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A Critical Review of Proactive Detection of Driver Stress
Levels Based on Multimodal Measurements

MOHAMMAD NAIM RASTGOO, BAHAREH NAKISA, ANDRY RAKOTONIRAINY,

VINOD CHANDRAN, and DIAN TJONDRONEGORO, Queensland University of Technology

Stress is a major concern in daily life, as it imposes significant and growing health and economic costs on

society every year. Stress and driving are a dangerous combination and can lead to life-threatening situations,

evidenced by the large number of road traffic crashes that occur every year due to driver stress. In addition,

the rate of general health issues caused by work-related chronic stress in drivers who work in public and

private transport is greater than in many other occupational groups. An in-vehicle warning system for driver

stress levels is needed to continuously predict dangerous driving situations and proactively alert drivers to

ensure safe and comfortable driving. As a result of the recent developments in ambient intelligence, such

as sensing technologies, pervasive devices, context recognition, and communications, driver stress can be

automatically detected using multimodal measurements. This critical review investigates the state of the art

of techniques and achievements for automatic driver stress level detection based on multimodal sensors and

data. In this work, the most widely used data followed by frequent and highly performed selected features to

detect driver stress levels are analyzed and presented. This review also discusses key methodological issues

and gaps that hinder the implementation of driver stress detection systems and offers insights into future

research directions.
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1 INTRODUCTION

Driving is a perceptual motor skill that entails multiple situations and consequently results in
varying levels of stress. Stress is an important factor in driving because it can increase the risk
of getting into a vehicle crash by affecting driver performance. The world death records issued
by the World Health Organization (WHO) show that road traffic crashes cause over 1.2 million
deaths annually (Sauerzapf 2012). This issue creates a significant cost in terms of loss of life and
productivity for governments and societies (Blincoe et al. 2015). Stress has been identified as one
of the most significant reasons for vehicle crashes (Katsis et al. 2015). Australian national crash
reports also show that stress is among the 10 leading causes of fatal crashes (Beanland et al. 2013).
Aside from increasing the risk of crashing, stress can also affect the general health of professional
drivers. Professional drivers are those whose occupation is driving vehicles, such as bus, taxi, and
heavy transport drivers. This group of drivers is exposed to continuous stressors in their everyday
work. Findings from a European survey on working conditions in 2005 show that workers in the
transport sector experience more stress than the average worker population (European Working
Conditions Survey 2005). In this research, about 32% of drivers who worked in “land transport”
reported that work stress affects their health (Copsey et al. 2010), confirming earlier findings that
driving is one of the unhealthiest occupations (Evans and Carrère 1991; Hanzlíková 2005).

Motivated by the need to address the significant costs of driver stress, this article investigates
the state-of-the-art achievements and existing challenges in building a practical system that can
continuously, unobtrusively, and automatically detect driver stress levels at an early stage. A short-
term benefit arising from such a system would be to increase driver safety by predicting danger-
ous driving situations and alerting the driver proactively. In addition, a long-term benefit would
be prevention of harmful, long-lasting consequences of stress in professional drivers. Thanks to
recent developments in ambient intelligence, such as sensing technologies, pervasive devices, con-
text recognition, and communications, driver stress levels can be automatically detected using a
combination of multimodal measurements.

This article focuses on reviewing the modalities used to measure driver stress levels by reviewing
literature published between 1990 and 2017. Based on a proposed framework for a multimodal
driver stress recognition system, it also reviews state-of-the-art techniques for automatic driver
stress recognition and investigates their efficiencies. Based on the reviews, this article discusses the
existing methodological challenges and recommends ideas for future work in building a practical
system that can continuously, unobtrusively, and automatically detect driver stress levels. To the
best of our knowledge, this is the first review that investigates the data, techniques, and issues
that need to be addressed for implementing such a system in vehicles to increase driver safety. For
surveys on stress recognition and classification, we refer the reader to Sharma et al. (2012). Our
work is also different from a previous review that focuses on recognition of office work-related
stress through multimodal data (Alberdi et al. 2016).

This review is structured as follows: Section 2 defines stress-related issues and describes driver
stress consequences in detail. Section 3 introduces the multimodal nature of driver stress and dis-
cusses the stress analysis methods for each modality. Section 4 discuses different pattern-matching
techniques used to build multimodal stress detection models. Section 5 discusses computational
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methods that have been employed in analyzing driver stress. Section 6 defines a framework of a
proactive detection system of driver stress levels and discusses issues related to such a system.
Finally, Section 7 presents our main conclusions and discusses open problems and ideas for future
work.

2 STRESS AND CONSEQUENCES FOR DRIVING

Stress can be defined as a nonspecific bodily response to a combination of external demands and
internal concerns. Stress can be distinguished in the concept of eustress (positive stress) and dis-
tress (negative stress) (Selye 1974). Eustress occurs when an individual’s perceived ability to cope
outweighs his or her perceived external demands. It can help an individual to increase his or her
creativity and productivity and motivate him or her to perform a specific task. However, distress
occurs when there is an imbalance between an individual’s ability to cope and his or her perceived
external demands. This sort of stress is dangerous and can cause negative consequences. In daily
life, we often use the term “stress” to describe negative stress rather than positive stress. In this
review, the term “stress” also refers only to negative stress.

Stress is generally caused by an unpleasant intervener in the form of real events, called a stressor,
and is affected by the subject’s individual and ambient parameters, which are called the subject’s
context. Therefore, the external demands, known as a stressful situation, refer to the stressor and
ambient parameters, while the internal concerns refer to the subject’s individual parameters. There
are three classes of stress: acute, episodic, and chronic. Acute stress is caused by a short-term
stressor, and cortisol is secreted at high levels during the initial phase of stress to prepare the body
for a fast and appropriate reaction (Selye 1956). This type of stress ends quickly, and the body
soon reverts to its balance point. In a stressful life/work environment, acute stressful situations
may occur from time to time, causing another stress type, called episodic stress. In addition, a
stressor that lasts for a long time may cause chronic stress, which is harmful to human health.

Fast-changing driving conditions can cause short-term stressors; therefore, drivers in these sit-
uations are more likely to be exposed to acute and episodic stress. Short-term stressors related to
driving tasks can be classified into five categories: (1) social interactions, (2) unexpected situations,
(3) other drivers’ or pedestrians’ behaviors, (4) events that impact time schedule, and (5) difficult
driving due to urban planning (Rodrigues et al. 2015). Ambient factors, such as road conditions
or traffic density, and internal factors, such as a driver’s low experience or high mental workload,
can also affect stressful driving situations.

Professional drivers are prone to prolonged or continuous stressors, which can lead to chronic
stress. These stressors are generally caused by the driver’s environment, job-related tasks, and
organizational issues (John et al. 2006). Environmental stressors may include the ergonomic design
of a vehicle’s cabin, ambient noise, weather conditions, road rage, and traffic congestion (John et al.
2006). Job-related task stressors may include security responsibilities, following a specific working
schedule, and prolonged social isolation (Rodrigues et al. 2015). Organizational issue stressors may
include limits on a driver’s decision-making authority (John et al. 2006).

2.1 Stress and Vehicle Crash

Successful driver performance is a fundamental issue for preventing vehicle crashes, and a driver’s
success is often determined by adapting his or her behavior with respect to changes in environment
and complexity of context while driving (Schmidt and Lee 2005). Unsuccessful driver performance
causes over 80% of vehicle crashes that result in fatalities and injuries (Stanton and Salmon 2009).
Driver performance can be negatively affected by stress, which then can cause traffic violations and
crashes (Beirness 1993; Simon and Corbett 1996). This is because stress causes both high mental
workload (Wiberg et al. 2015) and negative moods in drivers (Frasson et al. 2014).
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High mental workload may result in inadequate information processing and imperfect percep-
tion (Lenné et al. 1997; Boyle et al. 2008). It can also cause cognitive distraction, which is one of
the most common reasons for drivers’ distraction. A driver’s cognitive distraction may lead to
impaired decision-making capabilities (Baddeley 1972). As a result, high mental workload due to
stress leads to deterioration of driver performance (Wiberg et al. 2015).

Negative moods, such as anger and aggressiveness, can be induced in stressful driving situations
(Allen et al. 1993; Frasson et al. 2014; Lundberg et al. 1994). Driving in an angry mood can increase
risky patterns of driving, such as high speed, switching lanes, and running red lights (Allen et al.
1993). Such aggressive behaviors are dangerous, and associated with higher probabilities of road
traffic crashes (Parry 1968; Deffenbacher et al. 2003).

2.2 Chronic Stress Consequences for Professional Drivers

Chronic stress is a serious issue for professional drivers, as it adversely impacts on their general
physical and mental health. Bus drivers’ exposure to chronic occupational stress can increase their
chance of developing cardiovascular problems (Baevskii et al. 2009). Gastrointestinal and muscu-
loskeletal disorders are also considered a consequence of chronic stress for professional drivers
(Hanzlíková 2005). Posttraumatic stress disorder is also reported as a common chronic mental
health issue in ambulance and bus drivers (Boyer and Brunet 1996; Berger et al. 2007).

3 CURRENT METHODS TO MEASURE STRESS MODALITIES

The human body generally employs the fight-or-flight response to instantaneously make decisions
during a stressful situation, including how to avoid its negative outcomes—for example, avoiding
accidents during dangerous driving conditions. The nervous system is responsible for executing
this strategy in three consecutive steps: sensing, perceiving, and responding to stress (Aydede and
Robbins 2009). Central and peripheral nervous systems are the two key components that control
different organs of the body and work together to regulate the fight-or-flight response (Monroe
2009). In this regard, the sensory nerves collect information related to a stressful situation (stressor
and ambient parameters) and send it to the brain as the main core of the central nervous system
(sensing). The brain processes the received information and individual parameters to perceive the
stress level (perceiving), and finally sends proper responses through somatic and autonomic motor
nerves to different parts of the body for voluntary and involuntary reactions (responding).

The fight-or-flight response can be monitored through different modalities to measure driver
stress. These modalities include driving stressors, the driver’s ambient and individual parameters
(contextual data), and the driver’s psychological, physiological, and physical responses to stress.
The driver’s psychological responses, being related to the driver’s mental activity (Rothkrantz et al.
2004), reflect the stress level perceived by the brain in a stressful driving situation. Physiological
responses are the result of whole body function (Baum 1997). The driver’s nonobservable responses
are regulated through the autonomic nervous system (ANS). The driver’s physical responses are
voluntary and observable behaviors (Horlings et al. 2008) that the brain regulates through the
somatic nervous system. In the rest of the section, the information associated with these modalities
in the domain of driver stress recognition is reviewed.

