AnyMAC: Cascading Flexible Multi-Agent Collaboration
via Next-Agent Prediction

Anonymous ACL submission

Abstract

Recent progress in large language model
(LLM)-based multi-agent collaboration high-
lights the power of structured communication
in enabling collective intelligence. However,
existing methods largely rely on static or graph-
based inter-agent topologies, lacking the po-
tential adaptability and flexibility in commu-
nication. In this work, we propose a new
framework that rethinks multi-agent coordina-
tion through a sequential structure rather than
a graph structure, offering a significantly larger
topology space for multi-agent communication.
Our method focuses on two key directions: (1)
Next-Agent Prediction, which selects the most
suitable agent role at each step, and (2) Next-
Context Selection (NCS), which enables each
agent to selectively access relevant information
from any previous step. Together, these compo-
nents construct task-adaptive communication
pipelines that support both role flexibility and
global information flow. Extensive evaluations
across multiple benchmarks demonstrate that
our approach achieves superior performance
while substantially reducing communication
overhead.

1 Introduction

The rise of large language models (LLMs) has rev-
olutionized many domains by enabling powerful
agents that can perform complex reasoning, plan-
ning, and action execution (Pan et al., 2023; Hong
et al., 2023; Zhuge et al., 2024). These LLM-
based agents, which integrate language generation
with decision-making and external tool use, have
demonstrated remarkable capabilities in diverse
tasks, such as chain-of-thought reasoning (Yao
et al., 2023b; Wang et al., 2023a) and code synthe-
sis (Shinn et al., 2023; Chen et al., 2023). Beyond
single-agent settings, recent work has shown that
teams of LLM agents can collaboratively solve
harder problems than any individual agent (Du
et al., 2023; Wang et al., 2023b; Shinn et al., 2023;

Chain Star Tree Complete Graph
(‘..‘J "..'J ;A_‘. ‘,..,’
- o e
() =
o) ".._" o § i‘,, ¢
L W0 @8
() () () Adaptive
- - - PiZk
@ @ @ O
G=) G=) G=) C
DyLAN G-Designer Ours

Fig. 1: Comparison of LLM-based multi-agent commu-
nication topology design.

Zheng et al., 2023; Wu et al., 2023; Zhang et al.,
2023), giving rise to an emergent form of collec-
tive intelligence. This emergent capability hinges
critically on the design of inter-agent communica-
tion topologies: how agents are structured, how
they exchange messages, and how they integrate
information from others.

To support such collaboration, researchers have
investigated a wide range of multi-agent commu-
nication structures (Fig. 1), including chains (Wei
et al., 2022; Zhang et al., 2022), trees (Yao et al.,
2023a), stars (Wu et al., 2023), fully connected or
random graphs (Qian et al., 2024), and learned or
optimizable topologies (Zhuge et al., 2024; Zhang
et al., 2024a). These designs, often tailored to
task complexity or communication budgets, aim
to balance performance and efficiency in various
deployment scenarios. Notably, recent approaches
have introduced learning-based topology construc-
tion (Hao et al., 2023; Liu et al., 2023; Zhang et al.,
2024b), enabling dynamic selection of agent com-
munication graphs conditioned on input tasks and
queries. Such adaptive frameworks mark a shift
from fixed pipelines to more flexible, input-aware
systems that can better exploit the potential of LLM
collectives.

Despite these advancements, current graph-
based structures still face fundamental limitations.
First, they enforce static communication schemas
within each round: once the topology is learned,
all agents operate under the same fixed communi-
cation pattern, preventing the reuse of agents or dy-
namic adaptation during the reasoning process. Ad-
ditionally, to maintain acyclic message flow, many
designs restrict the graph to be a Directed Acyclic
Graph (DAG), which further constrains the solution
space (of communication topology) and prohibits
recursive or repeated consultation of specific agents.
For example, in a task where one expert agent (e.g.,
a Python coder) is particularly useful at multiple
stages of reasoning, a DAG-based structure can-
not re-query this agent after it is used earlier in
the round. This leads to inefficient or suboptimal
reasoning, especially in complex tasks where revis-
iting agents is crucial. Second, most existing works
limit information flow strictly to direct graph edges
between agents, meaning that each agent can only
access messages from its neighbors. For example,
in tree-based structures, downstream agents often
lack access to parallel branches’ outputs, missing
potentially useful contextual signals. This makes
it hard for the agents to obtain global context for
well-informed reasoning.

To address these challenges, we propose a
new multi-agent collaboration framework, namely
ANYMAC, that formulates multi-agent collabora-
tion through a sequential communication protocol
rather than a graph-based one. In this way, the con-
struction of the communication topology is formu-
lated as predicting the next agent iteratively. Our
framework contains two novel and critical designs:
(1) Next-Agent Prediction, where the system dy-
namically determines the next agent to activate in a
stepwise manner. This sequential design bypasses
the constraints of graph structures, allowing for
greater flexibility in agent reuse and order varia-
tion across different queries. (2) Next-Context
Selection, which allows each step to flexibly re-
trieve outputs from any previously activated agents.
This globally accessible mechanism enables richer
and more adaptive communication flows, where in-
formation is not constrained to propagate through
fixed graph edges or sequential orders, but instead
can be retrieved through dynamic selection based
on task requirements. We conduct extensive exper-
iments across multiple benchmarks, and the results
validate the effectiveness of our approach, outper-
forming state-of-the-art communication topologies

in both accuracy and efficiency in terms of token
consumption. Our contributions can be summa-
rized as follows:

* Formulation. We propose a new formulation of
multi-agent communication, where the system
predicts the next agent role and selects context
from any previous agents. This formulation is
proven to subsume the solution space of prior
graph-based methods.

