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Abstract

In this paper, we propose a novel method for learning reward functions directly from offline
demonstrations. Unlike traditional inverse reinforcement learning (IRL), our approach de-
couples the reward function from the learner’s policy, eliminating the adversarial interaction
typically required between the two. This results in a more stable and efficient training pro-
cess. Our reward module, SR-Reward, leverages successor representation (SR) to encode a
state based on expected future states’ visitation under the demonstration policy and transi-
tion dynamics. By utilizing the Bellman equation, SR-Reward can be learned concurrently
with most reinforcement learning (RL) algorithms without altering the existing training
pipeline. We also introduce a negative sampling strategy to mitigate overestimation errors
by reducing rewards for out-of-distribution data, thereby enhancing robustness. This strat-
egy introduces an inherent conservative bias into RL algorithms that employ the learned
reward, encouraging them to stay close to the demonstrations where the consequences of
the actions are better understood. We evaluate our method on D4RL as well as Maniskill
Robot Manipulation environments, achieving competitive results compared to offline RL al-
gorithms with access to true rewards and imitation learning (IL) techniques like behavioral
cloning. Code available at: https://github.com/Erfi/SR-Reward

1 Introduction

Imitation learning (IL) from expert demonstrations is a widely used approach for tackling sequential decision-
making tasks. Methods in this domain generally fall into two categories. The first focuses on directly learning
a policy that mimics expert behavior, such as Behavioral Cloning (BC) (Pomerleau, 1991). The second,
inverse reinforcement learning (IRL) (Ng & Russell, 2000), infers a reward function that explains an expert’s
behavior and simultaneously derives a policy from it. While both approaches have shown promise, they
come with notable limitations. BC struggles with distribution shift, failing when encountering states not
covered in the demonstrations (Ross et al., 2010). IRL, while more flexible, often inherits the instabilities
of adversarial training (Goodfellow et al., 2014) and requires environment interaction to refine the learned
reward function — an impractical requirement in domains where exploration is costly or unsafe, such as
robotics and healthcare.
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Figure 1: Standard offline RL training requires rewards to be present in the demonstrations (Left). SR-
Reward enables the use of offline RL algorithms in settings where the demonstrations do not include rewards
(Right). Adding the next action for training the SR-Reward requires only a small modification to the replay
buffer.

Offline reinforcement learning (RL) provides an alternative by learning policies from fixed datasets without
interacting with the environment (Lange et al., 2012). However, offline RL typically requires well-defined
reward signals, which are often unavailable or difficult to engineer in real-world applications. Without a
reward function, the agent has no clear objective and fails to learn a meaningful policy.

To address this challenge, we propose SR-Reward, a reward module that enables the use of offline RL agents
in the absence of explicit reward functions. SR-Reward is based on the observation that frequently occurring
features in expert demonstrations often capture essential aspects of expertise. By leveraging successor
representations (SR)(Dayan, 1993) to estimate feature frequencies, SR-Reward assigns higher rewards to
frequently observed state-action pairs. This provides a structured learning signal that helps agents align
with expert strategies while retaining the flexibility to adapt to novel situations.

Successor representation provides a way to represent a state based on the frequency of its future visitation.
In this work, we leverage SR as the primary mechanism to track how often state-action features appear in
the demonstrations. Leveraging the SR structure allows SR-Reward to be learned via the Bellman equation
which propagates information about future states and actions through temporal difference (TD) learning.
Consequently, it can be integrated into existing training pipelines alongside other RL methods based on TD
learning with minimal modifications. Figure 1 illustrates the role of SR-Reward within the training pipeline,
highlighting how it integrates into the overall learning process. Unlike adversarial schemes popular with
inverse reinforcement learning (IRL) methods (Ng & Russell, 2000; Abbeel & Ng, 2004; Ho & Ermon, 2016),
our reward function is decoupled from the policy that is being learned. Decoupling the reward from the
policy eliminates the instabilities associated with adversarial training and enables the use of a wide range
of RL algorithms that were previously unusable due to the inaccessibility of the reward function (Fujimoto
et al., 2019; Garg et al., 2023; Sikchi et al., 2023; Xu et al., 2023).

Hand-engineering a reward function may work for simple scenarios, but it becomes both challenging and
error-prone in complex real-world tasks, such as robot manipulation (Singh et al., 2009; Wu et al., 2022). In
contrast, demonstrating the desired behavior is generally more straightforward (Wu et al., 2023; Arunacha-
lam et al., 2022; Rakita et al., 2017). It is in such scenarios, that SR-Reward’s ability to learn a dense reward
function from demonstrations can be valuable. Another avenue for using the demonstrations is to copy the
expert’s actions. Simple imitation learning methods like behavioral cloning (BC) directly mimic expert be-
havior without modeling how actions lead to future states. Unfortunately, this short-sighted objective is
prone to distribution shift when encountering unseen states. SR-Reward enables the use of TD learning
methods, which mitigate this issue by gaining a long-term view of the task via bootstrapping, making them
more resilient to out-of-distribution scenarios.

We use function approximation to implement the SR mechanism in continuous state and action settings.
Function approximation can lead to a significant overestimation of values for out-of-distribution data (Thrun
& Schwartz, 1999). This is particularly problematic in our setting as the expert demonstrations by definition
cover only a narrow subset of the overall space. We introduce a negative sampling strategy designed to
counteract the overestimation error in our reward function for out-of-distribution states and actions. This is
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accomplished by augmenting the Bellman loss for SR-Reward so that reward estimates for out-of-distribution
states and actions decrease based on their distance from expert demonstrations. Incorporating negative
sampling not only enhances the robustness of the reward function but also introduces a natural conservatism
into the value functions and policies that rely on it. This approach encourages agents to remain near the
demonstrated behaviors, where the outcomes of their actions are better understood.

In this work, we focus on the offline inverse reinforcement learning setting, where the agent neither has access
to the reward function nor can query the expert for any feedback. Furthermore, the transition dynamics of the
environment are unknown and the agent is provided with limited data in the form of expert demonstrations.

In summary our key contributions are:

1. SR-Reward: a reward function based on Successor Representation (SR), that can be learned solely
offline using temporal difference (TD) learning simultaneously with other RL algorithms. We further
describe our architecture as well as loss functions needed for training SR-Reward.