3.1 Psychological Evaluation

Psychological evaluation is mostly used as a stress marker or ground truth in stress recognition
domains. There are various questionnaires, known as clinical stress questionnaires, which are em-
ployed for this evaluation, such as the Stress Self Rating Scale (Alberdi et al. 2016). A weakness of
this approach is that drivers may find it difficult to recall acute stressful events, as the question-
naires are usually conducted at the end of experiments (Singh and Queyam 2013a). There are also
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some self-reporting methods that can provide flexible ways to measure driver stress, either during
driving (Rodrigues et al. 2015) or after driving (Healey and Picard 2005). A common method is the
N-point Likert scale: drivers score their stress level using a predefined range of scores, such as 1
(no stress) to 6 (high stress). Another method is categorization: drivers select a category of stress
from a predefined stress category group, such as low, medium, and high stress. However, it should
be noted that filling out questionnaires or self-reporting during driving is not practical for safety
reasons.

Annotation is a common technique that helps drivers to answer abstract self-reporting methods.
This technique can be divided into offline, online, and combined annotation, based on when drivers
carry out the psychological evaluation. In the offline annotation, drivers annotate their perceived
stress levels for different driving events that were recorded during their driving. Some studies have
recorded the driving events using a camera or GPS tracker to help drivers in recalling their stress
levels (Healey and Picard 2005; Rigas et al. 2011). In the online annotation, the driver annotates
his or her perceived stress levels for different driving events while he or she is driving, rather than
recalling them afterward. One online annotation technique asked drivers to record their mental
strain, on a scale of 1 to 10, every 10 minutes (Eilebrecht et al. 2012). However, this study noted
that increasing the frequency of annotation will increase the driver’s mental workload. Using a
combined method to incorporate both online and offline annotation, a study by Rodrigues et al.
(2015) asked bus drivers to wear smart clothes, called a vital jacket, and to tag stressful situations
by pressing an embedded button on the jacket while driving. They also added a stress thermome-
ter system to confirm the driver’s stress level while driving, on a scale of not-at-all stressful to
extremely stressful. The driving paths were recorded using GPS during the experiment and then
visualized using Google Earth. The bus drivers, by reviewing the recorded paths, provided a brief
explanation for the stressful events followed by their stress intensity evaluation.

3.2 Measuring Drivers’ Internal Physiological Responses

The autonomic nervous system regulates physiological stress responses through the sympathetic
nervous system (SNS) and the parasympathetic nervous system (PNS). When the human body
needs to react quickly to eliminate a stressor, the SNS is activated. The PNS is activated when the
body needs to be in a relaxed state. These physiological stress responses can be measured through
different biosignals (biochemical or physiological). The level of adrenaline and cortisol in various
body fluids such as blood, saliva, or urine can be used as the two main biochemical measurements
to detect stress (Wijsman 2014), as stressful situations increase the level of these hormones in
the body. Although adrenaline is a well-known biomarker for stress, measuring the level of this
hormone to detect driver stress is not recommended because it is measured by invasive methods,
such as blood sampling. In contrast, cortisol levels can be determined from saliva, which does
not require invasive sampling methods. Other biosignals used to detect driver stress levels are
physiological data such as heart rate activity, blood pressure, electrodermal activity, respiration
response, muscle activation, skin temperature, and pupillary response.

3.2.1 Cortisol Level. The sympathetic nervous activity caused by driver stress can be evalu-
ated using salivary cortisol levels (Deguchi et al. 2006). In a study, salivary amylase activity was
employed to assess acute stress effects on vehicle drivers (Yamaguchi et al. 2006). In this study,
20 young female drivers were recruited, and each driver spent 21 minutes in a driving simulator.
During this time the participant’s salivary amylase activity was measured every 3 minutes. This
study demonstrates two points: first, the feasibility of measuring this biomarker noninvasively
during driving tasks, to facilitate monitoring of driver stress levels; second, the use of saliva as
a biomarker to obtain an objective ground truth for assessing driver stress, as an alternative to

ACM Computing Surveys, Vol. 51, No. 5, Article 88. Publication date: September 2018.



88:6 M. N. Rastgoo et al.

the current subjective ground-truth methods. This method is able to measure driver stress more
accurately while driving.

Measuring the cortisol hormone to evaluate stress for a long time has some limitations because
this hormone is largely influenced by the time of day rather than stress. It has been shown that a
person’s cortisol level is at its peak when the person is awake and decreases gradually during the
day (Chennaoui et al. 2016). Therefore, the time of day when sampling is done must be controlled
when assessing cortisol level.

3.2.2 Heart Activity. Driving in stressful situations activates the sympathetic part of the ANS,
which results in a sudden increase of heart activity and puts the driver’s body in the fight-or-flight
response mode against the stressor (Soman et al. 2013). This means that the heart pumps blood
through the body faster and so oxygen is delivered faster to the body’s organs to prepare the driver
to react. Among different indicators of heart rate activity, heart rate and heart rate variability have
been widely used in detection of driver stress levels. Generally, these two parameters can show
the fluctuation of the ANS, which directly affects heart activity (Camm et al. 1996), allowing the
physiological body response toward a stressful situation to be observed. Heart rate (HR) is defined
as the number of times the heart beats per minute, while heart rate variability (HRV) is defined as
the time fluctuations between sequences of successive heart beats. These parameters normally can
be extracted from electrocardiogram (Sörnmo and Laguna 2006) or photoplethysmogram (Elgendi
2012) signals. Electrocardiogram (ECG or EKG) signals present the heart’s electrical activity as it
fluctuates within time (Price 2010), while photoplethysmogram (PPG) signals are an indicator of
the blood flow rate that is controlled by the heart’s pumping action (Sahni 2012).

During stressful driving situations, HR and HRV signal patterns change due to the fluctuations
in ANS activities, which makes them good indicators of a driver’s stress (Munla et al. 2015). Stress
is directly related to HR, as stress increases the driver’s heart rate. Mean and standard devia-
tion of HR are two common statistical features used in detecting driver stress levels. HRV signals
are often analyzed in time and frequency domains to detect driver stress levels. In the time do-
main, HRV signals are indirectly related to driver stress (Eilebrecht et al. 2012; Miller and Boyle
2013). Mean normal-to-normal intervals (MNN), standard deviation of normal-to-normal inter-
vals (SDNN), square root of the mean squared difference of successive normal-to-normal intervals
(RMSSD), and number of pairs of successive normal-to-normal intervals that differ by more than
50ms (PNN50) have been used by several studies as HRV time-domain features. (See Table 1.) The
HRV time-domain features are influenced largely by momentary ANS activities; thus, HRV time-
domain analysis can be used to measure instantaneous driver stress responses (Lee et al. 2007).
In the frequency domain, high-frequency (HF) and low-frequency (LF) ranges between 0.2 and
0.4Hz, and 0.05 and 0.2Hz, respectively, are the most common power spectrum parameters used
for detecting driver stress levels. The ratio of power in these two frequency bands (LF/HF) can
be considered an indicator of sympathovagal balance (Montano et al. 1994), which has a direct
correlation with a driver’s stress and mental workload level (Healey and Picard 2005; Miller and
Boyle 2013; Heikoop et al. 2017). As a driver’s stress and mental workload levels increase, HF val-
ues decrease while LF values increase. In addition to HR and HRV signals, a driver’s beat-by-beat
mean blood pressure and normalized blood volume pulse have been shown to have a correlation
with the driver’s stress level (Yamakoshi et al. 2008). Total peripheral resistance is also shown as
a cardiovascular feature related to driver stress (Yamakoshi et al. 2008).

In order to classify drivers’ stress levels, several data analysis methods have been used by re-
searchers. Wang et al. (2013) monitored HRV signals to classify drivers’ stress into two levels using
a K-Nearest Neighbors (KNN) classifier and achieved an average recognition rate of 97.78% via five-
fold cross-validation. The HRV signal was divided into 5-minute intervals with 50% overlap and
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each interval was mapped to 56 features. In another study, several features were extracted from
physiological, physical, and contextual modalities and used to detect drivers’ stress (Rigas et al.
2011). Electrocardiogram signals, electrodermal activity, and respiration signals were collected as
physiological responses in the study, among which ECG features were shown to have the highest
correlation to drivers’ stress. The proposed model achieved 86% detection accuracy. Singh et al.
(2013) applied different artificial neural network architectures to classify drivers’ stress into three
levels. In the study, 39 features from different physiological signals (HRV, electrodermal activity,
respiration rate, and PPG) were extracted and then a subset of the features was selected using a
feature selection technique. The proposed model using a layer-recurrent neural network classifier
was found to be the optimal model, with a precision of 89.23%.

The features extracted from drivers’ HR and HRV signals have been shown to be affected in dif-
ferent ways by contextual parameters such as vehicle maneuvering, traffic volume, alerting events,
road direction (clockwise or counterclockwise), driving across various routes, driving tasks, and
drivers’ emotions and fatigue. The findings show changes in drivers’ HR signals during some driv-
ing tasks (Hartley et al. 1994; Liu et al. 2004). Some studies also show that HR value has an indirect
relationship to driving time and a direct relationship to vehicle maneuvering, traffic volume, and
road direction (Simonson et al. 1968; Platt 1970). Compared with HR, HRV signals (both in time
and frequency domains) retain their characteristics related to driver stress regardless of the direc-
tion of travel (Miller and Boyle 2013). However, HRV is shown to increase with driving time and
decrease after alerting events. Regarding drivers’ individual factors, both HRV and HR can react
to negative and positive driver emotions and also be affected by driver fatigue. Therefore, HR and
HRV responses toward stressful situations cannot be the same under different driving conditions.

3.2.3 Electrodermal Activity. Another reliable physiological signal to detect driver stress is elec-
trodermal activity (EDA), also called skin conductance response (SCR) or galvanic skin response
(GSR). A body’s physiological response to a stressful situation results in continuous variations in
the electrical activity of skin, which can be measured on the hand (palm area, first and middle
fingers) or on the foot (soles) by using EDA sensors. The correlation between EDA signal and dri-
vers’ stress levels has been investigated by several studies (Deng et al. 2013; Singh and Queyam
2013a). There are different statistical EDA features that have been commonly used to analyze dri-
ver stress, such as mean, standard deviation, mean amplitude, peak rise time, peak amplitude, first
absolute difference, and mean of the first difference (see Table 1). EDA response is characterized by
a tonic component and short-term phasic responses (Braithwaite et al. 2013). Tonic component or
skin conductance level (SCL) can reflect psycho-physical activation and varies between individuals
(Kappeler-Setz et al. 2013). The frequency range of this component is between 0 and 0.05Hz. The
average and variance level of the tonic component are two commonly used features in detecting
driver stress levels. Compared with SCL as an indicator of psycho-physical activation, the phasic
component or SCR can show the body’s response to environmental stimuli, such as stressful driv-
ing events. The frequency range of this component is between 0.05 and 1.5Hz. In order to detect
driver stress levels, different features such as latency of first SCR, average phasic activity, variance
of phasic signal, maximum phasic amplitude, amplitude-sum of SCRs, and phasic area under curve
have been extracted from SCR signals (Lanatà et al. 2015). (See Table 1.) Summary of the startle
magnitudes, duration and the area of SCR orienting responses, sum of durations, sum of magni-
tudes, sum of estimated areas, and frequency of occurrence are extracted from EDA features and
used to discriminate the drivers’ stress levels as well (Healey and Picard 2000).

