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ABSTRACT

Stochastic Gradient Descent (SGD) is among the simplest and most popular opti-
mization and machine learning methods. Running SGD with a fixed step size and
outputting the final iteration is an ideal strategy one can hope for, but it is still not
well-understood even though SGD has been studied extensively for over 70 years.
Given the Θ(log T ) gap between current upper and lower bounds for running SGD
for T steps, it was then asked by Koren & Segal (2020) how to characterize the
final-iterate convergence of SGD with a fixed step size in the constant dimension
setting, i.e., d = O(1). In this paper, we consider the more general setting for
any d ≤ T , proving Ω(log d/

√
T ) lower bounds for the sub-optimality of the

final iterate of SGD in minimizing non-smooth Lipschitz convex functions with
standard step sizes. Our results provide the first general dimension-dependent
lower bound on the convergence of SGD’s final iterate, partially resolving the
COLT open question raised by Koren & Segal (2020). Moreover, we present a new
method in one dimension based on martingale and Freedman’s inequality, which
gets the tight O(1/

√
T ) upper bound with mild assumptions.

1 INTRODUCTION

Stochastic gradient descent (SGD) was first introduced by Robbins & Monro (1951). It soon became
one of the most popular tools in applied machine learning, e.g., Johnson & Zhang (2013); Schmidt
et al. (2017) due to its simplicity and effectiveness. SGD works by iteratively taking a small step
in the opposite direction of an unbiased estimate of sub-gradients and is widely used in minimizing
convex function f over a convex domain K. Formally speaking, given a stochastic gradient oracle
for an input x ∈ K, the oracle returns a random vector ĝ whose expectation is equal to one of the
sub-gradients of f at x. Given an initial point x1, SGD generates a sequence of points x1, ..., xT+1

according to the update rule
xt+1 = ΠK(xt − ηtĝt) (1)

where ΠK denotes projection onto K and {ηt}t≥1 is a sequence of step sizes.

Theoretical analysis on SGD usually adopt running average step size, i.e., outputting 1
T

∑T
t=1 xt

in the end, to get optimal rates of convergence in the stochastic approximation setting. Optimal
convergence rates have been achieved in both convex and strongly convex settings when averaging
of iterates is used Nemirovskij & Yudin (1983); Zinkevich (2003); Kakade & Tewari (2008); Cesa-
Bianchi et al. (2004). Nonetheless, the final iterate of SGD, which is often preferred over the running
average, as pointed out by Shalev-Shwartz et al. (2011), has not been very well studied from the
theoretical perspective, and convergence results for the final iterate are relatively scarce compared
with the running average schedule.

Standard choices of step sizes for convex functions include ηt = 1/
√
t for unknown horizon T and

ηt = 1/
√
T for known T , and ηt = 1/t for strongly convex functions. In these cases, it is known

that the final-iterate convergence rate of SGD is optimal when f is both smooth and strongly convex
(Nemirovski et al. (2009)). However, in practice, the convex functions we want to minimize are
often non-smooth. See Cohen et al. (2016); Lee et al. (2013) for more details. The convergence
rate of SGD’s final iterate with standard step sizes in the non-smooth setting is much less explored.
Understanding this problem is essential as the final iterate of SGD is popular and used often. If the
last iterate of SGD performs as well as the running average, it yields a very simple, implementable,
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Work Rate Method Convexity Step size Assumptions
Nemirovski et al. (2009) O(1/T ) SGD Strongly 1/t Smooth

Jain et al. (2019) O(1/
√
T ) SGD Convex Non-standard

Jain et al. (2019) O(1/T ) SGD Strongly Non-standard
Shamir & Zhang (2013) O(log T/

√
T ) SGD Convex 1/

√
t

Shamir & Zhang (2013) O(log T/T ) SGD Strongly 1/t

Harvey et al. (2019a) Ω(log T/
√
T ) GD Convex 1/

√
t d ≥ T

Harvey et al. (2019a) Ω(log T/T ) GD Strongly 1/t d ≥ T
Ours Ω(log d/

√
T ) GD Convex 1/

√
t, 1/
√
T d ≤ T

Ours Ω(log d/T ) GD Strongly 1/t d ≤ T

Table 1: Convergence results for the expected sub-optimality of the final iterate of SGD for minimizing
non-smooth convex functions in various settings. GD denotes the sub-gradient descent method, and
lower bounds of GD also hold for SGD. The lower bounds for Lipschitz convex functions in Shamir
& Zhang (2013); Harvey et al. (2019a) can also be extended to fixed step size 1/

√
T , observed by

Koren & Segal (2020).

and interpretable form of SGD. If there is a lower bound saying the last iterate of SGD is worse than
the running average, we may need to compare the last iterate and running average when implementing
the algorithm.

A line of works attempts to understand the convergence rate of the final iterate of SGD. A seminar
work Shamir & Zhang (2013) first established a near-optimal O(log T/

√
T ) convergence rate for the

final iterate of SGD with a STANDARD step size schedule ηt = 1/
√
t. Jain et al. (2019) proved an

information-theoretically optimal O(1/
√
T ) upper bound using a rather NON-STANDARD step size

schedule. Roughly speaking, the T steps are divided into log T phases, and the step size decreases by
half when entering the next phase. Many implementations take ever-shrinking step sizes, which is
somewhat consistent with this theoretical result. Harvey et al. (2019a) gave an Ω(log T/

√
T ) lower

bound for the STANDARD ηt = 1/
√
t step size schedule, but their construction requires the dimension

d to be no less than T , which is restrictive. See Table 1 for more details. A natural question arises:

Question: What’s the dependence on dimension d of the convergence rate of SGD’s final iterate with
standard step sizes when d ≤ T?

In a recent COLT open question raised by Koren & Segal (2020), the same problem was posed but
mainly for the more restrictive constant dimension setting. Moreover, they conjectured that the right
convergence rate of SGD with standard step size in the constant dimensional case is Θ(1/

√
T ).

