer
networks. In the peer-to-peer setting, there is no trusted server. Instead, the clients communicate
with each other in a fully-connected network by sending messages. The aggregation step by the
server is replaced by an exact Byzantine agreement algorithm that makes sure that the clients agree
on the same aggregation vector. The lower bounds presented in Section 3.1 and 3.2 trivially extend to
this distributed setting, as they are presented for a stronger setting in which the clients do not receive
different sets of vectors as it is possible in a peer-to-peer setting. On the other hand, interactive
consistency protocols (Pease et al., 1980; Fischer & Lynch, 1982) from distributed computing allow
the clients to agree on the same set of vectors. Thus, each client can apply the presented aggregation
algorithms locally. Since the algorithms are deterministic, all clients output identical vectors after
Byzantine agreement.

4 PRELIMINARY EMPIRICAL INSIGHTS INTO THE TRADE-OFF

We conclude our work with simulation results for the FedSGD protocol. The description of the
experimental setup, an analysis of different Byzantine attacks, and an evaluation of the FedAvg
method are presented in Appendix C. The experiments are run with 30 clients under mild (α = 1),
moderate (α = 0.5), strong (α = 0.1) and extreme heterogeneity. Figure 2 shows how the MDA
and the Box algorithms perform under the fall of empires attack Xie et al. (2020) with f ∈ {3, 6, 9}
Byzantine clients. For f = 3, MDA and Box algorithm achieve up to 93% accuracy. However, under
extreme heterogeneity, MDA does not converge, and the Box algorithm reaches up to 90% accuracy.
For f = 6, MDA fails under extreme and strong heterogeneity, whereas Box still converges under
strong heterogeneity with lower accuracy. For f = 9 Byzantine clients are present, MDA fails across
all distributions. However, the Box algorithm converges under mild and moderate heterogeneity and
achieves 82% and 75% accuracy, respectively. These results suggest that there may be a trade-off
between the centroid approximation and the different validity conditions, also in practice, which we
plan to investigate in more detail in future work.

Figure 2: Fall of empires attack with f = {3, 6, 9} in FedSGD setting under mild (α = 1), moderate
(α = 0.5), strong (α = 0.1) and extreme heterogeneity
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Jinhyun So, Başak Güler, and A. Salman Avestimehr. Byzantine-resilient secure federated learning.
IEEE Journal on Selected Areas in Communications, 39(7), 2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. NIPS ’20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

Xuan Wang, Shaoshuai Mou, and Shreyas Sundaram. A resilient convex combination for consensus-
based distributed algorithms. Numerical Algebra, Control and Optimization, 9(3):269–281, 2019.
ISSN 2155-3289.

Yongkang Wang, Yuanqing Xia, and Yufeng Zhan. Elite: Defending federated learning against
byzantine attacks based on information entropy. In 2021 China Automation Congress (CAC), pp.
6049–6054, 2021.

Zhaoxian Wu, Qing Ling, Tianyi Chen, and Georgios B. Giannakis. Federated variance-reduced
stochastic gradient descent with robustness to byzantine attacks. IEEE Transactions on Signal
Processing, 68:4583–4596, 2020.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. In Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6893–6901. PMLR,
09–15 Jun 2019.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-tolerant
sgd by inner product manipulation. In Uncertainty in artificial intelligence, pp. 261–270. PMLR,
2020.

Jian Xu, Shao-Lun Huang, Linqi Song, and Tian Lan. Byzantine-robust federated learning through
collaborative malicious gradient filtering. In 2022 IEEE 42nd International Conference on Dis-
tributed Computing Systems (ICDCS), pp. 1223–1235, 2022.

Zhixiong Yang and Waheed U. Bajwa. Byrdie: Byzantine-resilient distributed coordinate descent for
decentralized learning. IEEE Transactions on Signal and Information Processing over Networks,
5(4):611–627, December 2019. ISSN 2373-7778.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, pp. 347–356, 2019.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021. ISSN 0950-7051.

