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Abstract

We investigate refinements of the mean-payoff criterion in two-player zero-sum
perfect-information stochastic games. A strategy is Blackwell optimal if it is
optimal in the discounted game for all discount factors sufficiently close to 1.
The notion of d-sensitive optimality interpolates between mean-payoff optimality
(corresponding to the case d = −1) and Blackwell optimality (d = ∞). The
Blackwell threshold αBw ∈ [0, 1[ is the discount factor above which all optimal
strategies in the discounted game are guaranteed to be Blackwell optimal. The
d-sensitive threshold αd ∈ [0, 1[ is defined analogously. Bounding αBw and αd are
fundamental problems in algorithmic game theory, since these thresholds control
the complexity for computing Blackwell and d-sensitive optimal strategies, by
reduction to discounted games which can be solved in O

(
(1− α)−1

)
iterations.

We provide the first bounds on the d-sensitive threshold αd beyond the case d =
−1, and we establish improved bounds for the Blackwell threshold αBw. This
is achieved by leveraging separation bounds on algebraic numbers, relying on
Lagrange bounds and more advanced techniques based on Mahler measures and
multiplicity theorems.

1 Introduction

Two-player perfect-information zero-sum stochastic games (SGs) are an important class of Shapley’s
stochastic games [Sha53] where every state is controlled by a unique player. SGs are a corner-
stone of game theory, with important applications in auctions [LLP+99], mechanism design [Nar14],
multi-agent reinforcement learning [Lit94], robust optimization [GCPV23, CGK+23], and µ-calculus
model-checking [CHV+18]. Shapley originally considered the sum of discounted instantaneous re-
wards as the objective; the mean-payoff objective was studied in [Gil57]. Stationary and deterministic
optimal strategies exist for these objectives in the perfect-information case [Sha53, LL69].

The mean-payoff objective coincides with the limit of the discounted objective as the discount factor
goes to 1. This suggests to study the variation of the set of optimal strategies in the discounted game,
as a function of the discount factor. Blackwell showed (in the one-player case) that, for finite state
and action models, there exist strategies that remain discount optimal for all values of the discount
factor that are sufficiently close to 1 [Bla62]. These are now called Blackwell optimal strategies. As
the discount factor approaches 1, the “weight” given to the rewards received in the distant future
increases. Therefore, Blackwell optimal strategies can be considered as the most farsighted (or least
greedy) strategies for models in long horizon. This is why better understanding Blackwell optimality
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is referred to as “one of the pressing questions in reinforcement learning” in [DDE+20]. Veinott
introduced (still in the one-player case) the notion of d-sensitive optimality, interpolating between
mean-payoff optimality (obtained for d = −1) and Blackwell optimality (obtained for d = ∞). The
value associated with a given stationary strategy has a Laurent series expansion in the powers of
1− α, where α is the discount factor, with a pole of order at most −1 at α = 1. Veinott’s d-sensitive
objective involves the sequence of coefficients of this expansion, up to order d, which is maximized
or minimized with respect to the lexicographic order (see Theorem 10.1.6 in [Put14]). In particular,
any d-sensitive optimal strategy is d′-sensitive optimal for all d′ < d. Moreover, for models with n
states, every (n− 2)-sensitive optimal strategy is Blackwell optimal. The notion for d = 0 is also
known as bias optimality.

It is worth emphasizing that the notions of Blackwell optimality and mean-payoff optimality have
received increased attention recently in the reinforcement learning community, see [DDE+20, DG22,
TRMV21, YGA+16]. More generally, computing mean-payoff optimal strategies is an important
open question in algorithmic game theory and has been extensively studied. Pseudo-polynomial
algorithms exist for mean-payoff deterministic instances, based on pumping [GKK88] and value
iteration [ZP96, CGB03, GS08]. In more generality, computing mean-payoff or bias optimal strategies
is difficult, since the Bellman operator is no longer a contraction when α = 1, and the mean-payoff
and bias objectives may be discontinuous in the entries of stationary strategies (e.g., Chapter 4
of [FS12]). In fact, strategy iteration may cycle for the mean-payoff objective in multichain instances
(see Section 6 of [ACTDG12]), and other algorithms have an exponential dependence on the number
of states with stochastic (non-deterministic) transitions or undetermined complexities [ACTDG12,
BEGM10]. Besides the method based on the Blackwell threshold discussed below, the only algorithm
we are aware of to compute Blackwell optimal strategies consists in performing policy iteration,
considering the discount factor as a formal parameter, and encoding the discounted value function
associated with a pair of strategies by its Laurent series expansion truncated at order n− 2, leading to
a nested lexicographic policy iteration method, see [Put14, Chapter 10.3] for a presentation in the one
player case. A counter example of Friedmann implies that for deterministic games, this algorithm
can take an exponential time [Fri09].

The existence of the Blackwell threshold, defined as the smallest number αBw ∈ [0, 1[ such that
strategies that are optimal for any discount factor α ≥ αBw are Blackwell optimal, is well-known,
e.g. [AM09]. We define the d-sensitive threshold as the smallest number αd ∈ [0, 1[ such that
strategies that are discount optimal for any discount factor α ≥ αd are d-sensitive optimal. The
existence of αBw and αd suggests a simple method for computing Blackwell and d-sensitive optimal
strategies: compute discount optimal strategies for a discount factor α close to 1. This approach
has the advantage that any advances in solving discounted SGs transfer to algorithms for Blackwell
and mean-payoff optimal strategies. Note that the term (1 − α)−1 controls the complexity of
computing discount optimal strategies: for known game parameters (rewards and transitions), strategy
iteration and value iteration scale as Õ((1− α)−1) [HMZ13] (hiding the dependence on the number
of states/actions, and lower order terms in 1 − α). For unknown game parameters, model-based
methods [ZKBY23] or model-free methods based on Q-learning [SWYY20] scale as Õ((1− α)−3).

Thus, for computational purposes, it is crucial to upper bound αBw and αd, or equivalently to lower
bound 1 − αBw and 1 − αd. For such bounds to be useful, they should only rely on a few game
parameters that are available by design. In this paper, we consider SGs that satisfy the following
assumption.

Assumption 1.1. Γ is a perfect-information stochastic game with finitely many states and actions,
integer rewards, and rational transition probabilities. The parameters of the game Γ are n, W and
M , and are defined as follow:

• n ∈ N is the number of states,

• W ∈ N is an upper bound on the absolute values of the integer rewards,

• M ∈ N is the common denominator of the transition probabilities.

Main results. We provide upper bounds for the Blackwell threshold αBw and for the d-sensitive
threshold αd for perfect-information SGs. We also derive stronger results in the case of deterministic
games (transition probabilities in {0, 1}) or for stochastic games with unichain structure.
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At the core of our results are separation bounds for algebraic numbers, a classical topic in algebraic
number theory. More precisely, we use three separation methods. The first method relies on a result
of Lagrange [Lag69], also obtained by Hadamard [Had93] and Fujiwara [Fuj16], providing a lower
bound on the modulus |z| of any non-zero root z of a polynomial P , see Lecture IV in [Yap00]. The
second method relies on Mahler measures to lower bound |1−z| when z ̸= 1 is a root of a polynomial
P , especially on a theorem of Dubickas [Dub95] building on a series of earlier works based on the
seminal paper by Mignotte and Waldshmidt [MW94]. The third method uses a bound of Borwein,
Edérlyi, and Kós on the multiplicity of 1 as a root of a polynomial with integer coefficients [BEK99],
which controls the value of d such that αd = αBw. We shall see that each of these approaches yields
a useful bound – not dominated by the other bounds in some regimes of the game parameters n,
W and M . We present our main results below, according to the different techniques. For the sake
of readability, we simplify some of our results with O(.) notations here, and we defer the detailed
statements to the next sections. We start with the results based on Lagrange.
Theorem 1.2 (Based on Lagrange bound). If the game Γ satisfies Assumption 1.1, then:

Deterministic case (M = 1). The d-sensitive threshold αd and the Blackwell threshold αBw satisfy

αd ≤ 1− 1

24W
(

2n
min{d+4,n}

) and αBw ≤ 1− 1

24W
(
2n
n

) . (1)

Stochastic case (M > 1). The Blackwell threshold αBw satisfies αBw ≤ 1− 2⌊
2
3n⌋−2

nW (2M)2n−1
(
2n−1
⌊ 2
3n⌋
) .

