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ABSTRACT

As large language models continue to scale, their growing computational and
storage demands pose significant challenges for real-world deployment. In this
work, we investigate redundancy within Transformer-based models and propose
an entropy-based pruning strategy to enhance efficiency while maintaining per-
formance. Empirical analysis reveals that the entropy of hidden representations
decreases in the early blocks but progressively increases across most subsequent
blocks. This trend suggests that entropy serves as a more effective measure of
information richness within computation blocks. Unlike cosine similarity, which
primarily captures geometric relationships, entropy directly quantifies uncertainty
and information content, making it a more reliable criterion for pruning. Extensive
experiments demonstrate that our entropy-based pruning approach surpasses co-
sine similarity-based methods in reducing model size while preserving accuracy,
offering a promising direction for efficient model deploymentﬂ

1 INTRODUCTION

The emergence of large language models (LLMs) has reshaped current research landscape as well
as empowering applications (Dubey et al.| 2024} Team et al., 2024; |Yang et al., [2025)). Scaling in
size, they demonstrate remarkable performance across a wide range of domains/tasks such as chat-
bot (Achiam et al.l 2023)), code generation (Nijkamp et al., 2022)), recommendation (Liang et al.|
2025; |Zhang et al., [2025)), etc. Hidden behind these striking achievement, Transformer-based mod-
els (Waswani et al.,[2017;{Touvron et al.,2023; Jiang et al., 2023} Xue et al.,[2024) scale their param-
eter size from millions to billions and research continues to explore even larger architectures (Liu
et al., [2024)) to further enhance their capabilities. However, the increasing scale in sizes result in
substantial computational and storage costs, posing significant challenges for deployment.

Recent researches have detected the inherent redundancy of these pre-trained LLMs, especially on
the layer level (Gromov et al.,[2024; |[Men et al.,[2024; Yang et al., 2024; Xu et al., 2022; Song et al.},
2024;|Chen et al.,[2024; |Kim et al., | 2024). Models can maintain competitive performance even after
a significant number of layers are removed, indicating that not all layers contribute equally. This
observation has spurred extensive research on layer pruning techniques, which focus on eliminating
redundant layers while retaining the model’s core functionalities. LLMDrop (He et al.,2024)) further
discovered that the Attention block is more redundant than the MLP block, highlighting the need
for a more fine-grained pruning approach to remove redundant components within each block rather
than pruning entire layers. This redundancy provides new insights for optimizing model deployment,
enabling more efficient acceleration strategies while maintaining performance.

For both layer and attention pruning, existing methods (Men et al.l[2024;|Yang et al.,2024; He et al.,
2024; Mao et al.l 2024) adhere to the practice of using cosine similarity to measure the redundancy
between computation blocks. Redundant blocks with high similarity scores are identified and re-
moved by comparing adjacent layers or selected layer pairs. However, cosine similarity primarily
captures the geometric alignment of hidden representations, which does not necessarily reflect the
actual information contribution of each layer. Consequently, relying solely on cosine similarity for
pruning may lead to suboptimal decisions, potentially compromising model performance.

!Code is available in the supplementary material.
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In this paper, we reconsider the use of cosine similarity as the criterion for pruning and propose
EntroDrop, a novel approach that leverages entropy increase to assess the importance of computa-
tion blocks. Empirical analysis reveals that the entropy of hidden representations initially decreases
in the early layers but progressively rises across subsequent layers. It suggests that entropy can
serve as an effective indicator of information richness within each block. Unlike cosine similarity,
which primarily captures geometric relationships, entropy directly quantifies the information con-
tent of a block’s output, providing a more reliable basis for pruning decisions. Extensive experiments
comparing entropy-based and cosine similarity-based pruning demonstrate that our entropy-driven
approach more effectively preserves model accuracy while reducing computational costs. The code
can be found in supplementary material. Our key contributions are summarized as:

* We conduct an empirical analysis of entropy dynamics in hidden representations across
LLM blocks during inference, offering new insights into information flow.

* We propose a novel entropy-based pruning strategy to effectively reduce model size and
preserve performance.

» Extensive experiments demonstrate the superiority of EntroDrop over cosine similarity-
based pruning methods.

2 PRELIMINARY

Transformer-based architectures consist of two primary computational blocks: the Attention and the
MLP Block. They process hidden states and enrich them sequentially.

2.1 COMPUTATION BLOCKS

Attention Block enables each token in the input sequence to interact with others. Given an input
X, a Layer Normalization (LayerNorm) operation is applied before the self-attention computation
Xnorm = LayerNorm(X). Then, the attention mechanism computes as:

KT

Y = Softmax <Q > V, (D
Vi

where Q = X;,om W, K = Xpom Wk, V = Xoom Wy, and /d}, is a scaling factor. The output

Y represents the transformed hidden states.

MLP Block further transforms the output of Attention block. Assume the input for MLP block is
also X. It firstly applies layer normalization to stabilize the output as Xom = LayerNorm(X).
Then a two-layer feedforward network is calculated to process Xorm as:

Y = ReLU(Xnormwl + bl)W2 + b2; (2)

where W1, Wy, by and by are learnable parameters. There are also other variants (Touvron et al.,
2023) for this feedforward network. Together, the Attention Block and MLP Block form a complete
Transformer Block, which can be stacked to build deep Transformer models. Each Transformer
Block refines and enriches the hidden states, enabling hierarchical learning across multiple layers.