Yuchen Zhang, John Duchi, Michael I Jordan, and Martin J Wainwright. Information-theoretic
lower bounds for distributed statistical estimation with communication constraints. In Advances
in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

A DISCUSSION OF (f, κ)-ROBUSTNESS

In this section, we review the (f, κ)-robustness definition from (Allouah et al., 2023):
Definition A.1 ((f, κ)-robustness (Allouah et al., 2023)). Let f ≤ t < n/2 be the number of
Byzantine nodes in the system and κ ≥ 0. An aggregation rule F is said to be (f, κ)-robust if for
any vectors x1, . . . , xn ∈ Rd, and any set S ⊆ [n] of site n− f ,

∥F (x1, . . . , xn)− x̄S∥2 ≤
κ

|S|
∑
i∈S

∥xi − x̄S∥2

where x̄S = 1
|S|
∑

i∈S xi. κ is here the robustness coefficient.

Observe that for the special case where S consists only of non-faulty nodes, this robustness definition
is similar to the approximation definition in our paper. However, since the robustness considers every
subset S of n − f nodes, certain Byzantine attacks can lead to bad robustness guarantees, even for
an optimal algorithm:
Example A.2. Consider an algorithm that outputs Cent⋆—the centroid of non-faulty vectors. This
algorithm is optimal. For simplicity, assume a setting where all input vectors lie on a line. Let
the n − 2f non-faulty vectors have the input value 0, the f non-faulty nodes have the input value
a > n− f , and the f Byzantine nodes have the input value −ε, where ε > 0 is an arbitrarily small
constant. Observe that in the definition of (f, κ)-robustness, one subset will contain all Byzantine
vectors and the n − 2f non-faulty nodes with input value 0. We denote this subset SByz . Also
observe that the average of the non-faulty nodes is located at Cent⋆ = af

n−f , that the average of

the nodes in SByz is located at x̄SByz
= − εf

n−f , and that the average distance from the nodes in

SByz to x̄SByz
is less than 2fε. Therefore, κ has to be chosen such that af

n−f + εf
n−f ≤ κ · 2fε

since F (x1, . . . , xn) = Cent⋆. We thus have the result that κ ≥ a
2ε(n−f) > 1

2ε . This shows that the
constant κ can however be arbitrarily large for an optimal algorithm.

The (f, κ)-robustness provides a reasonable robustness measure when the failing nodes are out-
liers. However, as the above example shows, the measure is not guaranteed to be small when the
failing nodes show completely arbitrary, i.e. Byzantine, behavior. Therefore, the (f, κ)-robustness
definition is not suited to evaluate the quality of a Byzantine-tolerant algorithm.

B DETAILED THEORETICAL BOUNDS

B.1 GUARANTEES GIVEN BY THE VALIDITY CONDITIONS

Lemma B.1. Satisfying weak validity is not a sufficient condition for an algorithm to achieve a
bounded approximation ratio of Cent⋆.

Proof. Without loss of generality, we can consider an algorithm that either agrees on the unique
input vector, or outputs the origin. Now consider the case where all clients have input x · (1, . . . , 1).
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Then, the diameter of the minimum covering ball can be arbitrarily small, but the distance between
the origin and x · (1, . . . , 1) is

√
d · x. Hence, the ratio between this distance and the radius of the

minimum covering ball is unbounded.

Lemma B.2. Satisfying strong validity is not a sufficient condition for an algorithm to achieve a
bounded approximation ratio of Cent⋆.

Proof. As before, we can consider an algorithm that either agrees on the unique non-faulty input
vector, or outputs the origin (we do not need to know how the algorithm achieves this, only that
it is a general algorithm satisfying strong validity). Assume the case, where the n − t non-faulty
input vectors are all ϵ away from (1, . . . , 1), and the Byzantine clients do not send any vector. The
distance between the origin and the average of the non-faulty vectors is

√
d · x. The radius of the

minimum covering ball is however 0. Hence, the approximation ratio is unbounded.

Lemma B.3 (from (Cambus & Melnyk (2023), Observation 4.1)). The worst-case approximation
ratio that can be achieved by any algorithm satisfying convex validity is unbounded.