There are several studies that have used EDA signals with other modalities to enhance the per-
formance of driver stress classification. In one of these studies, 12 features were extracted from
the physiological signals of 10 drivers, which include EDA, ECG, and respiration (Healey and
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Picard 2000). The best subset of the features was picked using a sequential forward floating selec-
tion (SFFS) algorithm and then the selected features were fed to a KNN classifier to classify four
stress levels. The model’s accuracy was 86%. Healey and Picard (2005) used EDA, ECG, respiration,
and electromyography (trapezius muscle) signals from three drivers to extract 22 features. Then,
a linear discriminant analysis (LDA) classifier was used to classify three levels (low, medium, and
high) of the drivers’ stress. They achieved 100%, 97.4%, and 94.7% classification accuracy for low,
high, and medium stress, respectively. When different physiological and physical responses are
used to detect three levels of drivers’ stress, a study (Lanatà et al. 2015) shows that the extracted
EDA features alone have a promising ability to classify the stress levels. All the above-mentioned
studies point out that EDA has a high correlation with drivers’ stress levels.

Although SCR response is one of the reliable indicators of driver stress, intersubject variability
between drivers can lead to fluctuations in the values of SCR features (Urbano et al. 2017). These
fluctuations could be the difference in the number of sweat glands on drivers’ palms or the differ-
ence in electrode positioning while drivers gripped the steering wheel (Healey and Picard 2005).
Combining EDA signals and other indicators of driver stress such as HR or HRV can make a better
model to cope with this issue (Rigas et al. 2008; Rigas et al. 2012).

3.2.4 Respiration Activity. Change in respiration activity is a physiological response to stress
and emotional state. The respiration system serves as a metabolic and homeostatic regulator of
depth and speed of breathing (Katsis et al. 2008). Stressors can increase respiration activity. The
respiration responses of drivers can be collected in different ways, including wearing belt sensors,
placing a thermistor into the nose and mouth, and using a flow meter (Wijsman 2014).

A group of statistical features—such as mean, standard variation, skewness, and kurtosis—is
extracted from respiratory signals to detect drivers’ stress levels (Lanatà et al. 2015). The result
shows that there is a significant correlation between these features and stress levels. Another
common feature in this domain is respiration rate (RSPR). This feature is the number of detected
peaks in the respiratory signal per minute where each of the peaks is related to a chest expansion
(Soman et al. 2013). A high correlation between this feature and drivers’ stress levels are reported
by Singh et al. (2013). In another study, RSPR was also extracted from 10 drivers’ respiratory signals
and then divided into high and low breathing rates (Soman et al. 2013). This study also reports
a direct relation between RSPR and stress condition. In the case of frequency domain features,
spectral power is shown as a good indicator of driver stress level detection (Deng et al. 2012).

The main limitation of using respiration signals for detecting drivers’ stress levels is the inter-
subject variability between drivers’ respiration responses. Drivers’ respiration responses to the
same stressor can vary based on the size of their chest cavity (Healey and Picard 2005).

3.2.5 Muscle Activation Electromyography. Muscular reactions caused by stressful driving sit-
uations can occur unconsciously even when no physical activity is required (Healey et al. 1999).
Stressful situations can affect this reaction by increasing muscle activity (Lundberg et al. 1994),
which can be measured using electromyography (EMG) signals. These signals are recorded from
the drivers’ shoulders (e.g., the trapezius muscle) or facial muscles (e.g., the masseter muscle) to
analyze their stress levels (Healey and Picard 2005; Katsis et al. 2008; Katsis et al. 2011; Zheng et al.
2015).

Statistical features such as mean, root-mean square (RMS), zero crossing rate (ZCR), and root-
mean quad (RMQ) are extracted from the EMG signals to detect drivers’ stress levels (Katsis et al.
2008; Soman et al. 2014; Zheng et al. 2015). (See Table 1.) Among these features, ZCR has been
found to be more correlated to drivers’ stress levels than other features, since high levels of driver
stress can increase muscle constriction, resulting in a high ZCR value (Soman et al. 2014).
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There are several studies that focused on the fusion of EMG with other physiological signals to
improve the system of detecting drivers’ stress levels. It has been shown that fusion of ECG with
EMG signals to detect two levels of drivers’ stress (low and high) is promising (Soman et al. 2014).
This fusion achieved 100% accuracy using a support vector machine (SVM) classifier. Katsis et al.
(2011) used several biosensors to collect racing drivers’ ECG, EDA, respiratory, and facial EMG
signals to classify four emotional states (low stress, euphoria, disappointment, and high stress).
In the study, two statistical features, mean and RMS, from 16 facial EMG channels, along with
other extracted features from ECG, EDA, and respiratory signals, were used to build two models.
The first model classified three emotional states—low stress, high stress, and valence (euphoria,
dysphoria)—and achieved 80.8% accuracy. The second model classified four emotional states—low
stress, high stress, euphoria, and disappointment—and achieved 71.9% accuracy.

3.2.6 Skin Temperature. Another physiological signal used to detect driver stress is skin tem-
perature (ST). In stressful driving situations, SNS activity causes peripheral vasoconstriction in the
body, thereby decreasing the driver’s skin temperature (Yamakoshi et al. 2007). Current methods
can provide a contactless and passive solution for monitoring driver skin temperature continu-
ously by using thermography sensors in the vehicle.

Nose, cheek, forehead, and jaw regions on the face, which contain abundant arterioles and arte-
riovenous anastomoses, are used as skin temperature features to monitor drivers’ stress and men-
tal workload (Yamakoshi et al. 2008). Yamakoshi et al. (2008) measured drivers’ skin temperature,
cardiovascular response, and contextual parameters to stressful driving situations. Temperature
data through the finger (Tsf), nose (Tsn), cheek (Tsch), jaw (Tsj), and forehead regions (Tsfh) are
collected. Two cardiovascular parameters, normalized pulse volume (NPV) and total peripheral
resistance (TPR), were also used to detect peripheral vasoconstriction. The result shows that a
gradual increase in a driver’s stress level can cause peripheral vasoconstriction and decrease Tsn
and Tsf values as two peripheral components of the face. Due to individual differences between
the drivers, Tsf values varied more than Tsn; therefore, Tsn is offered as a better indicator of dri-
vers’ stress. Tsn was shown to be influenced by some contextual parameters, such as changes of
ambient temperature, radiation temperature, relative humidity, and metabolic changes. Tsch, Tsfh,
and Tsj, as three truncal components of the face, were also shown to be entirely dependent on the
contextual parameters values rather than drivers’ stress. On this basis, the authors used differen-
tial temperatures between Tsn and Tsch, Tsfh, and Tsj to eliminate the influence of the contextual
parameters from Tsn. (See Table 1.) In another study (Shastri et al. 2008), the thermal signature of
drivers’ faces in the supraorbital region, which is immediately above the eye socket, was measured
to detect the mental workload of drivers. The results show that driving in stressful and distracting
situations, including texting and making phone calls, results in increased blood flow to the driver’s
supraorbital region, increasing the temperature of that region.

3.2.7 Pupillary Dilation. It has been shown that pupillary response is another promising phys-
iological signal for detecting driver stress (Pedrotti et al. 2014). The ANS continuously regulates
tuning of pupil size, which is known as pupillary dilation. The pupil is dilated (i.e., its diameter
increases) by SNS activity when the body is under stress. To this end, pupil diameter (PD) can be
a good indicator of drivers’ stress levels.

Pedrotti et al. (2014) employed a classifier based on the neural network and wavelet transform
to detect the stress levels of drivers using PD, EDA, and a self-assessment questionnaire. They
reduced the sample rate of PD signals from 50Hz to 1.5625Hz, and then applied a Haar wavelet with
five decomposition levels to the PD signals to extract meaningful information from low-frequency
bands. The result of the study showed that PD could classify drivers’ stress levels significantly
(79% accuracy) while the performance of EDA was poor.
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3.2.8 Summary. Among the physiological signals and related features used in the driver stress
level detection domain, presented in Sections 3.2.2 to 3.2.7 and in Table 1, several studies showed
a strong correlation between ECG, EDA, and respiration signals and driver stress levels. Although
the physiological signals are considered reliable indicators for detecting driver stress, obtaining
the signals involves obtrusive methods. In real-life driving situations, wearing these sensors con-
tinuously may not be practicable.

3.3 Measuring Drivers’ External Physical Responses

In addition to involuntary physiological responses to stress, a driver may have several external
and voluntary reactions known as physical or behavioral responses. Physical responses are used
to detect driver distraction (Li and Busso 2013; Li et al. 2013), inattention (Bergasa et al. 2008), fa-
tigue (Sahayadhas et al. 2012), mental workload (Marquart et al. 2015), and stress (Fernandez and
Picard 2003). The SNS regulates physical responses as conscious and voluntary actions that can
be observed directly through the movement of the skeleton, muscles, and tissues of the body, in-
cluding limbs, fingers, toes, neck, and face, and heard through vocalization. Among these physical
responses, data recorded from drivers’ faces and speech are used to analyze their stress.

In addition, monitoring dynamic data generated from the vehicle, such as its average speed, is
considered a way to indirectly measure drivers’ physical responses to stressful driving situations.

3.3.1 Facial Expression. Some studies have focused on analyzing stress levels of drivers using
facial expression response (FER) (Rimini-Doering et al. 2001; Paschero et al. 2012). Negative emo-
tions such as anger and disgust, which are caused by driver stress, were recognized by FER (Gao
et al. 2014). They used a near-infrared camera to monitor drivers’ faces and extracted 49 facial
landmarks from each frame of the video using a face tracker. Then, holistic and local texture fea-
tures from each frame were extracted to recognize drivers’ anger and disgust. They achieved 85%
accuracy among 49 subjects using an SVM classifier in a one-versus-all manner.

3.3.2 Vocalization. Drivers’ stress (Bořil et al. 2012), behavior (Angkititrakul et al. 2007), dis-
traction (Boril et al. 2010), and mental workload (Chen et al. 2012) may change human vocal pro-
duction. A voice communication system, which provides an unobtrusive way to track drivers’
vocalizations for the purpose of stress analysis, is recommended so that drivers can communicate
verbally while maintaining their visual attention on the road (Carter and Graham 2000).