As preliminary support evidence for their conjecture, they analyzed a one-dimensional one-sided
random walk special case. However, this result is limited in the one-dimension setting for the
particular absolute-value function and thus can not be easily generalized. Analyzing the final-iterate
convergence rate of SGD in the general dimension for general convex functions is a more exciting
and challenging question. In particular, in Koren & Segal (2020), they wrote:

For dimension d > 1, a natural conjecture is that the right convergence rate is Θ(log d/
√
T ), but we

have no indication to corroborate this.

Motivated by this, we mainly focus on analyzing the final iterate of SGD with standard step size in
general dimension d ≤ T without smoothness assumptions in this paper.

1.1 OUR CONTRIBUTIONS

Our first main result is an Ω(log d/
√
T ) lower bound for SGD minimizing Lipschitz convex functions

with a fixed step size ηt = 1/
√
T when dimension d ≤ T , generalizing the result in Harvey et al.

(2019a). Our main observation is that we can let the initial point x1 stay still for any number of steps
as long as 0 is one of the sub-gradient of f at x1. By modifying the original construction of Harvey
et al. (2019a), we can keep x1 at 0 for T − d steps and then ’kick’ it to start taking a similar route
as in Harvey et al. (2019a) in a d-dimensional space, which incurs an Ω(log d/

√
T ) sub-optimality.
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This result is generalized to Lipschitz convex functions with 1/
√
t decreasing step size schedule with

the same sub-optimality, and an Ω(log d/T ) lower bound to strongly convex functions with 1/t step
size schedule is also constructed with the similar technique. Our lower bound results imply that the
last iterate with fixed step size has sub-optimal convergence rate for SGD in general theoretically,
which, unfortunately, is used a lot in practice.

As for the upper bound, we present a new method based on martingale and Freedman’s inequality
to analyze the one-dimensional case. Though seemingly straightforward, the convergence rate of
fixed-step-size SGD for one-dimensional linear functions is still open and non-trivial. Koren & Segal
(2020) considered minimizing a linear function with a restricted SGD oracle which only outputs ±1,
reducing this problem to a one-sided random walk. We relax the restriction on the SGD oracle and
prove an O(1/

√
T ) optimal rate for a class of convex functions which we call nearly linear convex

functions, with the help of martingale theory. The class of nearly linear functions captures many
common functions, such as linear functions, |x|, ex, x2 + x,− sin(x) on [0, 1].

Our contributions are summarized as follows:

• We prove an Ω(log d/
√
T ) lower bound for the sub-optimality of the final iterate of SGD

minimizing non-smooth Lipschitz convex functions with ηt = 1/
√
T step size schedule.

We also generalize this bound to the ηt = 1/
√
t decreasing step size schedule, and also

prove an Ω(log d/T ) lower bound for non-smooth strongly convex functions with ηt = 1/t.
To the best of our knowledge, our results are the first that characterize the general dimension
dependence in analyzing the final iterate convergence of SGD with standard step sizes.

• We prove an optimal O(1/
√
T ) upper bound for the sub-optimality of the final iterate of

SGD minimizing nearly linear Lipschitz convex functions with fixed Θ(1/
√
T ) step sizes in

one dimension, which captures a broad class of convex functions including linear functions.

2 PRELIMINARIES

Given a bounded convex set K ⊂ Rd, and a convex function f : K → R defined on K, our goal is to
solve minx∈K f(x). In the black-box optimization, there is no explicit representation of f . Instead,
we can use a stochastic oracle to query the sub-gradients of f at x ∈ K. The set K is given in the
form of a projection oracle, which outputs the closest point in K to a given point x in the Euclidean
norm. We introduce several standard definitions.
Definition 1 (Sub-gradient). A sub-gradient g ∈ Rd of a convex function f : K → R at point x, is a
vector satisfying that for any x′ ∈ K,

f(x′)− f(x) ≥ g>(x′ − x). (2)

We use ∂f(x) to denote the set of all sub-gradients of f at x.

Definition 2 (Strong Convexity). A function f : K → R is said to be α-strongly convex, if for any
x, y ∈ K and g ∈ ∂f(x), the following holds:

f(y)− f(x) ≥ g>(y − x) +
α

2
‖y − x‖22 (3)

Definition 3 (Lipschitz Function). A function f : K → R is called G-Lipschitz (with respect to `2
norm), if for any x, y ∈ K, we have that:

|f(x)− f(y)| ≤ G‖x− y‖2 (4)

Further, if we assume f is convex, the above definition is equal to ‖g‖2 ≤ G for any sub-gradient g.

Let ΠK denote the projection operator on K, the (projected) stochastic gradient descent (SGD) is
described in Algorithm 1. We make the following standard assumption on the convex objective f and
the SGD algorithm we consider throughout this paper:
Assumption 1 (Standard Assumption). We make the following assumptions for the objective f and
running SGD:

• The domain K ⊂ R is convex and bounded with diameter D.
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Algorithm 1 Stochastic gradient descent with the final iterate output
1: Given K ⊂ Rd, initial point x1 ∈ K, step size schedule ηt:
2: for j = 1, ..., T : do
3: Query stochastic gradient oracle at xt for ĝt such that E[ĝt|ĝ1, ..., ĝt−1] ∈ ∂f(xt)
4: yt+1 = xt − ηtĝt
5: xt+1 = ΠK(yt+1)
6: end for
7: return xT+1

• The objective f : K → R is convex and G-Lipschitz, and not necessarily differentiable.

• The output stochastic gradients are bounded: ‖ĝt‖2 ≤ G, and we have E[ĝt |
ĝ1, · · · , ĝt−1] ∈ ∂f(xt).

The first two items hold for both our lower bound and upper bound. Our results are in the strong
versions regarding the third item. In particular, our lower bound even holds for Gradient Descent
(GD), i.e., even if the gradient oracle always outputs ĝt ∈ ∂f(xt) rather than in expectation, one still
has the lower bound Ω(log d/

√
T ). Our upper bound works for the SGD, where the oracle’s outputs

can be stochastic and one only assumes their expectations are sub-gradients.

3 LOWER BOUNDS

In this section we prove our main result, that is the final iterate of SGD for (non-smooth) Lipschitz
convex functions with fixed step sizes ηt = 1/

√
T has sub-optimality Ω(log d/

√
T ), even with

deterministic oracle. We build upon the construction in Harvey et al. (2019a), which is a variant of
classical lower bound constructions Nesterov (2003) and proves an Ω(log T/

√
T ) lower bound for

the high-dimensional case d ≥ T .

