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ABSTRACT

Neural differential equations may be trained by backpropagating gradients via
the adjoint method, which is another differential equation typically solved using
an adaptive-step-size numerical differential equation solver. A proposed step is
accepted if its error, relative to some norm, is sufficiently small; else it is rejected,
the step is shrunk, and the process is repeated. Here, we demonstrate that the
particular structure of the adjoint equations makes the usual choices of norm
(such as L2) unnecessarily stringent. By replacing it with a more appropriate
(semi)norm, fewer steps are unnecessarily rejected and the backpropagation is
made faster. This requires only minor code modifications. Experiments on a
wide range of tasks—including time series, generative modeling, and physical
control—demonstrate a median improvement of 40% fewer function evaluations.
On some problems we see as much as 62% fewer function evaluations, so that the
overall training time is roughly halved.

1 INTRODUCTION

We begin by recalling the usual set-up for neural differential equations.

1.1 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

The general approach of neural ordinary differential equations (E, 2017; Chen et al., 2018) is to use
ODEs as a learnable component of a differentiable framework. Typically the goal is to approximate
a map x 7→ y by learning functions `1( · , φ), `2( · , ψ) and f( · , · , θ), which are composed such that

z(τ) = `1(x, φ), z(t) = z(τ) +

∫ t

τ

f(s, z(s), θ) ds and y ≈ `2(z(T ), ψ). (1)

The variables φ, θ, ψ denote learnable parameters and the ODE is solved over the interval [τ, T ].
We include the (often linear) maps `1( · , φ), `2( · , ψ) for generality, as in many contexts they are
important for the expressiveness of the model (Dupont et al., 2019; Zhang et al., 2020), though our
contributions will be focused around the ODE component and will not depend on these maps.

Here we will consider neural differential equations that may be interpreted as a neural ODE.

1.2 APPLICATIONS

Neural differential equations have to the best our knowledge three main applications:

1. Time series modeling. Rubanova et al. (2019) interleave Neural ODEs with RNNs to
produce ODEs with jumps. Kidger et al. (2020) take f(t, z, θ) = g(z, θ)dX

dt (t), dependent
on some time-varying input X , to produce a neural controlled differential equation.

2. Continuous Normalising Flows as in Chen et al. (2018); Grathwohl et al. (2019), in which
the overall model acts as coupling or transformation between probability distributions,

3. Modeling or controlling physical environments, for which a differential equation based
model may be explicitly desired, see for example Zhong et al. (2020).
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1.3 ADJOINT EQUATIONS

The integral in equation (1) may be backpropagated through either by backpropagating through the
internal operations of a numerical solver, or by solving the backwards-in-time adjoint equations
with respect to some (scalar) loss L.

az(T ) =
dL

dz(T )
, az(t) = az(T )−

∫ t

T

az(s) ·
∂f

∂z
(s, z(s), θ) ds and

dL

dz(τ)
= az(τ),

aθ(T ) = 0, aθ(t) = aθ(T )−
∫ t

T

az(s) ·
∂f

∂θ
(s, z(s), θ) ds and

dL

dθ
= aθ(τ),

at(T ) =
dL

dT
, at(t) = at(T )−

∫ t

T

az(s) ·
∂f

∂s
(s, z(s), θ) ds and

dL

dτ
= at(τ),

(2)

These equations are typically solved together as a joint system a(t) = [az(t), aθ(t), at(t)]. (They
are already coupled; the latter two equations depend on az .) As additionally their integrands require
z(s), and as the results of the forward computation of equation (1) are usually not stored, then the
adjoint equations are typically additionally augmented by recovering z by solving backwards-in-
time

z(t) = z(T ) +

∫ t

T

f(s, z(s), θ)ds. (3)

1.4 CONTRIBUTIONS

We demonstrate that the particular structure of the adjoint equations implies that numerical equation
solvers will typically take too many steps, that are too small, wasting time during backpropagation.
Specifically, the accept/reject step of adaptive-step-size solvers is too stringent.