Stress levels of drivers were detected by using their voice waveforms (Fernandez and Picard
2003). Vocalizations of drivers were recorded while they were engaging in several mental tasks
such as adding up two numbers. The Teager energy operator and multiresolution analysis via
wavelet transforms techniques were used to extract subband energy from each voice waveform
frame. Then, cepstral coefficients using the subband energy were calculated for each frame. The
classification step, in this study, involved two approaches. In the first approach, the features within
vocalizations were used to classify four drivers’ stress levels using five different hidden Markov
models classifiers. In the second approach, the features across vocalizations were used to classify
four drivers’ stress levels using SVM and artificial neural network (ANN) classifiers. The highest
accuracy obtained among the seven classifiers was 51.22%. Some studies have investigated stress
levels of a group of drivers through voice analysis while they were engaging in secondary activities
such as doing mental tasks, operating the radio, and talking on a cell phone (Bořil et al. 2012).

3.3.3 Vehicle Dynamic Data. The effects of stress on a driver can be measured indirectly
through dynamic data obtained from the vehicle. This data can be collected through different
systems such as CAN-Bus (Bořil et al. 2012; Rigas et al. 2012; Rodrigues et al. 2015), GPS tracking
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(Rigas et al. 2012), driving simulators (Cantin et al. 2009; Tango and Botta 2013), mobile phones
(Tchankue et al. 2013), and orientation sensors (Lee et al. 2017).

One study used PPG signals and steering-wheel motion data—captured using a 9-degree-of-
freedom orientation sensor to detect drivers’ stress (Lee et al. 2017). In the study, three stress
detection models were built using SVM classifiers with different kernel functions. The proposed
model using the SVM-RBF kernel function was found to be the optimal, with an accuracy of 95.38%.
Lanata et al. (2015) proposed a model based on the fusion of vehicle dynamic data (steering wheel,
car velocity, and driver response time) with physiological responses (EDA, HRV, and respiration)
to detect three stress levels of drivers. This study was conducted in a driving simulator and con-
tained three driving sessions simulating different conditions, namely, relaxed, stress level 1, and
stress level 2. Statistically significant differences in both physiological responses and vehicle dy-
namic data across the experiments were observed in the study. Previous findings in the literature
(Rigas et al. 2012) also confirm that vehicle dynamic data can complement data from drivers’ phys-
iological responses in building a more accurate stress model. Vehicle dynamic data (steering wheel
and speed) were used to detect the stressed or neutral state of drivers while talking on a cell phone
(Bořil et al. 2012). Standard deviation and energies of high-frequency components of wavelet de-
composition from the steering wheel and speed data were extracted in the study. The proposed
model shows that the fusion of steering wheel and speed data with vocalization data in detecting
the stress level of drivers is promising (achieved 88.2% accuracy).

3.3.4 Summary. The physical response data used to detect driver stress, presented in Sec-
tions 3.3.1 to 3.3.3 and in Table 2, show that although physical responses are measured using
contactless methods, which are recommended over intrusive methods, they are used far less than
physiological signals in this domain and need to be investigated more.

3.4 Contextual Data

Any stressful driving situation contains contextual parameters and stressors that induce a certain
level of stress in the driver. Contextual parameters that can affect drivers’ stress and performance
are known as vehicle crash factors (Hennessy et al. 2000; Hill and Boyle 2007; Tchankue et al.
2013). Measuring contextual parameters along with the other stress responses can be beneficial
for building a more accurate driver stress level detection system. Generally, contextual parameters
can be divided into two categories: internal and external.

3.4.1 Internal Parameters. A driver’s internal or individual parameters that can easily affect
stress levels are important contextual data. A driver’s mood can influence his or her brain’s anal-
ysis of driving stressors, so stress is affected by whether that mood is positive or negative. Some
studies demonstrated that negative moods, like aggression or frustration, can increase the risk of
vehicle crashes (Hemenway and Solnick 1993; Underwood et al. 1999; Deffenbacher et al. 2003).
Other studies showed that driver mood can be affected by different factors, such as driving at
a certain time of a day, drinking coffee before driving (Singh et al. 2013), having a stressful day
at the office (Matthews et al. 1998; Hennessy et al. 2000), and continually experiencing stressful
events while driving (Hennessy et al. 2000). Another individual parameter, which has a high im-
pact on perceived level of stress, is driver personality. Eysenck’s personality questionnaire (EPQ)
defines neuroticism/stability, psychoticism/sociability, and extraversion/intraversion as three ma-
jor personality dimensions (Eysenck and Eysenck 1975). Neuroticism can increase driver stress
level directly (Matthews et al. 1991) in that the perceived stress level by drivers who score high on
neuroticism, in any stressful driving situation, may be higher than average. Psychoticism is closely
linked to lacking in empathy (Eysenck and Eysenck 1975), so drivers who score high on psychoti-
cism have a low susceptibility to stress (Matthews et al. 1991; Furnham and Saipe 1993). The level
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of perceived stress by this group of drivers, in any driving stressful situation, may be lower than
average, which may explain their apparent tendency to exhibit risky driving behaviors (Sümer
2003). The relationship between driver stress and extraversion/intraversion is strongly dependent
on the kind of driving situation that induces stress (Matthews et al. 1991); thus, this personality
dimension cannot be considered as a general parameter that affects drivers’ stress levels. Other in-
dividual factors such as age, gender, and crash history can also affect driver stress (Hill and Boyle
2007).

3.4.2 Environmental Parameters. Driver stress is also affected by environmental parameters
such as driving in heavy traffic, heavy rain, icy roads, nighttime driving, and being trapped be-
hind a slow-moving vehicle (Hill et al. 2007; Rigas et al. 2011), as well as family- and work-related
issues (Gulian et al. 1989; Novaco et al. 1990). These environmental parameters can be divided
into four groups of data: (1) weather-related conditions, (2) visibility-related conditions, (3) driver-
environment interactions (Hill and Boyle 2007), and (4) driving routes (Hennessy et al. 2000). (See
Table 3.) Hill et al. (2007) used environmental parameters related to visibility-related conditions,
weather-related conditions, and driver-environment interaction, along with internal parameters,
to evaluate drivers’ stress. The results show that the extracted parameters from the weather-related
conditions and driver-environment interaction groups are more correlated to high levels of drivers’
stress compared to the visibility-related conditions.

3.4.3 Summary. The studies of contextual data related to driver stress, presented in Sec-
tions 3.4.1 and 3.4.2 and in Table 3, show that collecting contextual data can be done in a low-cost
and unobtrusive way with no extra expensive equipment, and that such data can provide useful
information about driver stress levels. Incorporating this data into a driver stress detection system
is recommended since it can help improve the performance of the system.

4 FRAMEWORK APPROACH

The focus of this article is to review state-of-the-art techniques and systems to detect driver stress
levels. To structure this review, a general framework for an automatic and continuous driver stress-
level detection model is presented in Figure 1. The best modalities for data collection (signal ac-
quisition) are reviewed in Section 3. Data analysis is a key approach for evaluating stress after col-
lecting data from different modalities. Data analysis contains preprocessing, feature generation,
feature selection, feature reduction, and machine-learning steps. This process helps to identify
the relationship between stress and data modalities. Stress evaluation needs to take advantage of
each of these steps to make the stress recognition process partially or fully automated, and also to
explore the hidden related patterns within a large amount of data and implicit correlations. It is
therefore of great interest to use different methods and investigate their roles in this domain to get
a desirable outcome. The reviewed studies in this section are reported in more detail in Table 6.

4.1 Preprocessing

The first critical step in modeling driver stress levels is preprocessing and noise reduction of input
data. Data can easily become corrupted by instrumentation and magnetic noise, body movement,
and poor electrode skin contact. Preprocessing techniques remove all unwanted artifacts and pro-
vide purer data for the feature extraction step. This issue has been addressed by several studies in
the domain of driver stress-level detection.

Baseline wander, muscle noise, and electrode misplacement are the most frequent sources of
noise in ECG data, leading to detection of false-positive stressful events. A low-pass Butterworth
filter can be used to remove baseline wander and muscle noise in drivers’ ECG signals (Rigas et al.
2011). Extremely noisy blocks of bus drivers’ ECG signals were detected and removed using a
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Table 1. Physiological Signals and Related Features Used to Analyze Driver Stress

Signal Reference Feature

ECG Healey and Picard (2000), Healey and Picard
(2005), Yamakoshi et al. (2007), Katsis et al. (2008),
Rigas et al. (2008), Yamakoshi et al. (2008), Akbas
(2011), Rigas et al. (2011), Deng et al. (2013),
Wang et al. (2013), Singh et al. (2013), Munla et al.
(2015), Rodrigues et al. (2015), Lanatà et al. (2015),
and Heikoop et al. (2017)

� Heart rate (HR): mean, standard deviation (SD)
� PPG: mean, variance, SD, signal energy, time duration,

bandwidth, time-bandwidth product dimensionality, cardiac
output, PPG instantaneous, pulse height, PPG rise, PPG fall,
PPG cardiac, NPV

� Heart rate variability (HRV) (time domain): mean of the
first difference (MFD), mean of R-to-R intervals (MRR),
SDRR, MNN, SDNN, RMSSD, pNN20, pNN50, NN50,
triangular interpolation of the NN interval histogram
(TINN), heart rate variation from baseline

� HRV (frequency domain): LF/HF ratio, HF, LF, very low
frequency (VLF), total power (TP)

� HRV (nonlinear analysis): sample entropy, detrended
fluctuation analysis (DFA), DFA-α 1 and DFA-α 2, SD1, SD2

� HRV (time-frequency domain analysis): VLF, LF, and
HF by using wavelet and short time Fourier transform
(STFT) analysis

EDA Avcı Akbaş and Yüksel (n.d.), Healey and Picard
(2000), Healey and Picard (2005), Rigas et al.
(2008), Katsis et al. (2008), Akbas (2011), Rigas
et al. (2011, 2012), Deng et al. (2013), Singh and
Queyam (2013b), Singh et al. (2013), Lanatà et al.
(2015), and Ollander et al. (2017)

� Mean, variance, SD, mean amplitude, peak
rise time, peak amplitude, half-recovery, peak energy, rise
rate average, decay rate average, percentage decay, number of
peaks, rate of SCR, first absolute difference (FAD), MFD, mean
rise duration, number of SCR, latitude, the amplitude sum of
SCRs (AmpSum), the phasic area under curve, the max
phasic amplitude, mean of SCR, variance of SCR, mean of
SCL, variance of SCL, number of the nonspecific response,
frequency, magnitude, duration, area of orienting
responses, sum of frequency of occurrence (SF), sum of
durations, sum of magnitudes (SM), sum of the estimated
areas (SA), mean of positive derivative, mean of absolute
derivative, proportion of positive samples in derivative,
number of local maxima

