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Abstract

Large Transformer models have been central to recent advances in natural language
processing. The training and inference costs of these models, however, have grown
rapidly and become prohibitively expensive. Here we aim to reduce the costs of
Transformers by searching for a more efficient variant. Compared to previous
approaches, our search is performed at a lower level, over the primitives that define
a Transformer TensorFlow program. We identify an architecture, named Primer,
that has a smaller training cost than the original Transformer and other variants
for auto-regressive language modeling. Primer’s improvements can be mostly
attributed to two simple modifications: squaring ReLU activations and adding a
depthwise convolution layer after each Q, K, and V projection in self-attention.
Experiments show Primer’s gains over Transformer increase as compute scale
grows and follow a power law with respect to quality at optimal model sizes. We
also verify empirically that Primer can be dropped into different codebases to
significantly speed up training without additional tuning. For example, at a 500M
parameter size, Primer improves the original T5 architecture on C4 auto-regressive
language modeling, reducing the training cost by 4X. Furthermore, the reduced
training cost means Primer needs much less compute to reach a target one-shot
performance. For instance, in a 1.9B parameter configuration similar to GPT-3 XL,
Primer uses 1/3 of the training compute to achieve the same one-shot performance
as Transformer. We open source our models and several comparisons in T5 to help
with reproducibility.1

1 Introduction

Transformers [1] have been used extensively in many NLP advances over the past few years (e.g., [2,
3, 4, 5, 6, 7]). With scaling, Transformers have produced increasingly better performance [3, 7, 8, 9],
but the costs of training larger models have become prohibitively expensive.

In this paper, we aim to reduce the training costs of Transformer language models. To this end,
we propose searching for more efficient alternatives to Transformer by modifying its TensorFlow
computation graph [10]. Given a search space of TensorFlow programs, we use evolution [11, 12, 13,
14, 15, 16, 17] to search for models that achieve as low of a validation loss as possible given a fixed
amount of training compute. An advantage of using TensorFlow programs as the search space is that it
is easier to find simple low-level improvements to optimize Transformers. We focus on decoder-only
auto-regressive language modeling (LM), because of its generality and success [18, 7, 19, 20, 21].2

1https://github.com/google-research/google-research/tree/master/primer
2We provide details of our primitives search in TensorFlow, but the same approach can also be applied to

other deep learning libraries.
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The discovered model, named Primer (PRIMitives searched transformER), exhibits strong perfor-
mance improvements over common Transformer variants on auto-regressive language modeling.
Our experiments show that Primer has the benefits of (1) achieving a target quality using a smaller
training cost, (2) achieving higher quality given a fixed training cost, and (3) achieving a target
quality using a smaller inference cost. These benefits are robust and hold across model sizes (20M
to 1.9B parameters), across compute scales (10 to 105 accelerator hours), across datasets (LM1B,
C4, PG19 [22]), across hardware platforms (TPUv2, TPUv3, TPUv4 and V100), across multiple
Transformer codebases using default configurations (Tensor2Tensor, Lingvo, and T5) and across mul-
tiple model families (dense Transformers [1], sparse mixture-of-experts Switch Transformers [8], and
Synthesizers [23]). We open source these comparisons to help with the reproducibility of our results.1

Our main finding is that the compute savings of Primer over Transformers increase as training cost
grows, when controlling for model size and quality. These savings follow a power law with respect
to quality when using optimally sized models. To demonstrate Primer’s savings in an established
training setup, we compare 500M parameter Primer to the original T5 architecture, using the exact
configuration used by Raffel et al. [5] applied to auto-regressive language modeling. In this setting,
Primer achieves an improvement of 0.9 perplexity given the same training cost, and reaches quality
parity with the T5 baseline model using 4.2X less compute. We further demonstrate that Primer’s
savings transfer to one-shot evaluations by comparing Primer to Transformer at 1.9B parameters in
a setup similar to GPT-3 XL [7]. There, using 3X less training compute, Primer achieves similar
performance to Transformer on both pretraining perplexity and downstream one-shot tasks.