By applying a correction to account for this, we demonstrate that the number of steps needed to
solve the adjoint equations may be reduced by typically about 40%. We observe improvements on
some problems by as much as 62%. Factoring in the forward pass (which is unchanged), the overall
training time is roughly halved. Our method is hyperparameter-free and requires no tuning.

We do not observe any change in model performance, and at least with the torchdiffeq package
(our chosen differential equation package), this correction may be applied with only 12 lines of code.

2 METHOD

2.1 NUMERICAL SOLVERS

Both the forward pass given by equation (1), and the backward pass given by equations (2) and (3),
are solved by invoking a numerical differential equation solver. Our interest here is in adaptive-step-
size solvers. Indeed the default choice for solving many equations is the adaptive-step-size Runge–
Kutta 5(4) scheme of Dormand–Prince (Dormand & Prince, 1980), for example as implemented by
dopri5 in the torchdiffeq package or ode45 in MATLAB.

A full discussion of the internal operations of these solvers is beyond our scope here; the part of
interest to us is the accept/reject scheme. Consider the case of solving the general ODE

y(t) = y(τ) +

∫ t

τ

f(s, y(s)) ds,

with y(t) ∈ Rd.

Suppose for some fixed t the solver has computed some estimate ŷ(t) ≈ y(t), and it now seeks
to take a step ∆ > 0 to compute ŷ(t + ∆) ≈ y(t + ∆). A step is made, and some candidate
ŷcandidate(t + ∆) is generated. The solver additionally produces yerr ∈ Rd representing an estimate
of the numerical error made in each channel during that step.
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Given some prespecified absolute tolerance ATOL (for example 10−9), relative tolerance RTOL

(for example 10−6), and (semi)norm ‖ · ‖ : Rd → [0,∞) (for example ‖y‖ =
√

1
d

∑d
i=1 y

2
i the

RMS norm), then an estimate of the size of the equation is given by

SCALE = ATOL+RTOL ·max(ŷ(t), ŷcandidate(t+ ∆)) ∈ Rd, (4)

where the maximum is taken channel-wise, and the error ratio

r =
∥∥∥ yerr

SCALE

∥∥∥ ∈ R (5)

is then computed. If r ≤ 1 then the error is deemed acceptable, the step is accepted and we take
ŷ(t+∆) = ŷcandidate(t+∆). If r > 1 then the error is deemed too large, the candidate ŷcandidate(t+∆)
is rejected, and the procedure is repeated with a smaller ∆.

Note the dependence on the choice of norm ‖ · ‖: in particular this determines the relative importance
of each channel towards the accept/reject criterion.

2.2 ADJOINT SEMINORMS

Not an ODE The key observation is that aθ (and in fact also at) does not appear anywhere in the
vector fields of equation (2).

This means that (conditioned on knowing z and az), the integral corresponding to aθ is just an
integral—not an ODE. As such, it is arguably inappropriate to solve it with an ODE solver, which
makes the implicit assumption that small errors now may propagate to create large errors later.

Accept/reject This is made manifest in the accept/reject step of equation (5). Typical choices of
norm ‖ · ‖, such as L2, will usually weight each channel equally. But we have just established that
to solve the adjoint equations accurately, it is far more important that z and az be accurate than it is
that aθ be accurate.

Seminorms Thus, when solving the adjoint equations equation (2), we propose to use a ‖ · ‖ that
scales down the effect in those channels corresponding to aθ.

In practice, in our experiments, we scale ‖ · ‖ all the way down by applying zero weight to the
offending channels, so that ‖ · ‖ is in fact a seminorm. This means that the integration steps are
chosen solely for the computation of az and z, and the values of aθ are computed just by integrating
with respect to those steps.

Example As an explicit example, note that aθ(T ) = 0. When solving the adjoint equation
numerically, this means for t close to T that the second term in equation (4) is small. As ATOL is
typically also small, then SCALE is additionally small, and the error ratio r in equation (5) is large.