Next, we show that the box validity condition is the only validity condition that, by itself, guarantees
that any algorithm satisfying it has a bounded approximation ratio. More precisely, we show that
outputting a vector inside TH is sufficient to ensure that the output is a bounded approximation of
Cent⋆.
Lemma B.4. The worst-case approximation ratio that can be achieved by any algorithm satisfying
box validity is at most t

n−t · 2
√
d.

Proof. Consider the coordinate k ∈ [d] in which TTH realizes its longest edge. We define a bijection
ϕ : [n]→ [n] such that, i < j ⇒ vϕ(i)[k] < vϕ(j)[k],∀i, j ∈ [n]. Then,

|CH[k]| = 1

n− t

n∑
i=t+1

vϕ(i) −
1

n− t

n−t∑
i=1

vi[k]

=
1

n− t

n∑
i=n−t+1

vϕ(i) +
1

n− t

n−t∑
i=t+1

vϕ(i) −
1

n− t

t∑
i=1

vi[k]−
1

n− t

n−t∑
i=t+1

vϕ(i)

=
1

n− t

n∑
i=n−t+1

vϕ(i) −
1

n− t

t∑
i=1

vi[k] ≥
t

n− t
vϕ(n−t) −

t

n− t
vϕ(t) =

t

n− t
|TTH[k]|.

Since CH and TTH are necessarily intersecting (Cambus & Melnyk, 2023), the furthest a vector
satisfying box validity can be from Cent⋆ is if Cent⋆ is in CH and the vector is on the opposite
vertex of TTH. We showed above that the diagonal of TTH is at most t

n−t times the diagonal of CH.

The diagonal of CH being upper bounded by 2
√
d · Radcov, the furthest we can be from Cent⋆ by

satisfying box validity is (
1 +

t

n− t

)
· 2
√
d · Radcov.

The centroid approximation ratio of any algorithm satisfying box validity will hence be upper
bounded by

(
1 + t

n−t

)
· 2
√
d.

B.2 LOWER AND UPPER BOUNDS

In the following, we present the upper bound for weak validity.
Lemma B.5 (upper bound for weak validity). The best approximation ratio that can be achieved by
an algorithm satisfying weak validity is 1 in the worst case.
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Proof. We can achieve 1 with the optimum algorithm picking the center of the minimum covering
ball (see Cambus & Melnyk (2023)). This algorithm satisfies weak validity.

Note that this upper bound is tight, as the lower bound cannot be less than 1 by definition. We now
present the algorithm that highlights the upper bound for strong validity.
Lemma B.6 (Upper bound for strong validity). The MDA algorithm (El-Mhamdi et al., 2021) out-
puts the average of the subset of n − t vectors that have the smallest diameter, this diameter is
defined as the maximum distance between any two vectors. The MDA computes a 2-approximation
of the centroid.

Proof. Observe that the output vector of the MDA algorithm is in SCent and is thus inside
Ballcov(SCent). The largest distance between any two vectors in Ballcov(SCent) is upper bounded
by the diameter of the ball. Thus, the algorithm computes at most a 2-approximation.

The following lemma gives a lower bound of 2 on the approximation ratio of the centroid in the
context of strong validity, which matches the upper bound above. This shows that the approximation
ratio of the MDA algorithm is tight.
Lemma B.7 (Lower bound for strong validity (Cambus & Melnyk, 2023)). The best approximation
ratio that can be achieved by an algorithm satisfying strong validity is 2 in the worst case.

We finally present the lower bound for convex validity below.
Lemma B.8 (Lower bound for convex validity). The best approximation ratio that can be achieved
by an algorithm satisfying convex validity is at least 2d.

Proof. In (Cambus & Melnyk, 2023), a lower bound of 2d has been shown for the worst case n =
(d+1)t. This proof can be easily extended to hold for the general case n > max{3, d+1}·t. Assume
that dt vectors are placed at coordinates x + ε · ui, i ∈ {1, . . . , d}, where ε is a small constant and
t vectors placed at each coordinate. The remaining n− dt vectors are placed at (0, . . . , 0). Assume
that these n − dt vectors include t Byzantine vectors. Observe that such a construction is always
possible since n > (d+ 1)t.

