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ABSTRACT

Weak-to-Strong (W2S) generalization, where a student model surpasses its weaker
teacher using the teacher’s labels, is widely studied recently. We theoretically
analyze this problem using a kernel ridgeless regression student in a Reproducing
Kernel Hilbert Space (RKHS), learning from a teacher with systematic bias and
output variance. Our derived asymptotic bias-variance decomposition reveals how
teacher errors are processed by the student. This processing is critically mediated
by the student’s kernel eigenvalues and, crucially, its choice of operational modes
and their alignment with the teacher’s signal. We then elucidate precise conditions
for W2S: outperformance hinges on this selection effectively managing the trade-
off between bias and variance. Such strategic mode utilization can lead to a more
favorable bias configuration via selectively ignoring the teacher’s biased modes, or
a reduction of teacher variance through modes with beneficial eigenvalue properties.
Our experiments validate these theoretical conditions, demonstrating successful
W2S generalization and underscoring the critical impact of kernel selection on
navigating the bias-variance trade-off.

1 INTRODUCTION

The rapid advancements in machine learning have produced models, notably Large Language Models
(LLMs) (Vaswani et al., 2017; Brown et al., 2020), that exhibit remarkable capabilities across a
range of complex tasks. This progress, however, introduces a significant operational challenge: how
can we effectively supervise, align, or further enhance these powerful models when the available
supervisory signals, whether from human annotators, existing datasets, or other automated systems,
are inherently weaker or less proficient than the student model itself? As our models become more
intelligent, our ability to provide perfect guidance diminishes. The paradigm of Weak-to-Strong
(W2S) generalization, as formulated by Burns et al. (2023), directly confronts this increasingly
common scenario. It investigates the intriguing, and perhaps counter-intuitive, possibility that a more
capable student model, when trained solely on labels generated by a demonstrably weaker teacher,
can not only learn from this imperfect guidance but also ultimately generalize to a performance level
that significantly exceeds that of its teacher. Elucidating the principles and conditions that enable such
outperformance is crucial for the continued development of sophisticated AI systems, for building
trust in their capabilities, and for devising more efficient methods for AI alignment and improvement.

To theoretically analyze W2S generalization, we turn to kernel methods and the framework of
Reproducing Kernel Hilbert Spaces (RKHS) (Schölkopf and Smola, 2002; Wahba, 1990). RKHS
theory, particularly Mercer’s theorem (Mercer, 1909), allows for a spectral decomposition of kernel
functions. This spectral perspective is useful for W2S analysis as it provides a clear way to understand
how a student model, characterized by its kernel and associated modes of operation, processes the
signal and noise from a teacher. It enables a detailed investigation into how the student’s kernel
structure influences its ability to learn from, and potentially filter or correct, the imperfect supervision
provided.

In this study, we model the student as a kernel ridgeless regression (KRR) estimator within an RKHS.
The student learns from a weak teacher that introduces both a systematic bias b(x) (relative to the true
function f∗(x)) and output variance σ2. We concentrate on the ridgeless setting due to its connections
with the behavior of overparameterized models and phenomena like benign overfitting Bartlett et al.
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(2020). Our aim is to use a spectral analysis to determine the conditions under which this KRR
student can generalize beyond its weaker teacher.

Our contributions are as follows: First, we establish a theoretical framework for analyzing a KRR
student trained on outputs from a systematically biased and noisy weak teacher. This includes deriving
the student’s asymptotic bias-variance decomposition. Second, building on this decomposition, we
elucidate precise conditions under which W2S generalization can occur. We show that the student’s
success can stem from achieving a more favorable bias configuration by effectively filtering teacher
bias in certain modes, or by substantially reducing the impact of the teacher’s variance. Third, we
discuss the stringent nature of this variance reduction requirement for KRR models. We also explore
the nuanced bias-variance trade-off involved in the student’s selection of its effective operational
modes determined by its kernel, offering insights for kernel selection aimed at optimizing W2S
performance, particularly when true validation data is scarce. Finally, our theoretical analysis,
including the impact of kernel and mode selection on the bias-variance trade-off, is corroborated by
numerical experiments demonstrating W2S generalization.