In a nutshell, we consider the setting d ≤ T and construct a function f along with a special sub-
gradient oracle such that the initial point stays still for the first T − d steps, and then start moving
in Algorithm 1, in which the final iterate satisfies f(xT+1) = Ω(log d/

√
T ). Then we extend the

analysis to decreasing step sizes and strongly convex functions.

Let [j] be the set of positive integers no larger than j. For simplicity, we consider convex functions
over the d-dimensional Euclidean unit ball. Let 0 be the d-dimensional all-zero vector. We present
our proof for general convex functions with fixed step sizes first. For decreasing step sizes and
strongly convex functions, it is straightforward to scale our construction and get corresponding lower
bounds, and we leave the proofs in the Appendix.
Theorem 4. For any positive integer T > 0 and 1 ≤ d ≤ T , there exists a 1-Lipschitz convex
function f : K → R where K ⊂ Rd is the Euclidean unit ball, and a non-stochastic sub-gradient
oracle satisfying Assumption 1, such that when executing Algorithm 1 on f with initial point 0 and
step size schedule ηt = 1/

√
T , the last iterate satisfies:

f(xT+1)−min
x∈K

f(x) ≥ log d

32
√
T

(5)

Proof. Let Bd be the Euclidean unit ball and define f : Bd → R for i ∈ [d+ 1] ∪ {0} to be:

f(x) = max
0≤i≤d+1

Hi(x)

where Hi(x) = h>i x, and we define for i ≥ 1

hi,j =

{
aj ( if 1 ≤ j < i)
−bi ( if i = j ≤ d)
0 ( if i < j ≤ d)

and aj =
1

8(d+ 1− j)
, bj =

1

2
( for j ∈ [d])

in which hi,j is the j-th coordinate of hi. Additionally, let h0 = 0 andH0(x) = 0. It’s straightforward
to check that f is 1-Lipschitz on K, with a minimum value of 0. Furthermore, ∂f(x) is the convex

4



Under review as a conference paper at ICLR 2023

hull of {hi | i ∈ I(x)} where I(x) = {i ≥ 0 | Hi(x) = f(x)}, which is a standard fact in convex
analysis Hiriart-Urruty & Lemaréchal (2013).

Setting x1 = 0, we observe that f(x1) = 0 which attains the global minimum, and by the characteri-
zation of ∂f(x) from above, we know that h0 = 0 is a sub-gradient at x1. This observation allows
our non-stochastic sub-gradient oracle to output 0 for the first T − d steps and outputs hi′ where
i′ = min I(x) \ {0} for the last d steps. Define z1 = · · · = zT−d+1 = 0, let T ∗ =: T − d and we
further define

zt,j =

{ bj√
T
− aj t−j−T

∗−1√
T

( if 1 ≤ j < t− T ∗)
0 ( if t− T ∗ ≤ j ≤ d)

( for t > T ∗ + 1).

We show inductively that these are precisely the first T iterates produced by algorithm 1 when using
the sub-gradient oracle defined above. The following claim is easy to verify from the definition.

Claim 5. We have the following claims:

• zt is non-negative. In particular, zt,j ≥ 1
4
√
T

for j < t− T ∗ and zt,j = 0 for j ≥ t− T ∗.

• zt,j ≤ 1
2
√
T

for all j. In particular, zt ∈ K.

Proof. It is evident that zt,j = 0 for j ≥ t − T ∗ from the definition. As bj√
T

= 1
2
√
T

, it suffices to

prove that 0 ≤ aj t−j−T
∗−1√
T

≤ 1
4
√
T

, which is direct as 0 ≤ t− j − T ∗ − 1 ≤ d+ 1− j.

We can now determine the value and sub-gradient at zt. The case for the first T ∗ steps is trivial as the
sub-gradient oracle always outputs 0 and x1 never moves a bit. For the last d steps we have that zt is
supported on its first t− T ∗ coordinates, and h>t−T∗zt = h>i−T∗zt for all i > t > T ∗.

For the other case T ∗ + 1 ≤ i < t, one has that

z>t (ht−T∗ − hi−T∗) =

t−T∗∑
j=i−T∗

zt,j(ht−T∗,j − hi−T∗,j) =

t−T∗−1∑
j=i−T∗

zt,j(ht−T∗,j − hi−T∗,j)

=

t−T∗−1∑
j=i−T∗+1

zt,j(ht−T∗,j − hi−T∗,j) + zt,i−T∗(ht−T∗,i−T∗ − hi−T∗,i−T∗)

=

t−T∗−1∑
j=i−T∗+1

zt,jaj + zt,i−T∗(ai−T∗ + 1/2) > 0

which means z>t ht−T∗ > z>t hi−T∗ for all T ∗ + 1 ≤ i < t.

The two results together guarantee that Ht−T∗(zt) ≥ Hi−T∗(zt) for all T ∗ + 1 ≤ i and further
f(zt) = Ht−T∗(zt). Combining with the fact I(zt) = {t − T ∗, ..., d + 1}, we conclude that the
sub-gradient oracle outputs ht−T∗ at time t.

Lemma 6. For the function constructed in this section, the solution of t-th step in algorithm 1 equals
to zt for every T ∗ < t ≤ T + 1.

Proof. We prove this lemma by induction. For base case t = T ∗ + 1, we know that zt = 0 = xt
holds. Next, when zt = xt holds for some t:

yt+1,j =zt,j −
1√
T
ht−T∗,j

=

{ bj√
T
− aj t−j−T

∗−1√
T

( for 1 ≤ j < t− T ∗)
0 ( for j ≥ t− T ∗)

}
− 1√

T

{
aj ( if 1 ≤ j < t− T ∗)
−bi ( if t− T ∗ = j ≤ d)
0 ( if t− T ∗ < j ≤ d)

}

=


bj√
T
− aj t−j−T

∗
√
T

( for j < t− T ∗)
bt√
T

= 1
2
√
T

( for j = t− T ∗)
0 ( for j > t− T ∗)

 .
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So yt+1 = zt+1. Since zt+1 ∈ K, we have that xt+1 = zt+1.