2.2 BLOCK-WISE PRUNING

Block-wise pruning aims to determine the importance of each computation block by analyzing the
relationship between its input X and output Y. The goal is to define an effective metric that identifies
less informative blocks for removal while preserving essential model functionality. To quantify the
importance of a block, an importance criterion is often calculated as:

I=¢(X,Y) 3)

where ¢g(-) is a function measuring the information contribution of the block and we prioritize the
pruning on blocks with less importance score. No matter on which computation blocks, current
methods (He et al.,2024; Men et al.||2024) judge the importance by cosine similarity and the impor-
tance criterion is calculated as g(X,Y) =1 — % In this paper, we propose entropy increase, a
new importance criterion based on empirical observations of entropy change across the layers. En-
tropy increase can better capture the information flow within the model, providing a more effective
metric for identifying redundant blocks.
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Figure 1: Entropy dynamics among layers during inference

2.3 ENTROPY DEFINITION

For a discrete variable Z with probability mass function p(z), its Shannon entropy is defined as:
H(Z) == p(z)logp(z),

which measures the average uncertainty or information content of Z. Higher entropy indicates that
Z takes more uniformly distributed values (i.e., richer information), while lower entropy suggests
more concentrated representations. In this work, we firstly discretize the hidden activations of large
language models and compute their entropy layer by layer. This allows us to systematically ob-
serve how entropy evolves as the model depth increases, revealing a two-stage pattern of entropy
decrease followed by entropy increase. This empirical finding serves as the foundation for our pro-
posed entropy-based pruning strategy.

3 METHOD

3.1 OBSERVATIONS ON ENTROPY DYNAMICS

To investigate the entropy across different layers of Transformer models, we conduct experiments
on Llama3.1-8B (Dubey et al. [2024) || and Mistral-7B-v0.3 (Jiang et al., |2023) |’} We analyze the
entropy trends during inference across Transformer Blocks, Attention Blocks, and MLP Blocks
using four datasets: C4, Law, Medicine, and Wikitext2. We compute the entropy of hidden states at
each block level and track its evolution across the network.

The experimental results, shown in Fig. [T} reveal a consistent two-stage behavior:

» Stage 1: Entropy Decrease (Layers 1-3). Early layers progressively reduce entropy, indi-
cating strong information compression, noise filtering, and formation of compact represen-
tations.

» Stage 2: Entropy Increase (Layers 3-32). Subsequent layers gradually increase entropy,
suggesting progressive contextual expansion and feature enrichment.

This pattern appears robust across all four datasets and aligns with prior findings (Yang et al.,2024;
Men et al.| 2024)), which highlight the importance of early layers for information preservation. Our
results further suggest that later layers contribute more uniformly to representation expansion, mak-
ing them better candidates for pruning.

2https://huggingface.co/meta-llama/Llama-3.1-8B
3https://huggingface.co/mistralai/Mistral-7B-v0.3
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Figure 2: Overview of the EntroDrop framework. Stage 1 keeps intact, while Stage 2 exhibits in-
creasing entropy. Blocks in Stage 2 are ranked based on their entropy increase, and those with the
lower entropy increase are pruned earlier.

Entropy-lens |Ali et al.| (2025)) studies entropy dynamics from prediction logits derived from hid-
den states, showing that different model families may exhibit distinct output-level entropy pat-
terns. In contrast, we directly analyze the entropy of raw hidden representations, providing a
more fine-grained view of information evolution inside the model. Across several mainstream
LLMs—including Llama3.1-8B, Mistral-7B-v0.3, Qwen3-14B, and DeepSeek-V2-Lite-16B—we
consistently observe an early-layer entropy decrease followed by a later-layer entropy increase (Ap-
pendix [A.2)). Although this two-stage trend is not universal across every architecture examined, it
recurs across many widely used Transformer families, suggesting that such compression—expansion
dynamics are a common emergent behavior in modern decoder-only LLMs.

3.2 ENTRODROP

Based on our empirical observations of entropy dynamics across Transformer models, we propose
EntroDrop, a novel entropy-based pruning method that leverages entropy increase in later layers to
identify and remove redundant computation blocks while preserving essential model performance.
The framework is shown in Fig.

We consider a pre-trained Transformer model consisting of L computation blocks, each responsible
for transforming hidden states as the input propagates through the network. Given a calibration
dataset D, we pass input samples through the model and collect the hidden states at each block:

Z' = f(Z7Y, 1=1,2,...,L, 4)

where Z! represents the hidden state at the [-th block, and f;(-) denotes the computation block
function (e.g., Attention, MLP). Once the hidden states at all blocks are obtained, we estimate the
entropy of each block and rank them according to entropy increases. The lowest K blocks, which
exhibit minimal entropy increase, are selected for pruning.

EntroDrop leverages a two-stage pruning strategy based on entropy observations. Stage 1 com-
presses the information, and no computation blocks are pruned in this stage. Stage 2 gradually
increases the entropy, suggesting that these blocks perform similar hidden state enrichments. The
transition point between the two stages, denoted as Sy, is determined using a calibration dataset.

To effectively estimate the importance of computation blocks, we define entropy increase as:
AH'= H(Z") - H(Z'™), 5)

where H (-) represents the entropy estimation function. Blocks in Stage 2, indexed by Sy <1 < L,
are ranked in ascending order based on their entropy increase:

Rank(AH') = argsort(AH') forl > Sgun. (6)
Finally, the K blocks with the smallest entropy increase within Stage 2 are selected for pruning:
Sprune = {filfie Rank(AHl)Sm,,:L[f K1}, N

where Spmne denotes the set of pruned blocks and AH' represents the entropy increase of | com-
putation block. The bottom k ranked layers are pruned to optimize efficiency. To estimate entropy
efficiently, we explore multiple techniques:
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L | Method Dataset Average
PIQA HellaSwag WSC273 CSQA WinoGrande ARC-E ARC-C OBQA MMLU CMMLU RACE XSum GSMg8k &
0 * 0.803  0.6091 0.8864 0.5741 0.7388 0.7963 0.4898 0.3300 0.5908 0.3830 0.4086 0.0315 0.3715 | 0.5697