2 RELATED WORK

Weak-to-strong (W2S) generalization refers to the surprising phenomenon where a strong student
model, when trained on labels or feedback from a weaker teacher model, achieves better test
performance than the teacher itself. This scenario was first highlighted by Burns et al. (2023), who
showed that large language models fine-tuned on the coarse outputs of smaller models can surpass
the teacher on downstream tasks. Subsequent empirical studies have observed W2S generalization
across a range of settings, including vision models and other modalities. For example, in computer
vision, a high-capacity model pretrained on image data (e.g. a Vision Transformer) can be fine-tuned
on labels predicted by a weaker CNN and still outperform that CNN on ground truth labels (Guo and
Yang, 2024). In NLP, W2S has been demonstrated in instructing large language models with smaller
ones’ generations (Burns et al., 2023), and even multi-teacher or iterative schemes have yielded
W2S gains (Liu and Alahi, 2024). Following the initial W2S findings, researchers have proposed
methods to enhance W2S generalization, such as improved loss functions and multi-teacher training
to better align student and teacher predictions (Liu and Alahi, 2024), or data filtering and confidence-
weighting strategies to let the student focus on reliable teacher outputs (Guo and Yang, 2024). W2S
generalization has even been analyzed in controlled synthetic settings: Charikar et al. (2024) define
metrics like performance gap recovery to quantify how much of the weak teacher’s performance
deficit a strong student can regain, finding significant gains in practice. These converging studies
establish that W2S is a robust phenomenon across language, vision, and synthetic tasks, although
certain pitfalls (e.g. “W2S deception” (Yang et al., 2024) when a student overfits the teacher’s biases)
have also been noted, underscoring the need for a deeper theoretical understanding of when and why
W2S succeeds.

Recent work has begun to develop a theoretical foundation for W2S generalization. Lang et al.
(2024) provide an analysis of W2S in a classification setting, introducing the notions of pseudola-
bel correction, where the student learns to correct the teacher’s systematic errors, and coverage
expansion, where the student generalizes to inputs where the teacher abstained or was uncertain.
Their generalization bounds formalize the intuition that a strong student will outperform a weak
teacher if it cannot perfectly mimic the teacher’s mistakes without incurring additional error. In the
regression setting, Dong et al. (2025) propose a framework based on the intrinsic dimension of model
feature spaces: they show that W2S can occur when the student’s effective dimensionality is lower
than the teacher’s and the student’s representation aligns well with the teacher’s so that the student
captures the relevant signal but averages out the teacher’s noise. This leads to a variance reduction
explanation of W2S, wherein the student achieves a lower variance on the true target function by
virtue of its higher capacity, more compact feature space. Complementarily, Ildiz et al. (2024) analyze
a high dimensional linear distillation model and derive precise scaling laws for W2S: their results
indicate that while a student can indeed outperform its teacher, the improvement in error rate may
be bounded by the teacher’s own learning dynamics (i.e. a student cannot circumvent fundamental
data requirements set by the teacher’s signal-to-noise ratio). Another line of analysis focuses on how
representational differences enable W2S. For instance, Xue et al. (2025) study the role of feature
quality and show that if the student’s hypothesis class contains functions that better approximate the
true target than any function the teacher can represent, then given enough data the student will correct
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the teacher’s errors on the harder parts of the input distribution. In comparison to these studies, our
work offers a novel perspective by analyzing W2S in the context of kernel ridge regression (KRR).
We derive an exact asymptotic bias–variance decomposition for a KRR student trained on a weak
teacher’s outputs, which allows us to pinpoint how the teacher’s bias and variance are inherited or
mitigated by the student. Our results bridge W2S generalization with classical learning theory tools,
providing clarity on the conditions under which a student can outperform its teacher.

Finally, our approach is related to the broader literature on kernel methods and their generalization
properties, especially in over-parameterized regimes. Weak-to-strong generalization also connects
naturally with classic and modern results on kernel methods. Early RKHS theory formalized how a
kernel’s eigenvalues control bias–variance trade-offs (Schölkopf and Smola, 2002; Wahba, 1990).
Recent work on the ridgeless regime shows that kernel ridge regression can still generalize benign
overfitting when the spectrum decays sufficiently fast and the target is smooth (Belkin et al., 2019;
Bartlett et al., 2020). Spectral analyses of learning curves further reveal how error concentrates on
high-frequency modes and predict the familiar double-descent shape (Canatar et al., 2021). Our
study leverages eigenfunction tools to show how a kernel student can preserve the weak teacher’s low
frequency signal while attenuating its noise.

3 NOTATIONS

Throughout this paper, we denote the input space by X and the output space by Y . The probability
distribution governing the inputs x ∈ X is P (x), and dP (x) will denote integration with respect to
this measure. The Hilbert space of functions f : X → R that are square-integrable with respect to
P is denoted by L2(P ), equipped with the inner product ⟨f, g⟩L2(P ) =

∫
X f(x)g(x)dP (x) and the

corresponding norm ∥f∥L2(P ). Standard mathematical operators for expectation, variance, and trace
are denoted by E[·], Var(·), and Trace(·), respectively. The n× n identity matrix is I .