If Γ is unichain, the d-sensitive threshold αd satisfies αd ≤ 1− 2min{d+2,⌊ 2
3n−1⌋}−1

nW (2M)2n−1
(

2n−1
min{d+2,⌊ 2

3n−1⌋}+1

) .
Our next set of results are bounds on αBw based on Mahler measures. Since these bounds are more
difficult to read than the ones in the previous theorem, we only give the resulting O(·) expressions
here, and we provide the exact values in Sections 3 and 4. We provide bounds on − log(1− αBw),
i.e., on the value of L > 0 such that αBw ≤ 1− e−L.
Theorem 1.3 (Based on Mahler measures). If the game Γ satisfies Assumption 1.1, then:

Deterministic case. The Blackwell threshold αBw satisfies

− log (1− αBw) ≤ O

(
max

{√
n log(n) log(

√
nW ), log(

√
nW )

})
.

Stochastic case. The Blackwell threshold αBw satisfies

− log (1− αBw) ≤ O
(
max

{
log(W )+n(1+log(M)),

√
n log(n) (log(W ) + n(1 + log(M)))

})
.

We now present our last set of results. [Vei69] shows that, for Markov decision processes (MDPs,
i.e., the one-player case), (n− 2)-sensitive optimal strategies are also Blackwell optimal. Our next
theorem shows that a much smaller value of d may suffice.
Theorem 1.4. Assume the game Γ satisfies Assumption 1.1 and is deterministic. Then every
d̄det(n,W )-sensitive optimal strategy is Blackwell optimal, where d̄det(n,W ) = O

(√
n log(W )

)
.

When log(W ) = o(n), d̄det(n,W ) may be much smaller than n− 2. Combining Theorem 1.4 with
the bounds on αd of Theorem 1.2, we arrive at the following bound on αBw.
Theorem 1.5 (Based on multiplicity). Assume that Γ satisfies Assumption 1.1 and is deterministic.

Then the Blackwell threshold αBw satisfies αBw ≤ 1− 1

24W
( 2n

min{O
(√

n log(W )
)
,n}

) .

In the case of general (non-deterministic) perfect-information SGs, the multiplicity method of
Theorem 1.5 does not lead to a useful bound. We further elaborate on this in the last part of Section 4.
To simplify the comparison between our bounds, and with existing work, we summarize all our results
in Tables 1 and 2. In these tables, we reformulate our bounds on αBw as bounds on − log(1− αBw),
i.e., on the value of L > 0 such that αBw ≤ 1− e−L, and similarly for αd.
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Note that Assumption 1.1 is necessary to obtain a meaningful bound on αBw and αd (Proposition 4.3 in
[GCP23]). We emphasize that the bounds derived in Theorems 1.2, 1.3, and 1.5 are complementary,
i.e., there are different regimes of log(W ), log(M) and n where one bound is better than the
others. As an example, consider deterministic games (M = 1). When W = O(1), Theorem 1.2
yields − log(1 − αBw) ≤ O(n), while Theorems 1.3 and 1.5 both lead to the stronger bound
− log(1− αBw) ≤ O (log(n)

√
n). In contrast, in the regime where W = exp(Θ(n)), Theorems 1.2

and 1.5 lead to the bound − log(1 − αBw) ≤ O(n), which is stronger than Theorem 1.3 yielding
− log(1 − αBw) ≤ O

(
n
√

log(n)
)

. We provide more discussion on this in Sections 3 and 4.
Compared to previous work, we note that our bound on − log(1− αBw) from Theorem 1.2 improves
upon [AM09] and [GCP23] by a factor Ω(n), while our bound from Theorem 1.5 recovers for SGs
the results obtained in [MK25] for MDPs. Theorem 1.3 provides a new approach to bounding αBw

based on Mahler measures. We are also the first to provide bounds for αd, beyond the case d = −1
for deterministic games analyzed in [ZP96]. However, we note that our results on αBw do not lead to
weakly- or even quasi-polynomial time algorithms for computing Blackwell optimal strategies: our
bounds on αBw are still very close to 1, and the algorithms with the best dependence on α for solving
discounted SGs require Õ((1− α)−1) arithmetic operations [HMZ13]. We refer to the next section
for a detailed discussion and comparison with the existing bounds on αBw and αd.

Table 1: Bounds for deterministic SGs satisfying Assumption 1.1. For the sake of readability, in all
these bounds we omit constant terms and the O(·) notation.

Bound on − log(1− αBw) Bound on − log(1− αd) Remarks

[ZP96] × log(W ) + 3 · log(n) For d = −1
[AM09] n log (n) + n2 log (W ) × ·
[GCP23] n2 + n log(W ) × For MDPs
[MK25]

√
n log(W ) log

(
n

log(W )

)
+ log(W ) × For MDPs

Th. 1.2 n+ log( W√
n
) log(W ) + (d+ 4)

(
1 + log

(
2n
d+4

))
Lagrange

Th. 1.3 max{
√
n log(n) log(

√
nW ), log(

√
nW )} × Mahler

Th. 1.5
√
n log(W ) log

(
n

log(W )

)
+ log(W ) × Multiplicity

Table 2: Bounds for SGs satisfying Assumption 1.1. For the sake of readability, in all these bounds
we hide the constant term and the O(·) notation. †: This bound holds only in the unichain case.

Bound on − log(1− αBw) Bound on − log(1− αd) Remarks

[AM09]n log (n) + n2 log (max{W,M}) × ·
[GCP23] n2(1 + log(M)) + n log(W ) × For MDPs

Th. 1.2 n(1 + log(M)) + log(W ) log(nW (2M)2n−1) + (d+ 4) log
(

2n
d+4

)
† Lagrange

Th. 1.3 max{
√

n log(n)F , F} × Mahler
F := n(1 + log(M)) + log(W )

Related work. To the best of our knowledge, only a small number of papers have obtained bounds
on the d-sensitive threshold αd (only for d = −1) or on the Blackwell threshold αBw.

d-sensitive threshold. The existence of α−1 is proved in the seminal paper [LL69] and in Theo-
rem 5.4.4 of [Pur95]. It is used, for instance, in [AM09] to show that these games polynomially
reduce to solving discounted SGs. [ZP96] shows the tight bound α−1 ≥ 1− 1

8Wn3 for deterministic
perfect-information mean-payoff SGs. Theorem 1.2 recovers this bound for d = −1, but no general
bound was known for αd (before our work). [AG13] shows that if there is a renewal state, i.e., a
state for which the time of first return from any other state is bounded by N ∈ N, then we can take
α−1 = 1 − 1/N . A characterization of α−1 for the one-player case (i.e., for MDPs) is given in
[Boo23] but the obtained bound relies on the minimum gain difference between two strategies, instead
of only the game parameters n, M and W as in our results. Finally, we note that a line of work studies
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a related but different question for MDPs and reinforcement learning, namely, how close to 1 should
α be for a discount optimal strategy to be ϵ-optimal for the mean-payoff criterion, e.g. [WWY22]
showing that α ≥ 1 − ϵ/H suffices for weakly-communicating instances with diameter H ∈ N,
or [JS21] using assumptions on the mixing times of the Markov chains induced by deterministic
strategies. In contrast to these works, we focus on optimality (instead of ϵ-optimality) and most of
our results do not require an assumption on the chain structure (except for αd in the stochastic case).

