
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENTROPY-BASED BLOCK PRUNING FOR EFFICIENT
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models continue to scale, their growing computational and
storage demands pose significant challenges for real-world deployment. In this
work, we investigate redundancy within Transformer-based models and propose
an entropy-based pruning strategy to enhance efficiency while maintaining per-
formance. Empirical analysis reveals that the entropy of hidden representations
decreases in the early blocks but progressively increases across most subsequent
blocks. This trend suggests that entropy serves as a more effective measure of
information richness within computation blocks. Unlike cosine similarity, which
primarily captures geometric relationships, entropy directly quantifies uncertainty
and information content, making it a more reliable criterion for pruning. Extensive
experiments demonstrate that our entropy-based pruning approach surpasses co-
sine similarity-based methods in reducing model size while preserving accuracy,
offering a promising direction for efficient model deployment.1

1 INTRODUCTION

The emergence of large language models (LLMs) has reshaped current research landscape as well
as empowering applications (Dubey et al., 2024; Team et al., 2024; Yang et al., 2025). Scaling in
size, they demonstrate remarkable performance across a wide range of domains/tasks such as chat-
bot (Achiam et al., 2023), code generation (Nijkamp et al., 2022), recommendation (Liang et al.,
2025; Zhang et al., 2025), etc. Hidden behind these striking achievement, Transformer-based mod-
els (Waswani et al., 2017; Touvron et al., 2023; Jiang et al., 2023; Xue et al., 2024) scale their param-
eter size from millions to billions and research continues to explore even larger architectures (Liu
et al., 2024) to further enhance their capabilities. However, the increasing scale in sizes result in
substantial computational and storage costs, posing significant challenges for deployment.

Recent researches have detected the inherent redundancy of these pre-trained LLMs, especially on
the layer level (Gromov et al., 2024; Men et al., 2024; Yang et al., 2024; Xu et al., 2022; Song et al.,
2024; Chen et al., 2024; Kim et al., 2024). Models can maintain competitive performance even after
a significant number of layers are removed, indicating that not all layers contribute equally. This
observation has spurred extensive research on layer pruning techniques, which focus on eliminating
redundant layers while retaining the model’s core functionalities. LLMDrop (He et al., 2024) further
discovered that the Attention block is more redundant than the MLP block, highlighting the need
for a more fine-grained pruning approach to remove redundant components within each block rather
than pruning entire layers. This redundancy provides new insights for optimizing model deployment,
enabling more efficient acceleration strategies while maintaining performance.

For both layer and attention pruning, existing methods (Men et al., 2024; Yang et al., 2024; He et al.,
2024; Mao et al., 2024) adhere to the practice of using cosine similarity to measure the redundancy
between computation blocks. Redundant blocks with high similarity scores are identified and re-
moved by comparing adjacent layers or selected layer pairs. However, cosine similarity primarily
captures the geometric alignment of hidden representations, which does not necessarily reflect the
actual information contribution of each layer. Consequently, relying solely on cosine similarity for
pruning may lead to suboptimal decisions, potentially compromising model performance.

1Code is available in the supplementary material.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this paper, we reconsider the use of cosine similarity as the criterion for pruning and propose
EntroDrop, a novel approach that leverages entropy increase to assess the importance of computa-
tion blocks. Empirical analysis reveals that the entropy of hidden representations initially decreases
in the early layers but progressively rises across subsequent layers. It suggests that entropy can
serve as an effective indicator of information richness within each block. Unlike cosine similarity,
which primarily captures geometric relationships, entropy directly quantifies the information con-
tent of a block’s output, providing a more reliable basis for pruning decisions. Extensive experiments
comparing entropy-based and cosine similarity-based pruning demonstrate that our entropy-driven
approach more effectively preserves model accuracy while reducing computational costs. The code
can be found in supplementary material. Our key contributions are summarized as:

• We conduct an empirical analysis of entropy dynamics in hidden representations across
LLM blocks during inference, offering new insights into information flow.

• We propose a novel entropy-based pruning strategy to effectively reduce model size and
preserve performance.

• Extensive experiments demonstrate the superiority of EntroDrop over cosine similarity-
based pruning methods.

2 PRELIMINARY

Transformer-based architectures consist of two primary computational blocks: the Attention and the
MLP Block. They process hidden states and enrich them sequentially.

2.1 COMPUTATION BLOCKS

Attention Block enables each token in the input sequence to interact with others. Given an input
X, a Layer Normalization (LayerNorm) operation is applied before the self-attention computation
Xnorm = LayerNorm(X). Then, the attention mechanism computes as:

Y = Softmax
(
QKT

√
dk

)
V, (1)

where Q = XnormWQ, K = XnormWK , V = XnormWV , and
√
dk is a scaling factor. The output

Y represents the transformed hidden states.

MLP Block further transforms the output of Attention block. Assume the input for MLP block is
also X. It firstly applies layer normalization to stabilize the output as Xnorm = LayerNorm(X).
Then a two-layer feedforward network is calculated to process Xnorm as:

Y = ReLU(XnormW1 + b1)W2 + b2, (2)
where W1, W2, b1 and b2 are learnable parameters. There are also other variants (Touvron et al.,
2023) for this feedforward network. Together, the Attention Block and MLP Block form a complete
Transformer Block, which can be stacked to build deep Transformer models. Each Transformer
Block refines and enriches the hidden states, enabling hierarchical learning across multiple layers.

2.2 BLOCK-WISE PRUNING

Block-wise pruning aims to determine the importance of each computation block by analyzing the
relationship between its input X and output Y. The goal is to define an effective metric that identifies
less informative blocks for removal while preserving essential model functionality. To quantify the
importance of a block, an importance criterion is often calculated as:

I = g(X,Y) (3)
where g(·) is a function measuring the information contribution of the block and we prioritize the
pruning on blocks with less importance score. No matter on which computation blocks, current
methods (He et al., 2024; Men et al., 2024) judge the importance by cosine similarity and the impor-
tance criterion is calculated as g(X,Y) = 1− X·Y

|X||Y| . In this paper, we propose entropy increase, a
new importance criterion based on empirical observations of entropy change across the layers. En-
tropy increase can better capture the information flow within the model, providing a more effective
metric for identifying redundant blocks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 603
Block Index

2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50

En
tro

py

1 2
Llama3.1-8B

C4
Law
Medicine
Wikitext2

0 5 10 15 20 25 301
MLP Block Index

2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

En
tro

py

1 2
Llama3.1-8B

C4
Law
Medicine
Wikitext2

0 10 20 302
Attention Block Index

2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

En
tro

py

1 2
Llama3.1-8B

C4
Law
Medicine
Wikitext2

0 10 20 30 40 50 603
Block Index

2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50

En
tro

py

1 2
Mistral-7B-v0.3

C4
Law
Medicine
Wikitext2

0 5 10 15 20 25 301
MLP Block Index

2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

En
tro

py

1 2
Mistral-7B-v0.3

C4
Law
Medicine
Wikitext2

0 10 20 302
Attention Block Index

2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

En
tro

py

1 2
Mistral-7B-v0.3

C4
Law
Medicine
Wikitext2

Figure 1: Entropy dynamics among layers during inference

2.3 ENTROPY DEFINITION

For a discrete variable Z with probability mass function p(z), its Shannon entropy is defined as:

H(Z) = −
∑
z

p(z) log p(z),

which measures the average uncertainty or information content of Z. Higher entropy indicates that
Z takes more uniformly distributed values (i.e., richer information), while lower entropy suggests
more concentrated representations. In this work, we firstly discretize the hidden activations of large
language models and compute their entropy layer by layer. This allows us to systematically ob-
serve how entropy evolves as the model depth increases, revealing a two-stage pattern of entropy
decrease followed by entropy increase. This empirical finding serves as the foundation for our pro-
posed entropy-based pruning strategy.