From the above equivalence, we have that the vector xt in algorithm 1 is equal to zt for t ∈ [T + 1],
which allows the determination of the value of the final iterate:

f(xT+1) = f(zT+1) = Hd+1(zT+1) ≥
d∑
j=1

hd+1,jzT+1,j ≥
d∑
j=1

1

8(d+ 1− j)
1

4
√
T
>

log d

32
√
T
.

Remark 7. For the case d = 1 we still have the Ω(1/
√
T ) lower bound, by not using

∑d
i=1

1
i > log d

in the last step.

Remark 8. Notably, our lower bound is valid even for GD, where one can access a noiseless
sub-gradient oracle.

Theorem 4 improves the previously known lower bound by a factor of log d, implying an inevitable
dependence on the dimension of the convergence of SGD’s final iterate. Though our proof is built
upon Harvey et al. (2019a), their construction doesn’t apply directly. Other natural ways of adaption,
for example, cyclic (gradient oracle repeatedly goes over each coordinate), repeated (gradient oracle
stays at one coordinate for T/d steps then go to the next), do not work here.

Next, we extend this result to Lipschitz convex functions with step sizes ηt = 1√
t

and strongly convex
functions with step sizes ηt = 1

t , both known to be the optimal choice of learning rate schedule. The
proofs are mostly similar to that of Theorem 4, and we defer them to the Appendix.

Corollary 9. For any T and 1 ≤ d ≤ T , there exist a 1-Lipschitz convex function f : K → R where
K ⊂ Rd is the Euclidean unit ball, and a non-stochastic sub-gradient oracle satisfying Assumption 1,
such that when executing algorithm 1 on f with initial point 0 and step size schedule ηt = 1/

√
t, the

last iterate satisfies:

f(xT+1)−min
x∈K

f(x) ≥ log d

32
√
T

(6)

Corollary 10. For any T and 1 ≤ d ≤ T , there exist a 3-Lipschitz and 1-strongly convex function
f : K → R where K ⊂ Rd is the Euclidean unit ball, and a non-stochastic sub-gradient oracle
satisfying Assumption 1, such that when executing Algorithm 1 on f with initial point 0 (the global
minimum) and step size schedule ηt = 1/t, the final iterate satisfies:

f(xT+1)−min
x∈K

f(x) ≥ log d

5T
(7)

4 UPPER BOUND IN ONE DIMENSION

With our lower bound, it is natural to conjecture that the optimal rate should be Θ(log d/
√
T ) when

d ≤ T . In particular, it’s believed that in the one-dimensional case, the optimal rate is Θ(1/
√
T ).

As mentioned in the introduction, Koren & Segal (2020) considered a random walk induced by a
linear function as evidence for this conjecture in one dimension, which is somewhat restricted. In
this section, we relax their assumptions by considering a function class that we call nearly linear
functions, which capture a broad class of functions, including linear functions, and prove an optimal
rate O(1/

√
T ). For the general Lipschitz convex function class, our analysis also recovers the

previously known best bound O(log T/
√
T ).

4.1 NEARLY LINEAR FUNCTIONS

Let f∗ = minx∈K f(x). We need the following definition before defining nearly linear functions.

Definition 11. We say a point x is good if f(x)− f∗ ≤ 4GD√
T

, and define a set of good points by S:

S = {x ∈ K : f(x)− f∗ ≤ 4GD√
T
}.
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Now we can define the convex function family. In a nutshell, the class of nearly linear functions we
consider is the function such that at any not-good point, the absolute value of its sub-gradient is not
too small. Put it formally:
Definition 12 (Nearly Linear Function). We call a convex function f : K → R nearly linear if there
exist a constant 0 < c ≤ 1, such that for any xt /∈ S which does not belong to the set of good points,
we have

∣∣E[ĝt | ĝ1, · · · , ĝt−1]
∣∣ ∈ [cG,G].

We note that any general Lipschitz convex function is nearly linear with c = 1/
√
T , and our later

analysis recovers the previously known best boundO(log T/
√
T ) under this interpretation. Therefore

our method is a strict improvement over previous results.

The family of nearly linear functions captures those functions whose sub-gradients do not change
drastically outside the set of good points, for example, |x|, ex, x2 + x,− sin(x). The linear functions
considered in Koren & Segal (2020) lie in this family. The nice property of nearly linear functions
allows a martingale-based analysis which gives an improved O(1/

√
T ) bound.

Our proof is based on the Martingale (difference) (See Appendix for a detailed definition), and we
use Freedman’s Inequality given below.
Theorem 13 (Freedman’s Inequality, Theorem 1.6 in Freedman (1975)). Consider a real-valued
martingale difference sequence {Xt}t≥0 such that X0 = 0, and E[Xt+1|Ft] = 0 for all t, where
{Ft}t≥0 is the filtration defined by the sequence. Assume that the sequence is uniformly bounded,
i.e., |Xt| ≤M almost surely for all t. Now define the predictable quadratic variation process of the
martingale to be Wt =

∑t
j=1 E[X2

j |Fj−1] for all t ≥ 1. Then for all ` ≥ 0 and σ2 > 0 and any
stopping time τ , we have

Pr
[∣∣∣ τ∑
j=0

Xj

∣∣∣ ≥ ` ∧Wτ ≤ σ2for stopping time τ
]
≤ 2 exp

(
− `2/2

σ2 +M`/3

)
.

Some previous works also use martingale theory to analyze SGD. For example, Harvey et al. (2019a)
generalizes Freedman’s Inequality to demonstrate a high probability (w.p. 1− δ) suboptimality bound
O(log(1/δ) log T/

√
T ) for SGD with standard step sizes, which is improved to O(log(1/δ)/

√
T )

by Harvey et al. (2019b).