We denote a symmetric, positive semi-definite kernel function as K(x, x′). This kernel defines a
unique Reproducing Kernel Hilbert Space (RKHS), denoted by HK , with its associated inner product
⟨·, ·⟩HK

and norm ∥ · ∥HK
. Associated with the kernel K and the data distribution P (x) is the

integral operator TKf(x) =
∫
k(x, x′)f(x′)dP (x′). The population eigenvalues of TK are denoted

by λk ≥ 0, and the corresponding population eigenfunctions, which form an orthonormal basis for
L2(P ), are denoted by ϕk(x).

4 PROBLEM FORMULATION

4.1 ASSUMPTIONS

Our analysis relies on the following key assumptions:

Assumption 4.1 (Data Generation). The input points xj ∈ X are drawn i.i.d. from P (x). The
corresponding labels yj ∈ R are direct outputs of a weak teacher model. We define the mean of the
weak teacher’s output as fT (x) = f∗(x) + b(x), where b(x) is the systematic bias of the teacher’s
mean output. The student’s training labels are thus yj = fT (xj) + ξj , where ξj = yj − fT (xj)
represents the teacher’s deviation from its mean.

Assumption 4.2 (Noise Properties from Teacher Variability). We assume E[ξj |xj ] = 0 and
Var[ξj |xj ] = σ2.

Assumption 4.3 (Function and Mode Properties). The true function f∗(x), the teacher’s mean
signal fT (x), and its bias b(x) are assumed to belong to L2(P ). The student model utilizes a
kernel KS(x, x

′) =
∑

k∈SS
λS,kϕk(x)ϕk(x

′), where SS is the set of mode indices supported
by the student’s kernel, and λS,k > 0 are the corresponding eigenvalues. The teacher’s mean
signal fT (x) is assumed to have its spectral support within a set of modes SW , meaning fT (x) =∑

k∈SW
⟨fT , ϕk⟩L2(P )ϕk(x). The noise ξ(x) is also assumed to have its spectral content primarily

within SW .

Assumption 4.4 (Kernel and Student Model). The student’s kernel KS(x, x
′) is symmetric, continu-

ous, and positive semi-definite, satisfying Mercer’s theorem conditions, defining an RKHS HKS
. The

student estimator f̂(x) is obtained via Kernel Ridge Regression (KRR) by minimizing the regularized
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empirical risk:

f̂ = arg min
h∈HKS

 1

n

n∑
j=1

(yj − h(xj))
2 + λreg∥h∥2HKS


We focus on the ridgeless setting (λreg → 0), where the solution involves K†

n, the Moore-Penrose
pseudoinverse of the empirical Gram matrix (Kn)jl = KS(xj , xl).

Our goal is to analyze the expected squared error of this student estimator with respect to the true
function f∗(x), denoted ER(f̂) = E[∥f̂ − f∗∥2L2(P )]. This formulation allows us to investigate how
discrepancies in modal capabilities (SS vs. SW ) and the teacher’s characteristics (b(x), σ2) influence
the student’s ability to generalize to f∗.

5 BIAS-VARIANCE DECOMPOSITION AND ASYMPTOTIC ANALYSIS

5.1 FINITE-n CONDITIONAL BIAS AND VARIANCE

For a fixed training set of n input points, X = {xj}nj=1, we first define the components of the
student’s error. The student estimator, averaged over the label noise ξ but conditional on X , is
f̂(x|X) = Eξ[f̂(x|X, y)]. For kernel ridgeless regression, this is given by:

f̂(x|X) = S∗
n(X)K†

n(X)fT (X)

where fT (X) = [fT (x1), . . . , fT (xn)]
T . In terms of the student’s kernel spectral components, this

can be expressed as

f̂(x|X) =
∑
k∈SS

λS,k(Φk(X)TK†
n(X)fT (X))ϕk(x),

where Φk(X) = [ϕk(x1), . . . , ϕk(xn)]
T .

The squared bias of the student estimator, conditional on X and relative to the true function f∗(x), is:

Bias2∗(f̂ |X) = ∥f̂(·|X)− f∗∥2L2(P )

This term measures the systematic error of the noise-averaged student estimator for the given X ,
reflecting how this learned function aligns with f∗.

The variance of the student estimator f̂ around its conditional mean f̂0(·|X), due to the teacher’s
output variability ξ (with integrated variance σ2), is:

Varξ(f̂ |X) = Eξ

[
∥f̂(·|X, y)− f̂(·|X)∥2L2(P )

]
This conditional variance can be shown as:

Varξ(f̂ |X) = σ2 Tr(M(X)(K†
n(X))2)

where the n × n matrix M(X) has entries (M(X))jl = ⟨KS(xj , ·),KS(xl, ·)⟩L2(P ).
Using the Mercer decomposition of KS , this can also be written as Varξ(f̂ |X) =
σ2
∑

s∈SS
λ2
S,s(Φs(X)T (K†

n(X))2Φs(X)). These conditional terms form the basis for the sub-
sequent asymptotic analysis.