Respiratory
Response

Healey and Picard (2000), Katsis et al. (2008),
Katsis et al. (2011), Rigas et al. (2011), Akbas
(2011), Deng et al. (2012), Rigas et al. (2012),
Lanatà et al. (2015), and Ollander et al. (2017)

� Time Domain: mean of RESP, SD of RESP, average number
of contractions/minute, RSPR, HR/RESP ratio, dominant
respiration frequency, PPG respiratory rate (PPGRSP); max,
min, and mean breathing amplitude; standard error of the
mean (SEM), difference between max and min value of
breathing amplitude, skewness, kurtosis, entropy of the
resulting spectrum, MFD, mean of the second difference
(MSD); standard deviation of the first difference (SDFD),
standard deviation of the second difference (SDSD); second
difference breathing amplitude (SDBA), maximal
respiration–mean of respiration (range)

� Frequency Domain: RESP frequency (0–0.1), RESP
frequency (0.1–0.2), RESP frequency (0.2–0.3), RESP
frequency (0.3–0.4)

EMG Katsis et al. (2008), Soman et al. (2014), and Zheng
et al. (2015)

� Mean, RMS, ZCR, RMQ

ST Yamakoshi et al. (2007), Shastri et al. (2008), and
Yamakoshi et al. (2008)

� Finger temperature (Tsf), nose temperature (Tsn), cheek
temperature (Tsch), jaw temperature (Tsj), forehead
temperature (Tsfh)

Blood Pressure Yamakoshi et al. (2008) � Systolic blood pressure, mean blood pressure, diastolic blood
pressure

Pupil Dilation Pedrotti et al. (2014) � First different pupil diameter, wavelet decomposition detail
for pupil diameter

standard deviation filter method (Rodrigues et al. 2015). For HRV signals, R peak detection algo-
rithms may make mistakes in calculating interbeat (RR) intervals from ECG signals. Lanatà et al.
(2015) applied an adopted piecewise cubic spline interpolation method to correct these technical
artifacts in RR intervals and then manually checked and removed physiological artifacts, which
include ectopic beats and arrhythmic events, in RR intervals.

In order to compensate for any artifacts in drivers’ EDA signals generated by baseline wander,
sensor, and body movement, different filter methods have been used in the literature. A smooth-
ing filter (moving average) was used to find high-frequency noises in drivers’ EDA signals (Rigas

ACM Computing Surveys, Vol. 51, No. 5, Article 88. Publication date: September 2018.



88:14 M. N. Rastgoo et al.

Table 2. Physical Signals and Related Features Used to Analyze Driver Stress

Signal Reference Feature

Face Gao et al. (2014)
Facial Expression (FER): local DCT feature,
local descriptors.

Vehicle
Dynamic Data

Bořil et al. (2012), Rigas
et al. (2012), Lanatà
et al. (2015), and Lee
et al. (2017)

� Steering-wheel angle (SWA): wavelet
decomposition energy for SWA; standard
deviation of SWA (SDSWA), SDSWA rate,
sample entropy; area under the SWA curve;
number of sign changes of SW; mean and SD of
SWA differences between two consecutive
skids; reaction time; SWA first peak; SWA
second peak; first response time of SWA, first
ability time of SWA

� Steering wheel motion (SWM) captured by

orientation sensor (Y-axis): mean, SD,
variance, average squared power, median, root
mean square, range difference max and mean,
sum power spectrum energy (0–8Hz), mean
power frequency (0–8Hz), Shannon entropy
energy (0–8Hz), peak power frequency
(0–8Hz), median power frequency (0–8Hz),
percentage of point outside the control eclipse,
weighting function outside the control eclipse

� Speed: wavelet decomposition energy, sample
entropy, SD, average

� Deceleration: average
� Heading Change: average magnitude in

heading changes
� Throttle: average
� Engine performance: Engine’s rounds per

minute (RPM)
� Overtaking: average

vocalization

Fernandez and Picard
(2003), Boril et al.
(2010), and Bořil et al.
(2012)

Mel frequency cepstral coefficients (MFCC),
perceptual linear prediction cepstral
coefficients (PLPCC), mean and SD center
bandwidths and frequencies of the first four
formants (F1, F2, F3, F4) extracted from voiced
speech segments

et al. 2008). These noises were caused by the movements of the EDA sensors. In another study,
a Butterworth filter (low-pass filter 1Hz and high-pass filter 0.1Hz) was used to remove baseline
wander in drivers’ EDA signals (Rigas et al. 2011).

Generally, drivers’ respiration signals are observed to be less noisy compared with other physio-
logical signals. Sudden body movement is the main source of noise in this signal. A moving-average
filter and finite impulse response filter (10th-order low-pass) were applied sequentially to drivers’
respiration signals to detrend the baseline and remove noises caused by body movements from
each of the signals (Lanatà et al. 2015).
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Table 3. Contextual Data and Related Features Used to Analyze Driver Stress

Context Type Reference Context Name
Data Collection

Method

Internal/individual

Matthews et al.
(1991), Hennessy
et al. (2000), Hill and
Boyle (2007), and
Cantin et al. (2009)

Personality traits, mood, gender, age, gender, number of
crashes, commuting, alcohol consumption per week,
driving behavior history, years driving experience

Questionnaire

External/environmental

Novaco et al. (1990),
Hill and Boyle
(2007), Rigas et al.
(2011), and Miller
and Boyle (2013)

� Route data: direction of travel, driving on mountain
roads

� Weather-related conditions: heavy rain, no rain, rain,
snow, cold weather, icy and slippery roads

� Visibility-related conditions: nighttime driving, road
visibility, driving behind large trucks

� Driver-environment interactions: braking due to
slower drivers, drivers’ work-related problems, driver’s
family disturbances, traffic density

Questionnaire,
mobile GPS, vehicle
GPS, forward-
looking camera,
CAN-bus system

Fig. 1. Driver stress-level detection framework.

Motion artifact in drivers’ PPG signals were filtered by applying a one-dimensional median filter
with an order of four samples (Singh et al. 2013). Next, the lost signal peaks were reconstructed
using a cross-correlation detection method. The authors detrended the reconstructed PPG signal
to remove any baseline drifts from the signal as well. In this study, PPG signal spikes and impulse
noises were filtered by applying another one-dimensional median filter of size 3.

ACM Computing Surveys, Vol. 51, No. 5, Article 88. Publication date: September 2018.



88:16 M. N. Rastgoo et al.

In another study, body movement noises in drivers’ facial EMG signals were removed by using
a Butterworth low-pass filter (500Hz) (Katsis et al. 2008). Pose variation as a source of noise in
drivers’ facial expression data was removed using an adapted least square method (Gao et al. 2014).
A fast Fourier transformation technique, adapted to a based noise cleaning approach, was used to
remove substantial noise in the supraorbital region from drivers’ temperature signals (Shastri et al.
2008). Bořil et al. (2012) used a full-wave spectral subtraction method to reduce noise in drivers’
vocalization signals. In addition, other studies used KNN algorithms to correct missing data (Rigas
et al. 2011) and normalization techniques to remove the role of intersubject variability (Singh et al.
2013; Rodrigues et al. 2015; Lanatà et al. 2015).

4.2 Feature Extraction

Feature extraction aims to decrease noise and redundancy from input data and operate on the
significant information of the data. Several techniques have been employed to extract relevant
features from the time, frequency, and time-frequency domains of primary nonstationary data to
indicate driver stress levels. The features from different modalities (physiological, physical, and
contextual data) extracted to analyze driver stress are reviewed in Tables 1, 2, and 3.

The extracted features from the physiological signals, reviewed in the previous section, are sum-
marized in Table 1. Most of the physiological features were extracted from time and frequency
domains. Further analyses (nonlinear and time-frequency) were also applied to extract more com-
plicated features from the ECG signal to detect drivers’ stress.

Table 2 sets out the features extracted from the physical signals reviewed in Section 3.3. In
this table, most of the vocalization features were extracted from time-frequency and frequency
domains, while the extracted features from vehicle dynamic data are from time, nonlinear, and
time-frequency analyses. The features extracted from contextual data (both individual and envi-
ronmental conditions) are presented in Table 3.

To investigate the general quality features for driver stress recognition based on real-time and
simulated driving scenarios, and which features are repeated more frequently or performed more
successfully in driver stress classification, we summarized the most widely used data and their
commonly extracted features in this domain. (See Table 4.) Based on the literature, among the
physiological signals, ECG, EDA, respiration, and EMG signals show the most remarkable data,
and their correlated features are presented in the table. It has been confirmed that vehicle dynamic
data can complement physiological responses in building a more reliable and accurate stress model.
The common extracted features from this data are from vehicle steering-wheel angle, speed, de-
celeration, heading change, throttle, and engine performance data. Among the contextual param-
eters, the features extracted from individual parameters, weather-related conditions, and driver-
environment interactions are shown to be more correlated to driver stress levels (Hill et al. 2007;
Rigas et al. 2011).

4.3 Feature Selection

Increasing the number of extracted features causes high computational costs and also introduces
unnecessary noise, which reduces the accuracy of classification algorithms (Kira and Rendell 1992).
A feature space with high dimensions impedes target classification learning. Feature selection
methods help to reduce redundant features and negative effects of high dimensionality.