* Framework. We propose a transformer-based
framework to realize our formulation, leveraging
the transformer’s global attention and sequential
modeling capabilities.

* Experiments. We conduct extensive experi-
ments across diverse benchmarks. Our method
outperforms state-of-the-art multi-agent base-
lines in both accuracy and efficiency, demonstrat-
ing adaptivity, robustness, and favorable cost-
performance trade-offs.

2 Related Work

Single Agent Reasoning. Recent research has
demonstrated that multi-step reasoning allows large
language models (LLMs) to solve complex prob-
lems and self-correct along the way. Broadly, sin-
gle agent multi-step reasoning can be achieved via
training-based and prompting-based methods.

In training-based approaches, reinforcement
learning (RL) is used to optimize the model’s abil-
ity to generate long-form Chain-of-Thought (CoT)
reasoning (DeepSeek, 2025). While effective, RL
methods typically require substantial data and com-
putational resources. To reduce cost, distillation-
based methods (Muennighoff et al., 2025; Ye et al.,
2025) collect high-quality reasoning traces and ap-
ply supervised fine-tuning to teach models multi-
step reasoning behaviors.

Beyond training-based methods, prompting-
based techniques enable step-by-step reasoning
by prompting procedure. Early approaches in-
clude multi-step reasoning exemplars directly in
the prompt, as in CoT (Wei et al., 2022) and Auto-
matic CoT (Zhang et al., 2022). Previous work
also explicitly enforces multi-step reasoning in
prompting procedure, such as ToT (Yao et al.,
2023a) and budget-forcing (Muennighoff et al.,
2025). Beyond single-agent reasoning, multi-agent
approaches leverage collaboration among multiple
LLMs to further improve accuracy, detailed below.

Multi-Agent Collaboration. Existing multi-agent
systems typically predefine role types and fix the
number of agents per role based on the task, then
design a communication topology for collabo-
ration. Prior work can be categorized by how
this topology is generated. (1) Early approaches
adopt static structures, such as chain (Qian et al.,
2023; Hong et al., 2023; Holt et al., 2024),
star (Wu et al., 2023; Yan et al., 2024; Zhou
et al., 2023), and tree (Ishibashi and Nishimura,
2024), which remain unchanged across tasks. (2)
To improve adaptability, recent methods have ex-
plored learning static communication graphs from
data. GPTSwarm (Zhuge et al., 2024) parameter-
izes agent interactions using predefined Directed
Acyclic Graph (DAG) topologies and optimizes
them using reinforcement learning. However, the
resulting structures remain fixed across the dataset
and are input-independent, lacking the flexibility to
adapt communication to individual task instances.
(3) Recent efforts explore query-adaptive topology
generation, such as DyLAN (Liu et al., 2023) and
G-Designer (Zhang et al., 2024b), where agent in-
teractions are dynamically constructed based on the
input. While more flexible, they still rely on a man-
ually defined number of agents and are constrained
by canonical graph structures (i.e., the anchor struc-
ture). In contrast, our formulation allows the net-
work to adaptively determine both the number of
agents and the communication structure, without
being restricted by a predefined topology. This flex-
ibility enables exploration of a significantly larger
topology space, leading to more effective and adap-
tive collaboration.

3 Problem Formulation

In this section, we define the key concepts for our
sequential agent collaboration framework. Unlike
prior works that formulate the multi-agent topology
as a fixed directed acyclic graph (DAG), we rep-
resent the communication pipeline as a sequence
S = [a1, ag, ..., ar|, where each element a; is an
LLM-based agent selected at the ¢-th step. This
design allows agents to be reused multiple times
and enables dynamic adjustment of the interaction
order based on the task.
Each agent a; is defined by:

a; = {Base;,Roley, Statey, Tools}t, (1)

where Base; is the underlying language model
instance, Roley indicates the agent’s role, Statey

captures its memory and interaction history, and
Tool, is an optional set of plugins (e.g., calculator,
search engine, or file retriever).

Given an initial query Q, the communication
sequence unfolds over 7' steps. At each step £, the
system predicts the next agent a; and composes a
prompt PO containing both the original query and
selected messages from previous steps:

PY — select ({O(l), ces O(til)}) @

where O(*~1) denotes the response generated by
agent a;_1, and Select(-) is a learnable mod-
ule that chooses relevant past outputs to include
in the current prompt. This enables flexible and
global context access, unlike graph-based models
restricted to local neighborhoods.

Each agent executes based on its own system
and user prompt:

0 —a (PLPLPY), @)

where 735(2 includes Role; and Statey, and 73552
is the user prompt, which may include the query
and task instructions from the user. After 7" steps,
a final referee agent will aggregate the output and
provide the final answer.

