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Abstract001

Recent progress in large language model002
(LLM)-based multi-agent collaboration high-003
lights the power of structured communication004
in enabling collective intelligence. However,005
existing methods largely rely on static or graph-006
based inter-agent topologies, lacking the po-007
tential adaptability and flexibility in commu-008
nication. In this work, we propose a new009
framework that rethinks multi-agent coordina-010
tion through a sequential structure rather than011
a graph structure, offering a significantly larger012
topology space for multi-agent communication.013
Our method focuses on two key directions: (1)014
Next-Agent Prediction, which selects the most015
suitable agent role at each step, and (2) Next-016
Context Selection (NCS), which enables each017
agent to selectively access relevant information018
from any previous step. Together, these compo-019
nents construct task-adaptive communication020
pipelines that support both role flexibility and021
global information flow. Extensive evaluations022
across multiple benchmarks demonstrate that023
our approach achieves superior performance024
while substantially reducing communication025
overhead.026

1 Introduction027

The rise of large language models (LLMs) has rev-028

olutionized many domains by enabling powerful029

agents that can perform complex reasoning, plan-030

ning, and action execution (Pan et al., 2023; Hong031

et al., 2023; Zhuge et al., 2024). These LLM-032

based agents, which integrate language generation033

with decision-making and external tool use, have034

demonstrated remarkable capabilities in diverse035

tasks, such as chain-of-thought reasoning (Yao036

et al., 2023b; Wang et al., 2023a) and code synthe-037

sis (Shinn et al., 2023; Chen et al., 2023). Beyond038

single-agent settings, recent work has shown that039

teams of LLM agents can collaboratively solve040

harder problems than any individual agent (Du041

et al., 2023; Wang et al., 2023b; Shinn et al., 2023;042
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Fig. 1: Comparison of LLM-based multi-agent commu-
nication topology design.

Zheng et al., 2023; Wu et al., 2023; Zhang et al., 043

2023), giving rise to an emergent form of collec- 044

tive intelligence. This emergent capability hinges 045

critically on the design of inter-agent communica- 046

tion topologies: how agents are structured, how 047

they exchange messages, and how they integrate 048

information from others. 049

To support such collaboration, researchers have 050

investigated a wide range of multi-agent commu- 051

nication structures (Fig. 1), including chains (Wei 052

et al., 2022; Zhang et al., 2022), trees (Yao et al., 053

2023a), stars (Wu et al., 2023), fully connected or 054

random graphs (Qian et al., 2024), and learned or 055

optimizable topologies (Zhuge et al., 2024; Zhang 056

et al., 2024a). These designs, often tailored to 057

task complexity or communication budgets, aim 058

to balance performance and efficiency in various 059

deployment scenarios. Notably, recent approaches 060

have introduced learning-based topology construc- 061

tion (Hao et al., 2023; Liu et al., 2023; Zhang et al., 062

2024b), enabling dynamic selection of agent com- 063

munication graphs conditioned on input tasks and 064

queries. Such adaptive frameworks mark a shift 065

from fixed pipelines to more flexible, input-aware 066

systems that can better exploit the potential of LLM 067

collectives. 068
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Despite these advancements, current graph-069