3 METHOD

3.1 OBSERVATIONS ON ENTROPY DYNAMICS

To investigate the entropy across different layers of Transformer models, we conduct experiments
on Llama3.1-8B (Dubey et al., 2024) 2 and Mistral-7B-v0.3 (Jiang et al., 2023) 3. We analyze the
entropy trends during inference across Transformer Blocks, Attention Blocks, and MLP Blocks
using four datasets: C4, Law, Medicine, and Wikitext2. We compute the entropy of hidden states at
each block level and track its evolution across the network.

The experimental results, shown in Fig. 1, reveal a consistent two-stage behavior:

• Stage 1: Entropy Decrease (Layers 1–3). Early layers progressively reduce entropy, indi-
cating strong information compression, noise filtering, and formation of compact represen-
tations.

• Stage 2: Entropy Increase (Layers 3–32). Subsequent layers gradually increase entropy,
suggesting progressive contextual expansion and feature enrichment.

This pattern appears robust across all four datasets and aligns with prior findings (Yang et al., 2024;
Men et al., 2024), which highlight the importance of early layers for information preservation. Our
results further suggest that later layers contribute more uniformly to representation expansion, mak-
ing them better candidates for pruning.

2https://huggingface.co/meta-llama/Llama-3.1-8B
3https://huggingface.co/mistralai/Mistral-7B-v0.3

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

C
alibration
D

ataset

LM
 H

ead
...

Stage 1 Stage 2

Rank 01N L-2......

Block 1

Block 2

Block 3

Block L

Block N

Block N
 + 1

...

Block

(a) Entropy Increase Calculation (b) Pruning Order Decision

Figure 2: Overview of the EntroDrop framework. Stage 1 keeps intact, while Stage 2 exhibits in-
creasing entropy. Blocks in Stage 2 are ranked based on their entropy increase, and those with the
lower entropy increase are pruned earlier.

Entropy-lens Ali et al. (2025) studies entropy dynamics from prediction logits derived from hid-
den states, showing that different model families may exhibit distinct output-level entropy pat-
terns. In contrast, we directly analyze the entropy of raw hidden representations, providing a
more fine-grained view of information evolution inside the model. Across several mainstream
LLMs—including Llama3.1-8B, Mistral-7B-v0.3, Qwen3-14B, and DeepSeek-V2-Lite-16B—we
consistently observe an early-layer entropy decrease followed by a later-layer entropy increase (Ap-
pendix A.2). Although this two-stage trend is not universal across every architecture examined, it
recurs across many widely used Transformer families, suggesting that such compression–expansion
dynamics are a common emergent behavior in modern decoder-only LLMs.

3.2 ENTRODROP

Based on our empirical observations of entropy dynamics across Transformer models, we propose
EntroDrop, a novel entropy-based pruning method that leverages entropy increase in later layers to
identify and remove redundant computation blocks while preserving essential model performance.
The framework is shown in Fig. 2.

We consider a pre-trained Transformer model consisting of L computation blocks, each responsible
for transforming hidden states as the input propagates through the network. Given a calibration
dataset D, we pass input samples through the model and collect the hidden states at each block:

Zl = fl(Z
l−1), l = 1, 2, . . . , L, (4)

where Zl represents the hidden state at the l-th block, and fl(·) denotes the computation block
function (e.g., Attention, MLP). Once the hidden states at all blocks are obtained, we estimate the
entropy of each block and rank them according to entropy increases. The lowest K blocks, which
exhibit minimal entropy increase, are selected for pruning.

EntroDrop leverages a two-stage pruning strategy based on entropy observations. Stage 1 com-
presses the information, and no computation blocks are pruned in this stage. Stage 2 gradually
increases the entropy, suggesting that these blocks perform similar hidden state enrichments. The
transition point between the two stages, denoted as Sstart, is determined using a calibration dataset.

To effectively estimate the importance of computation blocks, we define entropy increase as:

∆H l = H(Zl)−H(Zl−1), (5)

where H(·) represents the entropy estimation function. Blocks in Stage 2, indexed by Sstart ≤ l ≤ L,
are ranked in ascending order based on their entropy increase:

Rank(∆H l) = argsort(∆H l) for l ≥ Sstart. (6)

Finally, the K blocks with the smallest entropy increase within Stage 2 are selected for pruning:

Sprune = {fi | fi ∈ Rank(∆H l)Sstart:L[: K]}, (7)

where Sprune denotes the set of pruned blocks and ∆H l represents the entropy increase of l com-
putation block. The bottom k ranked layers are pruned to optimize efficiency. To estimate entropy
efficiently, we explore multiple techniques:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

L Method Dataset Average
PIQA HellaSwag WSC273 CSQA WinoGrande ARC-E ARC-C OBQA MMLU CMMLU RACE XSum GSM8k

0 * 0.803 0.6091 0.8864 0.5741 0.7388 0.7963 0.4898 0.3300 0.5908 0.3830 0.4086 0.0315 0.3715 0.5697

4

LaCo 0.5501 0.2975 0.6996 0.1196 0.6275 0.2908 0.2568 0.2400 0.1817 0.2070 0.2746 0.0284 0.0543 0.3216
ShortGPT 0.7557 0.5458 0.8352 0.4808 0.7048 0.7104 0.4181 0.2620 0.4887 0.3598 0.3828 0.0291 0.0591 0.4662

Ours (Layer) 0.7524 0.5467 0.8278 0.4865 0.7214 0.7079 0.4266 0.2700 0.4954 0.3458 0.3914 0.0445 0.0326 0.4730
LLMDrop 0.8047 0.6051 0.8791 0.5717 0.7285 0.7971 0.4872 0.3380 0.5898 0.3828 0.3962 0.0238 0.3328 0.5484
Ours (Attn) 0.8020 0.6062 0.8755 0.5725 0.7309 0.7984 0.4889 0.3380 0.5888 0.3819 0.4019 0.0371 0.3510 0.5568

8

LaCo 0.5952 0.3180 0.7033 0.2080 0.6377 0.3914 0.3029 0.1940 0.2802 0.2602 0.3062 0.0065 0.0078 0.3295
ShortGPT 0.6627 0.3960 0.7143 0.5184 0.6598 0.5025 0.3294 0.2100 0.5086 0.3259 0.3167 0.0078 0.0099 0.3749

Ours (Layer) 0.6627 0.3960 0.7143 0.5184 0.6598 0.5025 0.3294 0.2100 0.5086 0.3259 0.3167 0.0078 0.0099 0.3749
LLMDrop 0.7998 0.5970 0.8718 0.5766 0.7364 0.7934 0.4753 0.3320 0.5917 0.3659 0.3952 0.0126 0.2813 0.5314
Ours (Attn) 0.8003 0.5991 0.8681 0.5782 0.7332 0.7950 0.4855 0.3240 0.5902 0.3752 0.3952 0.0165 0.3495 0.5443

12

LaCo 0.5724 0.2937 0.6410 0.1630 0.5825 0.3013 0.2671 0.2020 0.2810 0.2214 0.2584 0.0032 0.0054 0.3110
ShortGPT 0.5702 0.2795 0.6007 0.1974 0.5612 0.3367 0.2858 0.2080 0.2264 0.2426 0.2287 0.0083 0.0099 0.3014