5.2 STUDENT’S ASYMPTOTIC BEHAVIOR

In the asymptotic limit (n → ∞), the student’s average prediction, Eξ[f̂(x)], converges to the
projection of the teacher’s mean signal fT (x) onto the subspace spanned by the student’s active
modes {ϕk}k∈SS

. Since fT (x) itself is supported only on modes SW , this projection becomes
PSS

(fT )(x) =
∑

k∈SS∩SW
⟨fT , ϕk⟩L2(P )ϕk(x). Let us denote this projected teacher signal as

fSS∩SW
(x).

4
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The asymptotic squared bias of the student with respect to f∗ is then given by the squared L2(P )
distance between this learned component of the teacher’s signal and the true function:

Bias2S = ∥fSS∩SW
− f∗∥2L2(P )

→

∥∥∥∥∥∥
∑

k/∈SS∩SW

⟨f∗ + b, ϕk⟩L2(P )ϕk(x) +
∑

k∈SS∩SW

⟨b, ϕk⟩L2(P )ϕk(x)

∥∥∥∥∥∥
2

L2(P )

=
∑

k/∈SS∩SW

|⟨f∗ + b, ϕk⟩L2(P )|2 +
∑

k∈SS∩SW

|⟨b, ϕk⟩L2(P )|2.

For the asymptotic variance, when the student uses its kernel KS to learn from fT (x) + ξ(x), the
noise that effectively propagates through the student’s learning mechanism is the component of
ξ(x) that lies in SS ∩ SW . Therefore, the student’s asymptotic integrated variance due to this noise
becomes:

V arS → σ2
∑

k∈SS∩SW

1

λS,k

This sum is now over the modes common to both the student’s kernel support and the teacher’s
support, provided the sum converges. Therefore, the population expected risk becomes

ER(f̂)S →
∑

k/∈SS∩SW

|⟨f∗ + b, ϕk⟩L2(P )|2 +
∑

k∈SS∩SW

|⟨b, ϕk⟩L2(P )|2 + σ2
∑

k∈SS∩SW

1

λS,k
. (1)

5.3 CONDITIONS FOR WEAK-TO-STRONG GENERALIZATION WITH DISCREPANT MODES

The weak teacher model has an expected error ER(y) = ∥fT − f∗∥2L2(P ) + σ2. W2S generalization

occurs if ER(f̂) < ER(y), which translates to:∑
k/∈SS∩SW

|⟨f∗ + b, ϕk⟩L2(P )|2 +
∑

k∈SS∩SW

|⟨b, ϕk⟩L2(P )|2 + σ2
∑

k∈SS∩SW

1

λS,k
< ∥b∥2L2(P ) + σ2.

First, W2S can occur via bias improvement. This happens if the student’s effective mean prediction
fSS∩SW

(x) is a better approximation of f∗(x) than the teacher’s full mean signal fT (x) is. This
scenario can arise if the teacher’s mean signal fT (x) contains erroneous components (i.e., parts of
its bias b(x)) in modes that are within SW but outside of SS (modes in SW \ SS). By not having
these modes, the student effectively filters out these specific erroneous components of fT , leading
to a mean prediction fSS∩SW

that is closer to f∗. This is a case where the student’s "ignorance" of
certain teacher modes is beneficial.

Second, W2S can occur through variance reduction. This requires:∑
k∈SS∩SW

1

λS,k
< 1.

It implies that the student must be highly efficient at denoising the teacher’s variability specifically
within the functional subspace where they both operate and where the teacher provides its primary
signal. This is achievable when the intersection is small enough.

Therefore, when student and teacher operate with different effective sets of modes, W2S generalization
is possible if the student’s modal structure allows it to either filter out specific bias components of the
teacher or achieve a more effective suppression of the teacher’s variance in the modes relevant to the
learning task.

5.4 THE NATURE OF THE TRADE-OFF IN STUDENT MODE SELECTION

Let’s consider the contribution of a single, arbitrary mode ϕk to the student’s total asymptotic error
ER(f̂). If the student does not include mode k in its active set SS (effectively predicting zero for this
component), its contribution to the total error from this mode is (f∗

k+bk)
2, where f∗

k = ⟨f∗, ϕk⟩L2(P ),

5
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Figure 1: Intuitive spectral picture.

bk = ⟨b, ϕk⟩L2(P ). This represents the squared error from failing to capture the k-th component of
the true function.

If the student does include mode k in its active set SS (i.e., λS,k > 0), the situation depends on
whether k ∈ SW .

• If mode k is active for the student (k ∈ SS) but not for the teacher, then the situation is the
same as not including k, with regards to the influence on ER(f̂).