2. A negative sampling strategy to mitigate overestimation errors by reducing rewards for out-of-
distribution data in the vicinity of the expert demonstrations, thereby increasing robustness by
introducing a conservative bias into RL algorithms that employ the learned reward.

2 Background

We first introduce the notation and provide a more detailed review of concepts from successor representation
and imitation learning.

2.1 Notation

We consider settings where the environment is represented by a Markov Decision Process (MDP) and is
defined as a tuple M = (S,A, T , r, γ, µ0). S and A represent the continuous state and continuous action
spaces respectively. T (s′|s, a) represents the state transition dynamics, r(s, a) represents the reward function,
γ ∈ (0, 1] is the discount factor and µ0 represents the starting state distribution. In the offline inverse
reinforcement learning setting, we only have access to a limited set of expert demonstrations of the form
D = {(s0, a0, s1, a1, ...sT )i}N

i=0. In this paper, we are focusing on a limited setting where neither the transition
dynamics T (s′|s, a) nor the reward function r(s, a) are known. The goal is to learn a reward function rθ(s, a)
from expert demonstrations such that its corresponding policy πϕ(a|s) performs similarly to that of the
expert.

2.2 Successor Representations

Successor Representation (SR) was originally introduced as a method to generalize the value function across
different rewards (Dayan, 1993). SR is defined as the cumulative discounted probability of visiting future
states when following a specific policy, effectively representing the current state (and action) in terms of
potential future states (and actions).

For any given pair of states s, s′ and actions a, a′, the SR is expressed as:

M(s, a, s′, a′) = E

[ ∞∑
t=0

γtI(st = s′, at = a′)|s0 = s, a0 = a

]
,

where the expectation is taken over the policy π(a|s) and the environment’s transition dynamics T (s′|s, a).
Similar to the Q-function, SR can be estimated using the recursive Bellman equation:

M(st, at, s′, a′) = I(st = s′, at = a′) + γE [M(st+1, at+1, s′, a′)] .

This recursive formulation is particularly useful when learning SR alongside other temporal difference (TD)
methods. Our SR-based reward function leverages this recursive approach, allowing the reward network
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Figure 2: The architecture of the SR networks. The output of the Encoder is concatenated with the action
to produce ϕ(s, a) =

(
ϕ(s)

a

)
in Equation 1. The result passes through a fully connected network (MLP) to

create the SR(s, a) vector. The Predictor network is used for an auxiliary task to help train the Encoder. It
predicts ϕ′(s′), an estimate of the true encoded next state ϕ(s′), from

(
ϕ(s)

a

)
.

to be trained in parallel with the actor and critic networks, with minimal changes to the existing training
pipeline.

However, directly estimating SR using these formulations becomes computationally intractable as the number
of states and actions increases, or when transitioning from discrete to continuous domains. To address this,
previous research (Kulkarni et al., 2016; Machado et al., 2020; Zhang et al., 2017) has extended SR to
continuous state and action spaces using Successor Features Representation (SF). SF is expressed in terms
of state and action features vector ϕ(s, a):

M(st, at) = ϕ(st, at) + γE [M(st+1, at+1)] . (1)

Here M(st, at) is the expected future occupancy of the state-action features for (st, at) where each element of
this vector can be seen as tracking the SR for a single feature of the state-action space. The choice of feature
extractor ϕ is a design decision that depends on the environment. Most existing work focuses on extracting
features only from the state, not the actions. In this scenario, ϕ(s, a) can be represented as

(
ϕ(s)

a

)
, which

is a concatenation of state features and actions. In this work, we adopt this approach and use a feature
extractor network to derive features from the state only.

2.3 Imitation Learning via Distribution Matching

Methods like behavioral cloning (BC), which directly learn a policy π(a|s) mapping states to actions, are
straightforward and effective when ample data is available. However, they are prone to distribution shift
because they only match the observed action distribution (Ross et al., 2010). During inference, as the
distribution of encountered states deviates from those seen during training, the accuracy of action predictions
diminishes. This leads to accumulating errors that the policy cannot correct.

Distribution matching methods, and related approaches (Ho & Ermon, 2016; Fu et al., 2018; Nachum et al.,
2019; Ghasemipour et al., 2019; Ke et al., 2020; Kostrikov et al., 2020), are more robust to distribution shifts
since they aim to match both the state and action distributions encountered during training. This helps
keep the policy close to the states observed in demonstrations.

Formally, the occupancy measure of a state-action pair under policy π can be defined as

ρπ(s, a) = Eπ

[ ∞∑
t=0

γtI(st = s, at = a)
]

,

where I is the indicator function, which equals one if the condition is met and zero otherwise. This is closely
related to the state-action distribution dπ(s, a) = (1 − γ)ρπ(s, a). Considering that there is a one-to-one
correspondence between the state-action distribution and the policy (Puterman, 1994), distribution matching
methods aim to indirectly learn a policy by minimizing the divergence between dExpert and dπ. A common
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Figure 3: Environments used for our experiments. From left to right: 2D Toy Maze, MuJoCo environments:
[Ant, Walker2D, HalfCheetah, Hopper], Adroit Hand environments: [Door, Pen, Hammer, Relocate]. We
use the states provided by the environments in our experiments.

choice is KL-Divergence, and minimizing DKL(dπ||dExpert) can be viewed as maximizing the following RL
objective where the reward is given by the log ratio of the state-action distributions between the expert
policy and the learned policy π (Kostrikov et al., 2020).

Eπ

[ ∞∑
t=0

γt log dExpert(s, a)
dπ(s, a)

]
,

Since the state-action distribution is often unavailable, efforts are typically focused on estimating the ratio
of the two distributions (Ho & Ermon, 2016; Nachum et al., 2019).

In this paper, we propose a method that estimates SR as a proxy for the expert’s state-action distribution
from demonstrations and uses it as a reward for downstream RL algorithms.

2.3.1 Relationship between SR and State-Action Visitation

SR implicitly captures the state-action visitation. Many density-based IL methods, such as GAIL (Ho &
Ermon, 2016), use state-action distribution or occupancy measure for their distribution matching techniques.
In Appendix:C, we derive the following close relationship between the occupancy measure and the successor
representation

ρ(s′, a′) = Es0∼µ0,s∼T ,a∼π [M(s, a, s′, a′)] .

The occupancy measure ρ(s′, a′) can be seen as the expectation of successor representations M(s, a, s′, a′)
with respect to the probability of all state-action pairs (s, a) that preceded (s′, a′). We learn successor features
representation (SF) from the expert demonstrations and use it as a proxy for the expert’s occupancy measure.