Ours (Layer) 0.6066 0.3415 0.6154 0.2424 0.5770 0.4146 0.2969 0.1820 0.3169 0.2595 0.3024 0.0062 0.0030 0.3339
LLMDrop 0.7742 0.5614 0.8388 0.4054 0.7277 0.7483 0.4437 0.2820 0.5551 0.3143 0.3722 0.0139 0.0326 0.5071
Ours (Attn) 0.7802 0.5749 0.8498 0.5446 0.7222 0.7546 0.4693 0.3080 0.5857 0.3636 0.3799 0.0147 0.0811 0.5255

16

LaCo 0.5577 0.2764 0.5165 0.2146 0.5367 0.3266 0.2509 0.1520 0.2637 0.2549 0.2641 0.0012 0.0023 0.2988
ShortGPT 0.5403 0.2704 0.5421 0.1949 0.5501 0.3068 0.2619 0.1540 0.2367 0.2539 0.2488 0.0043 0.0059 0.2944

Ours (Layer) 0.5272 0.2760 0.5275 0.1900 0.5067 0.2955 0.2491 0.1720 0.2473 0.2509 0.2411 0.0032 0.0020 0.2914
LLMDrop 0.6926 0.4272 0.7875 0.2121 0.7017 0.5640 0.3328 0.2220 0.2735 0.2819 0.2938 0.0099 0.0126 0.4060
Ours (Attn) 0.7514 0.4481 0.7656 0.3022 0.7048 0.6595 0.3925 0.2700 0.3586 0.2784 0.3282 0.0117 0.0511 0.4407

Table 1: Experiment Results on Mistral-7B-v0.3. L indicates the number of pruned blocks.

• Bucket-based Estimation: Discretize activation values into bins and estimate based on fre-
quency distribution.

• K-Nearest Neighbors (KNN): Computes entropy by estimating local density using KNN.

• Renyi Entropy: A generalization of Shannon entropy that provides a tunable parameter to
control sensitivity to distribution variations.

Regardless of the estimation method used, entropy computation remains efficient. Our experimental
results demonstrate that selecting an appropriate entropy estimation method is crucial for achieving
optimal pruning performance. Among the approaches tested, Bucket-based estimation and KNN-
based estimation were found to be particularly effective.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models We conduct experiments on two state-of-the-art decoder-only Transformer models:
Llama3.1-8B and Mistral-7B-v0.3. To make a fair comparison, all experiments are finished on a
single 40G A100 GPU device.

Benchmarks To evaluate the effectiveness of EntroDrop, we test on a diverse set of reason-
ing and comprehension benchmarks: Commonsense Reasoning: PIQA (Bisk et al., 2020), Hel-
laSwag (Zellers et al., 2019), WSC273 (Sakaguchi et al., 2021), CSQA (Talmor et al., 2019), Wino-
Grande (Sakaguchi et al., 2021). Scientific and Knowledge-based QA: ARC-E (Clark et al., 2018),
ARC-C (Clark et al., 2018), OBQA (Mihaylov et al., 2018). General and Subject-specific Knowl-
edge: MMLU (Hendrycks et al., 2021b;a), CMMLU (Li et al., 2024), RACE (Lai et al., 2017).
In addition, we include two generation-oriented benchmarks: XSum (Narayan et al., 2018) for ab-
stractive summarization and GSM8K (Cobbe et al., 2021) for multi-step mathematical reasoning,
allowing us to evaluate EntroDrop on both long-form and procedural generation tasks.

Baselines We compare EntroDrop against state-of-the-art pruning techniques in two categories: (1)
Layer Pruning Methods that directly prune the whole transformer block: LaCo (Yang et al., 2024)
and ShortGPT (Men et al., 2024). (2) Attention Pruning Method that only prunes the attention block:
LLMDrop (He et al., 2024). These baselines allow us to assess how EntroDrop compares against
existing pruning methods in terms of performance preservation under different pruning granularity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

L Method Dataset Average
PIQA HellaSwag WSC273 CSQA WinoGrande ARC-E ARC-C OBQA MMLU CMMLU RACE XSum GSM8k

0 * 0.7998 0.6003 0.8608 0.7166 0.7316 0.8148 0.5102 0.3340 0.6332 0.5090 0.3923 0.1302 0.5011 0.5872

4

LaCo 0.7628 0.5116 0.8059 0.6806 0.7103 0.7302 0.4462 0.2840 0.5949 0.4370 0.3761 0.1023 0.2857 0.5062
ShortGPT 0.7557 0.5504 0.7949 0.6921 0.7017 0.7222 0.4420 0.3120 0.5802 0.4160 0.3818 0.1078 0.2942 0.5054

Ours (Layer) 0.7573 0.5407 0.8242 0.7027 0.7088 0.7504 0.4275 0.2860 0.6212 0.4918 0.3818 0.1215 0.0834 0.5170
LLMDrop 0.8025 0.5965 0.8352 0.7117 0.7498 0.8194 0.5188 0.3420 0.6312 0.5111 0.3933 0.1281 0.4754 0.5955
Ours (Attn) 0.8003 0.6022 0.8498 0.7158 0.7364 0.8157 0.5179 0.3420 0.6238 0.5044 0.3895 0.1315 0.5057 0.5949

8

LaCo 0.6197 0.3098 0.6007 0.4005 0.6227 0.3952 0.2756 0.2360 0.4463 0.3405 0.2478 0.0280 0.0132 0.3093
ShortGPT 0.6045 0.2825 0.5971 0.4046 0.5422 0.4289 0.2739 0.1820 0.3226 0.3153 0.2526 0.0310 0.0106 0.3015

Ours (Layer) 0.6795 0.4384 0.7509 0.6216 0.6898 0.5644 0.3532 0.2120 0.5584 0.4408 0.3378 0.0837 0.0152 0.4583
LLMDrop 0.7954 0.5877 0.8388 0.7174 0.7443 0.8119 0.5068 0.3560 0.6338 0.5073 0.4010 0.1268 0.4375 0.5932
Ours (Attn) 0.7954 0.5921 0.8352 0.7183 0.7411 0.8186 0.5154 0.3540 0.6301 0.5041 0.3876 0.1263 0.4439 0.5909

12

LaCo 0.6202 0.3312 0.6337 0.1966 0.6219 0.4293 0.2705 0.1980 0.2428 0.2571 0.2813 0.0074 0.0014 0.3141
ShortGPT 0.6007 0.3066 0.5861 0.5160 0.5501 0.4007 0.2765 0.1780 0.3605 0.3252 0.2660 0.0083 0.0015 0.3346

Ours (Layer) 0.6007 0.3066 0.5861 0.5160 0.5501 0.4007 0.2765 0.1780 0.3605 0.3252 0.2660 0.0083 0.0015 0.3346
LLMDrop 0.7867 0.5584 0.8608 0.6790 0.7253 0.7807 0.4753 0.3100 0.5992 0.4511 0.3799 0.1195 0.2002 0.5467
Ours (Attn) 0.7867 0.5584 0.8608 0.6790 0.7253 0.7807 0.4753 0.3100 0.5992 0.4511 0.3799 0.1195 0.2002 0.5467

16

LaCo 0.5854 0.2904 0.6447 0.1957 0.5612 0.3443 0.2338 0.1600 0.2295 0.2527 0.2469 0.0024 0.0000 0.3071
ShortGPT 0.5647 0.2754 0.5421 0.1949 0.5501 0.3194 0.2440 0.1540 0.2295 0.2529 0.2488 0.0023 0.0000 0.2956

Ours (Layer) 0.5729 0.2705 0.5238 0.2113 0.5099 0.3165 0.2321 0.1380 0.2627 0.2538 0.2278 0.0145 0.0000 0.2980
LLMDrop 0.6926 0.4272 0.7875 0.2121 0.7017 0.5640 0.3328 0.2220 0.2735 0.2819 0.2938 0.0595 0.1020 0.4207
Ours (Attn) 0.7514 0.4481 0.7656 0.3022 0.7048 0.6595 0.3925 0.2700 0.3586 0.2784 0.3282 0.0936 0.1707 0.4603

Table 2: Experiment Results on Llama3.1-8B. L indicates the number of pruned blocks. The best
performance is marked in bold.