Blackwell threshold. The existence of αBw comes from an argument developed initially by Black-
well [Bla62]. The works closest to ours are [AM09, GCP23, MK25]. [AM09] shows a bound on
α−1 for SGs but their argument extends directly to αBw. [GCP23] gives a bound on αBw for MDPs.
[MK25] shows an analog of Theorem 1.4 for deterministic MDPs using Lagrange’s bound. We
summarize these bounds in Tables 1 and 2. We also note that the Blackwell threshold has found
recent applications in the study of robust MDPs [GCPV23, WVA+24] and in the smoothed analysis
of the complexity of strategy iteration [LS24].

Main improvements compared to previous works. Our work appears to be the first to provide a bound
on the d-sensitive threshold αd beyond the case d = −1 (corresponding to mean-payoff optimality)
in the deterministic setting. Regarding αBw, [MK25] only focuses on deterministic MDPs using the
multiplicity approach, i.e., on the one-player deterministic case, whereas we focus on two-player SGs.
This line of analysis based on multiplicity (Theorem 1.4) does not extend to the non-deterministic
case (see the end of Section 4), where the corresponding bound on the value of d such that αd = αBw

is much larger than n − 2, the bound proved in the seminal paper [Vei69]. Compared to [GCP23]
and [AM09], our bounds from Theorems 1.2 and 1.3 compare favorably: for instance, the bounds
on − log(1− αBw) in [GCP23] and [AM09] are worse by a factor of Ω(n) compared to our bounds
based on Lagrange. This improvement comes from two main innovations in the analysis: better
bounds on the magnitudes of the coefficients of the considered polynomials, and the use of much
stronger root separation results - [AM09] uses a bound attributed to Cauchy (e.g. Equation (5) in
Lecture IV of [Yap00]) which is weaker than the one we use due to Lagrange, while [GCP23] uses a
bound from [Rum79], which applies to the distance between any two roots of a polynomial, whereas
we only need to separate a root from 1 (and not from any other conjugates).

Outline. This paper is organized as follows. We introduce perfect-information SGs in Section 2. We
derive bounds for the deterministic case in Section 3 and bounds for the stochastic case in Section 4.
The implications of our results are discussed in Section 5. All the proofs can be found in the appendix.

2 Preliminaries on perfect-information stochastic games

Lloyd Shapley introduced SGs in the seminal paper [Sha53]. We focus on the case of two-player
zero-sum SGs with finitely many states and actions, and discrete time. We denote the state space by
[n] := {1, . . . , n} for some n ∈ N. At every stage k ∈ N, the game is in a state ik ∈ [n] observable by
both players, called Min and Max. An instantaneous reward of rabi is determined when Min chooses
action a and Max chooses action b in state i, and then the game transitions to the next state j ∈ [n]
with probability P ab

ij ∈ [0, 1]. Thus, we consider SGs where the rewards rabi depend on the current
state i and the players’ actions a, b, but not on the next state j. It is worth noting that this assumption
is standard and can be made without loss of generality (any game with rewards depending on the next
state j, i.e., of the form rabij , can be converted to a game with rewards of the form rabi expanding the
state space to include intermediary states). We focus on the case of perfect-information SGs, where
we can partition the state space [n] into the states controlled by Min and those controlled by Max.

A strategy of a player is a function that assigns to a history of the game (i.e., the sequence of previous
states and actions) a decision (choice of an action) of this player. A pair of strategies (σ, τ) of
players Min and Max induces a probability measure on the set of sequences of states. We define
the discounted value function α 7→ vσ,τi (α) from ]0, 1[ to R, associated with the pair of strategies

(σ, τ) and the initial state i, as vσ,τi (α) := Eσ,τ

[
+∞∑
k=0

αkrakbk
ik

| i0 = i

]
where ra1b1

i1
, ra2b2

i2
, . . . is the

random sequence of instantaneous rewards induced by (σ, τ).

5



Definition 2.1. A pair of strategies (σ∗, τ∗) of players Min and Max is discount optimal for the
discount factor α if for any state i and for any strategies σ and τ of players Min and Max, we have

vσ,τ
⋆

i (α) ≥ vσ
⋆,τ⋆

i (α) ≥ vσ
⋆,τ

i (α) .

A pair of strategies (σ∗, τ∗) is Blackwell optimal if there exists ᾱ < 1 such that (σ∗, τ∗) is discount
optimal for all discount factors larger than ᾱ.

Shapley [Sha53] shows the existence of stationary discount optimal strategies. If, in addition, the
game is a perfect-information SG, then these stationary optimal strategies may be chosen deterministic.
The existence of stationary deterministic Blackwell optimal strategies for perfect-information SGs is
a consequence of the analysis in the seminal paper [LL69] (see the proof of Theorem 1 in [LL69]).

Definition 2.2. A pair of strategies (σ∗, τ∗) of players Min and Max is d-sensitive optimal if

lim
α→1−

(1−α)−d
(
vσ,τ

∗

i (α)− vσ
∗,τ∗

i (α)
)
≥ 0, lim

α→1−
(1−α)−d

(
vσ

∗,τ∗

i (α)− vσ
∗,τ

i (α)
)
≥ 0 (2)

for any state i and any strategies σ and τ of players Min and Max respectively.

Our definition of d-sensitive optimality for two-player SGs recovers the definition of d-sensitive
optimality for the one-player case [Vei69]. Note that Blackwell optimal strategies are d-sensitive
optimal for d = −1, 0, . . . . In fact, the same analysis as for MDPs (using the Laurent series expansion,
e.g. Theorem 10.1.6 of [Put14]) shows that n− 2-sensitive optimal strategies are Blackwell optimal,
and mean-payoff optimality corresponds to d = −1.

Before diving into our main results, we give an overview of our main proof techniques.

Bounds on αBw. Our bounds are based on studying the zeros of the functions α 7→ vσ,τi (α)−vσ
′,τ ′

i (α)
for any pairs (σ, τ) and (σ′, τ ′) of stationary strategies and any state i. This approach has been used
for MDPs, e.g., see Theorem 2.16 of [FS12]. Differences of discounted value functions are rational
functions in α ∈]0, 1[, i.e., they can be written as the ratio of two polynomials in α. As such, each of
them can only have finitely many zeros in ]0, 1[. Additionally, for perfect-information SGs, discount
optimal strategies may be chosen stationary and deterministic [Gil57], hence we can consider only
finitely many pairs of strategies. Therefore, there exists a discount factor ᾱ < 1 such that none of
the functions α 7→ vσ,τi (α)− vσ

′,τ ′

i (α) has a zero in ]ᾱ, 1[, and so all these functions have constant
sign in ]ᾱ, 1[. This guarantees that αBw ≤ ᾱ, since strategies that are discount optimal for some α
satisfying ᾱ < α < 1 remain discount optimal for all larger discount factors (otherwise some function
α 7→ vσ,τi (α)− vσ

′,τ ′

i (α) would change sign in ]ᾱ, 1[). Thus, a way to bound αBw is to determine
how close to 1 can a zero of the functions α 7→ vσ,τi (α)− vσ

′,τ ′

i (α) be. Given Assumption 1.1, we
can bound the degree of the numerator of α 7→ vσ,τi (α)−vσ

′,τ ′

i (α) and the size of its coefficients. We
then use root separation results to separate the root of a polynomial from a given scalar. Compared to
previous work, our first improvement lies in a better analysis of the coefficients of the considered
polynomials. As our second and main improvement, we use stronger separation bounds than in
previous work, a bound due to Lagrange (Theorem 3.2) and a bound based on Mahler measures
(Theorem 3.7). [AM09] uses a weaker bound due to Cauchy, and [OB21] also uses the Cauchy bound
for a different purpose (bounding the variations in value functions when α → 1).