based structures still face fundamental limitations.070

First, they enforce static communication schemas071

within each round: once the topology is learned,072

all agents operate under the same fixed communi-073

cation pattern, preventing the reuse of agents or dy-074

namic adaptation during the reasoning process. Ad-075

ditionally, to maintain acyclic message flow, many076

designs restrict the graph to be a Directed Acyclic077

Graph (DAG), which further constrains the solution078

space (of communication topology) and prohibits079

recursive or repeated consultation of specific agents.080

For example, in a task where one expert agent (e.g.,081

a Python coder) is particularly useful at multiple082

stages of reasoning, a DAG-based structure can-083

not re-query this agent after it is used earlier in084

the round. This leads to inefficient or suboptimal085

reasoning, especially in complex tasks where revis-086

iting agents is crucial. Second, most existing works087

limit information flow strictly to direct graph edges088

between agents, meaning that each agent can only089

access messages from its neighbors. For example,090

in tree-based structures, downstream agents often091

lack access to parallel branches’ outputs, missing092

potentially useful contextual signals. This makes093

it hard for the agents to obtain global context for094

well-informed reasoning.095

To address these challenges, we propose a096

new multi-agent collaboration framework, namely097

ANYMAC, that formulates multi-agent collabora-098

tion through a sequential communication protocol099

rather than a graph-based one. In this way, the con-100

struction of the communication topology is formu-101

lated as predicting the next agent iteratively. Our102

framework contains two novel and critical designs:103

(1) Next-Agent Prediction, where the system dy-104

namically determines the next agent to activate in a105

stepwise manner. This sequential design bypasses106

the constraints of graph structures, allowing for107

greater flexibility in agent reuse and order varia-108

tion across different queries. (2) Next-Context109

Selection, which allows each step to flexibly re-110

trieve outputs from any previously activated agents.111

This globally accessible mechanism enables richer112

and more adaptive communication flows, where in-113

formation is not constrained to propagate through114

fixed graph edges or sequential orders, but instead115

can be retrieved through dynamic selection based116

on task requirements. We conduct extensive exper-117

iments across multiple benchmarks, and the results118

validate the effectiveness of our approach, outper-119

forming state-of-the-art communication topologies120

in both accuracy and efficiency in terms of token 121

consumption. Our contributions can be summa- 122

rized as follows: 123

• Formulation. We propose a new formulation of 124

multi-agent communication, where the system 125

predicts the next agent role and selects context 126

from any previous agents. This formulation is 127

proven to subsume the solution space of prior 128

graph-based methods. 129

• Framework. We propose a transformer-based 130

framework to realize our formulation, leveraging 131

the transformer’s global attention and sequential 132

modeling capabilities. 133

• Experiments. We conduct extensive experi- 134

ments across diverse benchmarks. Our method 135

outperforms state-of-the-art multi-agent base- 136

lines in both accuracy and efficiency, demonstrat- 137

ing adaptivity, robustness, and favorable cost- 138

performance trade-offs. 139

2 Related Work 140

Single Agent Reasoning. Recent research has 141

demonstrated that multi-step reasoning allows large 142

language models (LLMs) to solve complex prob- 143

lems and self-correct along the way. Broadly, sin- 144

gle agent multi-step reasoning can be achieved via 145

training-based and prompting-based methods. 146

In training-based approaches, reinforcement 147

learning (RL) is used to optimize the model’s abil- 148

ity to generate long-form Chain-of-Thought (CoT) 149

reasoning (DeepSeek, 2025). While effective, RL 150

methods typically require substantial data and com- 151

putational resources. To reduce cost, distillation- 152

based methods (Muennighoff et al., 2025; Ye et al., 153

2025) collect high-quality reasoning traces and ap- 154

ply supervised fine-tuning to teach models multi- 155

step reasoning behaviors. 156

Beyond training-based methods, prompting- 157

based techniques enable step-by-step reasoning 158

by prompting procedure. Early approaches in- 159

clude multi-step reasoning exemplars directly in 160

the prompt, as in CoT (Wei et al., 2022) and Auto- 161

matic CoT (Zhang et al., 2022). Previous work 162

also explicitly enforces multi-step reasoning in 163

prompting procedure, such as ToT (Yao et al., 164

2023a) and budget-forcing (Muennighoff et al., 165

2025). Beyond single-agent reasoning, multi-agent 166

approaches leverage collaboration among multiple 167

LLMs to further improve accuracy, detailed below. 168
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Multi-Agent Collaboration. Existing multi-agent169

systems typically predefine role types and fix the170

number of agents per role based on the task, then171

design a communication topology for collabo-172

ration. Prior work can be categorized by how173

this topology is generated. (1) Early approaches174

adopt static structures, such as chain (Qian et al.,175

2023; Hong et al., 2023; Holt et al., 2024),176

star (Wu et al., 2023; Yan et al., 2024; Zhou177

et al., 2023), and tree (Ishibashi and Nishimura,178

2024), which remain unchanged across tasks. (2)179

To improve adaptability, recent methods have ex-180

plored learning static communication graphs from181

data. GPTSwarm (Zhuge et al., 2024) parameter-182

izes agent interactions using predefined Directed183

Acyclic Graph (DAG) topologies and optimizes184

them using reinforcement learning. However, the185

resulting structures remain fixed across the dataset186

and are input-independent, lacking the flexibility to187

adapt communication to individual task instances.188

(3) Recent efforts explore query-adaptive topology189

generation, such as DyLAN (Liu et al., 2023) and190

G-Designer (Zhang et al., 2024b), where agent in-191

teractions are dynamically constructed based on the192

input. While more flexible, they still rely on a man-193

ually defined number of agents and are constrained194

by canonical graph structures (i.e., the anchor struc-195

ture). In contrast, our formulation allows the net-196

work to adaptively determine both the number of197

agents and the communication structure, without198

being restricted by a predefined topology. This flex-199

ibility enables exploration of a significantly larger200

topology space, leading to more effective and adap-201

tive collaboration.202

3 Problem Formulation203

In this section, we define the key concepts for our204

sequential agent collaboration framework. Unlike205

prior works that formulate the multi-agent topology206

as a fixed directed acyclic graph (DAG), we rep-207

resent the communication pipeline as a sequence208

S = [a1, a2, . . . , aT ], where each element at is an209

LLM-based agent selected at the t-th step. This210

design allows agents to be reused multiple times211

and enables dynamic adjustment of the interaction212

order based on the task.213

Each agent at is defined by:214

at = {Baset,Rolet,Statet,Toolt}, (1)215

where Baset is the underlying language model216

instance, Rolet indicates the agent’s role, Statet217

captures its memory and interaction history, and 218

Toolt is an optional set of plugins (e.g., calculator, 219

search engine, or file retriever). 220

Given an initial query Q, the communication 221

sequence unfolds over T steps. At each step t, the 222

system predicts the next agent at and composes a 223

prompt P(t) containing both the original query and 224

selected messages from previous steps: 225

P(t)
R = Select

(
{O(1), . . . ,O(t−1)}

)
, (2) 226

where O(t−1) denotes the response generated by 227

agent at−1, and Select(·) is a learnable mod- 228

ule that chooses relevant past outputs to include 229

in the current prompt. This enables flexible and 230

global context access, unlike graph-based models 231

restricted to local neighborhoods. 232

Each agent executes based on its own system 233

and user prompt: 234

O(t) = at

(
P(t)

sys,P(t)
usr ,P(t)