• If mode k is active for both the student (k ∈ SS) and the teacher (k ∈ SW ), the contribution
to the squared bias from this mode is b2k. The contribution to variance from this mode is
σ2/λS,k. Thus, the total error contribution from this mode is b2k + σ2/λS,k.

Therefore, we only need to decide for a mode k where the teacher provides a signal (i.e., k ∈ SW ).
the student should choose to include this mode in its active set SS if its contribution to error when
included is less than its contribution if dropped:

b2k +
σ2

λS,k
< (f∗

k + bk)
2.

5.5 INTUITIVE UNDERSTANDING AND MODE-SELECTION

The formal bias–variance expression in equation 1 can be understood geometrically. A convenient
way is to visualize the eigen–axes of the kernel operator as orthogonal “mode” directions. The
teacher’s mean signal occupies a subset SW of these axes, with bias coefficients bk and variance σ2

concentrated on the same span. The student chooses a subset SS , and its error along each shared
axis decomposes into a deterministic term b2k and a stochastic term σ2/λS,k. If a mode is ignored
(k /∈ SS) the student pays (f∗

k + bk)
2; if it is kept the student pays b2k plus an inverse–eigenvalue

variance. Figure 5.4 plots these ingredients as m = |SS | expands left-to-right: at first the student
enjoys a large bias drop with minimal variance growth, but beyond the shared signal span variance
dominates and the risk eventually exceeds the teacher’s.

In reality, we can apply three simple heuristics when designing a kernel student to learn from a weak
teacher.

1. Match but do not exceed the teacher’s reliable subspace. First, estimate which low-frequency
directions (typically those with large eigenvalues) carry the teacher’s useful signal regarding
f∗, rather than primarily its bias or noise. This estimation might draw on preliminary spectral
analysis of the teacher’s outputs or leverage domain knowledge. It is critical to initially
restrict the student kernel to this identified reliable span. Expanding SS prematurely risks
incorporating modes where the teacher’s information is misleading or excessively noisy,
which can impair generalization. Overestimating this subspace invites unnecessary variance
and bias adoption from the teacher, while underestimation may omit crucial components of
f∗.

6
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2. Exploit eigenvalue decay for variance control. The student kernel’s inverse eigenvalues,
1/λS,k, scale the impact of teacher noise. Kernels with rapidly decaying eigenvalue spectra
(e.g., squared-exponential or high-smoothness Matérn kernels) naturally attenuate noise
in higher-frequency modes because their λS,k values diminish quickly. Such a kernel
allows the student to tolerate a slightly larger set of active modes SS—potentially including
more higher-frequency modes from the teacher—than a kernel with a flatter spectrum
(like a linear kernel, or the λS,k = 1 idealization in our experiments). This can afford
greater bias reduction by incorporating more of fT ’s signal, while the sharply decreasing
eigenvalues help manage the cumulative variance cost. Conversely, if the spectrum lacks
aggressive decay, the variance penalty for each additional mode can escalate rapidly, making
an expanded SS less viable.

3. Validate with a tiny held-out set of true labels (f∗). Although abundant true labels would
negate the W2S premise, even a very small "gold-standard" validation set offers significant
practical value. Such a limited set can suffice to empirically track the student’s error as modes
are incrementally added to SS . Crucially, it aids in pinpointing the U-shaped risk curve’s
upturn, which signals that adding more modes is counterproductive, leading to increased
total error from overwhelming variance or adopted teacher bias. This facilitates early
stopping in mode selection, thereby preventing the student from excessively incorporating
the teacher’s errors and noise. This approach is particularly useful because direct estimation
of bk or precise spectral properties is often not feasible.

Though our theoretical work centers on kernel ridgeless regression, the findings about how spectral
properties and modal selection influence the bias-variance trade-off are also useful for understanding
W2S generalization in neural networks. This connection is clearest in lazy training or Neural Tangent
Kernel (NTK) regimes, where sufficiently wide neural networks behave much like kernel machines.
A two-layer random feature model under NTK dynamics, for example, performs KRR. The effective
kernel spectra of these neural networks often decay more rapidly than the idealized flat spectrum
considered in our KRR experiments in Section 6. Such faster decay provides neural networks with a
better ability to reduce variance from less reliable or higher-frequency teacher modes. Consequently,
these networks can engage a broader set of modes to learn complex signals and reduce bias from the
teacher, while the steeper spectral fall-off helps control the associated variance cost. This places them
advantageously within the W2S regime depicted by the U-shaped risk curve (Figure 5.4). Beyond
these fixed-kernel analogies, the feature-learning capabilities of deep networks also equip them to
develop internal representations specifically tailored to disentangle the true underlying signal from a
teacher’s characteristic imperfections, further bolstering their W2S potential.

6 EXPERIMENTS

To concretely explore the efficacy of the proposed student model selection strategy, we conduct a
series of simple, synthetic, small-scale experiments.