4 Methodology

As introduced in Section 3, we formulate the prob-
lem of LLLM-based multi-agent collaboration as a
sequential decision process. Our framework, ANY-
MAC, dynamically constructs a communication se-
quence S = [ai, ag, ..., ar] by predicting, at each
step, the next agent a; and the relevant context to
be passed as input. This formulation overcomes the
rigidity of fixed graph topologies by allowing agent
reuse and flexible context routing across steps.
Figure 2 illustrates the workflow of ANYMAC.
Given a task query Q, a set of candidate agent
roles R, and an optional tool set, our model itera-
tively builds the communication sequence. At each
step t, it performs three stages: Encoding, Predic-
tion, and Execution. In the Encoding stage, the O,
R, and historical conversation H;_1 are tokenized.
These tokens are then fed into a Transformer to
obtain contextual embeddings. In the Prediction
stage, the contextual embeddings are used for the
Next Agent Prediction (NAP) and Next Context
Selection (NCS). In the Execution stage, we invoke
the selected agent (LLM) with the chosen role and

Predict Agent Predict Agent

))

P
n
=

Retrieve context

Predict Agent

RTCR(2F0R) (T

Agent Prediction

B 1) 3 ||
- NAP NCS
o O O O

| Transformer |

Fig. 2: The overview of our proposed framework ANYMAC. Left-hand side: At each time step, we perform two
stages of operations: (1) Next-Agent Prediction (NAP), which aims to select the most suitable agent role from a set
of candidate roles. (2) Next-Context Selection (NCS), which aims to retrieve useful context from the outputs of
previously activated agents. The retrieved context will act as the input to the selected agent. Right-hand side: Given
the embeddings of a series of activated agents, we perform contextual encoding using a transformer-based model to
encode them with additional NAP and NCS tokens. The output embeddings of NAP and NCS tokens will be used to
select the next agent and retrieve context from the next agent, respectively.

context to generate the response. The response R(*)
is appended to H; and used in the next round until
a final aggregation step produces the answer aD.

4.1 Contextual Encoding

Semantic Tokenization. At time step ¢, given
a task query Q, a set of candidate role descrip-
tions R;,¢ = 1,2,..., N, and conversation history
‘H:—1 of previous steps, we begin by encoding these
components into embeddings. Specifically, the task
query Q contains textual instructions describing
the question. Each agent role R; includes a role
prompt that instructs the agent to act in a specific
role and provides an optional list of tools the agent
can access. Each historical conversation in H cor-
responds to a previous agent, consisting of the role
description of this agent and its associated response.
Let Embed(+) denote an encoder function that out-
puts an embedding for any input text. Formally, the
tokenization process is:

q = Embed(Q), 4)
r; = Embed(R;), i=1,2,...,N (5)

h") = 0| Embed(OY)), j=1,2,...,t—1
(6)

Here, q is the embedding of the task query, r; is
the embedding of the ¢-th agent role description,
and h; is the embedding of the i-th historical con-
versation, obtained by concatenating the role and
response embeddings of agent al9) at step 5. All
embeddings are passed through a linear projection
layer to match the transformer’s input dimension.
We use three separate projection layers: one for the

task query, one for the role descriptions, and one
shared across all historical conversations:

(]:fq(Q), r; :fT(ri)¢ flj :fh(hj)7 (N

where f,, f-, f, are learnable linear projections.
Moreover, to enable task-adaptive NAP and NCS,
we generate the NAP and NCS tokens tyap and
tnes using the task query embedding q by passing
it through two separate linear layers:

tnap = fnap(q), tnes = fues(q), ()

where fxap and fncs are learnable linear projec-
tions that map the query embedding to the input
dimension expected by the Transformer.
Contextual Encoding. After obtaining the
token embeddings, we concatenate them into a se-
quence and feed it into an L-layer Transformer
encoder to obtain contextualized embeddings T

T* = Trans, ([51, TN, hl:t—lvtNAPytNCS]) :
©)
This encoding fuses information from task intent,
role priors, and dialogue history, producing contex-
tualized embeddings T™* of the same length, which
are used in the subsequent NAP and NCS.

4.2 Next-Agent Prediction (NAP)

Let N denote the total number of candidate roles.
To determine the next agent role, we first compute
pairwise compatibility scores between the contex-
tualized NAP token t{,p and each contextualized
role token r7 using an inner product:

i=1,...,N.

S = <t§AP7r;>v (10)

we then select the role of the next agent (i.e., a;)
by considering the role R;, with the highest com-
patibility score s;:

where

(1)

k = argmax s;.
i=1,2,...,N

ag :Rka

During training, to encourage exploration, we apply
the Gumbel-Softmax (Jang et al., 2016) over {s;}.

4.3 Next-Context Selection (NCS)

To decide which parts of the historical conversa-
tion should be fed into the next agent as context,
we compute cosine similarity scores between the
contextualized NCS token ty5 and each contextu-
alized history token h:

(tXcss b))
¢ = — ¢ €[-11], (12)
T ItRes - I
These scores are then passed through a sigmoid
function, resulting in values that lie in (0, 1):

1

m, j:1,2,...,t*1,

13)
to obtain gate values g;, which determine the in-
clusion probability for each context. At inference
time, we select the context from previous agents by
applying a threshold:

g; =ol(cj) =

P = {(RV,09)|g; > n,j=1,2,...,t-1},

(14)
where 1 € R is a threshold used for selecting. Dur-
ing training, we sample Bernoulli masks with prob-
abilities given by g; to enable exploration.
Sparsity Penalty. Ideally, we would like the agent
to access as much historical context as possible.
However, excessively long context can lead to two
issues: the agent may become overwhelmed by
irrelevant information, and the API cost increases
with longer context. To address this, we propose a
sparsity penalty during training:

t—1
['sparse =A Z ’gj|‘ (15)
j=1

Here, g; is the gating score for the j-th history. By
penalizing the magnitude of g;, the model learns to
selectively include only the most relevant context,
avoiding unnecessary prompt tokens.