This implies that it becomes easy for the error ratio r to violate r ≤ 1, and it is easy for the step
to be rejected. Now there is nothing intrinsically bad about a step being rejected—we would like to
solve the ODE accurately, after all—the problem is that this is a spurious rejection, as the rejection
occurred to ensure the accuracy of aθ, which is as already established unnecessary.

In practice, we observe that spurious rejections may occur for any t, not just those near T .

Other channels In fact, essentially the same argument applies to at as well: this does not affect
the value of the vector field either. In a continuous normalising flow, the log-probability channel is
also only an integral, rather than an ODE, and again the same argument may be applied.

Does this reduce the accuracy of parameter gradients? One obvious concern is that we are
typically ultimately interested in the parameter gradients aθ, in order to train a model; with respect
to this our approach seems counter-intuitive.

However, we verify empirically that models still train without a reduction in performance. We
explain this by noting that the z, az channels truly are ODEs, so that small errors now do propagate
to create larger errors later. Thus these are likely the dominant source of error overall.
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2.3 CODE

Depending on the software package, the code for making this change can be trivial. For example,
using PyTorch (Paszke et al., 2019) and torchdiffeq (Chen et al., 2018), the standard set-up
requires only a few additional lines of code. The additional 12 lines are marked.

1 import t o r c h d i f f e q
2
3 def rms norm ( t e n s o r ) : #
4 re turn t e n s o r . pow ( 2 ) . mean ( ) . s q r t ( ) #
5 #
6 def make norm ( s t a t e ) : #
7 s t a t e s i z e = s t a t e . numel ( ) #
8 def norm ( a u g s t a t e ) : #
9 y = a u g s t a t e [ 1 : 1 + s t a t e s i z e ] #

10 a d j y = a u g s t a t e [1 + s t a t e s i z e : 1 + 2 ∗ s t a t e s i z e ] #
11 re turn max ( rms norm ( y ) , rms norm ( a d j y ) ) #
12 re turn norm #
13 #
14 t o r c h d i f f e q . o d e i n t a d j o i n t ( func = . . . , y0 = . . . , t = . . . ,
15 a d j o i n t o p t i o n s = d i c t ( norm=make norm ( y0 ) ) ) #

This amounts to the extra 12 lines of code stated in the title—a number that even includes the
additional whitespace and visual indents.

To keep the remainder of this discussion software-agnostic, we defer further explanation of this
specific code to Appendix A.

3 EXPERIMENTS

We compare our proposed technique against conventionally-trained neural differential equations,
across multiple tasks—time series, generative, and physics-informed. These are each drawn from
the main applications of neural differential equations, discussed in Section 1.2. In every case, the
differential equation solver used is the Dormand–Prince 5(4) solver “dopri5”. The default norm
is a mixed L∞/L2 norm used in torchdiffeq; see Appendix A. For the sake of an interesting
presentation, we investigate different aspects of each problem.

In each case see Appendix B for details on hyperparameters, optimisers and so on.

The code for these experiments can be found at [redacted; see supplementary material].

3.1 NEURAL CONTROLLED DIFFERENTIAL EQUATIONS

Consider the Neural Controlled Differential Equation (Neural CDE) model of Kidger et al. (2020).

To recap, given some (potentially irregularly sampled) time series x = ((t0, x0), . . . , (tn, xn)), with
each ti ∈ R the timestamp of the observation xi ∈ Rv , let X : [t0, tn] → R1+v be an interpolation
such that X(ti) = (ti, xi). For example X could be a natural cubic spline.

Then take f(t, z, θ) = g(z, θ)dX
dt (t) in a Neural ODE model, so that changes in x provoke changes

in the vector field, and the model incorporates the incoming information x. This may be thought of
as a continuous-time RNN; indeed Kidger et al. (2020) use this to learn functions of (irregular) time
series.

We apply a Neural CDE to the Speech Commands dataset (Warden, 2020). This is a dataset of
one-second audio recordings of spoken words such as ‘left’, ‘right’ and so on. We take 34975 time
series corresponding to 10 words, to produce a balanced classification problem. We preprocess the
dataset by computing mel-frequency cepstrum coefficients so that each time series is then regularly
spaced with length 161 and 20 channels. The data was then normalised to have zero mean and unit
variance. We used the torchcde package (Kidger, 2020), which wraps torchdiffeq.