4.2 ANALYSIS

We show how to improve the convergence of the last iterate of SGD with a fixed step size η = 4D
G
√
T

in one dimension for nearly linear functions. The proof mainly consists of two parts. In the first part,
we prove that for running SGD with fixed step sizes for any convex function satisfying Assumption
1, with very high probability, the solution goes into the set of good points at least once. In some
sense, this is consistent with the known result that averaging scheme can achieve the optimal rate. It
is straightforward to get the following lemma by convexity.
Lemma 14. For any x ∈ K \ S,∀∇f(x) ∈ ∂f(x), one has

|∇f(x)| > G√
T
.

Suppose we start from an arbitrary point x1 ∈ K and the (random) sequence of the SGD algorithm
with the fixed step size η is denoted by x1, x2, · · · , xT+1, i.e. xt+1 = ΠK(xt − ηĝt). The following
lemma says that with a very high probability, the solution enters S at least once.
Lemma 15. Given any x1 ∈ K, and let η = 4D

G
√
T

. For any nearly linear function f under the
Assumption 1, define τt :=∞ if SGD never goes back to S in the first t steps, and τt := mini{1 ≤
i ≤ t | xi ∈ S} otherwise. If t ≥ T + 1 and k ≥ 10, we have that

Pr[τt =∞ | x1] ≤ 2 exp(−Ω(T )).

Lemma 15 shows that the probability that xt never entered S in the first T steps is negligible, whose
proof can be found in the Appendix.
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In the second part, we bound the tail probability of the sub-optimality of the last iterate for nearly
linear functions, from which we can bound the expectation of the sub-optimality. Roughly speaking,
we consider the events that f(xT+1)− f∗ ≥ GDk√

T
and the last T + 1− i steps all lie out the set of

good points, and bound its probability by exp
(
− Ω(k + (T + 1− i))

)
. And by Union Bound we

know that the tail probability Pr[f(xT+1)− f∗ ≥ GDk√
T

] ≤ exp(−Ω(k)), which is enough to get the

optimal bound O(GD√
T

).

Theorem 16. Given positive integer T > 0 which is large enough, running SGD with a fixed step
size η = 4D

G
√
T

on any nearly linear function f under Assumption 1 for T steps, one has

E[f(xT+1)− f∗] = O(
GD√
T

),

where f∗ = minx∈K f(x).

Proof. We try to bound the tail probability, that is Pr[f(xT+1)− f∗ ≥ GDk√
T

] for any k ≥ 10. We
define t :=∞ if SGD never goes in the set S and let t := maxi{1 ≤ i ≤ T + 1 | xi ∈ S} otherwise.
One has

Pr[f(xT+1)− f∗ ≥ GDk√
T

]

=

T+1∑
i=1

Pr[f(xT+1)− f∗ ≥ GDk√
T
∧ t = i] + Pr[f(xT+1)− f∗ ≥ GDk√

T
∧ t =∞]

=

T∑
i=1

Pr[f(xT+1)− f∗ ≥ GDk√
T
∧ t = i] + Pr[f(xT+1)− f∗ ≥ GDk√

T
∧ t =∞],

where the second equality follows from the fact that Pr[f(xT+1)− f∗ ≥ GDk√
T
∧ t = T + 1] = 0 by

the definition of S and k ≥ 10. By Lemma 15, we have

Pr[f(xT+1)− f∗ ≥ GDk√
T
∧ t =∞] ≤ Pr[t =∞] ≤ 2 exp(−Ω(T )),

which is negligible when T is large enough.

Now we begin to bound Pr[f(xT+1)− f∗ ≥ GDk√
T
∧ t = i]. We use yi = xi − xi−1 to capture the

movement of the solution. Let nL = infx∈S x and nR = supx∈S x, which exist because the domain
is bounded and the function is continuous. By Definition 11, there exists x∗ ∈ arg minx∈K f(x) such
that either |nR − x∗| ≥ 4D/

√
T or |nL − x∗| ≥ 4D/

√
T . By our setting of step size η, if xj > nR

for some j, it is impossible that xj+1 < nL, and vice versa.

Consider the event t = i and assume xi+1 > nR first. Hence xj > nR for all i < j ≤ T + 1. By
the Assumption that f is nearly linear, we have E[yi] ∈ [−ηG,−cηG] for some constant c ∈ (0, 1]
(See Definition 11). Let Fi−1 be the filtration and ỹi = yi − E[yi | Fi−1]. Obviously, we know
E[ỹi | Fi−1] = 0, |ỹi| ≤ 2ηG and {ỹi} is a martingale difference sequence. We know that
W(i,T+1] :=

∑T+1
j=i+1 E[ỹi

2 | Fi−1] ≤
∑T+1
j=i+1 E[y2i | Fi−1] ≤ η2G2(T + 1− i) as |yi| ≤ ηG. Let

` =
∑T+1
j=i+1 E[yj | Fj−1]. It is evident that ` ≤ −cηG(T + 1− i) by the assumption of being nearly

linear and tj > nR.

Condition on f(xT+1)− f∗ ≥ GDk√
T
∧ t = i. It follows that

∑T+1
j=i+1 yi ≥

D(k−4)√
T

. More specifically,

as xi ∈ S and thus f(xi) − f∗ ≤ 4GD√
T

, we have that f(xT+1) − f(xi) ≥ GD(k−4)√
T

and further

xT+1 − xi =
∑T+1
j=i+1 yj ≥

D(k−4)√
T

. Moreover, we know W(i,T+1] ≤ η2G2(T + 1 − i) and

` ≤ −cηG(T +1− i), which means
∑T+1
j=i+1 ỹj =

∑T+1
j=i+1 yj−

∑T+1
j=i+1 E[yj | Fj−1] ≥ D(k−4)√

T
−

` = D(k−4)√
T

+ |`|.