LaCo 0.5501  0.2975 0.6996 0.1196 0.6275 0.2908 0.2568 0.2400 0.1817 0.2070 0.2746 0.0284 0.0543 | 0.3216
ShortGPT | 0.7557  0.5458 0.8352  0.4808 0.7048 0.7104 0.4181 0.2620 0.4887 0.3598 0.3828 0.0291 0.0591 | 0.4662
4 | Ours (Layer) [ 0.7524  0.5467 0.8278  0.4865 0.7214 0.7079 0.4266 0.2700 0.4954 0.3458 0.3914 0.0445 0.0326 | 0.4730
LLMDrop [0.8047  0.6051 0.8791 0.5717 0.7285 0.7971 0.4872 0.3380 0.5898  0.3828 0.3962 0.0238 0.3328 | 0.5484
Ours (Attn) | 0.8020  0.6062 0.8755 0.5725 0.7309 0.7984 0.4889 0.3380 0.5888 0.3819 0.4019 0.0371 0.3510 | 0.5568

LaCo 0.5952  0.3180 0.7033  0.2080  0.6377 0.3914 0.3029 0.1940 0.2802 0.2602 0.3062 0.0065 0.0078 | 0.3295
ShortGPT |0.6627  0.3960 0.7143  0.5184  0.6598 0.5025 0.3294 0.2100 0.5086 0.3259 0.3167 0.0078 0.0099 | 0.3749
8 | Ours (Layer) | 0.6627  0.3960 0.7143 0.5184  0.6598 0.5025 0.3294 0.2100 0.5086 0.3259 0.3167 0.0078 0.0099 | 0.3749
LLMDrop |0.7998  0.5970 0.8718 0.5766  0.7364 0.7934 04753 0.3320 0.5917 03659 0.3952 0.0126 0.2813 | 0.5314
Ours (Attn) |0.8003  0.5991 0.8681 0.5782  0.7332 0.7950 0.4855 0.3240 0.5902 0.3752 0.3952 0.0165 0.3495 | 0.5443

LaCo 0.5724  0.2937 0.6410  0.1630 0.5825 0.3013 0.2671 0.2020 0.2810 0.2214 0.2584 0.0032 0.0054 | 0.3110
ShortGPT |0.5702  0.2795 0.6007 0.1974 0.5612 0.3367 0.2858 0.2080 0.2264 0.2426  0.2287 0.0083 0.0099 | 0.3014
12 | Ours (Layer) | 0.6066 ~ 0.3415 0.6154 0.2424 0.5770 0.4146 0.2969 0.1820 0.3169 0.2595 0.3024 0.0062 0.0030 | 0.3339
LLMDrop [0.7742  0.5614 0.8388  0.4054 0.7277 0.7483 0.4437 0.2820 0.5551 0.3143 0.3722 0.0139 0.0326 | 0.5071
Ours (Attn) |0.7802  0.5749 0.8498  0.5446 0.7222 0.7546 0.4693 0.3080 0.5857 0.3636 0.3799 0.0147 0.0811 | 0.5255

LaCo 0.5577  0.2764 0.5165 0.2146 0.5367 0.3266 0.2509 0.1520 0.2637 0.2549 0.2641 0.0012 0.0023 | 0.2988
ShortGPT |0.5403  0.2704 0.5421  0.1949 0.5501 0.3068 0.2619 0.1540 0.2367 0.2539 0.24838 0.0043 0.0059 | 0.2944
16 | Ours (Layer) | 0.5272  0.2760 0.5275  0.1900 0.5067 0.2955 0.2491 0.1720 0.2473  0.2509 0.2411 0.0032 0.0020 | 0.2914
LLMDrop [0.6926  0.4272 0.7875 0.2121 0.7017 0.5640 0.3328 0.2220 0.2735 02819 0.2938 0.0099 0.0126 | 0.4060
Ours (Attn) | 0.7514  0.4481 0.7656  0.3022 0.7048 0.6595 0.3925 0.2700 0.3586 0.2784 0.3282 0.0117 0.0511 | 0.4407

Table 1: Experiment Results on Mistral-7B-v0.3. L indicates the number of pruned blocks.

¢ Bucket-based Estimation: Discretize activation values into bins and estimate based on fre-
quency distribution.

* K-Nearest Neighbors (KNN): Computes entropy by estimating local density using KNN.

* Renyi Entropy: A generalization of Shannon entropy that provides a tunable parameter to
control sensitivity to distribution variations.

Regardless of the estimation method used, entropy computation remains efficient. Our experimental
results demonstrate that selecting an appropriate entropy estimation method is crucial for achieving
optimal pruning performance. Among the approaches tested, Bucket-based estimation and KNN-
based estimation were found to be particularly effective.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models We conduct experiments on two state-of-the-art decoder-only Transformer models:
Llama3.1-8B and Mistral-7B-v0.3. To make a fair comparison, all experiments are finished on a
single 40G A100 GPU device.

Benchmarks To evaluate the effectiveness of EntroDrop, we test on a diverse set of reason-
ing and comprehension benchmarks: Commonsense Reasoning: PIQA (Bisk et al., [2020), Hel-
laSwag (Zellers et al.,|2019), WSC273 (Sakaguchi et al., 2021), CSQA (Talmor et al.,2019), Wino-
Grande (Sakaguchi et al., 2021)). Scientific and Knowledge-based QA: ARC-E (Clark et al.||2018),
ARC-C (Clark et al.l [2018)), OBQA (Mihaylov et al., 2018)). General and Subject-specific Knowl-
edge: MMLU (Hendrycks et al., 2021bja), CMMLU (Li et al., 2024), RACE (Lai et al., [2017).
In addition, we include two generation-oriented benchmarks: XSum (Narayan et al., |2018) for ab-
stractive summarization and GSM8K (Cobbe et al., [2021) for multi-step mathematical reasoning,
allowing us to evaluate EntroDrop on both long-form and procedural generation tasks.