The initial map `1 (of equation (1)) is taken to be linear on (t0, x0). The terminal map `2 is taken to
be linear on z(tn).
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Table 1: Results for Neural CDEs. The number of function evaluations (NFE) used in the
adjoint equations—accumulated throughout training—are reported. Test set accuracy is additionally
reported. Mean ± standard deviation over five repeats. Every model has 88,940 parameters.

Default norm Seminorm

RTOL, ATOL Accuracy (%) Bwd. NFE (106) Accuracy (%) Bwd. NFE (106)

10−3, 10−6 92.6±0.4 14.36±1.09 92.5±0.5 8.67±1.60

10−4, 10−7 92.8±0.4 30.67±2.48 92.5±0.5 12.75±2.00

10−5, 10−8 92.4±0.7 77.95±4.47 92.9±0.4 29.39±0.80

Figure 1: Mean ± standard deviation, for accuracy and the number of function evaluations (NFE)
for the backward pass, during training, for Neural CDEs.

We investigate how the effect changes for varying tolerances by varying the pair (RTOL,ATOL)
over (10−3, 10−6), (10−4, 10−7), and (10−5, 10−8). For each such pair we run five repeated
experiments.

See Table 1 for results on accuracy and number of function evaluations. We see that the accuracy
of the model is unaffected by our proposed change, whilst the backward pass uses 40%–62% fewer
steps, depending on tolerance.

Next, we investigate how accuracy and function evaluations change during training. See Figure 1.
We see that accuracy quickly gets close to its maximum value during training, with only incremental
improvements for most of the training procedure. In particular, this statement is true of both
approaches, and we do not see any discrepancy between them. Additionally, we see that the number
of function evaluations is much lower for the seminorm throughout training.

3.2 CONTINUOUS NORMALISING FLOWS

Continuous Normalising Flows (CNF) (Chen et al., 2018) are a class of generative models that define
a probability distribution as the transformation of a simpler distribution by following the vector field
parameterised by a Neural ODE. Let p(z0) be an arbitrary base distribution that we can efficiently
sample from, and compute its density. Then let z(t) be the solution of the initial value problem

z(0) ∼ p(z0),
dz(t)

zt
= f(t, z(t), θ),

d log p(z(t))

dt
= −tr

(
∂f

∂z
(t, z(t), θ)

)
,
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Table 2: Results for Continuous Normalising Flows. The number of function evaluations (NFE)
used in the adjoint equations—accumulated throughout training—are reported. Test set bits/dim
and number of parameters are additionally reported. Mean ± standard deviation over three repeats.

Default norm Seminorm

Model Parameters Test bits/dim Bwd. NFE (106) Test bits/dim Bwd. NFE (106)

CIFAR-10
(dh = 64)

1,200,600 3.3492±0.0059 41.65±1.97 3.3428±0.0121 38.93±1.32

MNIST
(dh = 32)

281,928 0.9968±0.0020 41.50±2.35 0.9942±0.0013 37.03±0.96

MNIST
(dh = 64)

1,005,384 0.9623±0.0020 44.24±1.78 0.9603±0.0021 37.85±0.94

MNIST
(dh = 128)

3,779,400 0.9439±0.0030 48.60±2.30 0.9466±0.0048 41.84±1.92

for which the initial point is randomly sampled from p(z0), and for which the change in log
probability density is also tracked as the sample is transformed through the vector field.