6.1 SYNTHETIC EXPERIMENT

To illustrate the bias–variance trade–off predicted by equation 1, we constructed a controlled one–
dimensional regression task. The ground–truth function is a smooth low–frequency signal f⋆(x) =
cos(2πx) + 0.5 cos(4πx), x ∈ [0, 1]. A weak teacher provides labels y = f⋆(x) + b(x) + ξ, where
b(x) =

∑10
k=6 0.4 cos(2πkx) injects high–frequency bias and ξ ∼ N (0, σ2) with σ2 = 0.04 adds

noise that is spectrally restricted to the same modes k ∈ SW = {1, 2, 6, . . . , 10}. A strong student
is a truncated cosine series f

(m)
S (x) =

∑m
k=1 âk cos(2πkx) fitted by least squares to n = 2000

teacher–generated samples. Hence the student’s kernel has eigenvalues λS,k = 1 on the first m
cosine modes and 0 elsewhere. We swept m = 1, . . . , 10 and estimated the test MSE on 10 000 fresh
points for each of them, averaging over 50 Monte Carlo runs.

Figure 6.1 plots: (i) the empirical test MSE of the student (orange dots), (ii) the theoretical prediction
Bias2+Var from equation 1 (black dashed), and (iii) the teacher’s population error ∥fT −f⋆∥2L2 +σ2

(red line). For small truncation levels m = 1–2 the student keeps only the two low–frequency modes
shared with the teacher, thereby filtering out the detrimental high–frequency bias. The variance term
involves just the shared modes, so the overall error falls well below the teacher’s line and shows W2S

7
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Figure 2: Empirical and theoretical MSE vs number of student modes in synthetic experiment.

generalization. As m increases further, the student begins to admit the biased modes k ≥ 6. While
this reduces bias, it simultaneously incorporates additional noise contributions σ2/λS,k, causing
the MSE to rise sharply. The resulting U–shaped curve predicted by theory matches the empirical
measurements, showing the trade–off in selecting the student’s modal support SS .

6.2 EXPERIMENT IN CIFAR-10

Figure 6.2 shows a controlled weak-to-strong experiment carried out on the cats-versus-dogs subset
of CIFAR-10. All 12 000 images of the two classes were flattened into 3 072 dimensional vectors and
then centered and whitened. A principal component basis was extracted once from the full data matrix
and served as the common functional modes for both teacher and student. A synthetic regression
target, intended to stand in for the ground–truth function f⋆, was constructed so that it lived entirely
in the first five principal components. A weak teacher was then obtained by adding two kinds of
imperfection to that target: (i) a genuine bias term that occupies only modes 6-8 and (ii) independent
Gaussian noise with variance σ2. By design, this teacher has mean squared error of about 0.37 when
measured against the true target.

Students of increasing capacity were created by fitting ordinary least squares models that are allowed
to use only the first m principal components, with m ranging from 1 to 20. The blue curve reports
their empirical mean squared error on a disjoint test split, while the red dashed curve reports the
theoretical risk given by equation 1, evaluated exactly from the known bias and variance terms under
the simplifying assumption λS,k = 1.

When only one or two modes are kept the student cannot capture the low frequency content of f⋆,
so its error is dominated by squared bias and starts high. As soon as m reaches five the student is
expressive enough to match every component of the signal while still ignoring the biased higher
frequency modes, and the empirical error falls by two orders of magnitude, comfortably beating the
teacher. Beyond that point additional modes invite both the teacher’s bias and its label noise into the
student’s hypothesis space. The variance term in equation 1 grows linearly with m and the empirical
curve climbs until it settles on a broad plateau.

Although the theoretical curve is not numerically exact, since its variance term is slightly optimistic
because real eigenvalues differ from λS,k = 1, it reproduces the qualitative behavior of the empirical
results. There is a steep descent driven by bias reduction, a pronounced minimum when the informa-
tive modes are all present but biased modes are still excluded, and a subsequent rise once those biased
modes become available. Over the interval m ∈ [4, 5] both curves lie below the weak–teacher line,
showing a region of weak-to-strong generalization in which a modestly sized student outperforms the
source of its supervision.

7 LIMITATIONS AND FUTURE WORK

Our theoretical investigation primarily analyzed error decompositions and W2S conditions in an
asymptotic regime where the number of samples n approaches infinity, meaning practical finite-
sample performance may naturally differ from these idealized limits. The conceptual derivations for
optimal student mode selection often assumed access to true spectral properties of the underlying

8
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Figure 3: Empirical and theoretical MSE vs number of student modes in CIFAR-10 experiment. A
correct choice of modes in student model is key to realization of weak-to-strong generalization.

functions and the kernel, which are typically unknown in real-world scenarios. Furthermore, this
study focused specifically on a KRR student model operating under an assumption of i.i.d. noise from
teacher variability, and other student architectures or more complex error structures could exhibit
different W2S dynamics.