Different feature selection techniques search for the best subset of features based on evaluation
functions to enhance overall classifier performance. Generally these methods are divided into four
groups, namely, filter, wrapper, embedded (Kudo and Sklansky 2000; Alba et al. 2007; Nakisa et al.
2017), and hybrid methods (Min and Fangfang 2010; Wang and Liu 2016). In the domain of driver
stress detection, these methods are employed in some studies to improve performance.
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Table 4. The Most Widely Used Data and Their Commonly Extracted Features

to Build Driver Stress Recognition Model

Data
Experimental

Setting
Features

ECG

Simulator
� Mean, SD, SDNN, RMSSD, pNN50, TINN, MRR,

SD of RR, LF/HF ratio, LF, VLF

Real Time
� Mean, SD, MNN, SDNN, RMSSD, pNN20, pNN50,

NN50, MFD, MRR, LF/HF ratio, LF, VLF, HF, TP

EDA

Simulator
� Mean, FAD, mean of SCR, variance of SCR,

AmpSum

Real Time

� Mean, mean amplitude, peak rise time, peak
amplitude, half-recovery, peak energy, rise rate
average, decay rate average, percentage decay,
number of peaks, rate of SCR, FAD, MFD,
frequency, magnitude, duration, area of orienting
responses, SF, sum of duration, SM, mean of
positive derivative, mean of absolute derivative,
proportion of positive samples in derivative,
number of local maxima

Respiration

Simulator

� Mean of RESP, SEM, MFD, MSD, SDFD, SDBA,
difference between max and min value of
breathing amplitude, kurtosis, RESP frequency
(0–0.1), RESP frequency (0.2–0.3), RESP frequency
(0.3–0.4)

Real Time

� Mean of RESP, SD of RESP, RSPR, HR/RESP ratio,
PPGRSP; max, min, and mean breathing
amplitude, MFD, maximal respiration–mean of
respiration (range), RESP frequency (0–0.1), RESP
frequency (0.1–0.2)

Vehicle

Dynamic Data

Simulator

• Steering-wheel angle (SWA): area under the SWA
curve; number of sign changes of SW; Mean and
SD of SWA differences between two consecutive
skids; reaction time; SWA first peak; SWA second
peak; first response time of SWA, first ability time
of SWA

Real Time
• Average of vehicle speed, average of vehicle

deceleration, average magnitude in vehicle
heading changes, average of throttle, RPM

Contextual

data

Simulator
• Age, years driving experience, commuting, alcohol

consumption per week

Real Time

• Age, gender, number of crashes, weather condition
(no rain, rain, heavy rain), snow, cold weather, icy
and slippery roads, braking due to slower drivers,
traffic density
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4.3.1 Filter Methods. Filter methods use ranking techniques—which are used for their simplic-
ity and good success in different applications—to order the features. Ranking techniques score
each feature based on its relevance to an outcome variable and use a threshold to remove the
features below the threshold. Several studies have applied filtering methods to explore the fea-
tures most relevant to different levels of drivers’ stress. Deng et al. (2013) extracted 22 features
from drivers’ EDA, EMG, respiration, and HR signals and then used a filtering method, which first
measured the efficiency of the features separately and then calculated diversity among the fea-
tures. The feature sets selected by this method were then combined using a combinatorial fusion
method to detect three stress levels of drivers. The results show that the proposed methods in-
crease the detection rate. In another study, difference in the area under curve (DAUC) was used
as a feature selection method to rank 22 features extracted from drivers’ EDA, HRV, respiration,
head movement, weather, traffic, and visibility condition data (Rigas et al. 2011) and evaluate the
discrimination ability of the features between two stress classes (normal/stressed). For each of the
class labels, the DAUC values of the features were measured and then averaged, and these aver-
age values were sorted to obtain a ranking list for the features. Furthermore, some studies (Singh
and Queyam 2013a, 2013b) used the Pearson product-moment correlation coefficient method to
remove redundant extracted features. Lanatà et al. (2015) extracted 43 features from EDA, HRV,
respiration, steering-wheel angle, car velocity, and drivers’ response time signals, and then used a
Friedman test followed by a post hoc test (Bonferroni adjustment) to find the significant statistical
features (p < 0.05). The test selected 16 features from all the extracted features and put them in a
group (Group β). Another feature group (Group α ) contained all of the 43 features extracted from
HRV, EDA, respiration (RSP) signals, and the vehicle dynamic data, while a third feature group
(Group γ ) contained all features extracted from the EDA signals. The features of Groups α , β , and
γ were used separately to detect drivers’ stress levels. The best stress model was built by using the
selected features of group β , which had an accuracy greater than 90%. Ollander et al. (2017) used
four different filter methods—Pearson’s linear correlation coefficient, Spearman’s rank correlation,
Fisher score, and receiver operating characteristic—to score 14 extracted features from ECG, EDA,
respiration, and EMG signals. Then the mean value of all ranks for each feature was calculated to
distinguish two groups of driver states: rest versus stress, and low stress versus high stress. Based
on the mean value, EDA and ECG features are shown to be more correlated to classifying rest
from stress states, while EDA and respiration features can distinguish low and high stress more
accurately.

4.3.2 Wrapper Methods. Wrapper methods find heuristically suboptimal feature subsets by ap-
plying search algorithms. SFFS is a wrapper method used in the literature that iteratively finds the
near-optimal subset of the features. This method first starts with a null subset and, based on defined
criteria, evaluates the features, and then adds the features that satisfy the criteria to the subset.
The algorithm is designed to modify the criteria if some features are excluded. In this case, based
on the criteria, the features in the subset will be ordered and the worst feature is removed from the
subset. By using this dynamic process, increasing and decreasing the features in the subset, the
SFFS method gradually reaches the near-optimal feature set. Healey and Picard (2000) applied SFFS
on 11 features that were extracted from drivers’ ECG, EDA, and respiration signals. Seven features
were selected by SFFS and then fed to a KNN classifier. The recognition rate of the proposed model
was reported as 88.6%. Ollander et al. (2017) used an exhaustive feature selection method to find
the best subset of features from each set of ECG, EDA, respiration, and EMG signals. Next, to find
the optimal signal combination, an exhaustive search method was applied on the selected features
from the signals. The result indicated that the combination of ECG, EDA, and respiration signals
to distinguish drivers’ rest from stress has the optimal performance (accuracy: 87.3% ± 2.8) among
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different signal combinations. In another study, SFFS was applied on 20 features extracted from
drivers’ PPG signals and steering-wheel motion data (Lee et al. 2017). The features were separately
fed to an SVM-Gaussian kernel function classifier to evaluate their performance. Using the SFFS
method, the top eight of 20 features were selected as the optimal subset, with accuracy over 95%,
to assess drivers’ stress. The result indicates that among the eight selected features, frequency-
domain features are more correlated to drivers’ stress than time-domain features.

4.3.3 Embedded Methods. Embedded methods seek to decrease the computation time for train-
ing different subsets computed in the wrapper methods (Chandrashekar and Sahin 2014). Wang
et al. (2013) applied a feature-based transformation recognition technique, which consists of fea-
ture extraction, selection, and reduction steps. They applied kernel-based class separability (KBCS)
as a feature selection method, and PCA and LDA as feature reduction methods, to select the most
relevant and important drivers’ ECG features, and then a KNN classifier was used to build a stress
model. The proposed model shows an acceptable performance compared to the same studies that
used multiple signals and features.

4.3.4 Hybrid Methods. Hybrid methods try to combine filter and wrapper methods to increase
the efficiency and accuracy of feature selection. The hybrid method is used in a driver stress level
detection model to enhance the performance of the model (Singh et al. 2013). The filter method was
a combination of entropy and variance techniques, whereas the wrapper method was an integra-
tion of two sequential feature selection techniques, namely, sequential backward selection (SBS)
and sequential forward selection (SFS). First, the filter selection techniques were applied separately
to find a relevant subset of the features. Next, the results were subjected to bitwise conjunction
(“ANDed”) to provide a new subset of the features. In the next phase, applying the wrapper method,
the SBS and SFS techniques selected a number of features together. Finally, the results from both
techniques were compared and 27 features were selected. In addition to this result, they applied an
ad hoc feature mask to ensure that no significant clinical features were lost, and the results were
subjected to bitwise disjunction (“ORed”), providing 30 features.

4.4 Machine-Learning Approaches

Machine-learning approaches are employed to build a model that can detect or predict the stress
levels of drivers (supervised learning) or cluster them (unsupervised learning). These methods try
to explore the patterns most related to drivers’ stress levels. The classifiers used in this domain
range from linear classifiers, such as linear mixed model and linear SVM; to nonlinear classifiers,
such as ANN and SVM with polynomial and Gaussian kernels; to probabilistic classifiers, such as
naïve Bayes classifier (NBC). The most common and important classification techniques used for
driver stress level detection are tabulated in Table 5.

4.4.1 Artificial Neural Network. An ANN simulates brain function through mathematical func-
tions (Fyfe 2005) and aims to solve machine-learning problems by combining a large amount of
processing elements (neurons) that are highly interconnected and work together (Huang et al.
2006). Generally, an ANN consists of three types of artificial neurons—input, hidden, and output
neurons—which are organized in layers. Each neuron is connected to all the neurons in its layer
and a value (weight) is assigned to the connection between them. The neurons also send an ac-
tivation value to each of the neurons in the next layer. This value is measured based on their
output value and the weight between them and their connected neuron in the next layer. There-
fore, the connection between the neurons in an ANN can be explained as follows: (1) input values
are assigned to the input neurons; (2) in the hidden layers, each neuron sums the received activa-
tion values from its connected neurons and then determines its output value by using a transfer
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function; (3) a similar process is done in the output layer to generate the output values of the neu-
ral network. An ANN classifier was used to build a personal/general driver stress-level detection
model through physiological signals. A four-way binary neural network classifier was used by
Pedrotti et al. (2014) to classify four stress levels of drivers. Each of the binary neural networks
contained two hidden layers and discriminated one of the stress levels from the rest. In the test
phase, new samples were scored for each of the stress levels by using the trained classifiers. Finally,
the stress levels of the test samples were determined based on their highest score. The precision
of this method was reported as 79.2%.

4.4.2 Layer Recurrent Neural Network. LRNNs have a similar mechanism to feed-forward neu-
ral networks, but they have feedback connections to capture dynamic temporal patterns (Medsker
and Jain 1999). In recurrent neural networks, inputs are dependent on each other and each output
is the function of its corresponding inputs and previous states (Liu and Wang 2008). LRNNs have
internal feedback loops in each hidden neuron, which allows them to store the previous states.
In this process, the output of each hidden neuron is stored in a context unit, then fed to the hid-
den neuron after a predetermined delay. Based on the latency in drivers’ responses to stressful
driving situations, an LRNN can handle these delays by using its context units. To this end, this
dynamic neural network and six different static neural networks were used separately to detect
three stress levels of 19 drivers from their physiological data (Singh et al. 2013). The performances
of seven classifiers were compared based on a proposed parameter called a desirability measure.
This parameter was calculated based on the precision, sensitivity, specificity, F-measure, and G-
mean values to evaluate the performance and consistency degree of each classifier. The result
showed that LRNN has the best performance among all machine-learning approaches.

4.4.3 Support Vector Machines. Another classification method is SVM (Hsu et al. 2003), which
has been used for high-dimensional problems. This algorithm is a discriminative classifier that
iteratively searches to find the optimal hyperplanes to separate training samples accurately. The
selection of these hyperplanes is based on two criteria: first, the hyperplanes must separate train-
ing samples accurately, and second, there must be a greatest possible distance between support
vector points and the hyperplanes. SVM deals with nonlinear problems by using kernel functions
that map nonlinear separable data into high-dimensional space, then finds the optimal hyper-
planes. SVM classifiers, with three different kernel functions—linear, polynomial, and Gaussian—
were used to detect stress of 28 drivers using their PPG signals and steering-wheel motion data
(Lee et al. 2017). The highest accuracy (95.38%) was obtained using an SVM-Gaussian kernel func-
tion classifier. The SVM-Gaussian kernel function classifier was used to distinguish low and high
stress levels of 14 drivers using their ECG and EMG signals (Soman et al. 2014). The sensitivity,
accuracy, classification rate, and specificity of this model were reported as 100%. Katsis et al. (2008)
collected ECG, EMG, EDA, and RSP signals of 10 drivers and classified them into four stress levels
using an SVM classifier (79.3% accuracy).