Baselines We compare EntroDrop against state-of-the-art pruning techniques in two categories: (1)
Layer Pruning Methods that directly prune the whole transformer block: LaCo (Yang et al.| [2024)
and ShortGPT (Men et al.}[2024). (2) Attention Pruning Method that only prunes the attention block:
LLMDrop (He et al., 2024). These baselines allow us to assess how EntroDrop compares against
existing pruning methods in terms of performance preservation under different pruning granularity.
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L Method Dataset Average
PIQA HellaSwag WSC273 CSQA WinoGrande ARC-E ARC-C OBQA MMLU CMMLU RACE XSum GSMS8k

* 0.7998  0.6003 0.8608 0.7166  0.7316 0.8148 0.5102 0.3340 0.6332 0.5090 0.3923 0.1302 0.5011 | 0.5872

LaCo 0.7628  0.5116 0.8059 0.6806 0.7103 0.7302 0.4462 0.2840 0.5949 0.4370 0.3761 0.1023 0.2857 | 0.5062

ShortGPT |0.7557  0.5504 0.7949  0.6921 0.7017 0.7222 0.4420 0.3120 0.5802 0.4160 0.3818 0.1078 0.2942 | 0.5054

4 | Ours (Layer) | 0.7573  0.5407 0.8242  0.7027 0.7088 0.7504 0.4275 0.2860 0.6212 0.4918 0.3818 0.1215 0.0834 | 0.5170

LLMDrop [0.8025 0.5965 0.8352  0.7117 0.7498 0.8194 0.5188 0.3420 0.6312 0.5111 0.3933 0.1281 0.4754 | 0.5955

Ours (Attn) [0.8003  0.6022 0.8498 0.7158 0.7364 0.8157 0.5179 0.3420 0.6238 0.5044 0.3895 0.1315 0.5057 | 0.5949

LaCo 0.6197  0.3098 0.6007  0.4005 0.6227 0.3952  0.2756 0.2360 0.4463  0.3405 0.2478 0.0280 0.0132 | 0.3093

ShortGPT | 0.6045  0.2825 0.5971 0.4046  0.5422 0.4289 0.2739 0.1820 0.3226  0.3153 0.2526 0.0310 0.0106 | 0.3015

8 | Ours (Layer) | 0.6795  0.4384 0.7509 0.6216  0.6898 0.5644 0.3532 0.2120 0.5584 0.4408 0.3378 0.0837 0.0152 | 0.4583

LLMDrop |0.7954  0.5877 0.8388 0.7174  0.7443 0.8119 0.5068 0.3560 0.6338 0.5073 0.4010 0.1268 0.4375 | 0.5932

Ours (Attn) [0.7954  0.5921 0.8352  0.7183 0.7411 0.8186 0.5154 0.3540 0.6301 0.5041 0.3876 0.1263 0.4439 | 0.5909

LaCo 0.6202  0.3312 0.6337 0.1966  0.6219 0.4293 0.2705 0.1980 0.2428 0.2571 0.2813 0.0074 0.0014 | 0.3141

ShortGPT | 0.6007  0.3066 0.5861 0.5160  0.5501 0.4007 0.2765 0.1780 0.3605 0.3252 0.2660 0.0083 0.0015 | 0.3346

12| Ours (Layer) | 0.6007  0.3066 0.5861 0.5160  0.5501 0.4007 0.2765 0.1780 0.3605 0.3252 0.2660 0.0083 0.0015 | 0.3346

LLMDrop |0.7867  0.5584 0.8608 0.6790  0.7253 0.7807 0.4753 0.3100 0.5992  0.4511 03799 0.1195 0.2002 | 0.5467

Ours (Attn) [0.7867  0.5584 0.8608 0.6790  0.7253 0.7807 0.4753 0.3100 0.5992 0.4511 0.3799 0.1195 0.2002 | 0.5467

LaCo 0.5854  0.2904 0.6447  0.1957 0.5612 0.3443 0.2338 0.1600 0.2295 0.2527 0.2469 0.0024 0.0000 | 0.3071

ShortGPT |0.5647  0.2754 0.5421 0.1949  0.5501 03194 0.2440 0.1540 0.2295 0.2529 0.2483 0.0023 0.0000 | 0.2956

16 | Ours (Layer) | 0.5729  0.2705 0.5238 0.2113 0.5099 0.3165 0.2321 0.1380 0.2627 0.2538 0.2278 0.0145 0.0000 | 0.2980

LLMDrop [0.6926  0.4272 0.7875 0.2121 0.7017 0.5640 0.3328 0.2220 0.2735 02819 0.2938 0.0595 0.1020 | 0.4207
Ours (Attn) | 0.7514  0.4481 0.7656  0.3022  0.7048 0.6595 0.3925 0.2700 0.3586 0.2784 0.3282 0.0936 0.1707 | 0.4603

Table 2: Experiment Results on Llama3.1-8B. L indicates the number of pruned blocks. The best
performance is marked in bold.
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Figure 4: Impact of Calibration Datasets.

4.2 OVERALL PERFORMANCE

Our experimental results on Llama3.1-8B (Table [2) and Mistral-7B-v0.3 (Table[I)) demonstrate the
effectiveness of EntroDrop. We summarize the key findings as follows:

* EntroDrop is effective across multiple models. Our method consistently achieves the
best performance across both Llama3.1-8B and Mistral-7B-v0.3. This demonstrates that
EntroDrop is a generalizable pruning strategy applicable to different pre-trained LLMs.

* EntroDrop outperforms both layer pruning and attention pruning baselines. Com-
pared to LaCo and ShortGPT (layer pruning) and LLMDrop (attention pruning), our
method consistently achieves superior results. This suggests that our entropy-based metric
effectively identifies and prunes redundant computation blocks at different granularities.

* Pretrained Transformer models contain significant redundancy, especially in atten-
tion layers. Our experiments show that removing up to 12 layers (37.5% of total attention
layers) in Llama3.1-8B still retains over 95% of the model’s original performance. This in-
dicates that modern Transformers are often over-parameterized and that structured pruning
can significantly improve efficiency without major performance degradation.

Overall, these findings confirm that entropy-based pruning is an effective and generalizable strategy
for reducing redundant computation in large Transformer models. By leveraging entropy dynamics,
EntroDrop enables efficient pruning while maintaining competitive performance.