Consequently, the proposed heuristics for student mode selection, while illustrative of ideal trade-offs,
faces practical implementation challenges due to its reliance on these unknown quantities and the
potential difficulty or cost of acquiring true validation labels for f∗. While this work identifies key
asymptotic error components and conditions for W2S within our KRR framework, it does not provide
rigorous, non-asymptotic performance bounds for finite n. Deriving such finite-sample guarantees,
which would explicitly detail the dependence on sample size and model complexities, remains an
important direction for future research to fully bridge the current theoretical insights with practical
W2S applications.

The kernel view in this work clarifies why variance suppression is hard in generic feature spaces:
the student must sit on a vanishing tail of large eigenvalues. This insight motivates exploring
non-stationary kernels whose spectrum is adapted to the teacher’s error profile. Another promising
direction is to pair the spectral filter with a learned noise model that down-weights teacher labels in
high-variance regions. Finally, translating our analysis to deep neural students requires extending
recent random feature proofs to the mismatched teacher–student regime, a pursuit we leave for
subsequent work.

8 CONCLUSION

This paper presented a spectral analysis of a kernel ridgeless regression (KRR) student learning
from a weak teacher characterized by systematic bias and output variance, seeking to deepen the
understanding of Weak-to-Strong (W2S) generalization. Our derived asymptotic bias-variance
decomposition indicates that successful W2S generalization is closely linked to the student’s kernel.
Specifically, outperformance can involve favorably reconfiguring inherited teacher bias, where
operational modes strategically filter biased components, or substantially suppressing teacher output
variance, a capability related to its kernel’s eigenvalue spectrum. The student’s kernel choice is thus
highlighted as important for navigating this bias-variance trade-off, complementing considerations
of mere model capacity. These theoretical insights, supported by numerical experiments, suggest
that further W2S advancements may benefit from exploring how student models can leverage such
identified spectral and modal properties to better manage learning from flawed supervision.
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A DERIVATION OF BIAS AND VARIANCE COMPONENTS FOR THE KRR
STUDENT

This appendix provides a detailed derivation of the bias and variance components for the ridgeless
Kernel Ridge Regression (KRR) student estimator, f̂(x). These components are first derived condi-
tional on a finite training set of inputs X = {xj}nj=1, and then their asymptotic behavior is discussed.
We operate under the assumptions outlined in Section 4 of the main text.

Recall the student is trained on labels yj = fW (xj) = fT (xj) + ξj . The teacher’s mean sig-
nal is fT (x) = E[fW (x)] = f∗(x) + b(x), and ξj = fW (xj) − fT (xj) is the teacher’s out-
put variability with integrated variance σ2 = Var(fW ). The student’s kernel is KS(x, x

′) =∑
k∈SS

λS,kϕk(x)ϕk(x
′). The student estimator is f̂(·|X, y) = S∗

n(X)K†
n(X)y. Our goal is to

analyze the components of the expected error ER(f̂) = EX,ξ[∥f̂ − f∗∥2L2(P )].

A.1 AVERAGE STUDENT ESTIMATOR (CONDITIONAL ON X )

First, we compute the expectation of the student estimator f̂ over the noise ξ, conditional on a fixed
set of training inputs X . Let fT (X) = [fT (x1), . . . , fT (xn)]

T .

f̂0(x|X) = Eξ[f̂(x|X, y)]

= Eξ[S
∗
n(X)K†

n(X)y]

= S∗
n(X)K†

n(X)Eξ[y]

= S∗
n(X)K†

n(X)(fT (X) + Eξ[ξ])

Since Eξ[ξ] = 0, we have:
f̂0(x|X) = S∗

n(X)K†
n(X)fT (X)

Using the definition S∗
n(X)α =

∑n
j=1 αjKS(xj , x) and the Mercer decomposition KS(xj , x) =∑

k∈SS
λS,kϕk(xj)ϕk(x):

f̂0(x|X) =

n∑
j=1

(K†
n(X)fT (X))jKS(xj , x)

=

n∑
j=1

(K†
n(X)fT (X))j

(∑
k∈SS

λS,kϕk(xj)ϕk(x)

)

=
∑
k∈SS

λS,k

 n∑
j=1

(K†
n(X)fT (X))jϕk(xj)

ϕk(x)

Let Φk(X) = [ϕk(x1), . . . , ϕk(xn)]
T . Then the term in the parenthesis is Φk(X)T (K†

n(X)fT (X)).
So,

f̂0(x|X) =
∑
k∈SS

λS,k

(
Φk(X)TK†

n(X)fT (X)
)
ϕk(x)

This is the student’s prediction averaged over label noise, for a fixed set of training inputs X .