R

)
, (3) 235

where P(t)
sys includes Rolet and Statet, and P(t)

usr 236

is the user prompt, which may include the query 237

and task instructions from the user. After T steps, 238

a final referee agent will aggregate the output and 239

provide the final answer. 240

4 Methodology 241

As introduced in Section 3, we formulate the prob- 242

lem of LLM-based multi-agent collaboration as a 243

sequential decision process. Our framework, ANY- 244

MAC, dynamically constructs a communication se- 245

quence S = [a1, a2, . . . , aT ] by predicting, at each 246

step, the next agent at and the relevant context to 247

be passed as input. This formulation overcomes the 248

rigidity of fixed graph topologies by allowing agent 249

reuse and flexible context routing across steps. 250

Figure 2 illustrates the workflow of ANYMAC. 251

Given a task query Q, a set of candidate agent 252

roles R, and an optional tool set, our model itera- 253

tively builds the communication sequence. At each 254

step t, it performs three stages: Encoding, Predic- 255

tion, and Execution. In the Encoding stage, the Q, 256

R, and historical conversation Ht−1 are tokenized. 257

These tokens are then fed into a Transformer to 258

obtain contextual embeddings. In the Prediction 259

stage, the contextual embeddings are used for the 260

Next Agent Prediction (NAP) and Next Context 261

Selection (NCS). In the Execution stage, we invoke 262

the selected agent (LLM) with the chosen role and 263
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Fig. 2: The overview of our proposed framework ANYMAC. Left-hand side: At each time step, we perform two
stages of operations: (1) Next-Agent Prediction (NAP), which aims to select the most suitable agent role from a set
of candidate roles. (2) Next-Context Selection (NCS), which aims to retrieve useful context from the outputs of
previously activated agents. The retrieved context will act as the input to the selected agent. Right-hand side: Given
the embeddings of a series of activated agents, we perform contextual encoding using a transformer-based model to
encode them with additional NAP and NCS tokens. The output embeddings of NAP and NCS tokens will be used to
select the next agent and retrieve context from the next agent, respectively.

context to generate the response. The response R(t)264

is appended to Ht and used in the next round until265

a final aggregation step produces the answer a(T ).266

4.1 Contextual Encoding267

Semantic Tokenization. At time step t, given268

a task query Q, a set of candidate role descrip-269

tions Ri, i = 1, 2, . . . , N , and conversation history270

Ht−1 of previous steps, we begin by encoding these271

components into embeddings. Specifically, the task272

query Q contains textual instructions describing273

the question. Each agent role Ri includes a role274

prompt that instructs the agent to act in a specific275

role and provides an optional list of tools the agent276

can access. Each historical conversation in H cor-277

responds to a previous agent, consisting of the role278

description of this agent and its associated response.279

Let Embed(·) denote an encoder function that out-280

puts an embedding for any input text. Formally, the281

tokenization process is:282

q = Embed(Q), (4)283

ri = Embed(Ri), i = 1, 2, . . . , N (5)284

h(j) = r(j)∥Embed(O(j)), j = 1, 2, . . . , t− 1
(6)

285

Here, q is the embedding of the task query, ri is286

the embedding of the i-th agent role description,287

and hj is the embedding of the i-th historical con-288

versation, obtained by concatenating the role and289

response embeddings of agent a(j) at step j. All290

embeddings are passed through a linear projection291

layer to match the transformer’s input dimension.292

We use three separate projection layers: one for the293

task query, one for the role descriptions, and one 294

shared across all historical conversations: 295

q̃ = fq(q), r̃i = fr(ri), h̃j = fh(hj), (7) 296

where fq, fr, fh are learnable linear projections. 297

Moreover, to enable task-adaptive NAP and NCS, 298

we generate the NAP and NCS tokens tNAP and 299

tNCS using the task query embedding q by passing 300

it through two separate linear layers: 301

tNAP = fNAP(q), tNCS = fNCS(q), (8) 302

where fNAP and fNCS are learnable linear projec- 303

tions that map the query embedding to the input 304

dimension expected by the Transformer. 305

Contextual Encoding. After obtaining the 306

token embeddings, we concatenate them into a se- 307

quence and feed it into an L-layer Transformer 308

encoder to obtain contextualized embeddings T: 309

T⋆ = TransL

(
[q̃, r̃1:N , h̃1:t−1, tNAP, tNCS]

)
.