Deterministic vs. non-deterministic games. For deterministic SGs, each transition probability belongs
to {0, 1}. In this case, the discounted value function associated with a pair of stationary strategies
and a state can be represented by the concatenation of a path and an elementary circuit in the graph of
the game, see Section 3. This can be used to analyze the degree and the magnitude of the coefficients
of the numerator of α 7→ vσ,τi (α)− vσ

′,τ ′

i (α). When the game is not deterministic, we rely on the
closed-form expression of the discounted value functions using cofactor matrices, see Section 4.

Bounds on the d-sensitive threshold αd. Our bounds on αd rely on the same proof techniques as for
αBw, except that the d-sensitive optimality allows us to deduce more information on the coefficients
of the considered polynomials (more precisely, that some of them are zero). Again, the deterministic
case is easier because we can exploit the graph representation of the discounted value functions
mentioned above, whereas for the case of non-deterministic SGs we require a unichain assumption.
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3 Results for perfect-information deterministic stochastic games

We start by analyzing the structure of the discounted value functions in deterministic perfect infor-
mation SGs. A deterministic game can be represented by a weighted digraph: its set of nodes is the
set of states, there is an edge from state i to state j if some actions a and b of the players realize this
transition, in which case this edge has weight rabi . Given an initial state i, a pair of stationary strategies
(σ, τ) determines a run of the game of the form “πγ”, in which π is a path and γ is a circuit. Given a
path π = (i0, . . . , ik), we set ⟨r, π⟩α := ri0i1 +αri1i2 + · · ·+αk−1rik−1ik (for simplicity, we denote
instantaneous rewards by rij instead of rabi ). With this notation, vσ,τi (α) = ⟨r, π⟩α + αp

1−αq ⟨r, γ⟩α,
where p is the length of π (i.e., the number of edges it contains) and q is the length of γ. To study the
zeros of α 7→ vσ,τi (α)− vσ

′,τ ′

i (α), we analyze the roots of the polynomial

∆(α) := (1− αq)(1− αq′)(vσ,τi (α)− vσ
′,τ ′

i (α)) (3)

(here q′ is the length of the circuit associated with (σ′, τ ′)). The next lemma bounds the degree and
coefficients of ∆.
Lemma 3.1. We can write ∆(α) =

∑K
k=0 akα

k, where |ak| ≤ 12W and K ≤ 2n− 1.

As described in the previous section, our bounds on αBw and αd rely on separating the roots of the
polynomial ∆ from 1. We proceed to do so in the next section.

3.1 Separation based on the Lagrange bound

In this section, we rely on the Lagrange bound (e.g. Lemma 5 in Lecture IV of [Yap00]).

Theorem 3.2 (Lagrange bound). Let P =
∑d

k=j ckx
k with cj ̸= 0. Then, any non-zero root z of P

satisfies |z| ≥ 1
2 mini∈{j+1,...,d},ci ̸=0 (|cj |/|ci|)

1
i−j .

The Lagrange bound separates the non-zero roots of a polynomial P from 0. To separate the roots of
∆ from 1, we apply this bound to the polynomial ϵ 7→ ∆(1− ϵ). Using this approach, we prove the
first part of Theorem 1.2, namely, the bound on αd for deterministic perfect-information SGs.
Theorem 3.3. Assume the game Γ satisfies Assumption 1.1 and is deterministic (M = 1). Then, the

d-sensitive threshold αd satisfies αd ≤ 1− 1

24W
(

2n
min{d+4,n}

) .

The binomial coefficient in our bound on αd appears because of the change of variable ϵ = 1− α
in the polynomial ∆, necessary to apply the Lagrange bound to the polynomial ϵ 7→ ∆(1 − ϵ).
Together with the result of [HMZ11], our bound of αd implies that for a fixed value of d, we can
compute d-sensitive optimal strategies of a deterministic game in pseudo-polynomial time, extending
a theorem of [ZP96] (for the d = −1 case, then the bound is optimal).
Corollary 3.4. If the game Γ satisfies Assumption 1.1 and is deterministic (M = 1), we have

α−1 ≤ 1− 1

O(Wn3)
and αBw ≤ 1− 1

24W
(
2n
n

) .

Multiplicity approach. In this approach, we combine our bound on αd from Theorem 3.3 with a new
result on the smallest integer d such that d-sensitive optimal strategies are also Blackwell optimal.
Our next theorem parametrizes the value of such d by n and W .
Theorem 3.5. Assume the game Γ satisfies Assumption 1.1 and is deterministic. Then, there exists
a constant a > 0 such that d̄det(n,W )-sensitive optimal strategies are Blackwell optimal, where
d̄det(n,W ) := a

√
(2n− 1)(1 + log(12W ))− 2.

Note that d̄det(n,W ) = O
(√

n(1 + log(W )
)

, which may be much smaller than n − 2 (proved

by [Vei69] for MDPs) in some regimes where log(W ) = o(n). To show that d = d̄det(n,W ) suffices
for Blackwell optimality, we show that if a pair of strategies is d̄det(n,W )-sensitive optimal, it is
also d-sensitive optimal for all d ≥ d̄det(n,W ), so that it is d-sensitive optimal for d = −1, 0, . . . ,

7



therefore it is Blackwell optimal. A key ingredient in our proof is a bound on the multiplicity of 1 as
a root of a polynomial as a function of its degree and the size of its coefficients [BEK99], used to
bound the multiplicity of 1 as a root of ∆(α). Theorem 1.5 follows directly from the bound on αd of
Theorem 3.3 by choosing d = d̄det(n,W ). We refer to Table 1 for comparisons between the bounds
obtained in this section, which improve by Ω(n) (for − log(1− αBw)) compared to previous works.

3.2 Separation based on Mahler measures

We now present a bound on αBw based on the Mahler measure of algebraic numbers [Leh33, Mah62].
Definition 3.6. The Mahler measure M(P ) ∈ R of a polynomial P is given by M(P ) :=

a
∏d

i=1 max{1, |zj |} if P factorizes over the complex numbers as P = a
∏d

i=1(x− zi). The Mahler
measure M(z) ∈ R of an algebraic number z is the Mahler measure of its minimal polynomial.

Mahler measures have applications in areas like polynomial factorization, Diophantine approximation,
and knot theory, see [Smy08]. Mignotte and Waldschmidt [MW94] and Dubickas [Dub95] use them
to separate algebraic numbers and 1. The following is Theorem 1 of [Dub95].
Theorem 3.7. Let ϵ > 0. There exists a constant Dϵ ∈ N such that any algebraic number z of degree
d > Dϵ which is not a root of unity satisfies:

|z − 1| > e−(π/4+ϵ)
√

d log d logM(z). (4)

To apply Theorem 3.7, we need an estimate of M(z), where z is a root of ∆. Since ∆(z) = 0, the
minimal polynomial of z divides ∆, and so M(z) ≤ M(∆). A classical result of Landau [Lan05]

states that for any complex polynomial P =
∑d

k=0 ckx
k we have M(P ) ≤

√∑d
k=0 |ck|2. Applying

this to the polynomial ∆ (whose coefficients and degree are bounded in Lemma 3.1), we arrive at the
following upper bound for αBw.
Theorem 3.8. If the game Γ satisfies Assumption 1.1 and is deterministic, for each ϵ > 0 there exists
a constant aϵ > 0 such that the Blackwell threshold αBw satisfies αBw ≤ αdet

Ma, where

− log(1−αdet
Ma) = max

{
(
π

4
+ϵ)

√
(2n− 1) log(2n− 1) log(12

√
2
√
nW ), aϵ+log(12

√
2
√
nW )

}
.