In (Cambus & Melnyk, 2023), it was shown that the safe area of such a construction results in a
single point (0, . . . , 0). Note that the non-faulty centroid is located in td/(n− t), and the radius of
the centroid ball is t/(2(n− t)). Thus, the approximation of the centroid is 2d in this example.

C EMPIRICAL EVALUATION

In the practical evaluation, we differentiate between the two FL variants where the model parameters
or the gradients are exchanged. We consider n clients, where each client i ∈ [n] has access to its
own data that follows an unknown distribution Di. Let Fi(x) be the local loss function of client i
with respect to model parameter x. The objective is

argminx∈Rd F (x), where F (x) =
1

n

∑n

i=1
Fi(x)

The training is executed in rounds. We differentiate between the following two settings:

FedSGD In each round r, a client locally computes the gradient gi(xr) = ∇Fi(xr) on its dataset.
It then sends gi(xr) to the server. The server upgrades the global model by aggregating the gradients
xr+1 ← xr − η 1

n

∑n
i=1 gi(xr), where η is a fixed learning rate, and sends the new model to the

clients for the next round.

FedAvg In each round r, a client locally updates its model parameters (possibly multiple times)
xi
r+1 ← xi

r−ηgi(xr). It then shares its model parameter xi
r+1 with the server. The server aggregates

the model parameters xr+1 ←
∑n

i=1 x
i
r+1 and shares the new model with the clients.

The aggregation algorithm in the definition of FedSGD and FedAvg is an unweighted average of the
vectors. For the experiments, we replace this aggregation step with one of the aggregation algorithms
presented in Section 3.2. These aggregation algorithms are summarized below.
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Aggregation algorithms We implemented the following aggregation algorithms for comparison:

• Center of Ballcov(SCent): This algorithm computes all possible centroids on subsets of
n − t vectors and outputs the center of Ballcov(SCent). The algorithm achieves a 1-
approximation of the centroid and satisfies weak validity.

• MDA (El-Mhamdi et al., 2021): This algorithm computes a subset of n − t vectors with
the smallest diameter and outputs the centroid of this subset. The algorithm achieves a
2-approximation of the centroid and satisfies strong validity.

• Box Algorithm (Cambus & Melnyk, 2023): This algorithm computes the intersection of
TTH and CH, and outputs the center of this intersection. In (Cambus & Melnyk, 2023), it
was shown that such an intersection is non-empty for n > 3t. The algorithm achieves a
2
√
d-approximation of the centroid and satisfies box validity.

We do not implement the algorithm based on the safe area (see Lemma 3.4), since this algorithm
only works in scenarios where n > (d+ 1)t.

C.1 EXPERIMENTAL SETUP

We implement a client/server federated learning model for solving classification tasks in Python
using the Tensorflow library. The models are evaluated on the MNIST dataset from Kaggle1. The
dataset contains 42,000 images of handwritten digit in JPEG format which are labeled, and each
class of the data is kept in a separate folder. We consider a setting with 30 clients and assume that a
constant fraction of them are Byzantine. We use f < n/3 to denote the actual number of Byzantine
clients present in the system. To simulate data heterogeneity in our experiments, we consider the
Dirichlet distribution with parameter α Hsu et al. (2019), as done in Allouah et al. (2023); Farhad-
khani et al. (2023); Allouah et al. (2025). Parameter α indicates the level of heterogeneity sampled
by clients’ datasets. Smaller values of α indicate a more heterogeneous setting, where a client likely
owns data only from a very few classes. In line with Allouah et al. (2025), we consider three values
for α: α = 1 representing mild heterogeneity, α = 0.5 representing moderate heterogeneity, and
α = 0.1 representing strong heterogeneity. Additionally, we consider the extreme heterogeneous
case, where the data is sorted by classes and distributed among clients such that each client possesses
up to two different classes of data.