As for the case when xi+1 < nL, conditioning on f(xT+1)− f∗ ≥ GDk√
T
∧ t = i ∧ xi+1 < nL, it is

similar to get
∑T+1
j=i+1 ỹj ≤ −

D(k−4)√
T
− |`| ∧W(i:T+1] ≤ η2G2(T + 1− i) ∧ ` ≥ cηG(T + 1− i)

8
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as well. Hence we have

Pr[f(xT+1)− f∗ ≥ GDk√
T
∧ t = i] ≤ Pr[|

T+1∑
j=i+1

yj | ≥
D(k − 4)√

T
∧ t = i]

≤Pr[|
T+1∑
j=i+1

ỹj | ≥
D(k − 4)√

T
+ |`| ∧W(i:T+1] ≤ η2G2(T + 1− i) ∧ |`| ≥ cηG(T + 1− i)],

(8)
where the second inequality follows from the analysis above. Applying Freedman’s Inequality
(Theorem 13) over Equation (8), one has

Pr[f(xT+1)− f∗ ≥ GDk√
T
∧ t = i]

≤ max
|`|≥cηG(T+1−i)

2 exp

− (D(k−4)√
T

+ |`|)2/2

η2G2(T + 1− i) + 2ηG(D(k−4)√
T

+ |`|)/3


≤ max
|`|≥cηG(T+1−i)

2 exp

− (D(k−4)√
T

+ |`|)/2
ηG
c + 2ηG/3


≤2 exp

(
− 3c

10ηG
(
D(k − 4)√

T
+ cηG(T + 1− i))

)
=2 exp(−3c(k − 4)

40
− 3

10
c2(T + 1− i)).

Further, for k ≥ 10, we have

Pr[f(xT+1)− f∗ ≥ GDk√
T

]

=

T∑
i=1

Pr[f(xT+1)− f∗ ≥ GDk√
T
∧ t = i] + Pr[f(xT+1)− f∗ ≥ GDk√

T
∧ t =∞]

≤
T∑
i=1

2 exp(−3c(k − 4)

40
− 3

10
c2(T + 1− i)) + 2 exp(−Ω(

√
T ))

≤ 20

3c2
exp(−3c(k − 4)

40
) + 2 exp(−Ω(

√
T )),

where the last step follows from the fact that for any constant C > 0 one has
∑T
i=1 exp(−Ci) ≤∫ T−1

i=0
exp(−Ci)di ≤ 1/C. As a result, for h ≥ 10GD/

√
T , we have that

Pr[f(xT+1)− f∗ ≥ h] = O(exp(−hλ)), (9)

where λ = Θ(
√
T

GD ). Our conclusion follows from

E[f(xT+1)− f∗] =

∫ GD

0

Pr[f(xT+1)− f∗ ≥ h]dh = O(1/λ) = O(
GD√
T

). (10)

5 CONCLUSION

In this paper, we analyze the final iterate convergence rate of SGD with standard step size schedules,
proving Ω(log d/

√
T ) and Ω(log d/T ) lower bounds for the sub-optimality of SGD minimizing non-

smooth general convex and strongly convex functions respectively. We also prove a tight O(1/
√
T )

upper bound for one-dimensional nearly linear functions, a more general setting than Koren & Segal
(2020). This work is the first, to the best of our knowledge, that characterizes the dependence on
dimension in the general d ≤ T setting, and we hope it can advance our theoretical understanding
of the final iterate convergence of SGD with standard step sizes, and guide the implementations in
practice.

9
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A MORE PRELIMINARIES

A.1 PRELIMINARIES ON MARTINGALE

We demonstrate some basic definitions with a relationship to Martingale, which is used in the proof.
Definition 17 (Martingale). A sequence Y1, Y2, · · · is said to be a martingale with respect to another
sequence X1, X2, · · · if for all n:

• E (|Yn|) <∞

• E (Yn+1 | X1, . . . , Xn) = Yn.
Definition 18 (Martingale Difference). Consider an adapted sequence {Xt,Ft}∞−∞ on a probability
space. Xt is a martingale difference sequence (MDS) if it satisfies the following two conditions for
all t:

• E|Xt| <∞

• E[Xt | Ft−1] = 0, a.s.
Definition 19 (Stopping Time). A stopping time with respect to a sequence of random variables
X1, X2, X3, · · · is a random variable τ with the property that for each t, the occurrence or non-
occurrence of the event τ = t depends only on the values of X1, X2, X3, · · · , Xt.

B OMITTED PROOFS FOR SECTION 3

B.1 PROOF OF COROLLARY 9

Proof. Define f : K = Bd → R and hi ∈ Rd for i ∈ [d+ 1] ∪ {0} by
f(x) = max

0≤i≤d+1
Hi(x)

where Hi(x) = h>i x. For i ≥ 1 we define

hi,j =

{
aj ( if 1 ≤ j < i)
−bi ( if i = j ≤ d)
0 ( if i < j ≤ d)

and aj =
1

8(d+ 1− j)
, bj =

√
j + T − d

2
√
T

( for j ∈ [d])

Additionally, let h0 = 0 and H0(x) = 0. It’s easy to check that f is 1-Lipschitz, with minimal value
0. We have that ∂f(x) is the convex hull of {hi | i ∈ I(x)} where I(x) = {i ≥ 0 | Hi(x) = f(x)}.
Our non-stochastic sub-gradient oracle outputs 0 for the first T − d steps and outputs hi′ where
i′ = min I(x) \ {0} for the last d steps. Define z1 = · · · = zT−d+1 = 0, let T ∗ =: T − d.

zt,j =

{ bj√
j+T∗

− aj
∑t−1
k=j+T∗+1

1√
k

( if 1 ≤ j < t− T ∗)
0 ( if t− T ∗ ≤ j ≤ d)

( for t > T ∗ + 1).

We will show inductively that these are precisely the first T iterates produced by algorithm 1 when
using the sub-gradient oracle defined above. The following claim follows from definition.

Claim 20. We have the following claims:

• zt is non-negative. In particular, zt,j ≥ 1
4
√
T

for j < t− T ∗ and zt,j = 0 for j ≥ t− T ∗.

• zt,j ≤ 1
2
√
T

ofr all j. In particular, zt ∈ K.

Proof. It is obvious that zt,j = 0 for j ≥ t− T ∗ from the definition. As bj√
j+T∗

= 1
2
√
T

, it suffices

to prove that 0 ≤ aj
∑t−1
k=j+T∗

1√
k
≤ 1

4
√
T

. We have that

0 ≤
t−1∑

k=j+T∗

1√
k
≤
∫ t−1

j+T∗−1

1√
x

dx =
2(t− j − T ∗)√

t− 1 +
√
j + T ∗ − 1

≤ 2(t− j − T ∗)√
t− 1

(11)

11
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and further t−j−T∗√
t−1 ≤ T+1−j−T∗√

T
= d+1−j√

T
by monotony. Thus 0 ≤ aj

∑t−1
k=j+T∗

1√
k
≤ 1

4
√
T

follows from the definition of aj .