The maximum in Theorem 3.8 is necessary because for a fixed ϵ > 0, the bound in Theorem 3.7 only
applies to algebraic numbers with a degree greater than Dϵ. Thus, if a root of ∆ has degree greater
than Dϵ, we can apply Theorem 3.7, otherwise we apply the Lagrange bound.
Remark 3.9. When W is “small” (W = nO(1)), we obtain from the definition of αdet

Ma that − log(1−
αdet
Ma) = O(

√
n log n). When W is “large” (W = exp(Ω(n log2 n))), we have − log(1 − αdet

Ma) =

O(logW + logn
2 ), the (log n)/2 term being of a lower order. There is an intermediate regime in

which nΩ(1) ≤ W ≤ exp(O(n log2 n)) and for which − log(1− αdet
Ma) = O(

√
n log n logW ).

Note that the bound on αBw from Theorem 3.8 is incomparable to the one of Corollary 3.4: depending
on the value of W , none of the bounds dominates the other. Taking the best (smallest) of the two
bounds, we arrive at Table 3 in which we bound the Blackwell threshold depending on the different
regimes for log(W ) as a function of the number of states n (up to terms of lower order).
Remark 3.10. Using the preprocessing algorithm of Frank and Tardos [FT87], for any deterministic
mean-payoff game with n states of Min and m states of Max, and arbitrary rational weights, we
can construct a mean-payoff game with integer weights such that W = 2O(nm)3 and which has
the same optimal strategies. For n = m, this estimate of W is larger than the separation order
W = exp(Θ(n log2 n)) between the “intermediate” and “high W ” regimes in Table 3. So, all the
regimes in Remark 3.9 and Table 3 are relevant.

4 Results for perfect-information stochastic games

We now focus on the general case of perfect-information SGs. We start by studying the structure of
the discounted value function vσ,τi (α) associated with a pair of stationary strategies (σ, τ) and a state
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Table 3: Bound for the Blackwell threshold αBw of deterministic perfect-information SGs in different
regimes of log(W ) with respect to the number of states n.

logW : Θ(logn) Θ( n
log n ) Θ(n) Θ(n logn) Θ(n log2 n)

− log(1 − αBw):
√
n logn |

√
n logn logW | n log 2 | logW |

√
n logn logW | logW

i. It is well-known that this function is rational, i.e., it is the ratio of two polynomials (e.g., Lemma
10.1.3 in [Put14]). We define ∆(α) as the numerator appearing in vσ,τi (α)− vσ

′,τ ′

i (α) (we refer to
Appendix C for the precise definition of ∆). Thus, to study the zeros of α 7→ vσ,τi (α)− vσ

′,τ ′

i (α) we
can focus on studying the roots of ∆. We first analyze the degree and the size of the coefficients of ∆.

Proposition 4.1. Under Assumption 1.1, the polynomial ∆ can be written as ∆(α) =
∑2n−1

k=0 ckα
k,

where |ck| ≤ 2nWM2n−1
(
2n−1

k

)
for all k ∈ {0, . . . , 2n− 1}.

Proposition 4.1 improves upon the corresponding results of [GCP23] for MDPs, which show that
|ck| ≤ 2nWM2n4n across all k ∈ {0, . . . , 2n− 1}.

Results based on the Lagrange bound. Applying the Lagrange bound to the polynomial ϵ 7→
∆(1− ϵ), we prove the second part of Theorem 1.2. We start with the bound on αBw.

Corollary 4.2. Under Assumption 1.1, we have αBw ≤ 1− 2⌊
2
3n⌋−2

nW (2M)2n−1
(
2n−1
⌊ 2
3n⌋
) .

We now state the bound on αd for non-deterministic SGs. Note that in the next result, we assume that
the SG is unichain, i.e., that the Markov chain induced by any pair of stationary strategies is unichain.
This assumption is necessary to precisely connect the coefficients of ∆(α) with the coefficients of
the Laurent series expansion of vσ,τi (α)− vσ

′,τ ′

i (α).
Corollary 4.3. If Γ satisfies Assumption 1.1 and is unichain, the d-sensitive threshold αd satisfies

αd ≤ 1− 2min{d+2,⌊ 2
3n−1⌋}−1

nW (2M)2n−1
(

2n−1
min{d+2,⌊ 2

3n−1⌋}+1

) .

Remark 4.4 (On the unichain assumption). In order to prove Corollary 4.3, the unichain assump-
tion allows us to relate the function α 7→ vσ,τi (α) − vσ

′,τ ′

i (α) with the polynomial ∆(α) using a
manageable structure. More precisely, thanks to the unichain assumption, we can write

∆(α) = (1− α)2Q(α)(vσ,τi (α)− vσ
′,τ ′

i (α))

where Q(α) is a polynomial that satisfies Q(1) ̸= 0. It follows that, for any d′, we have

lim
α→1−

(1− α)−d′
(vσ,τi (α)− vσ

′,τ ′

i (α)) = 0 ⇐⇒ lim
α→1−

(1− α)−(d′+2)∆(α) = 0 ,

a property that is useful to analyze the d-sensitive optimality (see Appendix C for more details).

Controlling this polynomial Q(α) in all generality (for multichain models) is the main difficulty
in removing the unichain assumption. Generalizing to the multichain setting would require a finer
characterization of the spectral properties of the induced Markov chains under arbitrary strategies,
which is a challenging open problem.

Results based on the Mahler bound. Next, we present the results for αBw based on the Mahler
bound. The proof follows the same lines as in the deterministic case (Theorem 3.8).
Theorem 4.5. If the game Γ satisfies Assumption 1.1, for each ϵ > 0 there exists a constant aϵ such
that the Blackwell threshold αBw satisfies αBw ≤ αMa, where − log(1−αMa) = max{β1, β2}, β1 :=

(π4 + ϵ)
√
(2n− 1) log(2n− 1) log (L), β2 := aϵ + log (L), and L := 2nWM2n−1

√(
2(2n−1)
2n−1

)
.

We end this section with a discussion on the multiplicity approach highlighted in Theorems 1.5
and 3.5, applied to the case of general SGs.

It is worth emphasizing that the multiplicity approach fails for general SGs. Indeed, this approach
relies on bounding the multiplicity of 1 as a root of the polynomial ∆(α) representing the numerator
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of the functions α 7→ vσ,τi (α)− vσ
′,τ ′

i (α) (since this multiplicity leads to a bound on the minimal
value of d satisfying that any d-sensitive optimal strategy is also Blackwell optimal).

Theorem 2.1 of [BEK99] shows that given a polynomial P =
∑d

k=0 ckx
k of degree d such that

maxk |ck| ≤ 1, the multiplicity d̄ of 1 as a root of P is bounded by O
(√

d(1 + log |c0|)
)

. For de-
terministic games, we can ensure that |c0| remains small, allowing us to obtain the meaningful bound
d̄ = O(

√
n) by this technique (see Lemma 3.1 and Theorem 3.5). However, for general stochastic

instances, the magnitude of |c0| can grow as O(n4nMn). In particular, under Assumption 1.1, using
arguments similar to the ones used to prove Theorem 3.5, we get that every d̄sto(n,W )-sensitive
optimal strategy is Blackwell optimal, where

d̄sto(n,W ) := a

√
(2n− 1)

(
1 + log

(
2nWM2n−1

(
2n− 1

n

)))
for some a > 0. This leads to a vacuous bound (d̄ = Ω(n)) that is not better than the existing one.
Indeed, it is known that d = n−2 is enough [Vei69], and n−2 is much smaller than d̄sto(n,W ). This
shows that while the multiplicity approach may be useful in the deterministic case (in the sense that
there are some regimes of n and W where d̄det(n,W ) < n− 2), it does not yield any improvement
over existing bounds in the stochastic case, highlighting the strength of our new results based on the
Lagrange and Mahler bounds.