4.4 Execution

Once the next agent role and its associated context
are determined, we perform Execution. We prompt

(t)

the selected agent a; with the system prompt Psyts,
the user prompt 73‘52, and selected context 731(;), to
generate the response O®):

00 = (PSP PE). (16)
The output is appended to the historical conversa-
tion buffer, enabling iterative reasoning and coordi-
nation in subsequent rounds. Formally, we update
the conversation history as:

He=Him1 U{(@, 0"}, an
where a; denotes the selected agent based on NAP
scores at time step ¢, and O® is the generated re-
sponse after executing the role a; using the selected
context Pg). This process continues iteratively un-
til a final decision agent is selected or the maximum

number of iterations is reached.

4.5 Optimizing ANYMAC with RL

To improve routing quality with awareness of task
difficulty and efficiency, we formulate NAP train-
ing as a reinforcement learning (RL) problem.
Efficiency-Aware Reward. Given a final aggre-
gated answer a from a communication sequence
with length [, we define the reward r as:
r=A'-I[is_correct(a)], (18)
where [[] is the indicator function that returns 1 if
the answer a is correct, and 0 otherwise. The expo-
nential decay term !, where y € (0, 1], penalizes
longer routing paths. A smaller ~y places greater
emphasis on efficiency by punishing large [more.
Difficulty-Aware Advantage Estimation. Since
questions vary in difficulty, directly comparing re-
wards across different queries is misleading. This
is because a high reward may result from an easy
question rather than a good routing policy. To ad-
dress this, we apply a standard reward normaliza-
tion technique (Gu et al., 2016; Schulman et al.,
2017), which takes the average reward of a ques-
tion into account and compute advantage A; of
each trajectory, as described in Appendix A.2. The
policy gradient loss is then computed as follows:

T

Volec =—» AVelog Po(r),
t=1

(19)

where Pg (1) denotes the probability of the ¢-th
sampled trajectory under the current model param-
eters ©. This includes both the NAP selection prob-
ability (Section 4.2) obtained via Gumbel-Softmax,
and the NCS selection probability (Section 4.3) de-
rived from the sigmoid gating function. The full
objective combines the policy gradient and the spar-
sity regularization term (Section 4.3):

L= £PG +A ESpaISC7 (20)
where) is a hyper-parameter to control the impor-
tance of the sparsity regularization term.

5 Experiments

5.1 Experimental Setup

Benchmarks & Tasks. We evaluate ANYMAC
across a diverse suite of tasks spanning general
reasoning, mathematical problem solving, and code
generation. Specifically, we use MMLU (Hendrycks
et al., 2021) for general reasoning; GSM8XK (Cobbe
etal., 2021), MultiArith (Roy and Roth, 2016),
SVAMP (Patel et al., 2021), and AQuA (Ling et al.,
2017) for math reasoning; and HumanEval (Chen
et al., 2021) for code generation. We follow the
standard train/test splits provided by each dataset.
Variants. We provide two variants of our method:
ANYMAC and ANYMAC-EFF The first one dis-
ables all efficiency-related constraints by setting the
sparsity loss weight A = 0, the reward decay factor
~v = 1, allowing the model to focus solely on accu-
racy. In contrast, ANYMAC-EFF sets A = le—3,
v = 0.9, and constrains the context selection to be
within the newest 2 responses, encouraging shorter
routing trajectories (i.e., fewer agents) and compact
context selection.

Baselines. To ensure a comprehensive compari-
son of various methods, we compare ANYMAC
against both single-agent prompting and multi-
agent collaboration frameworks. Single-agent
baselines include COT (Chain-of-Thought) (Wei
et al., 2022), COMPLEXCOT (Fu et al., 2022),
SELF-CONSISTENCY (Wang et al., 2023a),
and PHP (Zheng et al., 2023). Multi-agent
baselines include topology-based methods, in-
cluding CHAIN, STAR, TREE (Qian et al., 2024),
COMPLETE GRAPH, and RANDOM GRAPH.
For learning-based frameworks, we consider
AUTOGEN (Wu et al., 2023), LLM-DEBATE (Du
et al., 2023), DYLAN (Liu et al., 2023),
GPTSWARM (Zhuge et al., 2024), and
G-DESIGNER (Zhang et al., 2024b).

Implementation. We implement all agents us-
ing the OpenAl model, gpt-4-1106-preview.
For all single-agent and multi-agent baselines,
we follow the official configurations used in
G-DESIGNER (Zhang et al., 2024b)!, which adopt
a temperature of 0 for single-agent and 1 for multi-
agent methods. For sentence embeddings, we
use all-MinilM-L6-v2 (Wang et al., 2020) as
Embed(-) to encode queries, role descriptions, and
historical responses into 384-dimensional vectors.