Our analysis shows that the improvements of Primer over Transformer can be mostly attributed to two
main modifications: squaring ReLU activations and adding a depthwise convolution layer after each
Q, K, and V projection in self-attention. These two modifications are simple and can be dropped into
existing Transformer codebases to obtain significant gains for auto-regressive language modeling.

2 Search Space and Search Method

Searching Over TensorFlow Programs: To construct a search space for Transformer alternatives,
we use operations from TensorFlow (TF). In this search space, each program defines the stackable
decoder block of an auto-regressive language model. Given input tensors X ∈ Rn×d that represent
sequences of length n with embedding length d, our programs return tensors of the same shape.
When stacked, their outputs represent next-token prediction embeddings at each sequence position.
Our programs only specify model architectures and nothing else. In other words, the input and output
embedding matrices themselves, as well as input preprocessing and weight optimization are not
within the scope of our programs.

Subprogram Bank

Subprogram 0 (Main)

Subprogram 1

Subprogram 2

Subprogram N

...

CONV 1X1: tf.layers.dense
MAX: tf.math.maximum
SIN: tf.math.sin

tf.layers.dense(inputs=hidden_state_0,
                units=512)

Operation: CONV 1X1

Function Arguments:
- Input 1: h0
- Input 2: h1
- Constant: 0.781
- Hidden Dimension: 512

Instruction 1

Instruction 2

Instruction N

SubprogramDNA (Model)

...

Instruction

TF Primitives Vocab Generated TF Code

Instruction functions come 
from primitives vocab or 
subprogram bank.

Figure 1: Overview of DNAs that define a decoder model program (i.e., an auto-regressive language
model). Each DNA has a collection of subprograms, where SUBPROGRAM 0 is the MAIN() function
entry point. Each subprogram is comprised of instructions, which are converted to lines of TensorFlow
code. Instruction operations map to either basic TensorFlow library functions from the primitives
vocabulary or one of the parent DNA’s subprograms. The operation’s arguments are filled using
the parent instruction’s argument set, which contains values for all potential operation arguments;
arguments that are not used by a particular operation are simply ignored.
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Figure 1 shows how programs are constructed in our search space. Each program is built from an evo-
lutionary search DNA, which is an indexed collection of subprograms. SUBPROGRAM 0 is the MAIN()
function that is the execution entry point, and the other subprograms are part of the DNA’s subprogram
bank. Each subprogram is an indexed array of instructions with no length constraints. An instruction
is an operation with a set of input arguments. The operation denotes the function that the instruction
executes. Each operation maps to either a TF function from the primitives vocabulary or another sub-
program in the DNA subprogram bank. The primitives vocabulary is comprised of simple primitive
TF functions, such as ADD, LOG, and MATMUL (see Appendix A.1 for details). It is worth empha-
sizing that high-level building blocks such as self-attention are not operations in the search space,
but can be constructed from our low-level operations. The DNA’s subprogram bank is comprised of
additional programs that can be executed as functions by instructions. Each subprogram can only call
subprograms with a higher index in the subprogram bank, which removes the possibility of cycles.

Each instruction’s argument set contains a list of potential argument values for each instruction
operation. The set of argument fields represents the union of fields that all the operation primitives use:

• Input 1: The index of the hidden state that will be used as the first tensor input. The index
of each hidden state is the index of the instruction that produced it, with the subprogram’s
input states at indexes 0 and 1. An example of an operation that uses this is SIN.

• Input 2: The index of the second tensor input. This is only used by operations that are
binary with respect to tensor inputs. An example of an operation that uses this is ADD.

• Constant: A real valued constant. An example of an operation that uses this is MAX;
tf.math.maximum(x, C) for C = 0 is how we express the Transformer’s ReLU activation.

• Dimension Size: An integer representing the output dimension size for transformations that
utilize weight matrices. An example of an operation that uses this is CONV 1X1, the dense
projection used by the Transformer’s attention projections and feed forward portions. See
Appendix A.2 for how we employ relative dimensions [13] to resize our models.