3 SR-Reward

3.1 Architecture

We use the architecture shown in Figure 2 to estimate the SR vector in continuous state and action settings.
Our architecture is built upon the works of Machado et al. (2020), Kulkarni et al. (2016), and Borsa et al.
(2019) with a few notable changes. First, our SR network extends the previous works to include the action
when estimating the SR. This is important as our SR-based reward function r(s, a) is a function of both the
state and the action and needs to distinguish the reward values of different actions. Second, it is common to
use an auxiliary task when learning the encoder from scratch. Kulkarni et al. (2016) use the reconstruction
of the state as the auxiliary task, while Machado et al. (2020) opt for a prediction task in which the next
state is predicted from the encoded state and the action. Inspired by the results of Ni et al. (2024), we use
the prediction of the next encoded state as our auxiliary task. Given the encoding of the current state ϕ(s)
and its corresponding action in the dataset a, we predict the encoded next state ϕ(s′). We use the l2 loss
for this auxiliary task. Finally, our encoder consists of fully connected layers with ReLU activation layer as
the final layer. We normalize the feature vector to ensure that all features are in the same range, such that
∥ϕ(s)∥1 = 1 as suggested by Machado et al. (2020). If the environment dynamics are not fully Markovian
one can use a history of states as s and replace the fully connected layers of the encoder with LSTM layers
as proposed by Borsa et al. (2019).
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3.2 From SR Vector to Scalar Reward

Machado et al. (2020) shows that the norm of SR implicitly counts the state visitation. Motivated by this
result, we use the l2-norm of the SR vector as our reward function. Intuitively, each element i of the SR
vector, estimated using Equation 1, is the expected discounted sum of feature i of the state according to the
policy that created the demonstration dataset. Hence aggregating all the elements of the SR vector in our
offline setting can be seen as a visitation count of the state-action pairs when following the demonstration
policy. If the demonstrations are created by an expert, ∥SR(s, a)∥2 represents how often the expert has
visited (s, a) while performing a task. Taken as the reward for offline RL, we set out to find a policy that
maximizes the state-action visitation of the expert. We empirically show that we can learn competitive
policies using this reward function.

3.3 Negative Sampling

0.0 0.2 0.4 0.6 0.8 1.0
Noise Fraction

0

50

100

150

200

Re
tu

rn Without Negative Sampling
With Negative Sampling

Figure 4: Mean return of corrupted
expert trajectories for Relocate envi-
ronment. Negative sampling signifi-
cantly reduces the reward for states
and actions further away from the ex-
pert demonstrations.

Neural networks tend to overestimate the value of out-of-distribution
data points (Thrun & Schwartz, 1999; Fujimoto et al., 2018; 2019;
Ball et al., 2023). The overestimation error is especially concern-
ing in our setup because an overestimated value of the reward for
unseen states and actions will encourage the value networks and
subsequently the policy to diverge from the expert demonstrations.
Motivated by the idea of conservative value function via negative
sampling Luo et al. (2020), we develop our negative sampling strat-
egy to combat the overestimation error of our SR network. Similar
to Luo et al. (2020) we create our negative samples ŝ and â by adding
a small Gaussian noise to states and actions from our expert trajec-
tories. However, instead of subtracting the l2-norm of the difference
vector ∥s − ŝ∥2 from the reward estimate of the negative samples,
we decay the values using a Gaussian, exp

(
−∥s−ŝ∥2

σ2

)
, with σ con-

trolling the strength of the decay. Furthermore, we apply negative
sampling not to the space of value functions but to the space of rewards. This is possible in our setting where
a reward function is estimated and used for learning a policy. Having control over the reward function in this
setting provides the opportunity to build conservatism directly into the value functions and subsequently
the policy by modifying the reward instead of forcing the value function or the policy to act conservatively
Fujimoto et al. (2018; 2019); Kumar et al. (2020).

Our negative sampling strategy is effective primarily within the local vicinity of expert demonstrations,
achieved by introducing perturbations to expert trajectories. Therefore, it does not prevent reward over-
estimation for state-action pairs that significantly diverge from the expert’s behavior. As a result, the
SR-Reward is more suitable for offline settings, where exploration is limited. In online settings, where the
agent can encounter unfamiliar state-action pairs with overestimated rewards, this could lead to suboptimal
policy learning.

Figure 5 shows the effect of our negative sampling strategy on a toy environment. We train an SR network
using ten demonstrations with and without negative sampling and evaluate the rewards over the grid space
for each one of the cardinal directions. The mean value plot in Figure 5 shows how negative sampling during
training prevents overestimation error for the rewards of the state-action pairs not seen in the demonstrations.
Plots for the four main directions show higher reward estimates for movement in the corresponding direction.
For example, the Left plot shows the reward for moving left at every grid point and as expected this reward
is higher for the upper portion of the trajectories where the expert has moved left.

To highlight the impact of negative sampling in mitigating overestimation errors, Figure 4 compares the mean
trajectory returns of models trained with and without negative sampling. Expert trajectories are corrupted
by varying levels of Gaussian noise, and their episodic returns are estimated using SR-Reward. The model
trained with negative sampling exhibits significantly lower returns for corrupted trajectories, reflecting its
enhanced sensitivity to out-of-distribution data. This effect is evident in the initial drop in returns when
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Figure 5: The plots show the effect using negative sampling for a 2D Toy Maze environment (Figure 3)with
continuous states and actions. The black lines represent the trajectories of the expert starting near the
bottom-right and moving counter-clockwise towards the goal near the center. The mean of the SR-Reward
over four directions [Up, Right, Down, Left] and the SR-Reward associated with each direction is plotted.
Using negative sampling significantly reduces the extrapolation error for out-of-distribution state-action
pairs.

Gaussian noise with σ = 0.1 is applied, followed by a much steeper decline as the noise level increases. In
contrast, the model trained without negative sampling produces similar reward estimates for both expert and
corrupted trajectories, with returns showing only a modest decline under substantial noise levels. Different
environments may demand varying degrees of sensitivity to noise and out-of-distribution data. Our negative
sampling strategy offers flexibility, allowing customization for each environment by adjusting the perturbation
noise applied to expert trajectories and fine-tuning σ for the decay rate in Equation 2.