We also make specific design choices in ANY-
MAC. We use a default temperature of 1, except
on multiple-choice benchmarks (MMLU and AQuA),
where we set the temperature to 0 as we find it
helps reduce hallucinations. The maximum num-
ber of agents is fixed to 5 across all tasks. Once
this limit is reached, the next agent role is forced
to be the decision model, which produces the final
answer and terminates the reasoning process.

We use GPT-2 Small (Radford et al., 2019)
as the routing model and initialize it with pretrained
weights. The computational overhead of the rout-
ing model is negligible compared to LLMs: it is
lightweight (117M parameters) and only predicts
two tokens per step (NAP and NCS). In contrast,
LLMs are over 1000x larger (e.g., GPT—-3 has
175B parameters (Brown et al., 2020)) and gener-
ate hundreds of tokens per response. To train the
model, we sample 80 questions from each dataset
and collect 1000 routing trajectories along with
their corresponding rewards.

Training questions selection. If a dataset pro-
vides a train/test split, we sample 80 task instances
from the training set; otherwise, we use the first 80
tasks in test set. The model is optimized separately
for each dataset.

Adaptive Sampling. @ We collect 1000 trajec-
tory samples (attempted answers) per dataset. To
make effective use of the training sample budget,
we design an adaptive sampling strategy that allo-
cates more samples to difficult questions. Specif-
ically, when iterating through all questions in a
dataset, we do not set a fixed number of trials
per question. Instead, we define a required num-
ber of correct answers for each question before
moving on. This strategy naturally allocates more
sampling budget to harder examples, as easy ques-
tions tend to reach the threshold with fewer sam-
ples, while difficult ones require more. After each

ISince the official implementations of baselines are not
fully open-source, we use results provided in G-Designer.

Table 1: Accuracy comparison across single-agent and multi-agent baselines. The best results are shown in bold,
and the runner-ups are underlined. We highlight the accuracy gain (+ / —) relative to the vanilla baseline.

Method MMLU GSMSK MultiArith SVAMP AQuA HumanEval Avg.
Vanilla 82.14 85.40 93.15 87.18 70.34 71.68 81.65
CoT 82.65(10.51 8717177y 94.79 o 88320144 73910557 75521554y 8373
ComplexCoT 8378164y 87.62(15090) 9586(.071) 901719599 T7.58(. 704 7494 520) 8499
SC (CoT) 82.66(052 87931253 96.88(1575 88.69 151 7508474 77301562y 8475
SC (Complex) 83.65(1151) 86.14(_ 74y 9694590 897201554 T7.69(;7 35 7794 . 6260 8535
PHP 83.45(11 51 95.50(10100 98.10(584y 90.02(1 5440 79.00 5660 829601135 88.17
Chain 82.35(1 001y 85571017 94.38(110 8341 577 7094060 80.88(,920) 82.92
Star 80.79(135 855501015 9379 064y 88.09 091y 6857177 75.65(1307 82.07
Tree 81.89(_ .25 84.56(_s4) 946001145 8925 . 507 72.84(550 7738 570 8342
Complete Graph | 83.15. 1) 86.4911.09) 972004405 894812300 79214557 83.75(112.07) 86.55
Random Graph 83.76(160y 86.14(74 9546 .- 8541 1770 74071573 82.66(1005 84.58
AutoGen 8213 o1y 90.06(795 93.80(. 065 8844 55 73.65..331) 85411573 85.58
LLM-Debate 83.69(1155) 90234483 962743120 905613380 77.52(47.18) 83.79(412.11) 87.01
DyLAN 80.16(105y 88.16(1076) 94271115 87400 020 T416(550 89.70(1502 85.64
GPTSwarm 83.98 151y 8974 .54 9784 .60) 86.42(76y T816(.752) 8849 551 8732
G-Designer 84-50‘+:..;',; 95-07:4»‘!.(\? 98.30(5 15) M:Jﬂ.n? 1947 (19.13) M:H»;g 89.84
ANYMAC 84.30(1 5.16) 95.66(. 1026 9944 ;.0 92.67(5.9 8150 ;165 9012, 5.4 90.62

epoch, if there is remaining trajectory budget, we
proceed to the next epoch and repeat the process
until the total sampling budget is exhausted. For
ANYMAC, we set the threshold to 1 correct an-
swer; for ANYMAC-EFF, we increase it to 4 to
encourage more stable training.

5.2 Comparative Results

ANYMAC outperforms other baselines. Table 1
compares the accuracy of ANYMAC against a
range of baselines. Notably, ANYMAC achieves
the highest average accuracy across all benchmarks,
outperforming both single-agent and multi-agent
methods. Specifically, it achieves state-of-the-art
performance on GSM8K, MultiArith, SVAMP,
AQuA, and HumanEval, and ranks as the runner-
up on MMLU.

The superior performance of ANYMAC stems
from multiple aspects. First, compared to single-
agent methods, multi-agent collaboration allows
agents to check and correct each other’s reason-
ing, leading to higher accuracy. Second, com-
pared to multi-agent methods with fixed routing
structures, ANYMAC generates task-specific multi-
agent reasoning trajectories, enabling more adap-
tive and effective collaboration. Finally, compared
to other learning-based routers, ANYMAC is not
constrained by manually defined anchor structures
in G-DESIGNER and fixed role distributions in
DYLAN and GPTSWARM, offering greater flexi-
bility and a larger routing solution space to explore
optimal communication sequences.