4.3 IMPACT OF CALIBRATION DATASET
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Figure [3] presents the entropy increase heatmaps esti- Figure 3: Calibration Datasets Heatmap
mated using different calibration datasets on Llama3.1-

8B and Mistral-7B-v0.3. Across all models, entropy increase is smaller in deeper layers, indicating
that these layers contribute less to new information processing and are more redundant. This suggests
that deeper layers are natural candidates for pruning. Furthermore, despite differences in calibration
datasets, the estimated entropy increase trends remain largely consistent. The relative importance of
layers is preserved across general and domain-specific datasets, suggesting that our entropy-based
pruning approach is robust to calibration dataset variations.
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To further examine the impact of calibration datasets on model performance, Figure ] presents the
evaluation results of Llama3.1-8B and Mistral-7B-v0.3 after pruning 12 attention layers (37.5%).
The results show that different calibration datasets lead to minimal differences in performance across
all benchmark datasets, reinforcing the robustness of our entropy-based pruning strategy. Notably,
even with domain-specific datasets (Medicine, Law), the average accuracy remains stable, indicat-
ing that the entropy estimation process generalizes well across different calibration datasets. These
findings confirm that EntroDrop remains effective regardless of the calibration dataset, making it a
flexible and generalizable pruning strategy.

4.4 ENTROPY ESTIMATION SENSITIVITY
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Figure 6: Attention Deletion Experiments

Estimation Method. Entropy estimation plays a crucial role in our pruning framework, as it di-
rectly influences the selection of redundant computation blocks. We evaluate three entropy esti-
mation methods: Bucket, KNN and Renyi. To analyze the impact of different entropy estimation
methods, we compare pruning results using these approaches on Llama3.1-8B and Mistral-7B-v0.3.
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Figure [5] presents the evaluation results across multiple benchmark datasets when deleting 12 lay-
ers of attention blocks using our method. The results indicate that the choice of entropy estimation
method significantly affects performance. Both Bucket-based and KNN-based estimation methods
yield stable and high accuracy across all datasets, demonstrating their effectiveness in preserving es-
sential model capabilities after pruning. In contrast, Renyi entropy estimation consistently underper-
forms, leading to noticeable accuracy degradation. This suggests that Renyi entropy may introduce
excessive sensitivity to certain probability distributions, making it less suitable for pruning decisions
of pre-trained Transformer blocks.

To investigate the redundancy in Transformer models, we analyze the impact of attention layer
deletion across multiple datasets, including ARC-C, HellaSwag, MMLU, and WinoGrande. Fig-
ure [6] presents the performance degradation trend on MMLU as attention layers are progressively
removed from Mistral-7B-v0.3. The results indicate that model performance remains stable until
approximately 12 attention layers are removed, after which accuracy begins to degrade. This sug-
gests that a significant portion of attention layers are redundant and can be pruned without substantial
performance loss. Additionally, we compare different importance estimation methods for attention
pruning. Both Bucket and KNN-based estimation methods consistently outperform Cosine Similar-
ity, demonstrating their effectiveness in identifying unimportant attention layers. In contrast, Renyi
entropy performs poorly, further confirming its limitations in guiding structured pruning.

Estimation Hyper-parameter. To further ana-
lyze the robustness of entropy estimation meth- 10
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Figure 7: Hyperparameter Impact

The findings highlight the importance of selecting entropy estimation method while also reinforc-
ing the stability of entropy-based pruning. Although different methods may compute varying abso-
lute entropy values, the pruning decisions remain consistent. From our experiments, Bucket-based
and KNN-based methods provide reliable performance, whereas using an inappropriate method like
Renyi entropy could lead to suboptimal pruning outcomes.

4.5 SPEEDUP TEST

To evaluate the efficiency gains from pruning attention blocks, we conduct inference speed tests on
Llama3.1-8B and Mistral-7B-v0.3. We prune attention layers progressively and measure both model
performance and inference time. The speed test is performed by fixing the input sequence length to
1024 tokens and generating an output of 1024 tokens. Each experiment is repeated 10 times, and the
average inference time is reported.

As shown in Fig.[§] inference time decreases nearly linearly with the number of pruned blocks, while
accuracy remains stable for the first 12 pruned layers. Beyond this point, further pruning leads to no-
ticeable degradation. Bucket- and KNN-based EntroDrop consistently outperform cosine-similarity
pruning, offering better accuracy—speed trade-offs. Since EntroDrop removes entire attention blocks,
the observed latency gains align closely with the theoretical FLOPs reduction (e.g., pruning 12 of
32 blocks leads to about 37.5% FLOPs reduction). These results demonstrate that EntroDrop yields
substantial acceleration while preserving strong task performance.
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Figure 8: SpeedUp Experiments