3.4 Training

We employ several loss functions to train our SR network. As mentioned in Section 2.2, we can estimate the
SR using the Bellman equation in a continuous state-action setting. The reward for the Bellman target in
Equation 1 is replaced with ϕ(s, a) =

(
ϕ(s)

a

)
which is the concatenation of the encoded state and the action.

We use the l2-loss to minimize the Bellman error:

LBellman = E(s,a,s′,a′)∼D
[
(M(s, a)− (ϕ(s, a) + γM(s′, a′)))2]

Auxiliary tasks—such as predicting the reward, next state, or next latent state—have been shown to facilitate
the learning of useful latent representations for downstream tasks Fujimoto et al. (2024); Ni et al. (2024). To
support encoder training, we incorporate an auxiliary prediction task in which the model learns to predict
the next encoded state ϕ(s′) from the current encoded state ϕ(s) and action a. We compute the l2-loss as

LPrediction = E(s,a,s′)∼D
[
(ϕ(s′)− Predictor(ϕ(s), a))2]

Ensuring that the reward is bounded is crucial for the stability of reinforcement learning algorithms. Prior
works have addressed this in various ways, such as clipping observed rewards or adding a penalty on the
magnitude of the estimated reward Mnih et al. (2015); Garg et al. (2021). In our approach, we introduce
an additional loss term that penalizes reward magnitudes exceeding 1, effectively encouraging a soft upper
bound on the reward. This regularization was found to improve training stability. As described in Section 3.2,
we define the reward as the l2-norm of the SR vector.

LMagnitude = E(s,a)∼D
[
max(Reward(s, a)− 1, 0)2]
7
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Algorithm 1 SR-Reward + RL
1: Given: D : [(s, a, s′, a′)i]Ni=0, γ, β, σ
2: Initialize: Encoder: Enc, Fully Connected Block: MLP, Predictor: Pred
3: for each training step do
4: Sample (s, a, s′, a′) ∼ D
5: ϕ(s)← Enc(s)
6: ϕ(s′)← Enc(s′)
7: SR←MLP (ϕ(s), a)
8: SRtarget ←

(
ϕ(s)

a

)
+ γMLP (ϕ(s′), a′)

9: LBellman ←MSE(SR, SRtarget)
10: ϕpred(s′)← Pred(ϕ(s), a)
11: LPrediction ←MSE(ϕpred(s′), ϕ(s′))
12: r ← ∥SR∥2
13: LMagnitude ← (max(r − 1, 0))2

14: s̃← s +N (0, β)
15: ã← a +N (0, β)
16: ϕ(s̃)← Enc(s̃)

17: αdecay ← exp(
−∥

(
ϕ(s)

a

)
−

(
ϕ(s̃)

ã

)
∥2

σ2 )
18: S̃R←MLP (ϕ(s̃), ã)
19: r̃ ← ∥S̃R∥2
20: LNeg.Sample ←MSE(r̃, αdecay × r)
21: LTotal ← LBellman + LPrediction + LMagnitude + LNeg.Sample
22: s← ( s

s̃ ) , a← ( a
ã ) , s′ ←

(
s′

s′

)
, r ← ( r

r̃ )
23: RL(s, a, r, s′)
24: end for

Finally, we add a negative sampling loss to improve the robustness of the reward function for out-of-
distribution state-action pairs. Similar to Luo et al. (2020) we create negative samples s̃ and ã by perturbing
states and actions from the demonstrations with noise. While one might expect negative samples to overlap
with the distribution of demonstrations and affect the estimation of the SR, prior work Luo et al. (2020)
shows that demonstrations typically cover only a small subset of the state-action space. As a result, negative
samples are highly likely to be orthogonal to the demonstrations, an effect that becomes more pronounced
as the dimensionality of the environment increases. We use isotropic Gaussian noise N (0, β) to create the
negative samples. The hyperparameter β controls the standard deviation of the Gaussian noise. Intuitively,
we want perturbed state-action pairs (s̃, ã) to have lower reward values proportional to the distance from
their counterpart (s, a) from the dataset. Since SR estimates the visitation count based on ϕ(s, a) =

(
ϕ(s)

a

)
,

we measure the distance between the negative samples and their original counterparts in the space of features
and actions

(
ϕ(s)

a

)
. We calculate the decay factor using an exponential kernel as

αdecay = exp
(
−∥ϕ(s, a)− ϕ(s̃, ã)∥2

σ2

)
. (2)

σ can also be adjusted as a hyperparameter. Higher values of σ will produce a softer decay for the reward
of negative samples. The l2-loss is used to correct the estimation of SR for negative samples:

LNeg.Sample = E(s,a)∼D
[
(Reward(s̃, ã)− αdecay × Reward(s, a))2]

We train our SR network using the summation of all losses as our total loss:

LTotal = LBellman + LPrediction + LMagnitude + LNeg.Sample

Algorithm 1 shows the pseudocode for training the SR-Reward and the offline RL in the same loop. The
sampled transitions used for training the SR networks have the form (s, a, s′, a′) which is different from the
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Table 1: Normalized mean return and standard deviation over five seeds from different algorithms trained
on D4RL datasets (Fu et al., 2020). Offline RL algorithms using SR-Reward perform similarly to the ones
using the true reward from the environment. Maniskill2 datasets Gu et al. (2023) (PickCube, StackCube,
TurnFaucet) do not contain rewards and so are only compared to BC.

f-DVL sparseQL
Env BC True Reward SR-Reward (Ours) True Reward SR-Reward (Ours)
Ant 86.33 ± 3.91 84.35±4.34 82.75±4.92 86.64±5.14 82.25±7.09
Hopper 108.73 ± 4.39 110.74±1.14 108.25±3.16 110.32±2.69 109.59±0.52
Halfcheetah 104.87 ± 1.55 104.70±0.36 103.80±1.99 106.23±1.38 105.96 ± 0.82
Walker2d 71.39± 14.95 84.41±14.49 78.48±5.52 84.02±13.75 74.48 ± 7.85
Door 76.93 ± 21.81 96.97 ± 4.70 98.40 ± 3.33 78.28 ± 23.98 104.10 ± 1.57
Hammer 114.30 ± 4.59 90.53 ± 10.28 111.52 ± 9.74 71.32 ± 18.50 117.17 ± 3.71
Pen 104.95 ± 5.70 109.67 ± 10.06 97.79 ± 5.15 108.75 ± 3.91 105.00 ± 3.57
Relocate 93.20 ± 4.15 92.36 ± 4.35 88.22 ± 7.30 80.69 ± 8.15 90.91 ± 6.99
PickCube 91.79 ± 4.23 — 88.81 ± 5.72 — 96.70 ± 2.21
StackCube 51.41 ± 3.97 — 70.71 ± 12.55 — 71.03 ± 18.41
TurnFaucet 20.26 ± 1.27 — 35.44 ± 6.83 — 51.64 ± 9.41

ones typically used for RL due to the addition of the next action a′. This form of transition, however, can be
easily produced with access to a set of demonstrations D. We warm-start the training loop by pre-training
the SR networks for 10,000 steps before using its SR-Reward to train the RL agent.