5.3 Robustness Evaluation

ANYMAC is robust to malicious agents. An im-
portant advantage of learning-based multi-agent
methods like ANYMAC is their robustness to mali-
cious agents. Through training, the router can learn
to identify and downweight or bypass agents that
provide misleading or harmful responses. To evalu-
ate this, we conduct an experiment by injecting a
malicious agent into the candidate agent pool. This
agent is intentionally designed to produce consis-
tently incorrect or distracting content.

Figure 3 shows the robustness evaluation results
on MMLU dataset. We observe that other methods
exhibit a significant accuracy drop (up to -11.0%)
when a malicious agent is present. In contrast,
ANYMAC maintains high accuracy (-1.3%), high-
lighting its robustness under adversarial conditions.
We also observe that other learning-based base-
lines such as GPTSWARM and G-DESIGNER ex-
hibit similar robustness, indicating that learned
routing policies generally confer a degree of re-
silience against adversarial inputs.

5.4 Efficiency Evaluation

ANYMAUC is efficient. Beyond accuracy, token
consumption is also a critical factor that affects
practicality, as it reflects the actual cost incurred by
users when solving tasks. Figure 4 compares the
trade-off between prompt token usage and accuracy
across different methods on the GSM8K dataset.
Notably, ANYMAC achieves the highest accuracy
but with relatively higher token usage. In contrast,

B before attack
3 after attack

Accuracy (%)

Tree Complete Random

Graph Graph

Fig. 3: Robustness analysis of different methods on the MMLU dataset.
We compare accuracy before and after the attack. Learning-based

methods exhibit strong resilience to malicious agents.

ANYMAC-EFF sacrifices a small amount of ac-
curacy in exchange for significantly improved ef-
ficiency, achieving the lowest token consumption
among all methods. Compared to the most effi-
cient baseline G-DESIGNER, ANYMAC-EFF re-
duces prompt token usage by 5x, while maintain-
ing competitive performance. This demonstrates
that our method is highly flexible: it can be con-
figured to prioritize either accuracy or efficiency,
and achieves state-of-the-art performance in both
aspects.

5.5 Qualitative Case Studies

We further conduct qualitative analyses to evaluate
the adaptability and behavior of ANYMAC. First,
we investigate whether ANYMAC can adapt to
different types of questions using the MMLU dataset.
Figure 5 in Appendix shows the routing results of
ANYMAC on two different questions. We observe
that ANYMAC selects different roles, showing its
ability to adapt based on the question.

Furthermore, we also compare ANYMAC and
ANYMAC-EFF using the same question from
GSMS8K to assess the trade-off between accuracy
and efficiency. Figure 6 in Appendix shows that
ANYMAC selects more context and produces the
correct answer, while ANYMAC-EFF uses less
context and fails. This shows that more compu-
tation can lead to improved accuracy.

5.6 Ablation Studies

In this subsection, we perform ablations on
ANYMAC and conduct experiments on the GSM8K
dataset to evaluate the effectiveness of each mod-
ule in our design. We consider the following vari-
ants: (1) Removing task adaptiveness. We replace
the query embedding with a single learnable vec-
tor shared across all queries. (2) Removing the

DyLAN GPTSwarm AutoGen G-Designer AnyMAC

-5 84.2 843

vLLM-Debale

$QDYLAN
Better

AGF‘TSwarm

Complete Graph
Random Graph

Token consumption (1077)
(%,

’AnyMAc.
+ -Designer
’AnyMAC-Eff

86 88 90 92 94 96 98
Accuracy (%)

0.0

Fig. 4: The performance and token con-
sumption of various multi-agent communi-
cation topologies on GSM8K.

Table 2: Ablation study on ANYMAC-ACC evaluated
on the GSM8K dataset.

Variant ‘ Accuracy (%)
ANYMAC (Full Model) ‘ 95.66
w/o Task Embed. (Task Adaptive) 93.87
w/o Next-Agent Prediction (NAP) 94.75
w/o Next-Context Selection (NCS) 94.35

Next-Agent Prediction (NAP) module. We replace
the learned agent selection with a random choice
at each step. (3) Removing the Next-Context Se-
lection (NCS) module. We replace the context
selection mechanism with random sampling from
the context pool with 50% probability for each
response. The results are shown in Table 2. We ob-
serve that removing any of these components leads
to an accuracy drop, highlighting their importance.

6 Conclusion

In this work, we investigate multi-agent collabora-
tion through the lens of communication topology
design. We propose a novel sequential formula-
tion that dynamically constructs communication
topologies by predicting the next agent at each step.
Our framework introduces two key components:
Next-Agent Prediction for flexible, task-aware role
allocation, and Next-Context Selection for glob-
ally informed information routing. Together, these
components enable a broader solution space than
traditional graph structures, supporting adaptive,
efficient, and robust multi-agent reasoning. Exten-
sive experiments across multiple benchmarks show
that our approach consistently outperforms existing
methods in both accuracy and efficiency. We be-
lieve this sequential communication protocol opens
new directions for future research in scalable and
generalizable multi-agent LLM systems.