Piq
a

Hella
sw

ag

Wsc2
73

CSQ
A

Wino
gra

nd
e

Arc_
ea

sy

Arc_
cha

llen
ge

Ope
nb

oo
kq

a
MMLU

CMMLU
Ra

ce

Av
era

ge

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Llama 3.1-8B
C4
Wikitext2
Law
Medicine

Piq
a

Hella
sw

ag

Wsc2
73

CSQ
A

Wino
gra

nd
e

Arc_
ea

sy

Arc_
cha

llen
ge

Ope
nb

oo
kq

a
MMLU

CMMLU
Ra

ce

Av
era

ge

Datasets

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

Mistral-7B-v0.3
C4
Wikitext2
Law
Medicine

Figure 4: Impact of Calibration Datasets.

4.2 OVERALL PERFORMANCE

Our experimental results on Llama3.1-8B (Table 2) and Mistral-7B-v0.3 (Table 1) demonstrate the
effectiveness of EntroDrop. We summarize the key findings as follows:

• EntroDrop is effective across multiple models. Our method consistently achieves the
best performance across both Llama3.1-8B and Mistral-7B-v0.3. This demonstrates that
EntroDrop is a generalizable pruning strategy applicable to different pre-trained LLMs.

• EntroDrop outperforms both layer pruning and attention pruning baselines. Com-
pared to LaCo and ShortGPT (layer pruning) and LLMDrop (attention pruning), our
method consistently achieves superior results. This suggests that our entropy-based metric
effectively identifies and prunes redundant computation blocks at different granularities.

• Pretrained Transformer models contain significant redundancy, especially in atten-
tion layers. Our experiments show that removing up to 12 layers (37.5% of total attention
layers) in Llama3.1-8B still retains over 95% of the model’s original performance. This in-
dicates that modern Transformers are often over-parameterized and that structured pruning
can significantly improve efficiency without major performance degradation.

Overall, these findings confirm that entropy-based pruning is an effective and generalizable strategy
for reducing redundant computation in large Transformer models. By leveraging entropy dynamics,
EntroDrop enables efficient pruning while maintaining competitive performance.

4.3 IMPACT OF CALIBRATION DATASET

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Piq
a

Hella
sw

ag

Wsc2
73

CSQ
A

Wino
gra

nd
e

Arc_
ea

sy

Arc_
cha

llen
ge

Ope
nb

oo
kq

a
MMLU

CMMLU
Ra

ce

Av
era

ge

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Llama3.1-8B
Bucket
KNN
Renyi

Piq
a

Hella
sw

ag

Wsc2
73

CSQ
A

Wino
gra

nd
e

Arc_
ea

sy

Arc_
cha

llen
ge

Ope
nb

oo
kq

a
MMLU

CMMLU
Ra

ce

Av
era

ge

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Mistral-7B-v0.3
Bucket
KNN
Renyi

Figure 5: Impact of Entropy Estimate Methods.

5 10 15 20 25 30

Layers

C4
Wikitext2

Law
MedicineDa

ta
se

ts

Llama3.1-8B

5 10 15 20 25 30

Layers

C4
Wikitext2

Law
MedicineDa

ta
se

ts

Mistral-7B-v0.3

0 50 100 150 200

Figure 3: Calibration Datasets Heatmap

Our pruning method relies on a calibration dataset to
estimate entropy dynamics across Transformer layers.
We investigate how different calibration datasets affect
pruning results. Specifically, we evaluate two general-
domain datasets (C4 (Raffel et al., 2020) and Wiki-
text (Merity et al., 2016)) and two specific-domain
datasets (Medicine (Cheng et al., 2023) and Law (Cheng
et al., 2023)).

Figure 3 presents the entropy increase heatmaps esti-
mated using different calibration datasets on Llama3.1-
8B and Mistral-7B-v0.3. Across all models, entropy increase is smaller in deeper layers, indicating
that these layers contribute less to new information processing and are more redundant. This suggests
that deeper layers are natural candidates for pruning. Furthermore, despite differences in calibration
datasets, the estimated entropy increase trends remain largely consistent. The relative importance of
layers is preserved across general and domain-specific datasets, suggesting that our entropy-based
pruning approach is robust to calibration dataset variations.

To further examine the impact of calibration datasets on model performance, Figure 4 presents the
evaluation results of Llama3.1-8B and Mistral-7B-v0.3 after pruning 12 attention layers (37.5%).
The results show that different calibration datasets lead to minimal differences in performance across
all benchmark datasets, reinforcing the robustness of our entropy-based pruning strategy. Notably,
even with domain-specific datasets (Medicine, Law), the average accuracy remains stable, indicat-
ing that the entropy estimation process generalizes well across different calibration datasets. These
findings confirm that EntroDrop remains effective regardless of the calibration dataset, making it a
flexible and generalizable pruning strategy.

4.4 ENTROPY ESTIMATION SENSITIVITY

5 10 15 20 25
Llama3.1-8B Drop Attention

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

ARC-C

Bucket
KNN
Renyi
Cosine

5 10 15 20 25
Llama3.1-8B Drop Attention

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

HellaSwag

Bucket
KNN
Renyi
Cosine

5 10 15 20 25
Llama3.1-8B Drop Attention

0.4

0.6

Ac
cu

ra
cy

MMLU
Bucket
KNN
Renyi
Cosine

5 10 15 20 25
Llama3.1-8B Drop Attention

0.5

0.6

0.7

Ac
cu

ra
cy

WinoGrande

Bucket
KNN
Renyi
Cosine

5 10 15 20 25
Mistral-7B-v0.3 Drop Attention

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

ARC-C
Bucket
KNN
Renyi
Cosine

5 10 15 20 25
Mistral-7B-v0.3 Drop Attention

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

HellaSwag
Bucket
KNN
Renyi
Cosine

5 10 15 20 25
Mistral-7B-v0.3 Drop Attention

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

MMLU
Bucket
KNN
Renyi
Cosine

5 10 15 20 25
Mistral-7B-v0.3 Drop Attention

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

WinoGrande
Bucket
KNN
Renyi
Cosine

Figure 6: Attention Deletion Experiments
Estimation Method. Entropy estimation plays a crucial role in our pruning framework, as it di-
rectly influences the selection of redundant computation blocks. We evaluate three entropy esti-
mation methods: Bucket, KNN and Renyi. To analyze the impact of different entropy estimation
methods, we compare pruning results using these approaches on Llama3.1-8B and Mistral-7B-v0.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5 presents the evaluation results across multiple benchmark datasets when deleting 12 lay-
ers of attention blocks using our method. The results indicate that the choice of entropy estimation
method significantly affects performance. Both Bucket-based and KNN-based estimation methods
yield stable and high accuracy across all datasets, demonstrating their effectiveness in preserving es-
sential model capabilities after pruning. In contrast, Renyi entropy estimation consistently underper-
forms, leading to noticeable accuracy degradation. This suggests that Renyi entropy may introduce
excessive sensitivity to certain probability distributions, making it less suitable for pruning decisions
of pre-trained Transformer blocks.