We can now determine the value and sub-differential at zt. The case for the first T ∗ steps is trivial as
the sub-gradient oracle always outputs 0 and x1 never moves a bit. For the last d steps we have that
zt is supported on its first t− T ∗ coordinates and h>t−T∗zt = h>i−T∗zt for all i > t > T ∗.

For T ∗ + 1 ≤ i < t, one has

z>t (ht−T∗ − hi−T∗) =

t−T∗∑
j=i−T∗

zt,j(ht−T∗,j − hi−T∗,j) = zt,i(ai + 1) +

t−1∑
j=i+1

zt,jaj > 0.

which means z>t ht−T∗ > z>t hi−T∗ for all T ∗ + 1 ≤ i < t. The two results together guarantee that
Ht−T∗(zt) ≥ Hi−T∗(zt) for all T ∗ + 1 ≤ i and further f(zt) = Ht−T∗(zt). Combining with the
fact I(zt) = {t− T ∗, ..., d+ 1}, we conclude that the sub-gradient oracle outputs ht−T∗ .

Lemma 21. For the function constructed in this section, the solution of t-th step in algorithm 1
equals to zt for every T ∗ < t ≤ T + 1.

Proof. We prove this lemma by induction. For base case t = T ∗ + 1, we know that zt = 0 = xt
holds. Next, when zt = xt holds for some t:

yt+1,j =zt,j −
1√
t
ht−T∗,j

=

{ bj√
j+T∗

− aj
∑t−1
k=j+T∗

1√
k

( for 1 ≤ j < t− T ∗)
0 ( for j ≥ t− T ∗)

}
− 1√

t

{
aj ( if 1 ≤ j < t− T ∗)
−bi ( if t− T ∗ = j ≤ d)
0 ( if t− T ∗ < j ≤ d)

}

=


bj√
j+T∗

− aj
∑t
k=j+T∗

1√
k

( for j < t− T ∗)
bt√
t

= bt√
j+T∗

( for j = t− T ∗)
0 ( fro j > t− T ∗)

 .

So yt+1 = zt+1. Since zt+1 ∈ K, we have that xt+1 = zt+1.

From the above claim we have that the vector xt in algorithm 1 is equal to zt for t ∈ [T + 1], which
allows determination of the value of the final iterate:

f(xT+1) = f(zT+1) = Hd+1(zT+1) ≥
d∑
j=1

hd+1,jzT+1,j ≥
d∑
j=1

1

8(d+ 1− j)
1

4
√
T
>

log d

32
√
T
.

B.2 PROOF OF COROLLARY 10

Proof. Define f : K = Bd → R by Hi ∈ Rd for i ∈ [d+ 1] ∪ {0} to be:

f(x) = max
0≤i≤d+1

Hi(x)

where Hi(x) = h>i x+ 1
2‖x‖

2, and we define for i ≥ 1

hi,j =

{
aj ( if 1 ≤ j < i)
−1 ( if i = j ≤ d)
0 ( if i < j ≤ d)

and aj =
1

2(d+ 1− j)
( for j ∈ [d])

in which hi,j is the j-th coordinate of hi. Additionally, let h0 = 0 and H0(x) = 1
2‖x‖

2. It’s
straightforward to check that f is 3-lipschitz and 1-strongly convex on K, with minimal value 0.
Furthermore, ∂f(x) is the convex hull of {hi+x | i ∈ I(x)}where I(x) = {i ≥ 0 | Hi(x) = f(x)},
a standard fact in convex analysis Hiriart-Urruty & Lemaréchal (2013).

12
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Setting x1 = 0, we observation that f(x1) = 0 which attains the global minimum, and by the
characterization of ∂f(x) from above, we know that h0 + x1 = 0 is a sub-gradient at x1. This
observation allows our non-stochastic sub-gradient oracle to output 0 for the first T − d steps and
outputs hi′ + x where i′ = min I(x) \ {0} for the last d steps, since outputting 0 in the first T − d
steps makes x1 = ... = xT−d+1 = 0 by the update rule of SGD. Define z1 = · · · = zT−d+1 = 0,
let T ∗ := T − d and

zt,j =

{
1−(t−T∗−j−1)aj

t−1 ( if 1 ≤ j < t− T ∗)
0 ( if t− T ∗ ≤ j ≤ T )

( for t > T ∗ + 1).

We will show inductively that these are precisely the first T iterates produced by algorithm 1 when
using the sub-gradient oracle defined above. The following claim is easy to verify from definition.

Claim 22. We have the following claims:

• zt is non-negative. In particular, zt,j ≥ 1
2(t−1) for j < t− T ∗ and zt,j = 0 for j ≥ t− T ∗.

• zt = 0 for t ∈ [T ∗ + 1] and ‖zt‖2 ≤ 1
t−1 for t > T ∗ + 1. Thus zt ∈ K for all t.

Proof. The first claim simply follows from the fact that t−T
∗−j−1

d−j+1 ≤ 1. The second claim follows
from that (t− T ∗ − 1) 1

(t−1)2 ≤
1
t−1 .

We can now determine the value and sub-differential at zt. The case for the first T ∗ steps is trivial as
the sub-gradient oracle always outputs 0 and x1 never moves. For the value of last d steps we observe
that zt is supported on its first t− T ∗ coordinates by definition, and as a result h>t−T∗zt = h>i−T∗zt
for all i > t > T ∗.

For the other case T ∗ + 1 ≤ i < t, one have that

z>t (ht−T∗ − hi−T∗) =

t−1∑
j=i

zt,j(ht−T∗,j − hi−T∗,j) = zt,i(ai + 1) +

t−1∑
j=i+1

zt,jaj > 0.

which means z>t ht−T∗ > z>t hi−T∗ for all T ∗ + 1 ≤ i < t. The two results together guarantee that
Ht−T∗(zt) ≥ Hi−T∗(zt) for all T ∗ + 1 ≤ i and thus f(zt) = Ht−T∗(zt). Combining with the fact
I(zt) = {t− T ∗, ..., d+ 1}, we conclude that the sub-gradient oracle outputs ht−T∗ + zt.