The distribution at an arbitrary time value T can be trained with maximum likelihood to match
data samples, resulting in a generative model of data with the distribution p(z(T )). Furthermore,
Grathwohl et al. (2019) combines this with a stochastic trace estimator (Hutchinson, 1989) to create
an efficient and unbiased estimator of the log probability for data samples x.

log p(z(T ) = x) = log p(z(0)) + Ev∼N (0,1)

[∫ 0

T

vT
(
∂f

∂z
(t, z(t), θ)

)
v dt

]
. (6)

In Table 2 we show the final test performance and the total number of function evaluations (NFEs)
used in the adjoint method over 100 epochs. We see substantially fewer NFEs in experiments on
both MNIST and CIFAR-10. Next, we investigate changing model size, by varying the complexity
of the vector field f , which is a CNN with dh hidden channels. We find that using the seminorm,
the backward NFE does not increase as much as when using the default norm. In particular, we can
use roughly same NFEs as the smaller (dh = 32) model to train a larger (dh = 128) model and in
doing so achieve a substantial gain in performance (1.00→ 0.95).

3.3 HAMILTONIAN DYNAMICS

Finally we consider the problem of learning Hamiltonian dynamics, using the Symplectic ODE-Net
model of Zhong et al. (2020). Under Hamiltonian mechanics, the vector field is parameterised as

f(t, z, θ) =

 dH
dp (q, p, θ)

g(q, θ)u− dH
dq (q, p, θ)

0

 ,
where z = (q, p, u) is the state decomposed into (generalised) positions q, momenta p, and control
u. H is a Hamiltonian and g is an input term, both parameterised as neural networks. The input g
offers a way to control the system, which can be understood via energy shaping.

This parameterisation lends itself to being interpretable. H learns to encode the physics of the
system in the form of Hamiltonian mechanics, whilst g learns to encode the way in which inputs
affect the system. This can then be used to construct controls u driving the system to a desired state.
In this context (unlike the other problems we consider here), z is not a hidden state but instead the
output of the model. The evolution of z is matched against the observed state at multiple times z(t1),
z(t2), . . ., and trained with L2 loss.

We consider the fully-actuated double pendulum (“acrobot”) problem. Training data involves small
oscillations under constant forcing. We investigate several quantities of interest.
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Table 3: Results for Symplectic ODE-Net on a fully-actuated double pendulum. The number of
function evaluations (NFE) used in the adjoint equations—accumulated throughout training—are
reported. Test set loss is additionally reported. Mean ± standard deviation over five repeats. The
model has 509,108 parameters.

Default norm Seminorm

Test L2 loss (10−4) Bwd. NFE (104) Test L2 loss (10−4) Bwd. NFE (104)

1.247±0.520 46.45±0.01 2.995±2.190 26.55±0.01

Figure 2: Frames from controlling the fully-actuated double pendulum to the full-upright position.

Figure 3: Evolution of the state z = (q, q̇, u) whilst controlling the fully-actuated double pendulum
from the full-down to the full-upright position. q1 denotes the angle of the first joint, and q2 denotes
the angle of the second joint.

Figure 4: Location of function evaluations for the adjoint equations, during training for the fully-
actuated double pendulum problem. All evaluations over five runs are shown.

First we investigate the number of function evaluations. See Table 3. We see that the model
successfully learns the dynamics, with very small loss (order O(10−4)) in both cases. However,
under our proposed change the model is trained using 43% fewer function evaluations on the
backward pass.

Next, we verify that the end goal of controlling the system is achievable. See Figures 2 and 3, in
which the double pendulum is successfully controlled from the full-down to the full-upright position,
using the seminorm-trained model.

After that, we investigate the locations of the function evaluations. See Figure 4. We see that the
default norm makes consistently more evaluations for every time t. This is interesting as our initial
hypothesis was that there would be more spurious rejections for t near the terminal time T , where
aθ(t) is small, as aθ(T ) = 0. In fact we observe consistent improvements for all t.

7



Under review as a conference paper at ICLR 2021

Figure 5: Location of rejected steps during training for the fully-actuated double pendulum problem.
All steps over five runs are shown. Rejected steps for the seminorm can just barely be seen.

To conclude, we investigate the locations of the rejected steps. See Figure 5. Note that the Dormand–
Prince solver makes 6 function evaluations per step, which is the reason for the difference in scale
between Figures 4 and 5. We see that the seminorm produces almost no rejected steps. This accounts
for the tight grouping seen in Figure 4, as for each batch the evaluations times are typically at the
same locations. Moreover, we observe an interesting structure to the the location of the rejected
steps with the default norm. We suspect this is due to the time-varying physics of the problem.