4 Experimental Evaluation

4.1 Setup

To evaluate the proposed reward module, we integrate it with two distinct offline RL algorithms: f-DVL
(Sikchi et al., 2023) and SparseQL (Xu et al., 2023). Both algorithms, which build on foundational concepts
from IQL (Kostrikov et al., 2022) and XQL (Garg et al., 2023), have demonstrated enhanced stability and
strong performance in offline reinforcement learning settings. In our experiments, we replace the rewards
in the offline dataset with those generated by SR-Reward, allowing the reward function to be learned in
conjunction with the RL algorithms.

Figure 6: PickCube (Left), StackCube
(Middle) and TurnFaucet (Right)
from Maniskill2 (Gu et al., 2023)

For empirical validation, we utilize the widely-used MuJoCo-based
(Todorov et al., 2012) environments for locomotion tasks, and the
Adroit hand (Rajeswaran et al., 2018) environments for assessing
performance on more realistic, hand-engineered rewards. Figure 3
illustrates these environments. We also include three challenging
environments from Maniskill2 (Gu et al., 2023), shown in Figure 6.
These environments pose greater difficulty than MuJoCo and Adroit
due to variable start and goal positions, extended time horizons, and
the complexity of manipulating objects with only two fingers. As in
real-world applications, these datasets do not include rewards, prohibiting the use of offline RL algorithms.
We use SR-Reward in combination with SparseQL as the RL agent, for Maniskill2 environments as well as
in ablation studies for data size, data quality, and negative sampling (Appendix A, B, and G).

We use state information from the environment and datasets, and hence do not use an image encoder for our
experiments. Each agent is trained for one million gradient steps (two million gradient steps for ManiSkill
environments), with five different random seeds used per task. For each training run (across five random
seeds), we save the checkpoint that achieves the highest mean return over 25 evaluation rollouts, measured
every 10,000 steps during training. After selecting the best checkpoint for each seed, we then evaluate it

9



Published in Transactions on Machine Learning Research (06/2025)

on 50 fresh rollouts and report the mean and standard deviation across the five seeds (one mean return per
seed). Table 1 shows the mean return and standard deviation over five seeds for different environments.

Hyperparameters remain largely consistent across environments, with key parameters listed in Table 2 (Ap-
pendix D). Further discussion on the hyperparameters of the negative sampling strategy and how to choose
them is presented in Appendix G. We use the offline datasets from D4RL (Fu et al., 2020), and follow their
normalization procedures, employing the provided scores for random and expert demonstrators (Appendix
E).

Our experiments aim to answer the following key questions:

1. Can SR-Reward effectively replace the true reward signal for offline RL? (4.2)

2. How does the performance of offline RL algorithms using SR-Reward compare to that of BC (4.3)

3. Is negative sampling strategy a necessary component of SR-Reward? (4.4)

4.2 Question 1: Can SR-Reward replace the true reward signal?

To address this question, we use the true reward signal from the environment as a baseline and compare the
performance of offline RL algorithms (f-DVL and sparseQL) using the true reward against the reward signal
generated by SR-Reward.

The MuJoCo and Adroit Hand environments differ significantly in the complexity of their reward functions.
In MuJoCo environments, the objective is relatively simple: the agent must move to the right as quickly
as possible. A straightforward reward function based on the agent’s velocity suffices for such tasks. In
contrast, Adroit Hand environments present more intricate challenges, such as rotating a pen with one hand
or hammering a nail. These tasks require dense reward functions, which are constructed using multiple
carefully designed sub-rewards and thresholding.

Table 1 summarizes the performance of the offline algorithms using SR-Reward and the true reward. For the
MuJoCo environments, the performance achieved with SR-Reward closely matches that of the true reward,
demonstrating that the dense reward generated by SR-Reward is as informative as the environment-provided
reward. Notably, in the Adroit Hand environments, SR-Reward yields similar or even higher performance
than the true reward. This result highlights the inherent challenges of manually engineering reward functions
for complex tasks and underscores the advantages of using SR-Reward, particularly for scenarios where
crafting a reward function is not straightforward.

Furthermore, Figure 8 and Figure 9 present ablation studies on dataset size and quality, demonstrating
that SR-Reward can produce an informative reward signal and sustain competitive performance even under
limited or degraded data conditions. While overall performance decreases as the dataset size is reduced
or the data quality deteriorates, this trend affects all algorithms similarly. Notably, RL agents (SparseQL)
trained with SR-Reward maintain performance levels comparable to those trained with the true environment
reward or to behavioral cloning agents, even when learning from suboptimal data. (See Appendix A and
Appendix B for further discussion.)

4.3 Question2: How does SR-Reward + offline RL perform compared to BC?

Behavioral Cloning (BC) is a straightforward and effective method in scenarios where no reward function
exists, but ample demonstrations are available. To highlight the advantages of using offline RL equipped
with SR-Reward, we compare its performance against BC across MuJoCo, Adroit Hand, and more complex
ManiSkill2 robot manipulation tasks. In the latter, no true reward signal is available in the datasets, and
the offline RL algorithms rely solely on SR-Reward for reward generation.

As shown in Table 1, combining SR-Reward with offline RL performs on par with BC for MuJoCo and
Adroit Hand environments. However, as task complexity increases, the performance gap widens. This trend
is particularly evident in the ManiSkill2 environments (Figure 7 (Left)), where BC closely matches the
performance of SR-Reward-equipped sparseQL for the relatively simple PickCube task but falls behind in
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Figure 7: Performance on Maniskill2 environments. Turning the faucet requires a continuous connection
with the edge of the handlebar throughout the movement, and stacking the cubes requires more precision
than simply relocating them. SR-Reward + RL (sparseQL) outperforms BC as the difficulty of the task
increases (Left). The benefits of using Negative sampling (N.S.) become more prominent for more difficult
tasks (Right). Our negative sampling based on exponential kernel outperforms that of Luo et al. (2020)
(VINS), especially on the StackCube task.

the more demanding StackCube and TurnFaucet scenarios, which require higher precision for successful
completion. Similar results hold when combining f-DVL with SR-Reward, although BC shows slightly better
performance on a the simpler PickCube task but falls behind on StackCube and TurnFaucet.