Lemma 23. For the function f and its gradient oracle constructed in the proof, the output xt of t-th
step in Algorithm 1 equals to zt for every T ∗ < t ≤ T + 1.

Proof. We prove this lemma by induction. For base case t = T ∗ + 1, we know by the definition of
zt that zt = 0 = xt holds. Next, when zt = xt for some t holds, we have that

yt+1,j =zt,j −
1

t
(ht−T∗,j + zt,j)

=
t− 1

t

{
1−(t−T∗−j−1)aj

t−1 ( for 1 ≤ j < t− T ∗)
0 ( for j ≥ t− T ∗)

}
− 1

t

{
aj ( if 1 ≤ j < t− T ∗)
−1 ( if t− T ∗ = j ≤ d)
0 ( if t− T ∗ < j ≤ d)

}

=
1

t

{
1− (t− T ∗ − j − 1)aj ( for 1 ≤ j < t− T ∗)
0 ( for j ≥ t− T ∗)

}
− 1

t

{
aj ( if 1 ≤ j < t− T ∗)
−1 ( if t− T ∗ = j ≤ d)
0 ( if t− T ∗ < j ≤ d)

}

=


1−(t−T∗−j)aj

t ( for j < t− T ∗)
1
t ( for j = t− T ∗)
0 ( fro j > t− T ∗)

 .

So yt+1 = zt+1. Since zt+1 ∈ K, we have that xt+1 = zt+1.

13
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From the above equivalence we have that the vector xt in algorithm 1 is equal to zt for t ∈ [T + 1],
which allows the determination of the value of the final iterate:

f(xT+1) = f(zT+1) = Hd+1(zT+1) ≥
d∑
j=1

hd+1,jzT+1,j ≥
d∑
j=1

1

2(d+ 1− j)
1

2T
>

log d

5T
.

C OMITTED PROOFS OF SECTION 4

C.1 PROOF OF LEMMA 14

Proof. We prove this statement by contradiction. Suppose there exists x ∈ K\S such that |∇f(x)| ≤
G√
T

. By the convexity of f and the definition of sub-gradient and let x∗ ∈ K be a minimizer (arbitrarily
if the minimizers are not unique), one has

f(x∗) ≥ f(x) +∇f(x)(x− x∗),

which implies that

f(x)− f(x∗) ≤∇f(x)(x∗ − x) ≤ GD√
T
.

This means x ∈ S and thus is a contradiction.

C.2 PROOF OF LEMMA 15

Proof. Let nL = infx∈S x and nR = supx∈S x, which exist because the domain is bounded. By our
setting of parameters and definition, we know if xj > nR, then it is impossible that xj+1 < nL, and
vice versa. As we are considering τt = ∞, either xi > nR for all 1 ≤ i ≤ t, or xi < nL for all
1 ≤ i ≤ t. Without loss of generality, we consider first the case where xi > nR for all 1 ≤ i ≤ t. We
define a random variable yi = xi − xi−1 to capture the movement of the solution for 1 ≤ i ≤ t.
Conditioning on τ =∞, i.e. xi > nR for all 1 ≤ i ≤ t, we have that E[yi] ≤ −cηG = −4D/T for
i ≥ 2 by Lemma 14 (the projection only makes the expectation smaller). By standard arguments, let
Fi be the filtration and ỹi = yi−E[yi | Fi−1]. It is easy to verify that {ỹi} is a martingale difference
sequence:

E[ỹi | Fi] = E[yi | Fi]− E[yi | Fi] = 0. (12)
E[|ỹi|] ≤ Gη <∞. (13)

Obviously, one has |ỹi| ≤ Gη = 4D√
T

by the third line of Assumptions 1. As a result, E[ỹ2i |
Fi−1] = E[y2i | Fi−1] − (E[yi | Fi−1])2 ≤ E[y2i | Fi−1] ≤ η2G2. Hence, we get the estimation
Wt =

∑t
i=2 E[ỹi

2 | Fi−1] ≤ (t − 1)η2G2. Let ` :=
∑t
i=2 E[yi | Fi−1]. We know that ` =∑t

i=1 E[yi | Fi−1] ≤ −tηcG.

So far, we have shown that if xi > nR for all 1 ≤ i ≤ t, then we must have ` ≤ −tηcG, and at the
same time D ≥

∑t
i=2 yi ≥ −D which must happen. Similarly, if xi < nL for all 1 ≤ i ≤ t, then

we have ` ≥ tηcG and −D ≤
∑t
i=2 yi ≤ D. If we can show the probability that |`| ≥ tηcG and

|
∑t
i=2 yi| ≤ D happen simultaneously is small, we are done.

14
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By the Freedman’s Inequality, if t = T + 1, one has:

Pr[τt =∞ | x1] ≤Pr[xi > nR, 1 ≤ i ≤ t] + Pr[xi < nL, 1 ≤ i ≤ t]

≤2 Pr[|
t∑
i=2

ỹi| ≥ |`| −D ∧ |`| ≥ tηcG]

=2 Pr[|
t∑
i=2

ỹi| ≥ |`| −D ∧Wt ≤ (t− 1)η2G2 ∧ |`| ≥ tηcG]

≤ max
|`|≥TcηG

2 exp
(
− (`−D)2

Tη2G2 + 4Gη
3 (`−D)

)
≤2 exp(−Ω(c2T )).

We complete the proof.

15


	Introduction
	Our contributions

	Preliminaries
	Lower Bounds
	Upper Bound in One Dimension
	Nearly Linear Functions
	Analysis

	Conclusion
	More Preliminaries
	Preliminaries on Martingale

	Omitted Proofs for Section 3
	Proof of Corollary 9
	Proof of Corollary 10

	Omitted Proofs of Section 4
	Proof of Lemma 14
	Proof of Lemma 15