A.2 CONDITIONAL BIAS TERM

The squared bias, conditional on X , of the student estimator with respect to f∗(x) is:

Bias2∗(f̂ |X) = ∥f̂0(·|X)− f∗∥2L2(P )

Substituting the expansion for f̂0(·|X) and f∗(x) =
∑

k⟨f∗, ϕk⟩L2(P )ϕk(x), and using the L2(P )-
orthonormality of {ϕk}:

Bias2∗(f̂ |X) =
∑
k∈SS

(
λS,k(Φk(X)TK†

n(X)fT (X))− ⟨f∗, ϕk⟩L2(P )

)2
+
∑
k/∈SS

(
0− ⟨f∗, ϕk⟩L2(P )

)2
11
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The second sum accounts for components of f∗ that are outside the student’s kernel support SS . This
term represents the systematic error of the noise-averaged student estimator for a given X . It depends
on how well fT (X) (which includes f∗(X) and b(X)) can be reconstructed as f∗ by the student’s
finite-sample KRR procedure.

A.3 CONDITIONAL VARIANCE TERM

The variance of f̂ around its mean f̂0, conditional on X , due to the noise ξ is:

Varξ(f̂ |X) = Eξ

[
∥f̂(·|X, y)− f̂0(·|X)∥2L2(P )

]
We have f̂(·|X, y) − f̂0(·|X) = S∗

n(X)K†
n(X)y − S∗

n(X)K†
n(X)fT (X) = S∗

n(X)K†
n(X)ξ. Let

A(X) = S∗
n(X)K†

n(X). This is a linear operator mapping ξ ∈ Rn to a function in L2(P ).

(A(X)ξ)(x) =

n∑
j=1

(K†
n(X)ξ)jKS(xj , x)

We need to compute Eξ[∥A(X)ξ∥2L2(P )].

∥A(X)ξ∥2L2(P ) =

〈
n∑

j=1

(K†
n(X)ξ)jKS(xj , ·),

n∑
l=1

(K†
n(X)ξ)lKS(xl, ·)

〉
L2(P )

=

n∑
j=1

n∑
l=1

(K†
n(X)ξ)j(K

†
n(X)ξ)l⟨KS(xj , ·),KS(xl, ·)⟩L2(P )

Let M(X) be an n × n matrix with entries (M(X))jl = ⟨KS(xj , ·),KS(xl, ·)⟩L2(P ). Using the
Mercer decomposition for KS :

(M(X))jl =

〈∑
s∈SS

λS,sϕs(xj)ϕs(·),
∑
t∈SS

λS,tϕt(xl)ϕt(·)

〉
L2(P )

=
∑
s∈SS

λ2
S,sϕs(xj)ϕs(xl)

So, ∥A(X)ξ∥2L2(P ) = (K†
n(X)ξ)TM(X)(K†

n(X)ξ) = ξT (K†
n(X))TM(X)K†

n(X)ξ. Since
Kn(X) is symmetric, K†

n(X) is also symmetric. Let B(X) = K†
n(X)M(X)K†

n(X), which is
symmetric. The variance is Eξ[ξ

TB(X)ξ]. Given E[ξ] = 0 and E[ξξT ] = σ2In:

Varξ(f̂ |X) = σ2 Tr(B(X)) = σ2 Tr(K†
n(X)M(X)K†

n(X))

Since Tr(CD) = Tr(DC) for compatible matrices:

Varξ(f̂ |X) = σ2 Tr(M(X)(K†
n(X))2)

This formula gives the integrated variance conditional on the training inputs X . Substituting the sum
form for M(X):

Varξ(f̂ |X) = σ2 Tr

((∑
s∈SS

λ2
S,sΦs(X)Φs(X)T

)
(K†

n(X))2

)
= σ2

∑
s∈SS

λ2
S,s Tr(Φs(X)Φs(X)T (K†

n(X))2)

= σ2
∑
s∈SS

λ2
S,s(Φs(X)T (K†

n(X))2Φs(X)).

This expression explicitly shows the dependence on the population eigenvalues λS,s, the population
eigenfunctions evaluated at sample points Φs(X), the empirical Gram matrix Kn(X), and the
teacher’s output variance σ2.

A.4 ASYMPTOTIC ANALYSIS AND W2S CONDITIONS

The average (over X) of these finite-n conditional bias and variance terms then leads to the
asymptotic error. As n → ∞, we discussed that EX [Bias2∗(f̂ |X)] → ∥PSS

(fT ) − f∗∥2L2(P )

and EX [Varξ(f̂ |X)] → σ2
∑

k∈SS∩SW
λ−1
S,k under suitable assumptions. The subsequent W2S

conditions discussed in Section ?? of the main text then follow from these asymptotic limits.
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