We have limited our experiments to two offline RL algorithms (f-DVL and SparseQL), however, our findings
underscore the versatility of SR-Reward as a modular component that can, in principle, be compatible
with many offline RL algorithms by replacing the reward function. This flexibility makes it well-suited for
applications in robotics and other domains where obtaining demonstrations is more feasible than designing
dense reward functions, and where RL algorithms have the potential to surpass the limitations of BC.

4.4 Question3: Is negative sampling strategy a necessary component of SR-Reward?

A narrow subset of the overall state-action space covered by the demonstrations can lead function approx-
imation networks to predict erroneously high values when queried for out-of-distribution data. Intuitively,
the negative sampling strategy presented in this paper can be beneficial in increasing the robustness of the
networks used in SR-Reward by lowering the resulting reward values for state-action pairs outside of demon-
strations. To evaluate its effectiveness, we train SR-Reward both with and without the negative sampling
strategy and compare the results in the PickCube, StackCube, and TurnFaucet environments (Figure 6).

As shown in Figure 7 (Right), the use of the negative sampling strategy leads to similar or improved perfor-
mance across all tasks. Additionally, we benchmark this approach against the linear decay strategy proposed
by Luo et al. (2020), applied to SR-Reward (rather than the value function). Our results demonstrate that
the exponential decay kernel used in our negative sampling strategy yields better performance. While the
negative sampling strategy consistently enhances results across tasks, the magnitude of its contribution varies
depending on the task.

5 Related Work

Learning to perform a task from offline data has been extensively studied under the IL and IRL umbrella
(Abbeel & Ng, 2004; Ho & Ermon, 2016; Fu et al., 2018; Garg et al., 2021; Kostrikov et al., 2020; Kalweit et al.,
2020; Pomerleau, 1991). One common approach is methods based on behavioral cloning (Pomerleau, 1991)
which reduce imitation learning to a supervised learning problem, i.e., learning a mapping from environment
states to expert actions. They aim to increase the probability of expert actions for the states seen in the
demonstrations. Although this approach can work in simple environments with large amounts of data, it
is inherently myopic and fails to reason about the consequences of its selected actions. Consequently, such
greedy approaches suffer from compounding errors due to covariant shift (Ross et al., 2010) when the agent
deviates from the demonstrated states.
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In contrast, IRL methods incorporate information about the environment dynamics into the decision-making
process by imitating the expert actions as well as the visited states (Abbeel & Ng, 2004). Many IRL methods,
such as GAIL (Ho & Ermon, 2016) and its extensions, simultaneously estimate the reward function that best
explains the expert behavior and its associated policy. This optimization is done using an adversarial scheme
with the discriminator trying to distinguish between the expert trajectories and ones generated by the learned
policy. Simultaneously, the discriminator’s error is used as the reward signal for training the policy. The
adversarial nature of the training strategy makes such algorithms prone to training instabilities(Goodfellow
et al., 2014; Kostrikov et al., 2019). Additionally, they require further interactions with the environment
during training to create a dataset of non-expert trajectories for training the discriminator. Furthermore,
there are no theoretical guarantees that show adversarial training to lead to a better performance than a
two-step process, which first infers a reward function from demonstrations, followed by learning a policy
using the previously inferred reward (Liu et al., 2021). In this work, we part from adversarial training and
so decouple the learning process of reward function and policy while training both simultaneously.

Already there have been efforts in bypassing the adversarial optimization. Kalweit et al. (2020) derived
an analytical solution for the reward based on the assumption that expert policy follows a Boltzmann
distribution. Their formulation applies to continuous states but is limited to discrete action spaces. While
sharing a similar objective to ValueDICE (Kostrikov et al., 2020), Garg et al. (2021) removes the need for
adversarial training by formulating the reward function in terms of the value functions and maximizing
them. Their objective function implicitly reduces a distance measure, such as χ2-divergence, between the
occupancy measure of the expert and the one of the policy being trained. This approach does not yield
an explicit reward model, but a reward value can be extracted from the learned value function and policy.
Without optimizing for the optimal reward function Reddy et al. (2020) uses a simple binary indicator as
the reward which distinguishes between expert demonstrations and online interactions. Our reward function
can be seen as the continuous version of SQIL (Reddy et al., 2020) because the SR value of states and actions
that are visited by the expert, will be naturally higher than the rest.

The growing need to fine-tune large language models has led to a surge of research focused on learning reward
functions from human feedback and using them for model optimization (Christiano et al., 2023; Rafailov
et al., 2023; Ethayarajh et al., 2024). These approaches typically assume a Bradley-Terry model (Bradley
& Terry, 1952) to represent the reward function and rely on datasets containing both positive and negative
feedback. In contrast, our work focuses on learning a reward function solely from expert demonstrations,
without requiring any form of negative feedback. There is also a series of works that modify the existing
environment reward to gain improvements during training. Vieillard et al. (2020) suggests adding log(π(a|s))
of the policy π that is being learned to the reward in temporal difference (TD) learning. The authors argue
that the logarithm of the policy is a strong learning signal as it is available even in a sparse reward setting
and since its value is close to zero for optimal actions under optimal policy this does not conflict with the
optimal control objective.