(9) 310

This encoding fuses information from task intent, 311

role priors, and dialogue history, producing contex- 312

tualized embeddings T⋆ of the same length, which 313

are used in the subsequent NAP and NCS. 314

4.2 Next-Agent Prediction (NAP) 315

Let N denote the total number of candidate roles. 316

To determine the next agent role, we first compute 317

pairwise compatibility scores between the contex- 318

tualized NAP token t⋆NAP and each contextualized 319

role token r⋆i using an inner product: 320

si = ⟨t⋆NAP, r
⋆
i ⟩, i = 1, . . . , N. (10) 321
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we then select the role of the next agent (i.e., at)322

by considering the role Rk with the highest com-323

patibility score si:324

at = Rk, where k = argmax
i=1,2,...,N

si. (11)325

During training, to encourage exploration, we apply326

the Gumbel-Softmax (Jang et al., 2016) over {si}.327

4.3 Next-Context Selection (NCS)328

To decide which parts of the historical conversa-329

tion should be fed into the next agent as context,330

we compute cosine similarity scores between the331

contextualized NCS token t⋆NCS and each contextu-332

alized history token h⋆
j :333

cj =
⟨t⋆NCS,h

⋆
j ⟩

∥t⋆NCS∥ · ∥h⋆
j∥

, cj ∈ [−1, 1], (12)334

These scores are then passed through a sigmoid335

function, resulting in values that lie in (0, 1):336

gj = σ(cj) =
1

1 + e−cj
, j = 1, 2, . . . , t− 1,

(13)337

to obtain gate values gj , which determine the in-338

clusion probability for each context. At inference339

time, we select the context from previous agents by340

applying a threshold:341

P(t)
O = {(R(j),O(j))|gj ≥ η, j = 1, 2, . . . , t−1},

(14)342

where η ∈ R is a threshold used for selecting. Dur-343

ing training, we sample Bernoulli masks with prob-344

abilities given by gj to enable exploration.345

Sparsity Penalty. Ideally, we would like the agent346

to access as much historical context as possible.347

However, excessively long context can lead to two348

issues: the agent may become overwhelmed by349

irrelevant information, and the API cost increases350

with longer context. To address this, we propose a351

sparsity penalty during training:352

Lsparse = λ

t−1∑
j=1

|gj |. (15)353

Here, gj is the gating score for the j-th history. By354

penalizing the magnitude of gj , the model learns to355

selectively include only the most relevant context,356

avoiding unnecessary prompt tokens.357

4.4 Execution 358

Once the next agent role and its associated context 359

are determined, we perform Execution. We prompt 360

the selected agent at with the system prompt P(t)
sys , 361

the user prompt P(t)
usr , and selected context P(t)

R , to 362

generate the response O(t): 363

O(t) = at(P(t)
sys,P(t)

usr ,P(t)
O ). (16) 364

The output is appended to the historical conversa- 365

tion buffer, enabling iterative reasoning and coordi- 366

nation in subsequent rounds. Formally, we update 367

the conversation history as: 368

Ht = Ht−1 ∪ {(at,O(t))}, (17) 369

where at denotes the selected agent based on NAP 370

scores at time step t, and O(t) is the generated re- 371

sponse after executing the role at using the selected 372

context P(t)
O . This process continues iteratively un- 373

til a final decision agent is selected or the maximum 374

number of iterations is reached. 375

4.5 Optimizing ANYMAC with RL 376

To improve routing quality with awareness of task 377

difficulty and efficiency, we formulate NAP train- 378

ing as a reinforcement learning (RL) problem. 379

Efficiency-Aware Reward. Given a final aggre- 380

gated answer a from a communication sequence 381

with length l, we define the reward r as: 382

r = γl · I[is_correct(a)], (18) 383

where I[·] is the indicator function that returns 1 if 384

the answer a is correct, and 0 otherwise. The expo- 385

nential decay term γl, where γ ∈ (0, 1], penalizes 386

longer routing paths. A smaller γ places greater 387

emphasis on efficiency by punishing large l more. 388

Difficulty-Aware Advantage Estimation. Since 389

questions vary in difficulty, directly comparing re- 390

wards across different queries is misleading. This 391

is because a high reward may result from an easy 392

question rather than a good routing policy. To ad- 393

dress this, we apply a standard reward normaliza- 394

tion technique (Gu et al., 2016; Schulman et al., 395

2017), which takes the average reward of a ques- 396

tion into account and compute advantage At of 397

each trajectory, as described in Appendix A.2. The 398

policy gradient loss is then computed as follows: 399

∇ΘLPG = −
T∑
t=1

At∇Θ logPΘ(τt), (19) 400
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where PΘ(τt) denotes the probability of the t-th401