5 RELATED WORK

LLM Pruning. In the era of large language models (LLMs), various methods have been proposed
to reduce model size and accelerate inference (Frantar et al., 2022} |[Lin et al., 2024; [Xiao et al.,
2023 |Shao et al., [2023; [Zhu et al.l 2023 [ Xu et al.| 2023} [Dettmers et al.| 2023} [Liu et al., 2023}
Huang et al.| [2025} |Shen et al., |2025)). Recent advances focus on post-training pruning techniques
that eliminate redundant parameters or structures. (Gromov et al.l [2024) empirically study the di-
minishing contribution of deeper layers in large Transformers and highlight the potential for layer
pruning. While their work focuses on diagnosing redundancy, our method operationalizes this obser-
vation by quantifying information change through entropy and proposing a concrete, entropy-guided
pruning strategy. SparseGPT (Frantar & Alistarh} 2023)) leverages second-order information to iden-
tify unimportant parameters in LLMs. Wanda (Sun et al., [2023)) introduces a pruning matrix that
considers both weight magnitude and corresponding input activations. NEPENTHE (Liao et al.,
2024) introduces a method that utilizes entropy to identify and remove low-entropy layers in deep
neural networks, effectively reducing model depth while maintaining performance. E-Sparse (Li
et al.,|2023) introduces an entropy-based pruning method that enhances inference speed and reduces
memory usage in large language models by leveraging information richness to guide N:M sparsity.
SPP (Lu et al., [2024b) designs an efficient fine-tuning method to recover model performance post-
pruning while maintaining sparsity. Beyond parameter pruning, structural pruning of LLMs has also
gained popularity. LLM-Pruner (Ma et al.| 2023) and ShearedLLaMA (Xia et al., |2023) remove
unimportant structures such as layers and attention heads. Additionally, (Lu et al.,[2024al)) finds that
certain experts in mixture-of-experts (MoE) LLMs can also be pruned. Among structural pruning
methods, layer pruning is particularly relevant. Laco (Yang et al., [2024) reduces model depth by
merging adjacent layers from the topmost layer downward. ShortGPT (Men et al., |2024) prunes
unimportant layers based on a cosine similarity criterion. LLMDrop (He et al., |2024) finds that at-
tention layers are more redundant than MLP layers but also relies on cosine similarity for pruning.
Yang et al. (Yang et al.) also adopt an information-theoretic lens, using transfer entropy to measure
how masking a block changes the model’s output distribution. Their method evaluates output-level
sensitivity via additional masked forward passes. In contrast, EntroDrop focuses on hidden-state
entropy dynamics, requiring only a single unmasked forward pass and revealing a consistent com-
pression—expansion pattern across layers. This representation-level perspective leads to a distinct
and more efficient pruning criterion.

Different from prior approaches, we firstly analyze layer-wise entropy dynamics in LLMs and reveal
a two-stage pattern of information compression followed by expansion. Based on this insight, we
propose EntroDrop, which prunes blocks with the smallest entropy increase between layers.

6 CONCLUSION

In this paper, we present the first systematic study of layer-wise entropy dynamics in pretrained large
language models. Our analysis reveals a two-stage pattern characterized by early-layer information
compression followed by late-layer information enrichment. Building on this observation, we de-
sign EntroDrop, an entropy-based pruning framework that removes blocks contributing the least
additional information. Extensive experiments show that EntroDrop achieves substantial parameter
reduction and inference acceleration while maintaining high accuracy across multiple benchmarks.
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7 REPRODUCIBILITY STATEMENT

We provide complete source code and detailed instructions in the supplementary material to facilitate
reproducibility. All evaluations are conducted using the open-source lm—evaluation-harness
libraryﬂ without any modification to the datasets or evaluation scripts. Therefore, researchers can
easily run our code with the provided configurations to reproduce the reported results.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS
We used large language models (LLMs) solely for grammar correction and language polishing of

the manuscript. No part of the research ideation, experimental design, implementation, or analysis
relied on LLMs. All methodological contributions and results were produced entirely by the authors.

A.2 ENTROPY DYNAMICS OF DIFFERENT MODELS
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Figure 9: Entropy dynamics among layers during inference

To assess whether the observed entropy dynamics generalize beyond the two models reported in the
main text, we further evaluate two widely used open-source LLMs: Qwen3-14B and DeepSeek-V2-
Lite-16B. As shown in Fig.[9 both models exhibit a similar two-stage trend: an initial entropy de-
crease in the first few layers, followed by a gradual increase across the remaining depth. This pattern
appears consistently across all four datasets. These results indicate that the compression—expansion
transition is not specific to Llama- or Mistral-style architectures. While we also tested several ad-
ditional models (not all shown), and the phenomenon is not universal, it is prominently present in
many of the most commonly used open-source LLMs (Llama3, Mistral, Qwen, DeepSeek). This
suggests that the entropy dynamics we report reflect a broadly shared behavior across mainstream
Transformer models rather than an artifact of a single architecture.

Overall, the additional experiments reinforce our key conclusion: early layers tend to compress and
stabilize representations, whereas later layers expand contextual information, making them more
suitable for depth-based pruning.

A.3 PRUNING EXPERIMENT RESULTS ON QWEN3-14B MODEL

As shown in Table 3] pruning Qwen3-14B under different budgets reveals clear differences among
baseline methods. LaCo and ShortGPT degrade rapidly as L increases, confirming that distance- and
gradient-free heuristics are insufficient for identifying compressible layers in larger modern LLMs.
LLMDrop (Attention) is consistently stronger, especially under higher pruning ratios. However, our
method achieves the best performance across all pruning depths, with notable gains on challenging
tasks such as WSC273, MMLU, GSM8k, and XSum. These results indicate that entropy-guided
layer selection preserves essential reasoning and knowledge pathways more effectively than existing
heuristics, leading to more robust model compression on Qwen-series architectures.

A.4 POST-TRAINING EXPERIMENT

To further evaluate whether entropy-guided pruning preserves recoverable structure more effectively
than cosine-similarity pruning, we conduct lightweight post-training experiments on the HellaSwag
training split. For both Llama3.1-8B and Mistral-7B-v(.3, we prune the models with three budgets
(L = {4,8,12}) and apply a short finetuning stage using only the HellaSwag training data. Since
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Dataset
L Method atase Average
PIQA HellaSwag WSC273 CSQA WinoGrande ARC-E ARC-C OBQA MMLU CMMLU RACE XSum GSM8k
0 * 0.8014  0.6090 0.8498 0.8018 0.7309 0.8422 0.5845 0.3520 0.7714 0.8019 0.4335 0.1196 0.8802 | 0.6599
LaCo 0.7220  0.4872  0.7875 0.6732  0.6985 0.7189 0.4573 0.2760 0.7564 0.7179 0.3770 0.0964 0.2183 | 0.5374