3.4 WHERE DO IMPROVEMENTS COME FROM?

Figure 6: Parameter-state ratio against
improvement, as given by the relative
decrease in backward NFE. Only one
neural CDE experiment (RTOL=10−3,
ATOL=10−6) is shown as the others use
different tolerances. CNFs are averaged
over their different blocks.

Parameter-state ratio We hypothesised that the ratio
between size of state and number of parameters
may explain the differences between the smaller
improvements for continuous normalising flows against
the substantial improvements for Hamiltonian neural
networks and neural CDEs (corresponding to the
proportion of channels that can no longer cause
rejections). Given a model with p parameters and state
z(t) ∈ Rd, then seminorms reduce the number of
rejection-causing channels from 1+2d+p to just 1+2d.

We plot the (log) ratio 1+2d+p/1+2d against the percentage
improvement in backward steps. See Figure 6. We
see that this hypothesis partly explains things: broadly
speaking continuous normalising flows (which have
O(103) state variables) see small improvements, whilst
the neural CDEs and Hamiltonian neural networks (with
O(101) state variables) see larger improvements.

There are still many differences between problems (tolerances, complexity of vector field, and so
on); see for example the variation amongst the continuous normalising flows. Thus for any given
problem this serves more as a rule-of-thumb.

Number of accepted/rejected steps Next we investigate the improvements for each problem,
broken down by accepted and rejected steps (over a single backward pass). See Table 4. We begin
by noting that the absolute number of accepted and rejected steps nearly always decreased. (In
the case of modelling Hamiltonian dynamics, the seminorm actually produced zero rejected steps.)
However beyond this, the proportion of rejected steps nearly always decreased.

This highlights that the benefit of seminorms is two-fold. First, that the number of accepted steps
is reduced indicates that use of seminorms means systems are treated as smaller and so easier-to-
solve, allowing larger step sizes. Second, the reduced proportion of rejected steps means that the
differential equation solve is more efficient, with fewer wasted steps.

4 RELATED WORK

Several authors have sought techniques for speeding up training of neural differential equations.
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Table 4: Number of rejected and accepted backward steps on one pass over the test set.

Rejected steps (103) Accepted steps (103) Proportion rejected

Experiments Default Seminorm Default Seminorm Default Seminorm

NCDE
(small) 0.13±0.02 0.15±0.02 3.45 ± 0.26 1.92 ± 0.18 3.63% 7.25%

NCDE
(medium) 1.01±0.18 0.17±0.05 8.38 ± 0.86 3.25 ± 0.43 10.76% 4.97%
NCDE
(large) 10.91± 1.03 1.16±0.13 28.86 ± 2.15 8.61 ± 0.45 27.43% 11.87%
CIFAR-10 11.04±0.29 9.30±1.92 23.50 ± 1.19 22.82 ± 1.34 31.96% 28.95%
MNIST
(dh = 32) 5.54±0.99 4.51±1.01 20.91 ± 0.90 19.93 ± 0.42 20.95% 18.45%
MNIST
(dh = 64) 7.79±0.81 4.29±0.69 22.95 ± 1.02 19.73 ± 0.99 38.53% 17.86%
MNIST
(dh = 128) 8.88±0.21 7.40±1.17 26.54 ± 0.91 25.01 ± 1.17 25.07% 22.83%
HNN 0.11±0.00 0.00±0.00 0.18 ± 0.00 0.16 ± 0.00 37.93% 0.00%

Ghosh et al. (2020) (much like this work) make a conceptually simple change. They regularise the
neural ODE by randomly selecting the terminal integration time. We note that this does not seem
applicable to Neural CDEs as well as Neural ODEs.

Finlay et al. (2020) and Kelly et al. (2020) investigate regularising the higher-order derivatives of
the model; the idea is that this encourages simpler trajectories that are easier to integrate. However,
this improvement must be weighed against the extra cost of computing the regularisation term. Thus
whilst Finlay et al. (2020) describe speed improvements for CNFs, Kelly et al. (2020) describe
slower training as a result of this extra cost.