Our search subprograms are converted to TF programs by converting each subprogram instruction to
a corresponding line of TF code, one at a time in indexing order. To create the TF line, the instruction
operation is mapped to the corresponding TF primitive function or DNA subprogram, and any relevant
arguments are plugged in (see Appendix A.1 for the full TF primitives vocabulary, including argument
mappings); the other arguments are ignored. The TF tensor that is generated by the final instruction is
taken as the subprogram output. We do not use TF Eager and so a useful property of the constructed
programs is that irrelevant nodes that do not contribute to the programs’ outputs are ignored as per
TF’s original deferred execution design [10]. See Figure 2 for an illustration of how subprograms are
converted to TF graphs and see Appendix A.2 for more details on how TF graphs are constructed,
including how we handle causal masking.

(h2) CONV 1X1
Input_1: h0
Input_2: Ignore
Dim: 512
Constant: Ignore

Subprogram 1

(h3) SIN
Input_1: h1
Input_2: Ignore
Dim: Ignore
Constant: Ignore

(h4) MUL
Input_1: h2
Input_2: h3
Dim: Ignore
Constant: Ignore

(h5) ADD
Input_1: h0
Input_2: h2
Dim: Ignore
Constant: Ignore

 def subprogram_1(h0, h1):
   h2 = tf.layers.dense(h0, 512)
   h3 = tf.math.sin(h1)
   h4 = tf.math.multiply(h2, h3)
   h5 = tf.math.add(h0, h2)
   # last state is output
   output = h5    
   return output

(h0) IN 0

OUT

(h3) SIN

(h1) IN 1

(h4) MUL(h5) ADD

(h2) CONV 1X1

Figure 2: Example of a program converted into its corresponding TensorFlow graph. Nodes that do not
contribute to the program output are not executed thanks to TensorFlow’s deferred execution design.
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Evolutionary Search: The goal of our evolutionary search is to find the most training efficient
architecture in the search space. To do this, we give each model a fixed training budget (24 TPUv2
hours) and define its fitness as its perplexity on the One Billion Words Benchmark (LM1B) [24]
in Tensor2Tensor [25]. This approach, which we call an implicit efficiency objective by fixed training
budget, contrasts previous architecture search works that explicitly aim to reduce training or inference
step time when optimizing for efficiency [26, 27, 28, 29]. Our objective is different in that the
trade-off between step time and sample efficiency is implicit. For instance, a modification that doubles
step time, but triples sample efficiency is a good modification in our search, as it ultimately makes the
architecture more compute efficient. Indeed, the modifications we find to be most beneficial, squaring
ReLUs and adding depthwise convolutions to attention, increase training step time. However, they
improve the sample efficiency of the model so much that they decrease the total compute needed
to reach a target quality, by drastically reducing the number of training steps needed to get there.

The search algorithm we use is Regularized Evolution [30] with hurdles [13]. We configure our
hurdles using a 50th percentile passing bar and space them such that equal compute is invested in
each hurdle band; this reduces the search cost by a factor of 6.25X compared to the same experiment
with full model evaluations (see Appendix A.3 for more details). Additionally, we use 7 training
hours as a proxy for a full day’s training because a vanilla Transformer comes within 90% of its 24
hour training perplexity with just 7 hours of training. This reduces the search cost further by a factor
of 3.43X, for a total compute reduction factor of 21.43X. So, although our target is to improve 24 hour
performance, it only takes about 1.1 hours to evaluate an individual on average (see Appendix A.4
for more search specifics, including mutation details and hyperparameters). We run our search for
∼25K individuals and retrain the top 100 individuals on the search task to select the best one.
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Figure 3: Small scale searches
(10 hours on 10 TPUv2 chips)
comparing conceptual initializa-
tion to random initialization.
Our search space is open-ended
enough that it is infeasible to
search without strong initializa-
tion.