Recent works have aimed to use successor representation in reinforcement learning (Barreto et al., 2017;
Zhang et al., 2017; Filos et al., 2021; Brantley et al., 2021; Jain et al., 2024). While Barreto et al. (2017)
and Zhang et al. (2017) use SR to generalize the value function to different rewards for transfer learning,
Brantley et al. (2021) focus on generalizing the representation of SR over policies for small partially observable
environments with known dynamics. In multi-agent settings Filos et al. (2021) learn the shared features of
the environment using the estimated SR of all other agents irrespective of their goals. Jain et al. (2024)
uses SR in the context of learning from demonstrations by matching the SR of the learner’s policy to that
of the expert. We share the same motivation for our work but we use SR as a reward function and do not
require online interactions during training. Other works such as (Moskovitz et al., 2022; Machado et al.,
2020) modify the reward using the SR of the policy that is being learned. Machado et al. (2020) showed that
the norm of the SR vector can act as the proxy for the state visitation count. They modify the reward from
the environment by adding the inverse of this state visitation count during training. Moskovitz et al. (2022)
suggest a modification to SR to only consider the first visitation of a state, hence learning the expected
discounted time to reach successor states. Similar to Machado et al. (2020), they also make use of the
inverse of their modified SR norm and show improved performance, especially in scenarios where the reward
in a given state will be depleted after the first visit.
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Our work is similar to the one of Machado et al. (2020) in the sense that we are also viewing the norm of SR
vector as a proxy to state visitation count. However, we are working in an offline IRL setting where there
is no other reward available and the dataset is fixed. We show that in the absence of a reward signal from
the environment, one can use the norm of the SR vector directly as the reward. Additionally, we extend
the SR vector to continuous actions and employ a negative sampling procedure to lower the value of our
SR-based reward for state-action pairs in the vicinity of the demonstrations that were not present in the
demonstrations dataset, hence combating the extrapolation error and creating a more robust reward function
for offline RL algorithms.

6 Conclusion

We introduced SR-Reward, a reward function based on successor representation, which is learned from offline
expert demonstrations. This reward function assigns high rewards to state-action pairs frequently visited
by expert demonstrators. SR-Reward is independent of both policy and value functions but can be trained
concurrently with them, enabling easy integration with various RL algorithms without requiring significant
modifications to the training pipeline.

Additionally, we implemented a negative sampling strategy to encourage a pessimistic estimation of rewards
for out-of-distribution state-action pairs, thereby making the reward function more resistant to overesti-
mation errors. Our empirical results demonstrate that SR-Reward can effectively serve as a proxy for the
true reward in scenarios where no reward function is available or where the complexity of the task makes it
difficult to hand-engineer sufficiently informative reward functions.

7 Limitations and Future Work

We focused our experiments on offline settings because the negative sampling strategy can only protect the
SR-Reward from overestimation errors near the expert demonstrations, where meaningful negative samples
are generated by perturbing expert trajectories. Since expert trajectories cover only a small portion of the
state space, high extrapolation errors can be expected in regions far from these demonstrations. Conse-
quently, in online RL, when the agent explores areas distant from the expert trajectories, it may be misled
by inflated rewards, leading to the learning of suboptimal policies.

SR-Reward assumes the availability of a dataset of optimal trajectories. Although our empirical results
indicate a degree of robustness when combining optimal and sub-optimal datasets (Figure 9), the presence of
sub-optimal demonstrations can negatively impact SR-Reward since the training process treats optimal and
sub-optimal demonstrations equally. Enhancing the ability to control the influence of demonstrations based
on their quality could lead to higher-quality rewards and more data-efficient learning, offering a promising
direction for future research.

Given that the successor representation is closely linked to occupancy measures and state-action distributions,
the SR-Reward function proposed here can be employed to approximate the state-action distributions of both
expert and non-expert actors. This paves the way for developing new algorithms in imitation learning (IL)
and inverse reinforcement learning (IRL), enabling the direct matching of distributions using an approximate
model of state-action distributions. We consider this an exciting direction for further exploration and future
research.

Finally, a theoretical investigation regarding the convergence properties of using SR as a reward or the
efficacy of using L2 Norm for converting the SR vector to a scalar reward can provide more support for our
claim, however, in this paper, we have focused on supporting our claims using empirical results.
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A Data-Size Ablation
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Figure 8: Effect of data size on performance. RL agents (SparseQL) using SR-Reward show competitive
performance compared to BC and the RL agents that use the true reward.

To investigate the impact of data size on SR-Reward, we trained each algorithm using varying numbers of
expert trajectories from the D4RL dataset. We used sparseQL as our offline RL algorithm. Specifically, we
evaluated performance using [10, 50, 100, 500] demonstrations for MuJoCo and Adroit hand environments.
As shown in Figure 8, agents trained with true reward do not significantly outperform those trained with
SR-Reward across different data sizes in all MuJoCo environments.

As the number of demonstrations decreases, performance declines for all agents, regardless of the reward
function used. This trend suggests that informative rewards can still be learned even with limited data.
Therefore, the performance drop observed with fewer demonstrations likely reflects the data inefficiency of
the offline RL algorithms rather than a significant decline in the quality of the learned reward.
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B Data-Quality Ablation
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Figure 9: Effect of data quality on performance. RL agents (SparseQL) using SR-Reward show similar
performance to the baselines. SR-Reward is robust to the mixing of sub-optimal demonstrations (medium-
expert) as there is no significant drop in performance compared to the agents that were trained on the true
reward.

Depending on the environment, creating a set of high-quality expert demonstrations can quickly become a
cumbersome task. Therefore, it is important to know the effect of sub-optimal demonstrations when used for
training the SR-Reward. We conduct our experiments on MuJoCo environments using three datasets with
different quality demonstrations from D4RL with the "medium-expert" dataset being a combination of both
expert and medium demonstrations. Figure 9 shows that agents using SR-Reward have similar performance
to the ones trained using true environment reward. The mixing of expert and medium datasets does not
show a significant negative impact on agents trained with SR-Reward as compared to other agents. In fact
including the sub-optimal trajectories results in higher returns, especially for the more difficult Walker2D
environment which can benefit from larger datasets. Having low sensitivity to sub-optimal demonstrations
is a desirable attribute of SR-Reward since collecting expert demonstrations can be tedious and error-prone,
which increases the possibility of including sub-optimal demonstrations.
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C Occupancy Measure and Successor Representations

We will restrict ourselves to the occupancy measure of the state only (instead of state and action). The
extension to state and action is trivial via a second summation over the actions.

The expectation is with respect to starting state distribution µ0, the policy that is followed π, and the
transition dynamics of the environment T .

We can write the definitions of occupancy measures ρ(s) and successor representations M(s, s′) in terms of
probabilities p.