The underlying neural network for solving the image classification task is a MultiLayer Perceptron
(MLP) with 3 layers. The learning rate is set to η = 0.01 and the decay is calculated with respect to
the number of global communication rounds (epochs), i.e. decay = η

rounds . The batch size is set to
32.

Byzantine behavior in federated learning has been extensively studied in the literature, and the
attacks has been categorized into training-based and parameter-based attacks (Shi et al., 2022).
Training-based attacks, also known as data poisoning attacks, have been analyzed in (Biggio et al.,
2012; Mahloujifar et al., 2019; Farhadkhani et al., 2024). In order to match our theoretical analysis
and due to simplicity in implementation, our work considers parameter-based attacks (Shi et al.,
2022; Farhadkhani et al., 2022), where the adversary can alter only its messages, while the datasets
and the training process remain unchanged.

Our experiments consist of the following attacks:

• Fall of empires (FOE): Byzantine clients compute the mean of honest nodes’ input, reverse
it and scale it by ϵ > 0 Xie et al. (2020). We set ϵ = 1.

• A little is enough (ALIE): Byzantine clients estimate mean µ and standard deviation σ of
honest nodes and send µ− z · σ to the server Baruch et al. (2019). We set z = 1.

• Sign flip (SF): inspired by the signSGD algorithm (Jin et al., 2020; Bernstein et al., 2019),
the gradient of the faulty clients is multiplied by −1 and sent to the server Allen-Zhu et al.
(2021). This attack has been widely used in practical simulations (Wu et al., 2020; Wang
et al., 2021; Farhadkhani et al., 2022; Xu et al., 2022; Sharma & Marchang, 2024).

• Mimic: Byzantine clients imitate one fixed honest client by simply sending its gradient to
the server Karimireddy et al. (2022).

1https://www.kaggle.com/datasets/scolianni/mnistasjpg, accessed on 25.09.2025
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Figure 3: Mimic attack with f = {3, 6, 9} in FedSGD setting under mild (α = 1), moderate
(α = 0.5), strong (α = 0.1) and extreme heterogeneity

Figure 4: Sign flip attack with f = {3, 6, 9} in FedSGD setting under mild (α = 1), moderate
(α = 0.5), strong (α = 0.1) and extreme heterogeneity

C.2 EXPERIMENTAL RESULTS

FedSGD setting: Figure 3 shows how Box and MDA algorithms perform under the mimic attack
with f ∈ {3, 6, 9} Byzantine clients. When there are three adversarial clients present in the sys-
tem, both MDA and Box algorithms converge and achieve up to 93% accuracy. Small accuracy
differences appear between mild and extreme heterogeneous distributions, caused by the stronger
heterogeneity. With f = 6, Box algorithm under all but extreme heterogeneous distribution con-
verge. MDA with extremely heterogeneous datasets seems to converge after expressing instability
with 88% accuracy. When the number of Byzantine clients is increased to f = 9, Box algorithm un-
der extreme and strong heterogeneity struggles to converge. With mild and moderate heterogeneity,
box algorithm converges and reaches over 90% accuracy. MDA is more resilient against the mimic
attack, as it converges in mild and moderate heterogeneous setting with over 90% accuracy. In
stronger heterogeneity setting, MDA is instable but converges achieving accuracy lower than 65%.
Since there are 9 adversarial clients (f = t = 9) that imitate one honest client (in total 10 clients
with the same input), the subset of n − t nodes with the minimum diameter will always contain at
least one of these clients. Furthermore, the trusted hyperbox removes t smallest and largest value
in each dimension, most likely leaving in the majority of the Byzantine input. Hence, MDA is less
influenced by the mimic attack than the Box algorithm.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: A little is enough attack with f = {1, 2, 3} in FedSGD setting under mild (α = 1),
moderate (α = 0.5), strong (α = 0.1) and extreme heterogeneity