5 Discussion

We obtain bounds on the Blackwell threshold αBw and on the d-sensitive threshold αd. We improve
the existing bounds on − log(1−αBw) by a factor Ω(n) (compared to [AM09] for SGs and [GCP23]
for MDPs), and we provide the first bound on αd beyond the case d = −1 in deterministic games.
Blackwell and mean-payoff optimal strategies have received some attention in reinforcement learning
and SGs in recent years, and our bounds control the complexity of the main method to compute
Blackwell and d-sensitive optimal strategies for SGs, by choosing α > αBw (or α > αd) in
algorithms for solving discounted SGs. A crucial advantage of this approach is that our bounds can
be combined with any progress in solving discounted SGs. However, to the best of our knowledge,
all algorithms whose complexity depends on the discount factor α scale as Õ((1− α)k) for some
negative k (e.g. k = −1 for strategy iteration [Ye11, HMZ13, AG13], or k = −3 for sampling-based
methods [SWYY20]). Our bounds on (1− αBw)

−1 involve some terms that grow superpolynomially
in n (see Tables 1 and 2). Obtaining stronger bounds for αBw is an important future research direction.

Open questions. It would be interesting to obtain bounds for αd for general (non-deterministic)
perfect-information SGs, without the unichain assumption. Additionally, our work provides several
different upper bounds for αBw, all of which may be exponentially close to 1. It is essential to
understand if this is a limitation of our line of analysis - for instance, does there exist stronger
separation results between a root of a polynomial P and 1 for the specific polynomials ∆ appearing
in our proof? -, or if this is an inherent difficulty of the problem. Obtaining lower bounds for αBw

and αd in all generality is an important next step.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: There are no numerical experiments in this paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: There are no numerical experiments in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: There are no numerical experiments in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: There are no numerical experiments in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and ensured that the paper
comply with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: : This paper is mostly theoretical.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not use create assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: : This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use any LLMs for this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Bounds from previous work

Bounds from [AM09]. The authors in [AM09] focus on perfect-information SGs. Lemma 1
of [AM09] shows that αBw ≤ 1 − 2(n!)24n max{M,W}2n2

. We then apply the classical bound
n! = O

(√
n
(
n
e

)n
exp

(
1

12n

))
to obtain the bound presented in Tables 1 and 2.

Bounds from [GCP23]. The authors of [GCP23] focus on MDPs. Their main bound for
αBw is given in Theorem 4.4, and their bound can be simplified to − log(1 − αBw) =
O
(
n log(W ) + n2(1 + log(M)

)
, see the calculation in Appendix E of [GCP23].

Bounds from [MK25]. The bound for − log(1− αBw) is given in Section 4.4 of [MK25], with the
notation b for our term log(W ).

B Proofs for Section 3

In this section we provide the proofs of the results of Section 3. We first prove Lemma 3.1.

Proof of Lemma 3.1. Note that the polynomial ∆ defined in (3) satisfies

∆(α) = (1− αq)(1− αq′)(⟨r, π⟩α − ⟨r, π′⟩α) + (1− αq′)αp⟨r, γ⟩α − (1− αq)αp′
⟨r, γ′⟩α .

Thus, if the absolute value of the instantaneous rewards are bounded by W , the coefficients of the
polynomial of Lemma 3.1 satisfy |ak| ≤ 12W for all k. In addition, we have

K = max{q + q′ +max{p, p′} − 1, q′ + p+ q − 1, q + p′ + q′ − 1} ≤ 2n− 1 ,

because we can choose π, γ, π′ and γ′ elementary (i.e., such that in the corresponding sequences of
states, no state appears twice, except the initial and last state in the case of circuits), and so p+ q ≤ n,
p ≤ n− 1, p′ + q′ ≤ n and p′ ≤ n− 1.

B.1 Proofs for Section 3.1

We now provide the intermediate results that we need to prove Theorem 3.3. In what follows, we de-
note by H(P ) the height of the polynomial P =

∑d
k=0 ckx

k defined as H(P ) := maxk∈{0,...,d} |ck|.

Lemma B.1. Let P =
∑d

k=0 ckx
k be a polynomial with integer coefficients and Q(y) =

∑d
k=0 c

′
ky

k

be the polynomial which is obtained making the change of variable x = 1− y in P (x). Suppose that,
for some j ∈ {0, . . . , d}, we have c′j ̸= 0 and c′i = 0 for all i < j. Then, the polynomial Q(y) has
no zeros in the interval ]0, 1

2H(P )(d+1
j+2)

[.

Proof. We first bound the magnitude of the coefficients of Q in terms of H(P ). Since Q(y) =

P (1− y), we have c′i = (−1)i
∑d

k=i ck
(
k
i

)
for i ∈ {0, . . . , d}. Now we use

∑d
k=i

(
k
i

)
=
(
d+1
i+1

)
to

obtain that |c′i| ≤ H(P )
(
d+1
i+1

)
for all i ∈ {0, . . . , d}.

Note that |c′j | ≥ 1 since c′j ̸= 0 and c′j ∈ Z. Besides, note that for m ≥ 3 and j ≤ m− 1, we have(
m

i

)
≤
(

m

j + 1

)i−j

(5)

for all i ∈ {j + 1, . . . ,m}. Indeed, the cases i = j + 1 and i = m are trivial, so we may assume
j < m− 1 (because j = m− 1 implies i = m). Suppose that

(
m
i

)
≤
(

m
j+1

)i−j
for some i ≤ m− 1.

Then, (
m

i+ 1

)
=

m− i

i+ 1

(
m

i

)
≤ m

2

(
m

j + 1

)i−j

≤
(

m

j + 1

)i+1−j

,

because m
2 ≤ m

2
m−1
j+1 · · · m−j+1

3
m−j
1 = m

j+1
m−1
j · · · m−j+1

2
m−j
1 =

(
m
j+1

)
.
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We are now ready to apply the Lagrange bound (Theorem 3.2). Using (5) we get( |c′j |
|c′i|

) 1
i−j

≥
|c′j |

1
i−j

H(P )
1

i−j
(
d+1
i+1

) 1
i−j

≥ 1

H(P )
(
d+1
j+2

)
for any i ∈ {j + 1, . . . , d}. The lemma now follows from Theorem 3.2.

Note that the polynomial ϵ 7→ ∆(1− ϵ) can be rewritten as

∆(1− ϵ) =

K∑
i=0

(−1)iϵibi (6)

where bi =
∑K

k=i ak
(
k
i

)
. Then, the next proposition is a direct consequence of Lemmas B.1 and 3.1.

Proposition B.2. Suppose that b0 = . . . = bj−1 = 0 and bj ̸= 0 for some j ≥ 1 in (6). Then, the
polynomial ϵ 7→ ∆(1− ϵ) has no zeros in the interval ]0, 1

24W(K+1
j+2 )

[.

Proof of Theorem 3.3. Let α′ be such that 1− 1

24W( 2n
min{d+4,n})

< α′ < 1, and let (σ∗, τ∗) be a pair

of discount optimal strategies for the discount factor α′. To prove the theorem, it is enough to show
that (σ∗, τ∗) is a pair of d-sensitive optimal strategies.

On the contrary, suppose that (σ∗, τ∗) is not a pair of d-sensitive optimal strategies. Then, either
there exist a strategy τ of player Max and a state i such that

lim
α→1−

(1− α)−d(vσ
∗,τ∗

i (α)− vσ
∗,τ

i (α)) < 0 , (7)

or there exist a strategy σ of player Min and a state i such that

lim
α→1−

(1− α)−d(vσ
∗,τ∗

i (α)− vσ,τ
∗

i (α)) > 0 . (8)

In the first place, assume that (7) holds. Let d′ be the smallest value satisfying

lim
α→1−

(1− α)−d′
(vσ

∗,τ∗

i (α)− vσ
∗,τ

i (α)) < 0 . (9)

By (7), it follows that d′ ≤ d and that limα→1− (1 − α)−d′′
(vσ

∗,τ∗

i (α) − vσ
∗,τ

i (α)) = 0 for all
d′′ < d′.