To investigate the redundancy in Transformer models, we analyze the impact of attention layer
deletion across multiple datasets, including ARC-C, HellaSwag, MMLU, and WinoGrande. Fig-
ure 6 presents the performance degradation trend on MMLU as attention layers are progressively
removed from Mistral-7B-v0.3. The results indicate that model performance remains stable until
approximately 12 attention layers are removed, after which accuracy begins to degrade. This sug-
gests that a significant portion of attention layers are redundant and can be pruned without substantial
performance loss. Additionally, we compare different importance estimation methods for attention
pruning. Both Bucket and KNN-based estimation methods consistently outperform Cosine Similar-
ity, demonstrating their effectiveness in identifying unimportant attention layers. In contrast, Renyi
entropy performs poorly, further confirming its limitations in guiding structured pruning.

5 10 15 20 25 30

Layers

Bucket 160
Bucket 80
Bucket 40
Bucket 20

KNN 25
KNN 50
KNN 75

KNN 100Es
tim

at
io

n
Llama3.1-8B

5 10 15 20 25 30

Layers

Bucket 160
Bucket 80
Bucket 40
Bucket 20

KNN 25
KNN 50
KNN 75

KNN 100Es
tim

at
io

n

Mistral-7B-v0.3

0 100 200 300 400 500

Figure 7: Hyperparameter Impact

Estimation Hyper-parameter. To further ana-
lyze the robustness of entropy estimation meth-
ods, we investigate the impact of different hy-
perparameter settings. We tune the following
parameters: Bucket-based Estimation: Number
of bins selected from {20, 40, 80, 160}. KNN-
based Estimation: Number of nearest neigh-
bors selected from {25, 50, 75, 100}. Figure 7
presents the estimated entropy values across
Transformer layers using different hyperparam-
eter settings. The results indicate that while
different entropy estimation methods (Bucket
vs. KNN) yield significantly different absolute
entropy values, the relative importance rank-
ing of layers remains largely unchanged within
same estimation method. This suggests that the
choice of hyperparameter (e.g., number of bin-
s/neighbors) does not significantly impact the identification of redundant layers.

The findings highlight the importance of selecting entropy estimation method while also reinforc-
ing the stability of entropy-based pruning. Although different methods may compute varying abso-
lute entropy values, the pruning decisions remain consistent. From our experiments, Bucket-based
and KNN-based methods provide reliable performance, whereas using an inappropriate method like
Renyi entropy could lead to suboptimal pruning outcomes.

4.5 SPEEDUP TEST

To evaluate the efficiency gains from pruning attention blocks, we conduct inference speed tests on
Llama3.1-8B and Mistral-7B-v0.3. We prune attention layers progressively and measure both model
performance and inference time. The speed test is performed by fixing the input sequence length to
1024 tokens and generating an output of 1024 tokens. Each experiment is repeated 10 times, and the
average inference time is reported.

As shown in Fig. 8, inference time decreases nearly linearly with the number of pruned blocks, while
accuracy remains stable for the first 12 pruned layers. Beyond this point, further pruning leads to no-
ticeable degradation. Bucket- and KNN-based EntroDrop consistently outperform cosine-similarity
pruning, offering better accuracy–speed trade-offs. Since EntroDrop removes entire attention blocks,
the observed latency gains align closely with the theoretical FLOPs reduction (e.g., pruning 12 of
32 blocks leads to about 37.5% FLOPs reduction). These results demonstrate that EntroDrop yields
substantial acceleration while preserving strong task performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 10 15 20 25
Number of Dropped Layers

0.3

0.4

0.5

0.6

M
od

el
 P

er
fo

rm
an

ce
 (A

ve
ra

ge
)

Bucket
KNN
Renyi
Cosine 27.5

30.0

32.5

35.0

37.5

In
fe

re
nc

e
Ti

m
e

(s
)

Llama3.1-8B
Inference Time

5 10 15 20 25
Number of Dropped Layers

0.3

0.4

0.5

0.6

M
od

el
 P

er
fo

rm
an

ce
 (A

ve
ra

ge
)

Bucket
KNN
Renyi
Cosine 25

30

35

40

In
fe

re
nc

e
Ti

m
e

(s
)

Mistral-7B-v0.3
Inference Time

Figure 8: SpeedUp Experiments

5 RELATED WORK

LLM Pruning. In the era of large language models (LLMs), various methods have been proposed
to reduce model size and accelerate inference (Frantar et al., 2022; Lin et al., 2024; Xiao et al.,
2023; Shao et al., 2023; Zhu et al., 2023; Xu et al., 2023; Dettmers et al., 2023; Liu et al., 2023;
Huang et al., 2025; Shen et al., 2025). Recent advances focus on post-training pruning techniques
that eliminate redundant parameters or structures. (Gromov et al., 2024) empirically study the di-
minishing contribution of deeper layers in large Transformers and highlight the potential for layer
pruning. While their work focuses on diagnosing redundancy, our method operationalizes this obser-
vation by quantifying information change through entropy and proposing a concrete, entropy-guided
pruning strategy. SparseGPT (Frantar & Alistarh, 2023) leverages second-order information to iden-
tify unimportant parameters in LLMs. Wanda (Sun et al., 2023) introduces a pruning matrix that
considers both weight magnitude and corresponding input activations. NEPENTHE (Liao et al.,
2024) introduces a method that utilizes entropy to identify and remove low-entropy layers in deep
neural networks, effectively reducing model depth while maintaining performance. E-Sparse (Li
et al., 2023) introduces an entropy-based pruning method that enhances inference speed and reduces
memory usage in large language models by leveraging information richness to guide N:M sparsity.
SPP (Lu et al., 2024b) designs an efficient fine-tuning method to recover model performance post-
pruning while maintaining sparsity. Beyond parameter pruning, structural pruning of LLMs has also
gained popularity. LLM-Pruner (Ma et al., 2023) and ShearedLLaMA (Xia et al., 2023) remove
unimportant structures such as layers and attention heads. Additionally, (Lu et al., 2024a) finds that
certain experts in mixture-of-experts (MoE) LLMs can also be pruned. Among structural pruning
methods, layer pruning is particularly relevant. Laco (Yang et al., 2024) reduces model depth by
merging adjacent layers from the topmost layer downward. ShortGPT (Men et al., 2024) prunes
unimportant layers based on a cosine similarity criterion. LLMDrop (He et al., 2024) finds that at-
tention layers are more redundant than MLP layers but also relies on cosine similarity for pruning.
Yang et al. (Yang et al.) also adopt an information-theoretic lens, using transfer entropy to measure
how masking a block changes the model’s output distribution. Their method evaluates output-level
sensitivity via additional masked forward passes. In contrast, EntroDrop focuses on hidden-state
entropy dynamics, requiring only a single unmasked forward pass and revealing a consistent com-
pression–expansion pattern across layers. This representation-level perspective leads to a distinct
and more efficient pruning criterion.