Figure 4 illustrates the effect of sign flip attack on Box and MDA algorithms with f ∈ {3, 6, 9}
Byzantine clients. With f = 3, MDA and Box algorithms converge reaching 93% and 91% accuracy.
In the extreme heterogeneous setting, MDA fails to converge. If the number of adversarial clients
is f = 6, it can be observed that the Box algorithm is unstable under the extreme heterogeneous
setting. With strong heterogeneity, the Box algorithm converges with lower accuracy than MDA,
namely 85% compared to 90%. When f = 9, Box algorithm with strong and moderate heterogeneity
converge achieving 62% and 84% accuracy. On the other hand, MDA converges reaching higher
accuracy than the Box algorithm, which reflects to our theoretical results showing that MDA is a 2-
and Box 2

√
d-approximation of the centroid.

Figure 5 depicts performance of Box and MDA algorithms under the a little is enough attack with
f ∈ {1, 2, 3} adversarial clients. Firstly, we consider a lower number of Byzantine clients, as the
attack already affects the system with f = 2 and f = 3. When there is one adversarial client in the
system, both MDA and Box algorithm with mild and moderate heterogeneity converge and reach
92% accuracy. It can be observed that with stronger heterogeneities, both MDA and Box struggle
to converge and sudden drops in accuracy occur at regular intervals (around every 250 rounds).
With the increased number of Byzantine clients, all algorithms experience these drops. However, as
heterogeneity increases, drops in accuracy become more frequent. For example, when f = 3, Box
algorithm with extreme heterogeneity exhibits accuracy cliffs around every 100 rounds. Overall, the
attack induces regular, heterogeneity-dependent accuracy drops that intensify with larger f . Both
Box and MDA fail to maintain stable convergence under these settings. Note that the batch size is
32. Small batches (e.g., 32) increase variance in honest gradients, making the a little is enough and
fall of empires attacks harder to detect and defend against Karimireddy et al. (2021).

Figure 6 illustrates the Center of Ballcov(SCent) algorithm in the FedSGD setting with no Byzantine
behavior. It can be observed that after 40,000 rounds Ballcov(SCent) algorithm reaches over 77%.
The Center of Ballcov(SCent) algorithm requires significantly more rounds than the MDA or the
Box algorithm and is therefore not evaluated under Byzantine behavior and different heterogeneity
distributions.

FedAvg setting: Figure 7 illustrates FedAvg setting with mild heterogeneous data distribution.
In this experiment, we set f = 1 and evaluate the algorithms on sign flip and a little is enough.
Additionally, we lower the learning rate to η = 0.001, since the higher learning rate causes client
drift in this setting. In the sign flip attack, MDA and Box converge achieving 80% and 78% accuracy,
respectively. Nevertheless, MDA shows small differences of 3% in accuracy, whereas the Box
algorithm converges smoothly.
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Figure 6: FedSGD setting with Ballcov(SCent) algorithm

Figure 7: FedAvg setting with mild heterogeneous data distributions with f = 1

In the a little is enough attack, accuracy drops slightly to 76% when using the Box algorithm.
MDA reaches higher accuracy than Box algorithm (78%), but it is more unstable and shows small
differences in accuracy, similar to the ones in the sign flip attack.

Under the fall of empires attack, Box algorithm converges and reaches 78% accuracy. However,
MDA algorithm fails to converge. Compared to the MDA algorithm under sign flip or a little is
enough attack, the fall of empires attack has a larger impact and prevents MDA from converging,
similar to the results in the FedSGD setting.

In future, we intend to continue the empirical evaluation and test out FedAvg in different scenarios.

LLM usage: The authors used LLMs solely for language editing and clarity improvements. LLMs
did not generate ideas, results, proofs, or analyses.

20


	Introduction
	Related Work

	Model and Definitions
	Centroid approximation in Byzantine-tolerant federated learning
	Approximation guarantees given by validity conditions
	Upper and lower bounds for centroid approximation
	Federated learning in peer-to-peer networks

	Preliminary empirical insights into the trade-off
	Discussion of (f,)-robustness
	Detailed theoretical bounds
	Guarantees given by the validity conditions
	Lower and upper bounds

	Empirical evaluation
	Experimental setup
	Experimental results