M(s, s′) = E[
∞∑

t=0
γtI(st = s′)|s0 = s]

=
∞∑

t=0
γtE[I(st = s′)|s0 = s]

=
∞∑

t=0
γtp(st = s′|s0 = s)

and similarly for the occupancy measure ρ(s):

ρ(s) = E[
∞∑

t=0
γtI(st = s)]

=
∞∑

t=0
γtE[I(st = s)]

=
∞∑

t=0
γtp(st = s)

Below we show that ρ(s′) =
∑

s p(s)M(s, s′):

ρ(s′) =
∞∑

t=0
γtp(st = s′)

=
∞∑

t=0
γt

∑
s

p(s)p(st = s′|s0 = s)

=
∑

s

p(s)
∞∑

t=0
γtp(st = s′|s0 = s)

=
∑

s

p(s)M(s, s′)
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D Hyperparameters

Table 2: Most important Hyperparameters used in the experiments.

Hyperparameter Value

Noise β (MuJoCo) 1.0
Noise σ (MuJoCo) 3.0
Noise β (Adroit) 0.1
Noise σ (Adroit) 0.3
Noise β (Maniskill2) 0.03
Noise σ (Maniskill2) 0.3
LR (Critic, Value) 0.0003
LR (Actor, SR-Reward) 0.0001
Encoder MLP [256, 128]
SRNet MLP [128]
Predictor MLP [128, 32]
Critic MLP [256, 256]
Actor MLP [128, 128]
ValueNet MLP [128, 128]
Batch Size 128
Training Steps 1000000
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E D4RL Return Normalization

We follow the same normalization procedure as described in D4RL with min and max scores for each task
taken from the D4RL datasets as below:

Table 3: Min and Max scores for each D4RL environment

Environment Min Max

Walker2d 1.629 4592.3
Ant -325.6 3879.7
HalfCheetah -280.178 12135.0
Hopper -20.272 3234.3
Door -56.512 2880.569
Hammer -274.856 12794.134
Pen 96.262 3076.833
Relocate -6.425 4233.877

For Maniskill2 environments (PickCube, StackCube, TurnFaucet), the minimum score is considered 0 when
the task is not solved, and the maximum score is:

scoremax = 1.0 + (1.0− k

MAXSTEPS )

where MAXSTEPS is set to 500 and k is the steps of the simulation hence giving more rewards to the
successful tasks that are completed in fewer steps. The expert can complete the tasks in approximately 150
steps hence the maximum score for these environments is set to 1.7.

The returns are normalized for all plots using the Min and Max scores of each environment as follows:

Returnnormalized = Return− Scoremin

Scoremax − Scoremin
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F Policy Comparison in the Action Space

We visualize the actions proposed by two policies on the Adroit Door task to assess their behavioral similarity.
Specifically, we compare two models trained using the f-DVL algorithm: one trained with the true reward
provided by the environment, and the other trained with our learned SR-Reward. Since both models achieve
comparable mean returns (see Table 1), we examine whether they also produce similar actions, which would
indicate that SR-Reward leads to a policy behaviorally close to that of the true reward.

Figure 10 illustrates the actions suggested by each policy when evaluated on the same observations drawn
from 50 trajectories in the offline dataset. Each subplot corresponds to one dimension of the action space.
The alignment between the two sets of actions across all dimensions suggests that the policies behave simi-
larly—supporting the idea that policies trained using SR-Reward behave similarly to the ones trained using
the true reward.
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Figure 10: Action trajectories for f-DVL model trained on true reward vs SR-Reward on the Ardoit Door
environment.

23



Published in Transactions on Machine Learning Research (06/2025)

G Negative Sampling Hyperparameters

The negative sampling method introduced in Section 3.3 is governed by two hyperparameters: β and σ. The
parameter β controls the amount of noise added to expert state-action pairs to generate negative samples,
while σ determines the width of the Gaussian penalty kernel used to measure the similarity between expert
and negative samples in the latent space. To study the sensitivity of our method to these hyperparameters,
we trained a series of SparseQL + SR-Reward models on the StackCube environment using a grid of different
β and σ values. Figure 11 presents the normalized returns across these settings. The red circle marks the
hyperparameter configuration used in our main experiments (Section 4).

Overall, high values of β tend to degrade performance, likely because the resulting negative samples become
out-of-distribution with respect to the demonstration data, which can negatively affect training. A similar
trend is observed for large values of σ: when the penalty kernel is too wide, both expert and perturbed samples
receive similar rewards, making it harder to distinguish optimal from suboptimal behaviors, ultimately
harming performance. As a practical guideline, we set β to approximately the median of the standard
deviations across all observation and action dimensions in the demonstration data. Figure 12 shows the
distribution of values across these dimensions, with the red line marking the median standard deviation.
This choice typically yields a noise level that reflects the natural variability present in the expert data. For
σ, we choose a value between 3 to 7 times the selected β. This ensures that the reward function remains
sensitive enough to distinguish perturbed samples from expert ones—penalizing them appropriately—while
not being so narrow as to overly suppress reward values for slightly perturbed but still useful samples.
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Figure 11: Normalized return for SparseQL+SR-Reward for different hyperparameters β and σ of the nega-
tive sampling strategy. The red circle indicated the return from the hyperparameters used for our experiments
in Table 1
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Figure 12: (TOP): Values of every dimension of observation (blue) and actions (orange) for 50 demonstrations
of StackCube, Door, and HalfCheetah environments. (BOTTOM): Standard deviation of each observation
and action dimension for 50 demonstrations for the same environments. The red line indicates the median
of the standard deviations along all dimensions of observations and actions.
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H Online Reinforcement Learning

SR-Reward can be trained independently of the reinforcement learning (RL) algorithm using only the offline
dataset. In this section, we address the question of whether SR-Reward, once trained offline, can be effec-
tively used as a reward function for online reinforcement learning. Figure 13 compares the performance of
TD3 trained using the environment’s true reward versus using SR-Reward trained on an offline dataset of
demonstrations. The TD3 agent was trained on the HalfCheetah environment for 1 million gradient steps
using online interactions.

The results highlight a key limitation of SR-Reward in online settings. While incorporating negative sampling
improves its robustness to some extent, there is still a notable drop in performance when SR-Reward is used
in place of the environment’s true reward. This outcome is expected: since SR-Reward is trained solely on
expert demonstrations, it does not generalize well to parts of the state-action space that lie far from the
distribution of the offline dataset. As the online agent explores new regions during training, SR-Reward
may assign incorrect values to unfamiliar state-action pairs, potentially misleading the agent and resulting
in suboptimal behavior.
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Figure 13: Normalized reward of TD3 algorithm trained using true reward and SR-Reward.
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