sampled trajectory under the current model param-402

eters Θ. This includes both the NAP selection prob-403

ability (Section 4.2) obtained via Gumbel-Softmax,404

and the NCS selection probability (Section 4.3) de-405

rived from the sigmoid gating function. The full406

objective combines the policy gradient and the spar-407

sity regularization term (Section 4.3):408

L = LPG + λLsparse, (20)409

where λ is a hyper-parameter to control the impor-410

tance of the sparsity regularization term.411

5 Experiments412

5.1 Experimental Setup413

Benchmarks & Tasks. We evaluate ANYMAC414

across a diverse suite of tasks spanning general415

reasoning, mathematical problem solving, and code416

generation. Specifically, we use MMLU (Hendrycks417

et al., 2021) for general reasoning; GSM8K (Cobbe418

et al., 2021), MultiArith (Roy and Roth, 2016),419

SVAMP (Patel et al., 2021), and AQuA (Ling et al.,420

2017) for math reasoning; and HumanEval (Chen421

et al., 2021) for code generation. We follow the422

standard train/test splits provided by each dataset.423

Variants. We provide two variants of our method:424

ANYMAC and ANYMAC-EFF The first one dis-425

ables all efficiency-related constraints by setting the426

sparsity loss weight λ = 0, the reward decay factor427

γ = 1, allowing the model to focus solely on accu-428

racy. In contrast, ANYMAC-EFF sets λ = 1e−3,429

γ = 0.9, and constrains the context selection to be430

within the newest 2 responses, encouraging shorter431

routing trajectories (i.e., fewer agents) and compact432

context selection.433

Baselines. To ensure a comprehensive compari-434

son of various methods, we compare ANYMAC435

against both single-agent prompting and multi-436

agent collaboration frameworks. Single-agent437

baselines include COT (Chain-of-Thought) (Wei438

et al., 2022), COMPLEXCOT (Fu et al., 2022),439

SELF-CONSISTENCY (Wang et al., 2023a),440

and PHP (Zheng et al., 2023). Multi-agent441

baselines include topology-based methods, in-442

cluding CHAIN, STAR, TREE (Qian et al., 2024),443

COMPLETE GRAPH, and RANDOM GRAPH.444

For learning-based frameworks, we consider445

AUTOGEN (Wu et al., 2023), LLM-DEBATE (Du446

et al., 2023), DYLAN (Liu et al., 2023),447

GPTSWARM (Zhuge et al., 2024), and448

G-DESIGNER (Zhang et al., 2024b).449

Implementation. We implement all agents us- 450

ing the OpenAI model, gpt-4-1106-preview. 451

For all single-agent and multi-agent baselines, 452

we follow the official configurations used in 453

G-DESIGNER (Zhang et al., 2024b)1, which adopt 454

a temperature of 0 for single-agent and 1 for multi- 455

agent methods. For sentence embeddings, we 456

use all-MiniLM-L6-v2 (Wang et al., 2020) as 457

Embed(·) to encode queries, role descriptions, and 458

historical responses into 384-dimensional vectors. 459

We also make specific design choices in ANY- 460

MAC. We use a default temperature of 1, except 461

on multiple-choice benchmarks (MMLU and AQuA), 462

where we set the temperature to 0 as we find it 463

helps reduce hallucinations. The maximum num- 464

ber of agents is fixed to 5 across all tasks. Once 465

this limit is reached, the next agent role is forced 466

to be the decision model, which produces the final 467

answer and terminates the reasoning process. 468

We use GPT-2 Small (Radford et al., 2019) 469

as the routing model and initialize it with pretrained 470

weights. The computational overhead of the rout- 471

ing model is negligible compared to LLMs: it is 472

lightweight (117M parameters) and only predicts 473

two tokens per step (NAP and NCS). In contrast, 474

LLMs are over 1000× larger (e.g., GPT-3 has 475

175B parameters (Brown et al., 2020)) and gener- 476

ate hundreds of tokens per response. To train the 477

model, we sample 80 questions from each dataset 478

and collect 1000 routing trajectories along with 479

their corresponding rewards. 480

Training questions selection. If a dataset pro- 481

vides a train/test split, we sample 80 task instances 482

from the training set; otherwise, we use the first 80 483

tasks in test set. The model is optimized separately 484

for each dataset. 485

Adaptive Sampling. We collect 1000 trajec- 486

tory samples (attempted answers) per dataset. To 487

make effective use of the training sample budget, 488

we design an adaptive sampling strategy that allo- 489

cates more samples to difficult questions. Specif- 490

ically, when iterating through all questions in a 491

dataset, we do not set a fixed number of trials 492

per question. Instead, we define a required num- 493

ber of correct answers for each question before 494

moving on. This strategy naturally allocates more 495

sampling budget to harder examples, as easy ques- 496

tions tend to reach the threshold with fewer sam- 497

ples, while difficult ones require more. After each 498

1Since the official implementations of baselines are not
fully open-source, we use results provided in G-Designer.
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Table 1: Accuracy comparison across single-agent and multi-agent baselines. The best results are shown in bold,
and the runner-ups are underlined. We highlight the accuracy gain (+ / –) relative to the vanilla baseline.