Different from prior approaches, we firstly analyze layer-wise entropy dynamics in LLMs and reveal
a two-stage pattern of information compression followed by expansion. Based on this insight, we
propose EntroDrop, which prunes blocks with the smallest entropy increase between layers.

6 CONCLUSION

In this paper, we present the first systematic study of layer-wise entropy dynamics in pretrained large
language models. Our analysis reveals a two-stage pattern characterized by early-layer information
compression followed by late-layer information enrichment. Building on this observation, we de-
sign EntroDrop, an entropy-based pruning framework that removes blocks contributing the least
additional information. Extensive experiments show that EntroDrop achieves substantial parameter
reduction and inference acceleration while maintaining high accuracy across multiple benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We provide complete source code and detailed instructions in the supplementary material to facilitate
reproducibility. All evaluations are conducted using the open-source lm-evaluation-harness
library4 without any modification to the datasets or evaluation scripts. Therefore, researchers can
easily run our code with the provided configurations to reproduce the reported results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Riccardo Ali, Francesco Caso, Christopher Irwin, and Pietro Liò. Entropy-lens: The information
signature of transformer computations. arXiv preprint arXiv:2502.16570, 2025.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
redundant layers to compress large language models. arXiv preprint arXiv:2403.19135, 2024.

Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading com-
prehension. In The Twelfth International Conference on Learning Representations, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention
is needed. arXiv preprint arXiv:2406.15786, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob Stein-
hardt. Aligning ai with shared human values. Proceedings of the International Conference on
Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.
4https://github.com/EleutherAI/lm-evaluation-harness

10

https://github.com/EleutherAI/lm-evaluation-harness

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Weiyu Huang, Yuezhou Hu, Guohao Jian, Jun Zhu, and Jianfei Chen. Pruning large language models
with semi-structural adaptive sparse training. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 24167–24175, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 11, 2024.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale
ReAding comprehension dataset from examinations. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 785–794, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1082. URL
https://aclanthology.org/D17-1082.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Tim-
othy Baldwin. CMMLU: measuring massive multitask language understanding in chinese. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Com-
putational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024,
pp. 11260–11285. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
FINDINGS-ACL.671. URL https://doi.org/10.18653/v1/2024.findings-acl.671.

Yun Li, Lin Niu, Xipeng Zhang, Kai Liu, Jianchen Zhu, and Zhanhui Kang. E-sparse: Boost-
ing the large language model inference through entropy-based n: M sparsity. arXiv preprint
arXiv:2310.15929, 2023.

Yueqing Liang, Liangwei Yang, Chen Wang, Xiongxiao Xu, Philip S Yu, and Kai Shu. Taxonomy-
guided zero-shot recommendations with llms. In Proceedings of the 31st International Conference
on Computational Linguistics, pp. 1520–1530, 2025.

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Nepenthe: Entropy-based pruning
as a neural network depth’s reducer. arXiv preprint arXiv:2404.16890, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models. arXiv preprint arXiv:2402.14800, 2024a.

Xudong Lu, Aojun Zhou, Yuhui Xu, Renrui Zhang, Peng Gao, and Hongsheng Li. Spp:
Sparsity-preserved parameter-efficient fine-tuning for large language models. arXiv preprint
arXiv:2405.16057, 2024b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Yu Mao, Weilan Wang, Hongchao Du, Nan Guan, and Chun Jason Xue. On the compressibility of
quantized large language models. arXiv preprint arXiv:2403.01384, 2024.

11

https://aclanthology.org/D17-1082
https://doi.org/10.18653/v1/2024.findings-acl.671

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018,
pp. 2381–2391. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-1260.
URL https://doi.org/10.18653/v1/d18-1260.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745,
2018.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A Rossi, Hao Tan, Tong
Yu, Xiang Chen, et al. Numerical pruning for efficient autoregressive models. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39, pp. 20418–20426, 2025.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL
https://aclanthology.org/N19-1421.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Waswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, and I Polosukhin.
Attention is all you need. In NIPS, 2017.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

12

https://doi.org/10.18653/v1/d18-1260
https://aclanthology.org/N19-1421

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Runxin Xu, Fuli Luo, Chengyu Wang, Baobao Chang, Jun Huang, Songfang Huang, and Fei Huang.
From dense to sparse: Contrastive pruning for better pre-trained language model compression.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 11547–11555,
2022.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. arXiv preprint arXiv:2309.14717, 2023.

Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj
Prabhu, Yutong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A family of open large multimodal
models. arXiv preprint arXiv:2408.08872, 2024.

Liangwei Yang, Jing Ma, Jianguo Zhang, Zhiwei Liu, Jielin Qiu, Shirley Kokane, Shiyu Wang,
Haolin Chen, Rithesh Murthy, Ming Zhu, et al. Geognn: Quantifying and mitigating semantic
drift in text-attributed graphs. arXiv preprint arXiv:2511.09042, 2025.

Mingzhe Yang, Sihao Lin, Changlin Li, and Xiaojun Chang. Let llm tell what to prune and how
much to prune. In Forty-second International Conference on Machine Learning.

Yifei Yang, Zouying Cao, and Hai Zhao. LaCo: Large language model pruning via layer collapse.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2024, pp. 6401–6417, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.372.
URL https://aclanthology.org/2024.findings-emnlp.372/.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Weizhi Zhang, Liangwei Yang, Wooseong Yang, Henry Peng Zou, Yuqing Liu, Ke Xu, Sourav Me-
dya, and Philip S Yu. Llminit: A free lunch from large language models for selective initialization
of recommendation. arXiv preprint arXiv:2503.01814, 2025.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

13

https://aclanthology.org/2024.findings-emnlp.372/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for grammar correction and language polishing of
the manuscript. No part of the research ideation, experimental design, implementation, or analysis
relied on LLMs. All methodological contributions and results were produced entirely by the authors.

A.2 ENTROPY DYNAMICS OF DIFFERENT MODELS

0 10 20 30 40 50 60 70 804
Block Index

4.0

4.1

4.2

4.3

4.4

En
tro

py

Qwen3-14B

C4
Law
Medicine
Wikitext2

0 5 10 15 20 25 30 35 402
MLP Block Index

4.0

4.1

4.2

4.3

4.4

En
tro

py

Qwen3-14B

C4
Law
Medicine
Wikitext2

0 5 10 15 20 25 30 35 402
Attention Block Index

4.00
4.05
4.10
4.15
4.20
4.25
4.30
4.35
4.40

En
tro

py

Qwen3-14B

C4
Law
Medicine
Wikitext2

0 10 20 30 40 504
Block Index

2.0

2.5

3.0

3.5

4.0

En
tro

py

DeepSeek-V2-Lite-16B

C4
Law
Medicine
Wikitext2

0 5 10 15 20 252
MLP Block Index

2.0

2.5

3.0

3.5

4.0

En
tro

py

DeepSeek-V2-Lite-16B

C4
Law
Medicine
Wikitext2

0 5 10 15 20 252
Attention Block Index

2.5

3.0

3.5

4.0

En
tro

py

DeepSeek-V2-Lite-16B

C4
Law
Medicine
Wikitext2

Figure 9: Entropy dynamics among layers during inference
To assess whether the observed entropy dynamics generalize beyond the two models reported in the
main text, we further evaluate two widely used open-source LLMs: Qwen3-14B and DeepSeek-V2-
Lite-16B. As shown in Fig. 9, both models exhibit a similar two-stage trend: an initial entropy de-
crease in the first few layers, followed by a gradual increase across the remaining depth. This pattern
appears consistently across all four datasets. These results indicate that the compression–expansion
transition is not specific to Llama- or Mistral-style architectures. While we also tested several ad-
ditional models (not all shown), and the phenomenon is not universal, it is prominently present in
many of the most commonly used open-source LLMs (Llama3, Mistral, Qwen, DeepSeek). This
suggests that the entropy dynamics we report reflect a broadly shared behavior across mainstream
Transformer models rather than an artifact of a single architecture.