ShortGPT ~ |0.7334 05309  0.7912 07830  0.6819  0.7319 04855 02740 07587 0.7364 0.4048 0.1143 0.3397 | 0.5666
Ours (Layer) |0.7704 05370 08168 0.7346  0.6559  0.7929 0.4684 0.3180 0.6299 0.6596 0.4077 0.1196 0.5648 | 0.5750
LLMDrop (Attn)|0.7949  0.6066  0.8315 0.7854 07182  0.8262 0.5759 03560 0.7644 0.7806 04316 0.1194 0.6027 | 0.6303
Ours (Attn)  [0.7965 0.6062  0.8498 0.7879  0.7135  0.8333 0.5742 0.3400 0.7664 0.7884 0.4354 0.1171 0.8446 | 0.6503
LaCo 07367 04662 07070 04283 05983  0.7231 04053 0.2760 03583 0.3976 03550 0.1227 0.0235 | 0.4306
ShortGPT ~ |0.6697 04188  0.7766 0.6626  0.6740 05219 03507 02300 07302 0.7217 03167 0.0308 0.0000 | 0.4695
Ours (Layer) |0.6872 04400 07179 0.6847  0.6306  0.6646 0.4019 02600 0.6977 0.7131 0.3943 0.1036 0.0341 | 0.4946
LLMDrop (Attn) |0.7775  0.5771  0.7985 0.7396  0.7245  0.8039 0.5538 0.3320 0.7598 0.6735 0.4067 0.1028 0.1054 | 0.5658
Ours (Attn)  [0.7862 05717  0.8132 07486 07064  0.8308 0.5717 0.3480 0.7168 0.7080 0.4354 0.1161 0.6133 | 0.6128
LaCo 0.5604 02930  0.6374 02498 05841 03624 02790 0.1840 03126 02546 0.2555 0.0162 0.0000 | 0.3068
ShortGPT ~ |0.6627 0.3866  0.6410 0.1957 05406 05972 0.2978 02200 0.2490 0.2646 0.2986 0.0898 0.0190 | 0.3433
Ours (Layer) |0.6464 03706  0.6007 04349 05635  0.5311 0.3106 0.2300 0.5755 0.5343 0.3167 0.0498 0.0008 | 0.3973
LLMDrop (Attn) |0.7476  0.5197  0.7582 02637 07048  0.7264 04795 0.2960 0.5862 0.2833 03579 0.0534 0.0106 | 0.4452
Ours (Attn)  [0.7709 05090 07729 05807  0.6527  0.7567 0.4548 0.3260 0.5823 0.5875 0.3895 0.0909 0.0197 | 0.4995

IS

=3

]

Table 3: Experiment Results on Qwen3-14B. L indicates the number of pruned blocks. The best
performance (per block group) is marked in bold.

Entropy (Ours) Recovery Cosine Recovery
Pruned Finetuned (%) Pruned  Finetuned (%)
0.6003 | 0.5947 0.6002 98.8% 0.5965 0.5953 30.0%
Llama3.1-8B 8 | 0.6003 | 0.5921 0.5937 79.4% 0.5877 0.5897 52.6%
12 | 0.6003 | 0.5708 0.5836 42.5% 0.5584 0.5594 4.6%
4 1 0.6091 | 0.6062 0.6080 74.5% 0.6051 0.6080 75.6%
Mistral-7B-v0.3 | 8 | 0.6091 | 0.5991 0.6045 46.3% 0.5970 0.6036 62.4%
12 | 0.6091 | 0.5749 0.5857 37.7% 0.5614 0.5726 30.6%

Model L Base

Table 4: Post-training recovery on HellaSwag for entropy-based pruning (ours) vs cosine similarity
pruning. Base accuracy is shared across pruning methods.

all pruning methods begin from the same dense checkpoint, we report a shared baseline accuracy
for each model and compare how much performance can be recovered after pruning. All results are
evaluated on the HellaSwag test set, enabling a direct and controlled comparison between entropy-
based and cosine-based criteria.

Results. Across both models, entropy-guided pruning shows markedly stronger recoverability than
cosine similarity. For Llama3.1-8B, EntroDrop preserves most of the recoverable structure: pruning
4 layers leads to minimal degradation (0.6003—0.5947), and post-training restores 98.8% of the
original accuracy, compared to cosine pruning which restores noticeably less. Even at larger budgets
(L = 8, 12), EntroDrop-pruned models consistently regain a substantial portion of the lost accuracy
(79.4% and 42.5% recovery), while cosine-pruned models exhibit weaker and more unstable recov-
ery. Mistral-7B-v0.3 demonstrates the same pattern. Under EntroDrop, the model recovers 74.5 %
of the gap at L = 4, and still restores 46.3% and 37.7% at L = 8 and L = 12, respectively—again
exceeding the recovery obtained by cosine pruning. These results suggest that entropy reliably iden-
tifies layers whose removal can be compensated through small-scale post-training, indicating that
entropy-based pruning preserves the model’s intrinsic plasticity more effectively than cosine simi-
larity, especially under deeper pruning budgets.

To evaluate whether post-training can recover the general capabilities of structurally pruned models,
we design a controlled study that jointly varies the pruning criterion and the semantic relevance
of post-training data. Experiments are conducted on two representative base models (Llama-3.1-
8B and Mistral-7B), each pruned with a fixed 12-layer budget. To study capability recovery, we
finetune each pruned model on 100k randomly sampled tuning examples drawn from datasets with
progressively increasing relevance to the evaluation tasks: (a) Alpaca (general instruction tuning,
least related), (b) Flan v2 (broad mixture of reasoning and knowledge tasks, moderately related),
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Table 5: EntroDrop vs CosineDrop post-training results on 7 key benchmarks (Llama-3.1, 12-layer
pruning).

| Orig Pruned Alpaca Flan v2 Mixed
Task | Base | EntroDrop Cosine | EntroDrop Cosine | EntroDrop  Cosine | EntroDrop  Cosine

HellaSwag 0.6003 0.5708 0.5584 0.5778 0.5643 0.5741 0.5599 0.5731 0.5588
WinoGrande | 0.7316 0.7340 0.7253 0.7253 0.7261 0.7293 0.7324 0.7301 0.7245