Our search space is different from previous search spaces (see
architecture search survey by [31]), which are often heavily bi-
ased such that random search performs well (see analysis by
[32, 33, 34]). As our search space does not have this bias, 78% of
random programs in our space with length equal to a Transformer
program cannot train more than five minutes, due to numerical
instability. Because of this open-endedness and abundance of
degenerate programs, it is necessary to initialize the search popu-
lation with copies of the Transformer [13] (input embedding size
dmodel = 512, feed forward upwards projection size dff = 2048,
and number of layers L = 6) (Figure 3). To apply this initializa-
tion to our search space, we must determine how to divide the
Transformer program into subprograms. To do this, we divide
along the lines of the machine learning concepts that constitute
it. For instance, we create one subprogram each for self-attention,
ReLU and layer norm, using commonly used implementations
(see Appendix A.5 for the complete list). We call this method
conceptual initialization because it introduces a bias to the search
through initialization, while leaving the search space for evolution
and the action space for mutations open-ended. This contrasts the
large amount of previous works that introduce bias through the
search space. Although some works have also explored searching spaces that are open-ended like
ours on miniature tasks [35], we demonstrate that our techniques can scale to full sized deep learning
regimes (see Section 4).

3 Primer

Primer: We name the discovered model Primer, which stands for PRIMitives searched transformER
(See Appendix Figure 23 for the full program). Primer shows significant improvement when retrained
on the search task, requiring less than half the compute of Transformer to reach the same quality
(Figure 6). In Section 4, we additionally show that Primer makes equally large gains when transferred
to other codebases, training regimes, datasets, and downstream one-shot tasks.

Primer-EZ: A core motivation of this work is to develop simple techniques that can be easily
adopted by language modeling practitioners. To accomplish this, we perform ablation tests across two
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codebases (T5 [5] and Tensor2Tensor [25]) and determine which Primer modifications are generally
useful (Appendix Figure 26). The two that produce the most robust improvements are squaring feed
forward ReLUs and adding depthwise convolution to attention multi-head projections (Figure 4). We
refer to a Transformer with just these two easy modifications as Primer-EZ; this is our recommended
starting point for language modeling practitioners interested in using Primer. We now explain these
modifications and then measure their empirical effectiveness.

Input

Q Head 
Projection

K Head 
Projection

V Head 
Projection

Spatial 
D-Conv 3x1

Spatial 
D-Conv 3x1

Spatial
D-Conv 3x1

Multi-Head 
Self-Attention

Output

Multi-DConv-Head Attention (MDHA)

Input

Square

Output

ReLU

Squared ReLU in Feed Forward Block 

Downwards Proj

Upwards Proj

X Num Heads

MDHA Projection Pseudo-code

# Use to create each K, Q,
and V head of size ‘hs’.

def mdha_projection(x, hs):
# Create head.
x = proj(x,

head_size=hs,
axis="channel")

# Apply D−Conv to head.
x = d_conv(x,

width=3,
head_size=hs,
axis="spatial",
mask="causal")

return x

Figure 4: The two main modifications that give Primer most of its gains: depthwise convolution
added to attention multi-head projections and squared ReLU activations. These modifications
are easy to implement and transfer well across codebases. We call the model with just these two
modifications Primer-EZ. Blue indicates portions of the original Transformer and red signifies one
of our proposed modifications.

Squared ReLU: The most effective modification is the improvement from a ReLU activation to
a squared ReLU activation in the Transformer’s feed forward block. Rectified polynomials of varying
degrees have been studied in the context of neural network activation functions [36], but are not
commonly used; to the best of our knowledge, this is the first time such rectified polynomial activations
are demonstrated to be useful in Transformers. Interestingly, the effectiveness of higher order
polynomials [37] can also be observed in other effective Transformer nonlinearities, such as GLU [38]
variants like ReGLU [39] (y = Ux�max(V x, 0) where� is an element-wise product) and point-wise
activations like approximate GELU [40] (y = 0.5x(1 + tanh(

√
2/π(x+ 0.044715x3)))). However,

squared ReLU has drastically different asymptotics as x −→ ∞ compared to the most commonly
used activation functions: ReLU, GELU and Swish (Figure 5 left side). Squared ReLU does have
significant overlap with ReGLU and in fact is equivalent when ReGLU’s U and V weight matrices
are the same and squared ReLU is immediately preceded by a linear transformation with weight
matrix U . This leads us to believe that squared ReLUs capture the benefits of these GLU variants,
while being simpler, without additional parameters, and delivering better quality (Figure 5 right side).