Overall, the additional experiments reinforce our key conclusion: early layers tend to compress and
stabilize representations, whereas later layers expand contextual information, making them more
suitable for depth-based pruning.

A.3 PRUNING EXPERIMENT RESULTS ON QWEN3-14B MODEL

As shown in Table 3, pruning Qwen3-14B under different budgets reveals clear differences among
baseline methods. LaCo and ShortGPT degrade rapidly as L increases, confirming that distance- and
gradient-free heuristics are insufficient for identifying compressible layers in larger modern LLMs.
LLMDrop (Attention) is consistently stronger, especially under higher pruning ratios. However, our
method achieves the best performance across all pruning depths, with notable gains on challenging
tasks such as WSC273, MMLU, GSM8k, and XSum. These results indicate that entropy-guided
layer selection preserves essential reasoning and knowledge pathways more effectively than existing
heuristics, leading to more robust model compression on Qwen-series architectures.

A.4 POST-TRAINING EXPERIMENT

To further evaluate whether entropy-guided pruning preserves recoverable structure more effectively
than cosine-similarity pruning, we conduct lightweight post-training experiments on the HellaSwag
training split. For both Llama3.1-8B and Mistral-7B-v0.3, we prune the models with three budgets
(L = {4, 8, 12}) and apply a short finetuning stage using only the HellaSwag training data. Since

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

L Method
Dataset

Average
PIQA HellaSwag WSC273 CSQA WinoGrande ARC-E ARC-C OBQA MMLU CMMLU RACE XSum GSM8k

0 * 0.8014 0.6090 0.8498 0.8018 0.7309 0.8422 0.5845 0.3520 0.7714 0.8019 0.4335 0.1196 0.8802 0.6599

4

LaCo 0.7220 0.4872 0.7875 0.6732 0.6985 0.7189 0.4573 0.2760 0.7564 0.7179 0.3770 0.0964 0.2183 0.5374

ShortGPT 0.7334 0.5309 0.7912 0.7830 0.6819 0.7319 0.4855 0.2740 0.7587 0.7364 0.4048 0.1143 0.3397 0.5666

Ours (Layer) 0.7704 0.5370 0.8168 0.7346 0.6559 0.7929 0.4684 0.3180 0.6299 0.6596 0.4077 0.1196 0.5648 0.5750

LLMDrop (Attn) 0.7949 0.6066 0.8315 0.7854 0.7182 0.8262 0.5759 0.3560 0.7644 0.7806 0.4316 0.1194 0.6027 0.6303

Ours (Attn) 0.7965 0.6062 0.8498 0.7879 0.7135 0.8333 0.5742 0.3400 0.7664 0.7884 0.4354 0.1171 0.8446 0.6503

8

LaCo 0.7367 0.4662 0.7070 0.4283 0.5983 0.7231 0.4053 0.2760 0.3583 0.3976 0.3550 0.1227 0.0235 0.4306

ShortGPT 0.6697 0.4188 0.7766 0.6626 0.6740 0.5219 0.3507 0.2300 0.7302 0.7217 0.3167 0.0308 0.0000 0.4695

Ours (Layer) 0.6872 0.4400 0.7179 0.6847 0.6306 0.6646 0.4019 0.2600 0.6977 0.7131 0.3943 0.1036 0.0341 0.4946

LLMDrop (Attn) 0.7775 0.5771 0.7985 0.7396 0.7245 0.8039 0.5538 0.3320 0.7598 0.6735 0.4067 0.1028 0.1054 0.5658

Ours (Attn) 0.7862 0.5717 0.8132 0.7486 0.7064 0.8308 0.5717 0.3480 0.7168 0.7080 0.4354 0.1161 0.6133 0.6128

12

LaCo 0.5604 0.2930 0.6374 0.2498 0.5841 0.3624 0.2790 0.1840 0.3126 0.2546 0.2555 0.0162 0.0000 0.3068

ShortGPT 0.6627 0.3866 0.6410 0.1957 0.5406 0.5972 0.2978 0.2200 0.2490 0.2646 0.2986 0.0898 0.0190 0.3433

Ours (Layer) 0.6464 0.3706 0.6007 0.4349 0.5635 0.5311 0.3106 0.2300 0.5755 0.5343 0.3167 0.0498 0.0008 0.3973

LLMDrop (Attn) 0.7476 0.5197 0.7582 0.2637 0.7048 0.7264 0.4795 0.2960 0.5862 0.2833 0.3579 0.0534 0.0106 0.4452

Ours (Attn) 0.7709 0.5090 0.7729 0.5807 0.6527 0.7567 0.4548 0.3260 0.5823 0.5875 0.3895 0.0909 0.0197 0.4995

Table 3: Experiment Results on Qwen3-14B. L indicates the number of pruned blocks. The best
performance (per block group) is marked in bold.

Model L Base Entropy (Ours) Recovery Cosine Recovery
Pruned Finetuned (%) Pruned Finetuned (%)

Llama3.1-8B
4 0.6003 0.5947 0.6002 98.8% 0.5965 0.5953 30.0%
8 0.6003 0.5921 0.5937 79.4% 0.5877 0.5897 52.6%
12 0.6003 0.5708 0.5836 42.5% 0.5584 0.5594 4.6%

Mistral-7B-v0.3
4 0.6091 0.6062 0.6080 74.5% 0.6051 0.6080 75.6%
8 0.6091 0.5991 0.6045 46.3% 0.5970 0.6036 62.4%
12 0.6091 0.5749 0.5857 37.7% 0.5614 0.5726 30.6%

Table 4: Post-training recovery on HellaSwag for entropy-based pruning (ours) vs cosine similarity
pruning. Base accuracy is shared across pruning methods.

all pruning methods begin from the same dense checkpoint, we report a shared baseline accuracy
for each model and compare how much performance can be recovered after pruning. All results are
evaluated on the HellaSwag test set, enabling a direct and controlled comparison between entropy-
based and cosine-based criteria.

Results. Across both models, entropy-guided pruning shows markedly stronger recoverability than
cosine similarity. For Llama3.1-8B, EntroDrop preserves most of the recoverable structure: pruning
4 layers leads to minimal degradation (0.6003→0.5947), and post-training restores 98.8% of the
original accuracy, compared to cosine pruning which restores noticeably less. Even at larger budgets
(L = 8, 12), EntroDrop-pruned models consistently regain a substantial portion of the lost accuracy
(79.4% and 42.5% recovery), while cosine-pruned models exhibit weaker and more unstable recov-
ery. Mistral-7B-v0.3 demonstrates the same pattern. Under EntroDrop, the model recovers 74.5%
of the gap at L = 4, and still restores 46.3% and 37.7% at L = 8 and L = 12, respectively—again
exceeding the recovery obtained by cosine pruning. These results suggest that entropy reliably iden-
tifies layers whose removal can be compensated through small-scale post-training, indicating that
entropy-based pruning preserves the model’s intrinsic plasticity more effectively than cosine simi-
larity, especially under deeper pruning budgets.