RACE 0.3923 0.3703 0.3799 0.3837 0.3732 0.3780 0.3713 0.3770 0.3789
CSQA 0.7166 0.6740 0.6790 0.6388 0.6495 0.6978 0.6658 0.6978 0.6609
ARC-E 0.8148 0.7980 0.7807 0.7997 0.7824 0.7950 0.7811 0.7988 0.7824
ARC-C 0.5102 0.4957 0.4753 0.4940 0.4855 0.4889 0.4821 0.5000 0.4838
OBQA 0.3340 0.3540 0.3100 0.3460 0.3140 0.3500 0.3080 0.3540 0.3100

Avg (7 tasks) | 0.5857 | 0.5710 0.5584 |  0.5665 0.5564 | 0.5733 0.5572 | 0.5758 0.5570

Table 6: EntroDrop vs Cosine pruned model post-training experiment across datasets (Mistral-7B,
12-layer pruning, 7-task subset).

‘ Orig Pruned Alpaca Flan v2 Mixed
Task | Base | EntroDrop Cosine | EntroDrop Cosine | EntroDrop —Cosine | EntroDrop — Cosine

HellaSwag 0.6091 0.5749 0.5614 0.5815 0.5686 0.5780 0.5645 0.5796 0.5678
WinoGrande | 0.7388 0.7222 0.7277 0.7174 0.7253 0.7324 0.7309 0.7316 0.7411

RACE 0.4086 0.3799 0.3722 0.3856 0.3780 0.3799 0.3828 0.3732 0.3789
CSQA 0.5741 0.5446 0.4054 0.5127 0.3841 0.5152 0.3784 0.5651 0.4472
ARC-E 0.7963 0.7546 0.7483 0.7614 0.7593 0.7374 0.7260 0.7626 0.7500
ARC-C 0.4898 0.4693 0.4437 0.4556 0.4369 0.4556 0.4420 0.4599 0.4437
OBQA 0.3300 0.3080 0.2820 0.3060 0.2820 0.3240 0.2880 0.3020 0.2800

Avg (7 tasks) | 0.5638 | 0.5502 0.5083 | 0.5315 0.5049 | 0.5310 0.5124 |  0.5380 0.5184

and (c) Mixed (most related), constructed by sampling from the training data of the evaluation
benchmarks (HellaSwag, WinoGrande, RACE, CSQA, ARC, and OBQA). This yields a controlled
semantic gradient (Alpaca — Flan v2 — Mixed) that allows us to study how recovery improves
as post-training data becomes more aligned with the evaluation tasks. For each (criterion, dataset)
configuration, we report per-task results, macro-average accuracy across all 11 tasks, and a direct
comparison between EntropyDrop and CosineDrop under matched post-training conditions, using
the Orig model as the common upper bound.

Across both Llama-3.1 (Table[5)) and Mistral-7B (Table[6), the 7-task evaluation reveals a consistent
pattern in post-pruning capability recovery. First, EntropyDrop consistently outperforms cosine-
based pruning across all post-training settings, including the no-training case (PRUNED). This indi-
cates that entropy-based saliency preserves functionally essential layers more effectively than repre-
sentational similarity measures. Second, the extent of recovery strongly depends on the semantic
relevance of post-training data. While Alpaca provides limited gains, Flan v2 yields moderate
improvements, and the Mixed dataset—sampled from the training distributions of the evaluation
tasks—produces the largest recovery. This alignment-driven trend holds for both pruning criteria
and model architectures. Cosine-based pruning, however, exhibits a larger irrecoverable gap even
under Mixed training. Third, lightweight post-training (100k examples) provides substantial but
alignment-dependent recovery. When the finetuning data are semantically related to the evaluation
tasks, performance improves markedly; however, unrelated datasets can introduce negative transfer
and further degrade accuracy. Even under the best-aligned Mixed dataset, pruning-induced loss is
only partially recoverable, indicating that post-training is highly effective but cannot fully compen-
sate for information discarded by pruning.

We additionally evaluate post-training recovery under 8-layer Transformer pruning on Llama-3.1-
8B. Using the same setup as in the attention-pruning study, we finetune each pruned model with 100k
examples from three datasets with increasing semantic relevance (Alpaca — Flan v2 — Mixed).
This allows us to examine how recovery depends on data alignment when entire Transformer layers
are removed. Experiment results are shown in Table [/| Across all settings, EntropyDrop again
outperforms CosineDrop—both immediately after pruning and after post-training—confirming the
stability of entropy-guided layer selection. Recovery improves steadily with data relevance, but the
pruning loss remains only partially recoverable, especially for cosine-based saliency.
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Table 7: EntroDrop vs Cosine post-training results on 7 key benchmarks (Llama-3.1, 8-layer prun-
ing).

| Orig Pruned (8L) Alpaca Flan v2 Mixed

Task | Base | EntroDrop Cosine | EntroDrop Cosine | EntroDrop Cosine | EntroDrop  Cosine

HellaSwag 0.6003 0.4384 0.2825 0.4420 0.2903 0.4409 0.2866 0.4417 0.2922
WinoGrande | 0.7316 0.6898 0.5422 0.6898 0.5414 0.7009 0.5430 0.6993 0.5446

RACE 0.3923 0.3378 0.2526 0.3445 0.2517 0.3349 0.2517 0.3426 0.2545
CSQA 0.7166 0.6216 0.4046 0.4963 0.4128 0.5872 0.4087 0.5512 0.4095
ARC-E 0.8148 0.5644 0.4289 0.5968 0.4411 0.5981 0.4297 0.5985 0.4335
ARC-C 0.5102 0.3532 0.2739 0.3592 0.2807 0.3575 0.2816 0.3490 0.2756
OBQA 0.3340 0.2120 0.1820 0.2640 0.1800 0.2640 0.1780 0.2600 0.1840

Avg (7 tasks) | 0.5857 | 0.4596 0.3381 | 0.4561 0.3426 |  0.4691 03399 |  0.4632 0.3420
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