Method MMLU GSM8K MultiArith SVAMP AQuA HumanEval Avg.
Vanilla 82.14 85.40 93.15 87.18 70.34 71.68 81.65
CoT 82.65(+0.51) 87.17(+1.77) 94.79(+1.64) 88.32(+1.14) 73.91(+3.57) 75.52(+3.84) 83.73
ComplexCoT 83.78(+1.64) 87.62(+2.22) 95.86(+2.71) 90.17(+2.99) 77.58(+7.24) 74.94(+3.26) 84.99
SC (CoT) 82.66(+0.52) 87.93(+2.53) 96.88(+3.73) 88.69(+1.51) 75.08(+4.74) 77.30(+5.62) 84.75
SC (Complex) 83.65(+1.51) 86.14(−0.74) 96.94(+3.79) 89.72(+2.54) 77.69(+7.35) 77.94(+6.26) 85.35
PHP 83.45(+1.31) 95.50(+10.10) 98.10(+2.84) 90.02(+3.44) 79.00(+8.66) 82.96(+11.36) 88.17
Chain 82.35(+0.21) 85.57(+0.17) 94.38(+1.23) 83.41(−3.77) 70.94(+0.60) 80.88(+9.20) 82.92
Star 80.79(−1.35) 85.55(+0.15) 93.79(−0.64) 88.09(+0.91) 68.57(−1.77) 75.65(+3.97) 82.07
Tree 81.89(−0.25) 84.56(−0.84) 94.60(+1.45) 89.25(+2.07) 72.84(+2.50) 77.38(+5.70) 83.42
Complete Graph 83.15(+1.01) 86.49(+1.09) 97.20(+4.05) 89.48(+2.30) 79.21(+8.87) 83.75(+12.07) 86.55
Random Graph 83.76(+1.62) 86.14(+0.74) 95.46(+2.31) 85.41(−1.77) 74.07(+3.73) 82.66(+10.98) 84.58
AutoGen 82.13(−0.01) 90.06(+7.92) 93.80(+0.65) 88.44(−1.26) 73.65(+3.31) 85.41(+13.73) 85.58
LLM-Debate 83.69(+1.55) 90.23(+4.83) 96.27(+3.12) 90.56(+3.38) 77.52(+7.18) 83.79(+12.11) 87.01
DyLAN 80.16(−1.98) 88.16(+2.76) 94.27(+1.12) 87.40(+0.22) 74.16(+3.82) 89.70(+18.02) 85.64
GPTSwarm 83.98(+1.84) 89.74(+4.34) 97.84(+4.69) 86.42(−0.76) 78.16(+7.82) 88.49(+16.81) 87.32
G-Designer 84.50(+2.36) 95.07(+9.67) 98.30(+5.15) 91.85(+4.67) 79.47(+9.13) 89.90(+18.22) 89.84
ANYMAC 84.30(+2.16) 95.66(+10.26) 99.44(+6.29) 92.67(+5.49) 81.50(+11.16) 90.12(+18.44) 90.62

epoch, if there is remaining trajectory budget, we499

proceed to the next epoch and repeat the process500

until the total sampling budget is exhausted. For501

ANYMAC, we set the threshold to 1 correct an-502

swer; for ANYMAC-EFF, we increase it to 4 to503

encourage more stable training.504

5.2 Comparative Results505

ANYMAC outperforms other baselines. Table 1506

compares the accuracy of ANYMAC against a507

range of baselines. Notably, ANYMAC achieves508

the highest average accuracy across all benchmarks,509

outperforming both single-agent and multi-agent510

methods. Specifically, it achieves state-of-the-art511

performance on GSM8K, MultiArith, SVAMP,512

AQuA, and HumanEval, and ranks as the runner-513

up on MMLU.514

The superior performance of ANYMAC stems515

from multiple aspects. First, compared to single-516

agent methods, multi-agent collaboration allows517

agents to check and correct each other’s reason-518

ing, leading to higher accuracy. Second, com-519

pared to multi-agent methods with fixed routing520

structures, ANYMAC generates task-specific multi-521

agent reasoning trajectories, enabling more adap-522

tive and effective collaboration. Finally, compared523

to other learning-based routers, ANYMAC is not524

constrained by manually defined anchor structures525

in G-DESIGNER and fixed role distributions in526

DYLAN and GPTSWARM, offering greater flexi-527

bility and a larger routing solution space to explore528

optimal communication sequences.529

5.3 Robustness Evaluation 530

ANYMAC is robust to malicious agents. An im- 531

portant advantage of learning-based multi-agent 532

methods like ANYMAC is their robustness to mali- 533

cious agents. Through training, the router can learn 534

to identify and downweight or bypass agents that 535

provide misleading or harmful responses. To evalu- 536

ate this, we conduct an experiment by injecting a 537

malicious agent into the candidate agent pool. This 538

agent is intentionally designed to produce consis- 539

tently incorrect or distracting content. 540

Figure 3 shows the robustness evaluation results 541

on MMLU dataset. We observe that other methods 542

exhibit a significant accuracy drop (up to -11.0%) 543

when a malicious agent is present. In contrast, 544

ANYMAC maintains high accuracy (-1.3%), high- 545

lighting its robustness under adversarial conditions. 546

We also observe that other learning-based base- 547

lines such as GPTSWARM and G-DESIGNER ex- 548

hibit similar robustness, indicating that learned 549

routing policies generally confer a degree of re- 550

silience against adversarial inputs. 551

5.4 Efficiency Evaluation 552

ANYMAC is efficient. Beyond accuracy, token 553

consumption is also a critical factor that affects 554

practicality, as it reflects the actual cost incurred by 555

users when solving tasks. Figure 4 compares the 556

trade-off between prompt token usage and accuracy 557

across different methods on the GSM8K dataset. 558

Notably, ANYMAC achieves the highest accuracy 559

but with relatively higher token usage. In contrast, 560
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ANYMAC-EFF sacrifices a small amount of ac-561