If for q ∈ N we set [q]α := 1 + α+ · · ·+ αq−1, then the polynomial ∆ defined in (3) satisfies

∆(α) = (1−αq)(1−αq′)(vσ,τi (α)− vσ
′,τ ′

i (α)) = (1−α)2[q]α[q
′]α(v

σ,τ
i (α)− vσ

′,τ ′

i (α)) . (10)

Therefore, for all d′′ we have

lim
α→1−

(1− α)−d′′
(vσ

∗,τ∗

i (α)− vσ
∗,τ

i (α)) = 0 ⇐⇒ lim
α→1−

(1− α)−(d′′+2)∆(α) = 0 .

We conclude that b0 = . . . = bd′+1 = 0 and bd′+2 ̸= 0 if we represent the polynomial ∆(1− ϵ) as
in (6). Thus, by (7) and Proposition B.2, it follows that vσ

∗,τ∗

i (α)−vσ
∗,τ

i (α) < 0 for 1− 1

24W(K+1
d′+4)

<

α < 1, and therefore this remains true for 1− 1

24W( 2n
min{d+4,n})

< α < 1 because K + 1 ≤ 2n and

d′ ≤ d. Since 1 − 1

24W( 2n
min{d+4,n})

< α′ < 1, in particular we have vσ
∗,τ∗

i (α′) − vσ
∗,τ

i (α′) < 0,

contradicting the fact that (σ∗, τ∗) is a pair of discount optimal strategies for α′.

On the other hand, if (8) is satisfied, using symmetric arguments we also arrive to a contradiction.
This completes the proof.

Proof of Corollary 3.4. The first inequality of this corollary readily follows from Theorem 3.3. The
second inequality follows from Proposition B.2, the fact that K ≤ 2n − 1 and that the function
j 7→ 1

24W( 2n
j+2)

is convex and achieves its minimum at j = n− 2.
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We conclude this section with the proof of Theorem 3.5.

Proof of Theorem 3.5. Theorem 2.1 of [BEK99] shows that if P =
∑d

k=0 ckx
k is a non-zero poly-

nomial such that maxk∈{0,...,d} |ck| ≤ 1, then the multiplicity of 1 as a root of P cannot exceed
a
√
d(1− log |c0|), where a > 0 is an absolute constant. Applying this result to the polynomial

∆(α)
12W , we conclude that the multiplicity of 1 as a root of ∆(α) is at most a

√
(2n− 1)(1 + log 12W ).

Then, by (10) we can write vσ,τi (α) − vσ,τ
′

i (α) as (1 − α)kQ(α), where k ≤ d̄det(n,W ) :=

a
√

(2n− 1)(1 + log 12W )− 2 and Q(α) is a continuous function satisfying Q(1) ̸= 0.

If the pair of strategies (σ, τ) is d̄det(n,W )-sensitive optimal, we have

0 ≤ lim
α→1−

(1− α)−d̄det(n,W )
(
vσ,τi (α)− vσ,τ

′

i (α)
)
= lim

α→1−
(1− α)k−d̄det(n,W )Q(α) ,

and so Q(1) > 0. It follows that

lim
α→1−

(1− α)d
(
vσ,τi (α)− vσ,τ

′

i (α)
)
= lim

α→1−
(1− α)k−dQ(α) ≥ 0

for any d. Using similar arguments it is possible to show also that

lim
α→1−

(1− α)d
(
vσ

′,τ
i (α)− vσ,τi (α)

)
≥ 0

for any d and any strategy σ′ of player Min. We conclude that (σ, τ) is d-sensitive optimal for any d,
and so also Blackwell optimal.

B.2 Proof for Section 3.2

Proof of Theorem 3.8. Given ϵ > 0, let Dϵ be the constant provided by Theorem 3.7. Let z be any
real root of the polynomial ∆ different from 1, d be its degree and P =

∑d
k=0 ckx

k be its minimal
polynomial. Since z is a root of ∆, it follows that P divides ∆, and so we have d ≤ 2n − 1 and
M(P ) ≤ M(∆) (see Section 1.3 of [CMP87]). Besides, note that M(∆) ≤ 12W

√
2n by Landau’s

bound [Lan05]. If d > Dϵ, then (4) holds, and so we have

|z − 1| > e−(π/4+ϵ)
√

d log d logM(P ) ≥ e−(π/4+ϵ)
√

(2n−1) log(2n−1) logM(∆)

≥ e−(π/4+ϵ)
√

(2n−1) log(2n−1) log(12W
√
2n) .

Assume now that d ≤ Dϵ. By Lemma B.1, it follows that |z − 1| ≥ 1

2H(P )(d+1

⌈ d
2
⌉)

. Then, since

H(P ) ≤ 2dM(P ), we have

|z − 1| ≥ 1

2d+1M(P )
(
d+1
⌈ d

2 ⌉
) ≥ 1

2Dϵ+1M(∆)
(Dϵ+1

⌈Dϵ
2 ⌉

) ≥ 1

2Dϵ+1
(Dϵ+1

⌈Dϵ
2 ⌉

)
12W

√
2n

.

Setting aϵ = log
(
2Dϵ+1

(Dϵ+1

⌈Dϵ
2 ⌉

))
, we conclude that ∆ has no zeros in the interval ]αdet

Ma, 1[.

C Proof for Section 4

C.1 Proof of Proposition 4.1

We now detail the proof of Proposition 4.1.

We first provide the exact formula for the polynomial ∆(α) considered in Section 4. Given a pair of
stationary strategies (σ, τ), let Pσ,τ be the transition matrix and rσ,τ be the vector of instantaneous
rewards induced by (σ, τ), and let us define Qσ,τ := MPσ,τ and Dσ,τ (α) := det (MI − αQσ,τ ).
Since it is known that (vσ,τi (α))i∈[n] = (I − αPσ,τ )

−1
rσ,τ , using Cramer’s formula for the inverse
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of a matrix and Laplace’s cofactor extension, it follows that vσ,τi (α)− vσ
′,τ ′

i (α) = M∆(α)

Dσ,τ (α)Dσ′,τ′ (α)

for any state i, where

∆(α) := Dσ′,τ ′
(α)(

n∑
j=1

cofji(MI − αQσ,τ )rσ,τj )−Dσ,τ (α)(

n∑
j=1

cofji(MI − αQσ′,τ ′
)rσ

′,τ ′

j ).

(11)

We now proceed to bound the degree and the coefficients of ∆. In the next two propositions, we
assume that Q

M is a row-stochastic matrix, with Q ∈ Nn×n.

Proposition C.1. The polynomial det(MI − αQ) is of the form
∑n

k=0 akα
k, where |ak| ≤

(
n
k

)
Mn.

Proof. We have

det(MI − αQ) =

n∑
k=0

(−α)kMn−k tr(Ck(Q)) , (12)

where Ck(Q) is the k-th compound matrix of Q. Since the entries of Ck(Q) are minors of Q of size
k × k, and

∑n
j=1 Qij = M for each i = 1, . . . , n, we conclude that the absolute value of all the

entries of Ck(Q) are less than or equal to Mk. The result now follows from (12) and the fact that
Ck(Q) is of size

(
n
k

)
×
(
n
k

)
.

It is worth noting that the result in the previous proposition is tight when Q = MI .

Proposition C.2. For each i, j ∈ {1, . . . , n}, the (i, j) cofactor of the matrix MI − αQ is of the
form

∑n−1
k=0 akα

k, where |ak| ≤
(
n−1
k

)
Mn−1.

Proof. The (i, j) cofactor of the matrix MI − αQ is given by

(−1)i+j det(MJ − αR) = (−1)i+j
n−1∑
k=0

(−α)kMn−1−k tr((adjk(J))(Ck(R))) , (13)

where J and R are the (i, j) sub-matrices of I and Q respectively, adjk(J) is the k-th higher adjugate
matrix of J , and Ck(R) is the k-th compound matrix of R. Since adjk(J) has just one non-zero entry
per row, of absolute value one, as in the proof of Proposition C.1 we conclude that the absolute value
of all the entries of (adjk(J))(Ck(R)) are less than or equal to Mk. The result now follows from (13)
and the fact that (adjk(J))(Ck(R)) is of size

(
n−1
k

)
×
(
n−1
k

)
.