Quaglino et al. (2020) describe speeding up training via spectral approximation. Unfortunately, this
method is rather involved, and to our knowledge does not have a reference implementation.

When backpropagating through the internal operations of the solver (so not the adjoint method used
here), Zhuang et al. (2020) note that backpropagating through rejected steps is unnecessary.

Massaroli et al. (2020b) discuss hypersolvers, which are hybrids of neural networks and numerical
differential equation solvers, trained to efficiently solve a desired Neural ODE. However the Neural
ODE changes during training, making these most useful after training, to speed up inference.

Dupont et al. (2019) and Massaroli et al. (2020a) note that adding extra dimensions to the Neural
ODE improve expressivity and training. Indeed this has arguably now become a standard part of the
model; we include this via the linear `1 in equation (1).

In the context of Continuous Normalizing Flows, Grathwohl et al. (2019), Chen & Duvenaud (2019),
and Onken et al. (2020) have proposed specific architectural choices to reduce training cost.

Chen et al. (2018) mention regularizing the differential equation using weight decay; we include this
throughout our experiments.

Independent of modifications to the model or training procedure, Rackauckas & Nie (2017) and
Rackauckas et al. (2019) claim speed-ups simply through an improved implementation.

5 CONCLUSION

We have introduced a method for reducing the number of function evaluations required to train a
neural differential equation, by reducing the number of rejected steps during the adjoint (backward)
pass. The method is simple to implement, straightforward to integrate into existing codebases, and
offers substantial speed-ups across a variety of applications with no observed downsides.
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A CODE FOR TORCHDIFFEQ

Here we discuss in more detail the code used for torchdiffeq, that was introduced in Section
2.3.

By default, torchdiffeq uses a (slightly odd) mixed L∞-RMS norm. Given the adjoint state
[at, z, az, aθ], then the norm used is

‖[at, z, az, aθ]‖ = max{‖at‖RMS , ‖z‖RMS , ‖az‖RMS , ‖aθ‖RMS},

where for x = (x1, . . . , xn),

‖x‖RMS =

√√√√ 1

n

n∑
i=1

x2i .

Respecting this convention, the code provided reduces this to the seminorm

‖[at, z, az, aθ]‖ = max{‖z‖RMS , ‖az‖RMS}.

Other similar approaches such as pure-RMS over [z, az] should be admissible as well.

B EXPERIMENTAL DETAILS

B.1 NEURAL CONTROLLED DIFFERENTIAL EQUATIONS

We use the same setup and hyperparameters as in Kidger et al. (2020). The loss function is cross
entropy. The optimiser used was Adam (Kingma & Ba, 2015), with learning rate 1.6× 10−3, batch
size of 1024, and 0.01-weighted L2 weight regularisation, trained for 200 epochs. The number of
hidden channels (the size of z) is 90, and f is parameterised as a feedforward network, of width 40
with 4 hidden layers, ReLU activation, and tanh final activation.

B.2 CONTINUOUS NORMALISING FLOWS

We follow Grathwohl et al. (2019) and Finlay et al. (2020). The loss function is the negative log
likelihood − log(p(z(T ) = x)) of equation (6). The optimiser used was Adam, with learning rate
10−3 and batch size 256, trained for 100 epochs. Relative and absolute tolerance of the solver are
both taken to be 10−5. We used a multi-scale architecture as in Grathwohl et al. (2019) and Finlay
et al. (2020), with 4 blocks of CNFs at 3 different scales.

B.3 SYMPLECTIC ODE-NET

The optimiser used was Adam, with learning rate 10−3, batch size of 256, and 0.01-weighted L2

weight regularisation. Relative and absolute tolerance of the solver are both taken to be 10−4. We
use the same architecture as in Zhong et al. (2020): this involves parameterising H as a sum of
kinetic and potential energy terms. These details of Sympletic ODE-Net are a little involved, and
we refer the reader to Zhong et al. (2020) for full details.
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