4.4.4 Bayesian Networks. A Bayesian network (BN) is designed as a probabilistic model that
allows representation and reasoning with uncertain data (Friedman et al. 1997). It is a graphical
model that contains nodes and links. Each node represents a feature and has a set of possible
values. The link between two nodes represents a direct dependency between their features, which
are quantified by conditional probability. A naïve Bayes classifier (NBC) is a special variant of BN
in which class nodes have no parent and there is no link between nodes related to features, and
the feature nodes just link to the class nodes. An NBC offers a competitive performance against
other sophisticated classification methods such as decision trees and ANN (John and Langley 1995;
Theodoridis and Koutroumbas 2006). Furthermore, this method can handle high-dimensional data
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easily, due to its short training time (Hand et al. 2001). Rigas et al. (2012) collected ECG, EDA, and
RSP signals along with some vehicle dynamic data from 13 drivers, and then built two different
BN models to detect drivers’ stress. The first model (BN1) used the physiological signals to detect
drivers’ stress and achieved 82% accuracy on the test dataset. The second model (BN2) merged
BN1 with two NBCs to make a model that supported mutual relations between stress and event
detection. The NBCs were used to detect overtaking and hard braking events by using the vehicle
dynamic data. BN2 achieved 96% accuracy on the test data.

4.4.5 Dynamic Bayesian Network. A dynamic Bayesian network (DBN) is represented as a prob-
abilistic framework for uncertainty knowledge information (Murphy 2002). This method is an ex-
tended version of BN for dynamic processes. Each node represents a feature value in a specific
time, and the relationships between nodes are determined based on their occurrence times. Rigas
et al. (2008) applied a three-layer DBN model to detect three stress levels of a driver: natural, low,
and medium-high. This model was built using the driver’s ECG and EDA signals, and achieved
an overall accuracy of 71.2%. In the study, the DBN architecture involved layers of risks, diseases,
and symptoms, inspired by medical expert systems. Driving events were used in the risk layer, the
driver’s stress levels were used in the diseases layer, and extracted features from the driver’s ECG
and EDA signals were used in the symptoms layer.

4.4.6 Decision Tree. A decision tree (DT) is a popular classifier that represents decision rules
(Safavian and Landgrebe 1990). Features are represented as nodes and class labels are represented
as leaf nodes. The structure of a DT is determined based on dataset homogeneity. This means that
features are inserted into the tree nodes based on their ability to split training samples into their
actual classes. To this end, the best splitter or feature is selected by using a greedy search algorithm
and inserted in the root node. Then the training samples, based on the feature values, are divided
into various branches. If all the subsamples in a branch belong to a specific class label, it leads to
a leaf node and the branch is marked to be not extended anymore. Otherwise, DT finds the best
splitters or feature for subsamples in the branch to divide the samples into more branches. This pro-
cess will be repeated until there is no branch to be extended. In one study, DT and tree-augmented
NBC were hybridized to classify four stress levels of drivers (Katsis et al. 2011). The accuracy of
this method was reported as 71.9%, measured using a 10-fold cross-validation technique.

4.4.7 Adaptive Neuro-Fuzzy Inference System. An adaptive neuro-fuzzy inference system (AN-
FIS) classifier (Jang 1991) is counted as a powerful discriminator by integrating an ANN (multilayer
feed-forward network) and fuzzy reasoning. This algorithm combines the advantages of these two
methods to solve classification problems (Chang and Chang 2006). An ANFIS classifier is able to
work with numerical data or experts’ knowledge and extract fuzzy rules from them (Kia et al.
2006). An ANFIS classifier includes a premise and consequent parameters that together play a sig-
nificant role in improving classifier performance. Katsis et al. (2008) used an ANFIS classifier to
classify four emotion classes of drivers using physiological signals and achieved 76.7% accuracy.
The classifier was based on the combination of a least squares (forward pass) and gradient de-
scent method (backward pass). This combination was selected due to its high efficiency in tuning
the premise and consequent parameters to improve the performance of the ANFIS classifier. In
the forward-pass step, the ANFIS consequent parameters were optimized by applying the least
squares method, and then in the backward-pass step, its premise parameters were adjusted using
the gradient descent method based on the fuzzy set.

4.4.8 Hidden Markov Model. The hidden Markov model (HMM) is a classifier that can work
with a wide range of time-series data. In a simple Markov model, labels are the hidden states and
observations linked to the labels are the visible states. This classifier predicts future states based
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on the following assumptions. The current observation is generated from a hidden state at time
t. This hidden state, based on the Markov property, is dependent on the previous hidden state at
time t-1. Therefore, an HMM classifier finds all possible sequences of labels for a sequence of ob-
servations and computes probability distributions over each of the sequences of labels, and then
the best label sequence is selected to assign to that sequence of observations. Although HMM
classifiers have been employed in different domains, they are well known in the speech recog-
nition domain (Ghahramani 2001). Fernandez et al. (2003) used five different HMM classifiers to
recognize four stress levels of drivers using their voice waveforms. The selected classifiers were
HMM, autoregressive hidden Markov model (ARHMM), factorial hidden Markov model (FHMM),
hidden Markov decision tree (HMDT), and a mixture of simple hidden Markov models (M-HMM).
The best classification accuracy was obtained using the M-HMM classifier (51.22%).

4.4.9 K-Nearest Neighbors. A KNN classifier is a simple and effective algorithm that uses a
probabilistic approach to classify new samples based on a similarity measure (e.g., distance). In the
training step, the algorithm only stores all samples in the training dataset. In the test step, for each
test sample, the algorithm finds k most similar training samples (neighbors) and then selects the
most frequent class label among them (Altman 1992). This label is assigned to the test instance as its
class label. Although a KNN classifier is conventionally used in biometric and stress management
systems, it is more computationally expensive than other classifiers. A KNN classifier was used
to distinguish low, medium, high, and very high stress levels of 10 drivers using their ECG, EDA,
EMG, and RSP signals (Healey and Picard 2000). The accuracy of this model was reported as 88.6%.
Wang et al. (2013) used a KNN classifier to discriminate two drivers’ stress levels using ECG signals
and achieved an averaged recognition rate of 97.78% (fivefold cross-validation).

4.4.10 Nearest Mean Classifier. A nearest mean classifier (NMC) is a simple and linear classifi-
cation algorithm that is based on a template matching approach. This classifier discriminates new
samples based on a similarity measure (e.g., distance). An NMC stores all samples in the training
dataset. The mean point of each class label is determined based on the corresponding training
samples. Then, the NMC assigns each test sample to a class label whose mean is closest to the
test sample. Lanatà et al. (2015) used NMC, KNN, and multilayer perceptrons to detect three stress
levels using physiological and physical data of 14 drivers. These classifiers are representative of
template matching, probabilistic, and decision boundary construction approaches, respectively. To
evaluate the classifiers’ performance, a leave-one-subject-out cross-validation technique was em-
ployed. It has been shown that the NMC had the best performance, achieving over 90% accuracy.

4.4.11 Linear Discernment Analysis. A linear discernment analysis (LDA) is a linear classi-
fier that aims to maximize class separability and reduce computational costs by projecting a d-
dimensional sample onto a k-dimensional subspace (where k < d). LDA performs this approach in
five steps: (1) computes a d-dimensional mean vector for each class label, (2) computes two d ∗ d-
dimensional scatter matrices called a between-class scatter matrix and a within-class scatter ma-
trix, (3) computes the d-dimensional eigenvectors and corresponding d-dimensional eigenvalues
for the calculated scatter matrices, (4) drops the (d − k) eigenvectors with the lowest eigenvalues
to reduce the dimensionality of the sample; (5) transforms the sample onto the reduced feature
space. An LDA classifier was used to build a general/personal driver stress-level detection model
through physiological signals and to classify drivers’ stress into three levels (low, medium, and
high) using their EDA, ECG, respiration, and EMG signals (Healey et al. 2005). The recognition
rate of the proposed model was reported as 97.4%. Urbano et al. (2017) collected ECG and EDA
signals of six drivers and built three personal stress detection models for each driver using SVM-
linear kernel function, SVM-quadratic kernel function, and LDA classifiers. The result indicated
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that the built models using the LDA classifier were almost better than the other models built by
the other classifiers.

4.5 Fusion Techniques

Detecting driver stress level using different modalities may not attain perfect accuracy due to
different issues such as nonideal machine-learning techniques and incomplete training, resulting
in a false negative and false positive (Blasco et al. 2016). Combining different modalities can help to
overcome some of these limitations and build a more accurate and reliable driver stress recognition
model. Modality fusion is defined as the integration and combination of different types of data
collected from a subject in order to detect different affects (Gunes and Pantic 2010). Modality fusion
can be performed at any level of data analysis, such as sensor-level, feature-level, score-level, or
decision-level fusion. Most of the reviewed studies used feature-level fusion techniques to build
their driver stress-level detection model. In feature-level fusion, all the extracted features from
each modality are combined into one vector for use in the next data analysis step. Combining
different modalities at the feature level has been demonstrated to be an effective way to build a
driver stress-level detection model (Healey and Picard 2005; Katsis et al. 2008; Rigas et al. 2012;
Lanatà et al. 2015).

4.6 Challenges for Framework Implementation and Evaluation

In order to develop an automated system that proactively detects driver stress levels, data needs
to be collected, transferred, preprocessed, reduced, integrated, and used to make the final decision
automatically. To increase driving safety, this system needs to present a practical solution that con-
tinuously, unobtrusively, and automatically detects driver stress levels at an early stage. Reviewing
the literature shows several methodological issues that hinder the implementation of such a sys-
tem. These issues can be grouped into six major categories: (1) data quality, (2) dataset, (3) modality
fusion, (4) data analysis, (5) system acceptability, and (6) driving scenario. Sections 4.6.1 to 4.6.6
discuss how these categories may be considered open research problems in the domain of driver
stress-level detection.

4.6.1 Data Quality. Collecting high-quality data is essential to the success of any stress detec-
tion system. Therefore, data collection should be carried out meticulously to obtain data that is
accurate, efficient, secure, relevant, timely, and appropriately represented. Generally, the quality
of data can be corrupted by different issues such as inadequate sampling rates of recording devices
and the presence of noise in the data. Some studies employed recording systems with high sam-
ple rates to overcome this issue (Healey and Picard 2000; Lanatà et al. 2015). However, it should
be noted that any real-world driving scenario will potentially cause noise and artifacts in data.
Although different filtering methods have been applied to cope with this issue (see Section 4.1),
more accurate and reliable algorithms are still needed to detect and remove different types of noise
associated with drivers’ data, especially noises caused by body movement (Eilebrecht et al. 2012;
Rodrigues et al. 2015).