curacy in exchange for significantly improved ef-562

ficiency, achieving the lowest token consumption563

among all methods. Compared to the most effi-564

cient baseline G-DESIGNER, ANYMAC-EFF re-565

duces prompt token usage by 5×, while maintain-566

ing competitive performance. This demonstrates567

that our method is highly flexible: it can be con-568

figured to prioritize either accuracy or efficiency,569

and achieves state-of-the-art performance in both570

aspects.571

5.5 Qualitative Case Studies572

We further conduct qualitative analyses to evaluate573

the adaptability and behavior of ANYMAC. First,574

we investigate whether ANYMAC can adapt to575

different types of questions using the MMLU dataset.576

Figure 5 in Appendix shows the routing results of577

ANYMAC on two different questions. We observe578

that ANYMAC selects different roles, showing its579

ability to adapt based on the question.580

Furthermore, we also compare ANYMAC and581

ANYMAC-EFF using the same question from582

GSM8K to assess the trade-off between accuracy583

and efficiency. Figure 6 in Appendix shows that584

ANYMAC selects more context and produces the585

correct answer, while ANYMAC-EFF uses less586

context and fails. This shows that more compu-587

tation can lead to improved accuracy.588

5.6 Ablation Studies589

In this subsection, we perform ablations on590

ANYMAC and conduct experiments on the GSM8K591

dataset to evaluate the effectiveness of each mod-592

ule in our design. We consider the following vari-593

ants: (1) Removing task adaptiveness. We replace594

the query embedding with a single learnable vec-595

tor shared across all queries. (2) Removing the596

Table 2: Ablation study on ANYMAC-ACC evaluated
on the GSM8K dataset.

Variant Accuracy (%)

ANYMAC (Full Model) 95.66

w/o Task Embed. (Task Adaptive) 93.87
w/o Next-Agent Prediction (NAP) 94.75
w/o Next-Context Selection (NCS) 94.35

Next-Agent Prediction (NAP) module. We replace 597

the learned agent selection with a random choice 598

at each step. (3) Removing the Next-Context Se- 599

lection (NCS) module. We replace the context 600

selection mechanism with random sampling from 601

the context pool with 50% probability for each 602

response. The results are shown in Table 2. We ob- 603

serve that removing any of these components leads 604

to an accuracy drop, highlighting their importance. 605

6 Conclusion 606

In this work, we investigate multi-agent collabora- 607

tion through the lens of communication topology 608

design. We propose a novel sequential formula- 609

tion that dynamically constructs communication 610

topologies by predicting the next agent at each step. 611

Our framework introduces two key components: 612

Next-Agent Prediction for flexible, task-aware role 613

allocation, and Next-Context Selection for glob- 614

ally informed information routing. Together, these 615

components enable a broader solution space than 616

traditional graph structures, supporting adaptive, 617

efficient, and robust multi-agent reasoning. Exten- 618

sive experiments across multiple benchmarks show 619

that our approach consistently outperforms existing 620

methods in both accuracy and efficiency. We be- 621

lieve this sequential communication protocol opens 622

new directions for future research in scalable and 623

generalizable multi-agent LLM systems. 624

8



7 Limitations625

While ANYMAC achieves the highest overall accu-626

racy, its performance on the HumanEval, a code627

generation dataset, is slightly below the state-of-628

the-art as shown in Table 1. After investigating629

the reason, we find that ANYMAC tends to select630

overly long contexts, which may overwhelm the631

LLM, leading to incorrect code generation.632

We believe the above issue is caused by an in-633

sufficient number of training samples (1,000) for634

reinforcement learning (RL), which may lead to635

convergence to a suboptimal solution. We hypoth-636

esize that this can be mitigated by scaling up RL637

training. However, scaling RL sampling data for638

LLMs is both computationally and financially ex-639

pensive in practice. Therefore, we leave this as640

future work and plan to explore it using smaller641

language models, which offer significantly lower642

data collection costs. Moreover, smaller language643

models may benefit more from multi-agent collab-644

oration due to their weaker individual capabilities.645

8 Ethical Consideration646

This work builds upon large language models647

(LLMs) for multi-agent collaboration and reason-648

ing. All models and datasets used in our experi-649

ments are publicly available and widely adopted650

in the research community. We do not introduce651

any new data collection, nor do we engage in sensi-652

tive information. During our experiments, we did653

not observe any explicit ethical concerns, harm-654

ful behaviors, or misuse cases. Nevertheless, we655

acknowledge that LLM-based systems, especially656

when deployed in multi-agent configurations, can657

potentially amplify biases or generate misleading658

information if not properly controlled. Our method659

focuses on improving multi-agent communication660

effectiveness and efficiency and does not alter the661

core generative behavior of the underlying LLMs.662
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A RL Training Details851