7 Limitations

While ANYMAC achieves the highest overall accu-
racy, its performance on the HumanEval, a code
generation dataset, is slightly below the state-of-
the-art as shown in Table 1. After investigating
the reason, we find that ANYMAC tends to select
overly long contexts, which may overwhelm the
LLM, leading to incorrect code generation.

We believe the above issue is caused by an in-
sufficient number of training samples (1,000) for
reinforcement learning (RL), which may lead to
convergence to a suboptimal solution. We hypoth-
esize that this can be mitigated by scaling up RL
training. However, scaling RL sampling data for
LLMs is both computationally and financially ex-
pensive in practice. Therefore, we leave this as
future work and plan to explore it using smaller
language models, which offer significantly lower
data collection costs. Moreover, smaller language
models may benefit more from multi-agent collab-
oration due to their weaker individual capabilities.

8 Ethical Consideration

This work builds upon large language models
(LLMs) for multi-agent collaboration and reason-
ing. All models and datasets used in our experi-
ments are publicly available and widely adopted
in the research community. We do not introduce
any new data collection, nor do we engage in sensi-
tive information. During our experiments, we did
not observe any explicit ethical concerns, harm-
ful behaviors, or misuse cases. Nevertheless, we
acknowledge that LLM-based systems, especially
when deployed in multi-agent configurations, can
potentially amplify biases or generate misleading
information if not properly controlled. Our method
focuses on improving multi-agent communication
effectiveness and efficiency and does not alter the
core generative behavior of the underlying LLMs.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.
Codet: Code generation with generated tests. In

The Eleventh International Conference on Learning
Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv prepring, abs/2110.14168.

DeepSeek. 2025. Deepseek r1: Towards deep reinforce-
ment learning for language models. arXiv preprint
arXiv:2501.12948.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate. CoRR, abs/2305.14325.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2022. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and
Sergey Levine. 2016. Continuous deep g-learning
with model-based acceleration. In International
conference on machine learning, pages 2829-2838.
PMLR.

Rui Hao, Linmei Hu, Weijian Qi, Qingliu Wu, Yirui
Zhang, and Liqiang Nie. 2023. Chatllm network:
More brains, more intelligence.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Samuel Holt, Max Ruiz Luyten, and Mihaela van der
Schaar. 2024. L2mac: Large language model auto-
matic computer for extensive code generation. In
The Twelfth International Conference on Learning
Representations.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran,
Lingfeng Xiao, and Chenglin Wu. 2023. Metagpt:
Meta programming for multi-agent collaborative
framework.

Yoichi Ishibashi and Yoshimasa Nishimura. 2024. Self-
organized agents: A 1lm multi-agent framework to-
ward ultra large-scale code generation and optimiza-
tion. arXiv preprint arXiv:2404.02183.

https://openreview.net/forum?id=ktrw68Cmu9c

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2023. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team opti-
mization. CoRR, abs/2310.02170.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies. Work in Progress.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023. Communicative agents for software de-
velopment. 25 pages, 9 figures, 2 tables.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yu-
fan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2024. Scaling
large-language-model-based multi-agent collabora-
tion. arXiv preprint arXiv:2406.07155.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAl blog, 1(8):9.

Subhro Roy and Dan Roth. 2016.
eral arithmetic word problems.
arXiv:1608.01413.

Solving gen-
arXiv preprint

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint,
abs/2303.11366.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776-5788.

10

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023a. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu,
Tao Ge, Furu Wei, and Heng Ji. 2023b. Unleash-
ing cognitive synergy in large language models:
A task-solving agent through multi-persona self-
collaboration. Work in progress.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting elic-
its reasoning in large language models.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Autogen: En-
abling next-gen Ilm applications via multi-agent con-
versation framework.

Yikuan Yan, Yaolun Zhang, and Keman Huang. 2024.
Depending on yourself when you should: Mentoring
IIm with rl agents to become the master in cybersecu-
rity games. arXiv preprint arXiv:2403.17674.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun,
Guancheng Wan, Kun Wang, Dawei Cheng, Jef-
frey Xu Yu, and Tianlong Chen. 2024a. Cut the
crap: An economical communication pipeline for
Ilm-based multi-agent systems. arXiv preprint
arXiv:2410.02506.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng
Wan, Miao Yu, Junfeng Fang, Kun Wang, Tian-
long Chen, and Dawei Cheng. 2024b. G-designer:
Architecting multi-agent communication topolo-
gies via graph neural networks. arXiv preprint
arXiv:2410.11782.

Jintian Zhang, Xin Xu, and Shumin Deng. 2023. Ex-
ploring collaboration mechanisms for 1lm agents:
A social psychology view. arXiv preprint
arXiv:2310.02124.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.48550/arXiv.2303.11366

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting
improves reasoning in large language models. Tech
Report.

Zihao Zhou, Bin Hu, Chenyang Zhao, Pu Zhang, and
Bin Liu. 2023. Large language model as a policy
teacher for training reinforcement learning agents.
arXiv preprint arXiv:2311.13373.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. 2024. Gptswarm: Language agents
as optimizable graphs. In Forty-first International
Conference on Machine Learning.