By Propositions C.1 and C.2, both terms appearing in the polynomial ∆ defined in (11) are of the
form

∑2n−1
k=0 bkα

k, where

|bk| ≤ nWM2n−1

 ∑
s+l=k,s≤n−1,l≤n

(
n− 1

s

)(
n

l

)
= nWM2n−1

 ∑
0≤k−l≤n−1,l≤n

(
n− 1

k − l

)(
n

l

)
≤ nWM2n−1

(
k∑

l=0

(
n− 1

k − l

)(
n

l

))
= nWM2n−1

(
2n− 1

k

)
,

by Vandermonde’s Identity. Therefore, we can rewrite ∆ as
∑2n−1

k=0 ckα
k, where |ck| ≤

2nWM2n−1
(
2n−1

k

)
. This concludes the proof of Proposition 4.1.
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C.2 Other proofs for Section 4

To use the Lagrange bound, we consider the polynomial ϵ 7→ ∆(1− ϵ), which can be rewritten as

∆(1− ϵ) =

2n−1∑
i=0

(−1)iϵigi (14)

where gi =
∑2n−1

k=i ck
(
k
i

)
. Then, using Proposition 4.1 and the identity

∑m
k=q

(
m
k

)(
k
q

)
= 2m−q

(
m
q

)
,

we have

|gi| ≤
2n−1∑
k=i

2nWM2n−1

(
2n− 1

k

)(
k

i

)
= nW (2M)2n−121−i

(
2n− 1

i

)
(15)

for all i ∈ {0, . . . , 2n− 1}.
Proposition C.3. Let j be the smallest index such that gj ̸= 0 in (14). Then, the polynomial
ϵ 7→ ∆(1− ϵ) has no zeros in the interval ]0, 2j−1

nW (2M)2n−1(2n−1
j+1 )

[.

Proof. As in the proof of Lemma B.1, we apply the Lagrange bound (Theorem 3.2). Note that
|gj | ≥ 1 since gj ̸= 0 and gj ∈ Z. Then, for any i ∈ {j + 1, . . . , 2n− 1}, we have(

|gj |
|gi|

) 1
i−j

≥ |gj |
1

i−j

(nW (2M)2n−121−i)
1

i−j
(
2n−1

i

) 1
i−j

≥ 2i−1

nW (2M)2n−1
(
2n−1
j+1

)
by (15) and (5). The proposition now follows from Theorem 3.2.

Proof of Corollary 4.2. Note that the function j 7→ 2j−1

nW (2M)2n−1(2n−1
j+1 )

is convex and attains its

minimum at j = ⌊ 2
3n− 1⌋. Then, by Proposition C.3, we conclude that no function α 7→ vσ,τi (α)−

vσ
′,τ ′

i (α) has zeros in the interval ]1− 2⌊
2
3
n⌋−2

nW (2M)2n−1(2n−1

⌊ 2
3
n⌋)

, 1[. The corollary now follows from the

discussion in Section 2.

Proof of Corollary 4.3. Let (σ∗, τ∗) be a pair of discount optimal strategies for the discount factor

α′, where α′ satisfies 1− 2min{d+2,⌊ 2
3
n−1⌋}−1

nW (2M)2n−1( 2n−1

min{d+2,⌊ 2
3
n−1⌋}+1)

< α′ < 1.

As in the proof for the deterministic case, in the first place assume that there exist a strategy τ and a
state i such that (7) is satisfied, and let d′ be the smallest value satisfying (9). By (7), it follows that
d′ ≤ d and that limα→1− (1− α)−d′′

(vσ
∗,τ∗

i (α)− vσ
∗,τ

i (α)) = 0 for all d′′ < d′.

If the game is unichain, there exist two polynomials p(α) and q(α) such that p(1) ̸= 0, q(1) ̸= 0

and ∆(α) = (1− α)2p(α)q(α)(vσ
∗,τ∗

i (α)− vσ
∗,τ

i (α)), where ∆ is the polynomial defined in (11)
considering the pairs of strategies (σ∗, τ∗) and (σ∗, τ). Then, we have

lim
α→1−

(1− α)−d′′
(vσ

∗,τ∗

i (α)− vσ
∗,τ

i (α)) = 0 ⇐⇒ lim
α→1−

(1− α)−(d′′+2)∆(α) = 0

for all d′′. We conclude that g0 = . . . = gd′+1 = 0 and gd′+2 ̸= 0 in (14). Thus, by (7) and

Proposition C.3, it follows that vσ
∗,τ∗

i (α) − vσ
∗,τ

i (α) < 0 for 1 − 2d
′+1

nW (2M)2n−1(2n−1
d′+3)

< α < 1.

Since the function j 7→ 2j−1

nW (2M)2n−1(2n−1
j+1 )

is convex and attains its minimum at j = ⌊ 2
3n− 1⌋, and

d′ ≤ d, we conclude that vσ
∗,τ∗

i (α)−vσ
∗,τ

i (α) < 0 for 1− 2min{d+2,⌊ 2
3
n−1⌋}−1

nW (2M)2n−1( 2n−1

min{d+2,⌊ 2
3
n−1⌋}+1)

< α < 1.

Thus, in particular we have vσ
∗,τ∗

i (α′)− vσ
∗,τ

i (α′) < 0, contradicting the fact that (σ∗, τ∗) is a pair
of discount optimal strategies for α′.

Now, if we assume that there exist a strategy σ and a state i such that (8) is satisfied, using similar
arguments as above we arrive at a contradiction.

This shows that (σ∗, τ∗) is a pair of d-sensitive discount optimal strategies.
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Remark C.4. Setting M = 1 in our bounds for the stochastic case do not recover our results for the
deterministic case (Section 3). This is because, in the case of deterministic transitions, we can exploit
the “path then circuit structure" of the discounted value functions, as highlighted in Section 3.

C.3 Proof of Theorem 4.5

Proof. The proof follows similar arguments to the ones in the proof of Theorem 3.8, so given ϵ > 0,
let Dϵ be the constant provided by Theorem 3.7.

Let z be any real root of the polynomial ∆ different from 1, d be its degree and P =
∑d

k=0 ckx
k

be its minimal polynomial. Since z is a root of ∆, it follows that P divides ∆, and so we have
d ≤ 2n− 1 and M(P ) ≤ M(∆). Besides, note that by Proposition 4.1 and Landau’s bound [Lan05],

we have M(∆) ≤ 2nWM2n−1
√(

2(2n−1)
2n−1

)
.

If d > Dϵ, then (4) holds, and so we have

|z − 1| > e−(π/4+ϵ)
√

d log d logM(P ) ≥ e−(π/4+ϵ)
√

(2n−1) log(2n−1) logM(∆)

≥ e
−(π/4+ϵ)

√
(2n−1) log(2n−1) log

(
2nWM2n−1

√
(2(2n−1)

2n−1 )
)
.

Assume now that d ≤ Dϵ. By Lemma B.1 it follows that |z − 1| ≥ 1

2H(P )(d+1

⌈ d
2
⌉)

. Then, since

H(P ) ≤ 2dM(P ), we have

|z − 1| ≥ 1

2d+1M(P )
(
d+1
⌈ d

2 ⌉
) ≥ 1

2Dϵ+1M(∆)
(Dϵ+1

⌈Dϵ
2 ⌉

) ≥ 1

2Dϵ+1
(Dϵ+1

⌈Dϵ
2 ⌉

)
2nWM2n−1

√(
2(2n−1)
2n−1

) .

Setting aϵ = log
(
2Dϵ+1

(Dϵ+1

⌈Dϵ
2 ⌉

))
, we conclude that ∆ has no zeros in the interval ]αMa, 1[. This

shows that αBw ≤ αMa.
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