A.1 Exploration and Exploitation852

An important challenge in reinforcement learning853

is balancing the trade-off between Exploration and854

Exploitation. Exploration refers to discovering new855

possibilities by sampling uncertain actions, while856

exploitation focuses on selecting the best-known857

decision based on current knowledge.858

In our framework, we encourage exploration by859

injecting noise into the output decision logits dur-860

ing training. By tuning the relative magnitude of861

the noise and decision score, we can effectively862

balance exploration and exploitation.863

Next agent prediction (NAP). For NAP, it is864

essential to balance the compatibility scores si and865

the injected Gumbel noise (Section 4.2). To achieve866

this, we first compute the mean and standard devia-867

tion of compatibility scores si across N roles:868

µ =
1

N

N∑
i=1

s′i, σ =

√√√√ 1

N

N∑
i=1

(s′i − µ)2. (21)869

We then normalize the scores to have zero mean870

and scale them to have a standard deviation of α:871

si = α · s
′
i − µ

σ
. (22)872

By tuning α, we can control the determinism of873

the routing behavior: higher values of α lead874

to more deterministic (exploitation-oriented) de-875

cisions, while lower values encourage exploration.876

Empirically, we set α = 1.5, as it provides a877

good balance between exploration and exploitation.878

Next context selection (NCS). We apply a simi-879

lar scaling strategy to the cosine similarities in NCS.880

Specifically, each similarity score cj is multiplied881

by a scaling factor β to obtain c′j :882

c′j = cj , c′j ∈ [−β, β], (23)883

which is passed through a sigmoid function (Equa-884

tion (13)) to compute the sampling probability gj .885

Note that contexts are selected based on gj using886

Bernoulli sampling. By adjusting β, we control the887

determinism of context selection: a larger β makes888

the selection more deterministic (for exploitation),889

while a smaller β promotes exploration. Empiri-890

cally, β is set to 3, as it provides a good balance891

between exploration and exploitation.892

A.2 Reward Normalization 893

As discussed in Section 4.5, directly comparing re- 894

wards across different questions is inappropriate, as 895

their difficulty levels may vary. A high reward on 896

an easy question may not reflect the effectiveness 897

of the routing strategy but rather the simplicity of 898

the task itself. To address this, we adopt a standard 899

reward normalization trick (Gu et al., 2016; Schul- 900

man et al., 2017), which normalizes the reward of 901

each trajectory based on a baseline estimated from 902

the same question: 903

At =
rt − µ

σ
, µ =

1

T

T∑
k=1

rk, σ =

√√√√ 1

T

T∑
k=1

(rk − µ)2.

(24) 904

Here, rt denotes the reward of the current trajectory, 905

and T is the number of sampled trajectories for the 906

same question. Each rk represents the reward of 907

the k-th sampled trajectory. The resulting At is 908

the advantage value of current trajectory in policy 909

gradient optimization (Equation (19)), reflecting 910

how much better (or worse) the current trajectory 911

performs compared to the average baseline. 912

This normalization trick mitigates the impact of 913

question difficulty and enables the reinforcement 914

learning process to treat rewards from different 915

queries more fairly and consistently. 916
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Context Selection

Question: 

Answer: 

"Before contact with Europeans, many First Nations populations viewed gay men, lesbians, and 
people who assumed cross-gender roles with\nOption A: disgust and revulsion.\nOption B: pity and 
indulgence.\nOption C: fear and awe.\nOption D: respect and admiration.\n"  "D"

D

Correct

(a) Routing results and final answer of ANYMAC-ACC. for Question 1 in MMLU.

Context Selection

Question: 
Answer: 

"Socrates suggests that the holy is one part of:\nOption A: what is prudent.\nOption B: what is just.
\nOption C: what is beautiful.\nOption D: what is legal.\n"  "B"

B
Correct

(b) Routing results and final answer of ANYMAC-ACC. for Question 2 in MMLU.

Fig. 5: Qualitative illustration of ANYMAC’s routing decisions on two different questions. In (a), the model selects
a combination of Lawyer and Knowledgeable Expert for Question 1. In (b), it assigns all agents as Knowledgeable
Experts for Question 2.

Context Selection

Question: 

Answer: 

"A company pays each of its employees $600 in a month. The company has a policy of increasing 
the salaries of each of its employees by 10% of the initial salary every year for those who've stayed in the 
company for five years. If Sylvie just clocked 5 years in the company last December, what's her annual salary 
after three more years of service?" 9360

9360

10800

Correct

Wrong

Fig. 6: Qualitative comparison between ANYMAC-ACC. (top) and ANYMAC-EFF. (bottom) on the same question.
They use different computation budgets, and the increased computation in ANYMAC-ACC. leads to the correct
answer.
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