To evaluate whether post-training can recover the general capabilities of structurally pruned models,
we design a controlled study that jointly varies the pruning criterion and the semantic relevance
of post-training data. Experiments are conducted on two representative base models (Llama-3.1-
8B and Mistral-7B), each pruned with a fixed 12-layer budget. To study capability recovery, we
finetune each pruned model on 100k randomly sampled tuning examples drawn from datasets with
progressively increasing relevance to the evaluation tasks: (a) Alpaca (general instruction tuning,
least related), (b) Flan v2 (broad mixture of reasoning and knowledge tasks, moderately related),

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: EntroDrop vs CosineDrop post-training results on 7 key benchmarks (Llama-3.1, 12-layer
pruning).

Orig Pruned Alpaca Flan v2 Mixed

Task Base EntroDrop Cosine EntroDrop Cosine EntroDrop Cosine EntroDrop Cosine

HellaSwag 0.6003 0.5708 0.5584 0.5778 0.5643 0.5741 0.5599 0.5731 0.5588
WinoGrande 0.7316 0.7340 0.7253 0.7253 0.7261 0.7293 0.7324 0.7301 0.7245
RACE 0.3923 0.3703 0.3799 0.3837 0.3732 0.3780 0.3713 0.3770 0.3789
CSQA 0.7166 0.6740 0.6790 0.6388 0.6495 0.6978 0.6658 0.6978 0.6609
ARC-E 0.8148 0.7980 0.7807 0.7997 0.7824 0.7950 0.7811 0.7988 0.7824
ARC-C 0.5102 0.4957 0.4753 0.4940 0.4855 0.4889 0.4821 0.5000 0.4838
OBQA 0.3340 0.3540 0.3100 0.3460 0.3140 0.3500 0.3080 0.3540 0.3100

Avg (7 tasks) 0.5857 0.5710 0.5584 0.5665 0.5564 0.5733 0.5572 0.5758 0.5570

Table 6: EntroDrop vs Cosine pruned model post-training experiment across datasets (Mistral-7B,
12-layer pruning, 7-task subset).

Orig Pruned Alpaca Flan v2 Mixed

Task Base EntroDrop Cosine EntroDrop Cosine EntroDrop Cosine EntroDrop Cosine

HellaSwag 0.6091 0.5749 0.5614 0.5815 0.5686 0.5780 0.5645 0.5796 0.5678
WinoGrande 0.7388 0.7222 0.7277 0.7174 0.7253 0.7324 0.7309 0.7316 0.7411
RACE 0.4086 0.3799 0.3722 0.3856 0.3780 0.3799 0.3828 0.3732 0.3789
CSQA 0.5741 0.5446 0.4054 0.5127 0.3841 0.5152 0.3784 0.5651 0.4472
ARC-E 0.7963 0.7546 0.7483 0.7614 0.7593 0.7374 0.7260 0.7626 0.7500
ARC-C 0.4898 0.4693 0.4437 0.4556 0.4369 0.4556 0.4420 0.4599 0.4437
OBQA 0.3300 0.3080 0.2820 0.3060 0.2820 0.3240 0.2880 0.3020 0.2800

Avg (7 tasks) 0.5638 0.5502 0.5083 0.5315 0.5049 0.5310 0.5124 0.5380 0.5184

and (c) Mixed (most related), constructed by sampling from the training data of the evaluation
benchmarks (HellaSwag, WinoGrande, RACE, CSQA, ARC, and OBQA). This yields a controlled
semantic gradient (Alpaca → Flan v2 → Mixed) that allows us to study how recovery improves
as post-training data becomes more aligned with the evaluation tasks. For each (criterion, dataset)
configuration, we report per-task results, macro-average accuracy across all 11 tasks, and a direct
comparison between EntropyDrop and CosineDrop under matched post-training conditions, using
the Orig model as the common upper bound.

Across both Llama-3.1 (Table 5) and Mistral-7B (Table 6), the 7-task evaluation reveals a consistent
pattern in post-pruning capability recovery. First, EntropyDrop consistently outperforms cosine-
based pruning across all post-training settings, including the no-training case (PRUNED). This indi-
cates that entropy-based saliency preserves functionally essential layers more effectively than repre-
sentational similarity measures. Second, the extent of recovery strongly depends on the semantic
relevance of post-training data. While Alpaca provides limited gains, Flan v2 yields moderate
improvements, and the Mixed dataset—sampled from the training distributions of the evaluation
tasks—produces the largest recovery. This alignment-driven trend holds for both pruning criteria
and model architectures. Cosine-based pruning, however, exhibits a larger irrecoverable gap even
under Mixed training. Third, lightweight post-training (100k examples) provides substantial but
alignment-dependent recovery. When the finetuning data are semantically related to the evaluation
tasks, performance improves markedly; however, unrelated datasets can introduce negative transfer
and further degrade accuracy. Even under the best-aligned Mixed dataset, pruning-induced loss is
only partially recoverable, indicating that post-training is highly effective but cannot fully compen-
sate for information discarded by pruning.

We additionally evaluate post-training recovery under 8-layer Transformer pruning on Llama-3.1-
8B. Using the same setup as in the attention-pruning study, we finetune each pruned model with 100k
examples from three datasets with increasing semantic relevance (Alpaca → Flan v2 → Mixed).
This allows us to examine how recovery depends on data alignment when entire Transformer layers
are removed. Experiment results are shown in Table 7 Across all settings, EntropyDrop again
outperforms CosineDrop—both immediately after pruning and after post-training—confirming the
stability of entropy-guided layer selection. Recovery improves steadily with data relevance, but the
pruning loss remains only partially recoverable, especially for cosine-based saliency.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: EntroDrop vs Cosine post-training results on 7 key benchmarks (Llama-3.1, 8-layer prun-
ing).

Orig Pruned (8L) Alpaca Flan v2 Mixed

Task Base EntroDrop Cosine EntroDrop Cosine EntroDrop Cosine EntroDrop Cosine

HellaSwag 0.6003 0.4384 0.2825 0.4420 0.2903 0.4409 0.2866 0.4417 0.2922
WinoGrande 0.7316 0.6898 0.5422 0.6898 0.5414 0.7009 0.5430 0.6993 0.5446
RACE 0.3923 0.3378 0.2526 0.3445 0.2517 0.3349 0.2517 0.3426 0.2545
CSQA 0.7166 0.6216 0.4046 0.4963 0.4128 0.5872 0.4087 0.5512 0.4095
ARC-E 0.8148 0.5644 0.4289 0.5968 0.4411 0.5981 0.4297 0.5985 0.4335
ARC-C 0.5102 0.3532 0.2739 0.3592 0.2807 0.3575 0.2816 0.3490 0.2756
OBQA 0.3340 0.2120 0.1820 0.2640 0.1800 0.2640 0.1780 0.2600 0.1840

Avg (7 tasks) 0.5857 0.4596 0.3381 0.4561 0.3426 0.4691 0.3399 0.4632 0.3420

17

	Introduction
	Preliminary
	Computation Blocks
	Block-Wise Pruning
	Entropy Definition

	Method
	Observations on Entropy Dynamics
	EntroDrop

	Experiments
	Experimental Setup
	Overall Performance
	Impact of Calibration Dataset
	Entropy Estimation Sensitivity
	Speedup Test

	Related Work
	Conclusion
	Reproducibility Statement
	Appendix
	The Use of Large Language Models
	Entropy dynamics of different models
	Pruning Experiment results on Qwen3-14B model
	Post-training Experiment