11

A RL Training Details

A.1 Exploration and Exploitation

An important challenge in reinforcement learning
is balancing the trade-off between Exploration and
Exploitation. Exploration refers to discovering new
possibilities by sampling uncertain actions, while
exploitation focuses on selecting the best-known
decision based on current knowledge.

In our framework, we encourage exploration by
injecting noise into the output decision logits dur-
ing training. By tuning the relative magnitude of
the noise and decision score, we can effectively
balance exploration and exploitation.

Next agent prediction (NAP). For NAP, it is
essential to balance the compatibility scores s; and
the injected Gumbel noise (Section 4.2). To achieve
this, we first compute the mean and standard devia-
tion of compatibility scores s; across N roles:

| N | X
— / — I)2
= Elsi, o= El(si w)?. (21)
1= 1=

‘We then normalize the scores to have zero mean
and scale them to have a standard deviation of «:

/
Si —H
g

(22)

S; = Q-

By tuning «, we can control the determinism of
the routing behavior: higher values of « lead
to more deterministic (exploitation-oriented) de-
cisions, while lower values encourage exploration.

Empirically, we set « 1.5, as it provides a
good balance between exploration and exploitation.

Next context selection (NCS). We apply a simi-
lar scaling strategy to the cosine similarities in NCS.
Specifically, each similarity score c; is multiplied
by a scaling factor S to obtain c}:

c;» = ¢j, c} € [-8, 5], (23)
which is passed through a sigmoid function (Equa-
tion (13)) to compute the sampling probability g;.

Note that contexts are selected based on g; using
Bernoulli sampling. By adjusting /3, we control the
determinism of context selection: a larger 5 makes
the selection more deterministic (for exploitation),
while a smaller § promotes exploration. Empiri-
cally, [is set to 3, as it provides a good balance
between exploration and exploitation.

12

A.2 Reward Normalization

As discussed in Section 4.5, directly comparing re-
wards across different questions is inappropriate, as
their difficulty levels may vary. A high reward on
an easy question may not reflect the effectiveness
of the routing strategy but rather the simplicity of
the task itself. To address this, we adopt a standard
reward normalization trick (Gu et al., 2016; Schul-
man et al., 2017), which normalizes the reward of
each trajectory based on a baseline estimated from
the same question:

Tt — K1
(o

1 & 1 &
At: s M:TZT]@, g = fZ(kaﬂ)Q
k=1 k=1

(24)
Here, r; denotes the reward of the current trajectory,
and T is the number of sampled trajectories for the
same question. Each 7y, represents the reward of
the k-th sampled trajectory. The resulting Ay is
the advantage value of current trajectory in policy
gradient optimization (Equation (19)), reflecting
how much better (or worse) the current trajectory
performs compared to the average baseline.

This normalization trick mitigates the impact of
question difficulty and enables the reinforcement
learning process to treat rewards from different
queries more fairly and consistently.

Question: "Before contact with Europeans, many First Nations populations viewed gay men, lesbians, and
people who assumed cross-gender roles with\nOption A: disgust and revulsion.\nOption B: pity and
indulgence.\nOption C: fear and awe.\nOption D: respect and admiration.\n" Answer: "D"

Context Selection

Knowleg. Knowleg. Knowleg. Final D
Expert Expert Expert Referee
Correct

(a) Routing results and final answer of ANYMAC-AcC. for Question 1 in MMLU.

Question: "Socrates suggests that the holy is one part of:\nOption A: what is prudent.\nOption B: what is just.
\nOption C: what is beautiful.\nOption D: what is legal.\n" Answer: "B"

Context Selection

Knowleg. Knowleg. Knowleg. Knowleg. Knowleg. Final B
Expert Expert Expert Referee
Correct

(b) Routing results and final answer of ANYMAC-ACC. for Question 2 in MMLU.

Fig. 5: Qualitative illustration of ANYMAC’s routing decisions on two different questions. In (a), the model selects
a combination of Lawyer and Knowledgeable Expert for Question 1. In (b), it assigns all agents as Knowledgeable
Experts for Question 2.

Question: "A company pays each of its employees $600 in a month. The company has a policy of increasing
the salaries of each of its employees by 10% of the initial salary every year for those who've stayed in the
company for five years. If Sylvie just clocked 5 years in the company last December, what's her annual salary
after three more years of service?" Answer: 9360

Context Selection

Final
Solver Solver Referee 9360
Correct
Math Math Math Math Math Final
Solver Solver Solver Solver Solver Referee 10800
Wrong

Fig. 6: Qualitative comparison between ANYMAC-ACC. (top) and ANYMAC-EFE. (bottom) on the same question.
They use different computation budgets, and the increased computation in ANYMAC-ACC. leads to the correct

answer.

13

	Introduction
	Related Work
	Problem Formulation
	Methodology
	Contextual Encoding
	Next-Agent Prediction (NAP)
	Next-Context Selection (NCS)
	Execution
	Optimizing AnyMAC with RL

	Experiments
	Experimental Setup
	Comparative Results
	Robustness Evaluation
	Efficiency Evaluation
	Qualitative Case Studies
	Ablation Studies

	Conclusion
	Limitations
	Ethical Consideration
	RL Training Details
	Exploration and Exploitation
	Reward Normalization