Another challenge in data quality is correct annotation of recorded data. Recorded signals are
commonly annotated by using self-reporting methods, which is entirely subjective, and differ-
ent drivers may have different psychological responses to the same stressful driving situation.
Thus, developing an objective metric to measure driver stress levels can help to address this issue
(Deguchi et al. 2006; Eilebrecht et al. 2012; Sharma and Gedeon 2012).

4.6.2 Dataset. Using publicly available datasets has several benefits, such as facilitating a fair
comparison of all experiments and reducing the workload of researchers. However, the number of
available public datasets in this domain is limited due to ethics and privacy issues.

ACM Computing Surveys, Vol. 51, No. 5, Article 88. Publication date: September 2018.



88:24 M. N. Rastgoo et al.

Table 5. The Most Common and Important Classification Techniques Used

for Different Driver Stress Levels

Stress
Level/Class

Classifier Data Performance Compared with Reference

2

SVM ECG and EMG

Accuracy: 100%
(10-fold),

classification rate:
100%, sensitivity:
100%, specificity:

100%

KNN: accuracy: 100% (10-fold),
classification rate: 81.26%,

sensitivity: 62.13%,
specificity: 88.93%

Soman et al.
(2014)

KNN ECG
Recognition rate:

97.78%
(5-fold)

- Wang et al.
(2013)

BN
ECG, EDA, RSP,

vehicle dynamic data
Accuracy: 96% -

Rigas et al.
(2012)

3

NMC
ECG, EDA, RSP,

vehicle dynamic data
Accuracy: 90%

KNN (no accuracy is reported)
Multilayer perceptron (no accuracy is

reported)

Lanatà et al.
(2015)

LRNN
PPG, EDA, derived

features for
HRV and RSP

Specificity: 94.92%
Sensitivity: 88.83%
Precision: 89.23%

Desirability
measure:
43.11769

Feed-forward distributed time-delay
neural network (desirability measure:

23.75342),
single-layer perceptron neural

network
(desirability measure: 8.56352),

multilayer perceptron neural network
(desirability measure: 39.85285),

cascade-forward back-propagation
neural network

(desirability measure: 29.86937),
Elman back-propagation neural

network
(desirability measure: 40.46697),

nonlinear autoregressive networks
with exogenous inputs neural
network (desirability measure:

23.96057)

Singh et al.
(2013)

LDA
ECG, EMG, EDA,

RSP
Accuracy: 97.4% -

Healey and
Picard (2005)

4

Hybrid decision
tree– tree

augmented NBC

ECG, EDA, RSP,
facial EMG

Accuracy: 71.9%

Tree-augmented NBC (accuracy:
70.6%), NBC (accuracy: 61.4%), C4.5
regression tree classifier (accuracy:
70.1%), KNN (accuracy: 65.5%), SVM
(accuracy: 69.3%), ANFIS (accuracy:

68.1%)

Katsis et al.
(2011)

SVM
ECG, EMG, EDA,

RSP
Accuracy: 79.3% ANFIS (accuracy: 76.7%)

Katsis et al.
(2008)

KNN ECG, EDA, RSP Accuracy: 88.6% -
Healey and

Picard (2000)

The only public driver physiological dataset in this domain was collected by Healey (2000). The
database contains a collection of different physiological data (e.g., ECG, EMG, EDA, and RSP) from
17 drivers who were driving around 1 hour or more on Boston city streets and highways. Another
dataset includes survey data from a study that assessed drivers’ perceived stress in different driving
situations, such as driving on various roads, in traffic jams, and in weather-related scenarios (Hill
and Boyle 2007). The survey collected information related to the users’ requirements from an
advanced traveler system (Ng et al. 1995). The data was collected through a mail-back survey that
was distributed in 1994.
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4.6.3 Modality Fusion. Integrating modalities is an essential approach to obtain a more accurate
detection model where unimodal data cannot represent a full understanding of driver stress levels,
especially in real-world driving situations. Although modality fusion can help to build a more
efficient and accurate model, the main challenge is in integrating the modalities (sensor, feature,
score, or decision). Among the different fusion techniques, feature-level fusion has been used in
most of the reviewed studies. Although fusion in the feature level has been shown to have an
acceptable performance, there are still a range of subissues associated with it, such as asynchrony
between the modalities, selecting the optimal window size for different modalities (Rigas et al.
2008), and increasing computational cost by increasing number of features (Rigas et al. 2011). For
other fusion techniques, more research is needed to investigate their roles in building a more
accurate and reliable driver stress detection system.

4.6.4 Data Analysis. Another challenging issue that affects the performance of a real-time dri-
ver stress recognition system is high dimensionality of data. This issue is addressed by using
feature-based methods, especially feature selection and reduction. These methods remove the re-
dundant and irrelevant data to improve the performance of the system. Applying and evaluating
dimensionality reduction techniques to enhance the automatic detection of driver stress-level per-
formance is an open research challenge that needs to be investigated further. Recently, evolution-
ary computation algorithms, particularly particle swarm optimization and differential evolution,
have been shown to be effective as feature selection methods in affective detection (Nakisa et al.
2017). In addition, the literature suggests it is worth exploring new features and investigating new
feature extraction analyses that have greater correlation with driver stress levels. For example,
nonlinear analysis of HRV signals (which is in the early stage of use) was shown to have more
correlation to stress levels of drivers compared with the frequency domain analysis of HRV sig-
nals (Munla et al. 2015).

4.6.5. System Acceptability. Another important issue is the acceptability of such a system by
car drivers in terms of the method of collecting the data. A system may be considered acceptable
when it can record data in an unobtrusive and noninvasive manner. The data related to driver
physical responses and context can be easily tracked and measured in an acceptable way, but the
correlation between these types of data and driver stress levels has been investigated much less
than physiological signals. Further studies are therefore required to investigate the correlation
between these modalities and drivers’ stress.

Although physiological signal data has been researched more thoroughly, the body contact sen-
sors that record physiological responses may not be practical for continuous stress monitoring of
drivers.

Using body contact sensors is an obtrusive method that can restrict drivers’ movements and
increase their awareness of being monitored. Using contactless methods to collect biosignals is
one proposed strategy to overcome this issue. Some studies monitored body temperature through
different drivers’ face regions by using a thermal camera to monitor their distraction and stress
(Wesley et al. 2010). Wartzek et al. (2011) used a contactless ECG to detect heart rate in different
driving situations, especially driving on highways. In some studies (Baek et al. 2009; Hernandez
et al. 2014), different biosignals (PPG, ECG, EDA, and RSP activity) were recorded through sen-
sors attached to the driver’s seat, seatbelt, and vehicle steering wheel. These sensors provided a
convenient data collection method without the driver needing to wear any body contact sensors.

4.6.6 Driving Scenario. It has been proved that drivers’ stress responses obtained from simu-
lated and actual driving scenarios are different (Baek et al. 2009). Drivers’ tension levels in simu-
lated driving scenarios are low compared to their tension levels in real-time scenarios, since the
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risk of crash is zero (Lee et al. 2007). Therefore, different driver stress levels can be observed bet-
ter from real-world driving experiments. However, recording stress levels of drivers in real-time
environments using intrusive physiological sensors may affect driving safety and cause vehicle
crashes. For safety and ethical reasons, it is therefore very hard to evaluate drivers’ stress lev-
els in real-time driving situations (Zheng et al. 2015). Today’s advanced driving simulators have
the advantage of well-designed visual, rotation, and sound systems that provide a highly realistic
sensation that is close to a real driving feeling (Yamaguchi et al. 2009). These simulators provide
an efficient and reliable way to study driver stress responses by using driving scenarios that are
repeatable (Fisher et al. 2011).

5 CONCLUSION

Stress is considered to be a main reason for vehicle crashes. Prolonged exposure to different driving
stressors may also cause health problems in professional drivers. Due to the ever-increasing fatality
rate and economic losses related to driver stress, an in-vehicle system for early detection of driver
stress levels is essential to increase drivers’ safety. This system should continuously detect drivers’
stress levels, predict dangerous driving situations, and, at an early stage of detecting an increase
in stress, alert the driver proactively. The findings from several studies in the domain of smart cars
have shown that such a system can not only increase driving safety but also cause positive impacts
on drivers’ driving patterns and behaviors. In addition to improved safety, such a system may
have an additional benefit of preventing harmful long-term consequences of stress in professional
drivers, and could lead to a more efficient economy, environment (optimizing fuel consumption,
greenhouse gas emissions, etc.), and society (social and psychological response) (Flach et al. 2011;
Silva et al. 2014).

In this review, a general framework of a multimodal driver stress detection system was pre-
sented. This framework involves two main parts: data collection and data analysis. Data collection
includes different modalities, such as psychological, physiological, physical, and contextual data,
which are used to measure driver stress. We have reviewed the most recent works related to these
modalities and discussed their limitations. Data analysis includes computational techniques, such
as preprocessing, feature generation, feature selection, feature reduction, and machine-learning
techniques, which were comprehensively discussed. A summary of the reviewed literature that
used different modalities and machine-learning methods to build a driver stress recognition model
can be found in Table 6.

Among the different modalities, physiological responses have been used widely in the domain
of driver stress detection, but there are still some challenges related to this modality that need to
be addressed. Generally, physiological changes due to stress are subject dependent and vary from
subject to subject. Therefore, it is difficult to make a general model that suits all drivers, and a
system would need to be able to adapt itself to each individual’s physiology. Another challenge is
that body contact sensors for physiological monitoring are not practical for a continuous driver
stress-level detection system, since they are too obtrusive for real-world driving situations. Phys-
ical and contextual data can be collected using less intrusive and more practical methods suitable
for real-life situations. As physical and contextual data are also potentially correlated to stress lev-
els of drivers, future studies should target these data more in building an automatic driver stress
detection system.

It has been shown that the different modalities can complement each other to create a more
robust driver stress detection model; therefore, considering multimodal approaches to build the
optimal system is essential in this domain. One of the major issues is in combining or integrat-
ing the modalities in the fusion levels (sensor, feature, score, or decision). Feature-level fusion has
been widely used to evaluate drivers’ stress levels, but there is also good potential to investigate
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score-level and decision-level fusion in future studies and improve the performance of the model.
Thus, integration of different modalities to create a more robust and unobtrusive early detection
system for driver stress levels, which can reduce current stress-related driving problems, is sug-
gested for future work. Applying effective data collection and analysis methods in order to address
methodological issues to build such a system is also recommended for further research.
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