2 1 0 1 2 3 42

1

0

1

2

3

4
ReLU
GELU
Swish
Squared ReLU

210122 1 0 1 2

y

1
0
1
2
3

UxVx

ReGLU
Squared ReLU

ReLUGELUSw
ish

ReG
LU

Sw
iGLU

Sq
r R

eLU
-21

-19.5

Ne
ga

tiv
e 

PP
LX

T5 C4 LM 110M Params

Figure 5: Left: Squared ReLU has starkly different asymptotics compared to other common activation
functions. Center: Squared ReLU has significant overlap with GLU variants [39] that use activations
with ReLU-like asymptotics, such as ReGLU and SwiGLU. Our experiments indicate that squared
ReLU is better than these GLU variants in Transformer language models. Right: Comparison of
different nonlinearities in Transformers trained on C4 auto-regressive LM for 525K steps.
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Multi-DConv-Head Attention (MDHA): Another effective modification is adding 3x1 depthwise
convolutions after each of the multi-head projections for queryQ, keyK and value V in self-attention.
These depthwise convolutions are performed over the spatial dimension of each dense projection’s
output. Interestingly, this ordering of pointwise followed by depthwise convolution is the reverse of
typical separable convolution, which we find to be less effective in Appendix A.6. We also find that
wider depthwise convolution and standard convolution not only do not improve performance, but in
several cases hurt it. Although depthwise convolutions have been used for Transformers before [41,
42], using them after each dense head projection has not been done to the best of our knowledge.
MDHA is similar to Convolutional Attention [43], which uses separable convolution instead of
depthwise convolution and does not apply convolution operations per attention head as we do.

Other Modifications: The other Primer modifications are less effective. Graphs for each modifica-
tion can be found in Appendix A.5 and an ablation study can be found in Appendix A.7. We briefly
describe the modifications and their usefulnesses here:

• Shared Q and K Depthwise Representation: Primer shares some weight matrices for Q
and K. K is created using the previously described MDHA projection and Q = KW for
learnable weight matrix W ∈ Rd×d. We find that this generally hurts performance.

• Pre and Post Normalization: The standard practice for Transformers has become putting
normalization before both the self-attention and feed forward transformations [44, 45].
Primer uses normalization before self-attention but applies the second normalization after
the feed forward transformation. We find this is helpful in some but not all cases.

• Custom Normalization: Primer uses a modified version of layer normalization [46] that
uses x(x− µ) instead of (x− µ)2, but we find this is not always effective.

• 12X Bottleneck Projection: The discovered model uses a smaller dmodel size of 384
(compared to the baseline’s 512) and a larger dff size of 4608 (compared to the baseline’s
2048). We find this larger projection improves results dramatically at smaller sizes (∼35M
parameters), but is less effective for larger models, as has been previously noted [9]. For
this reason we do not include this modification when referencing Primer or Primer-EZ.

• Post-Softmax Spatial Gating: The discovered model has a set of per-channel learnable
scalars after the attention softmax, which improves perplexity for fixed length sequences.
However, these scalars cannot be applied to variable sequence lengths and so we do not
include this modification in Primer for our experiments.

• Extraneous Modifications: There are a handful of additional modifications that produce
no meaningful difference in the discovered architecture. For example, hidden states being
multiplied by -1.12. Verifying that these modifications neither help nor hurt quality, we
exclude them from discussion in the main text and do not include them when experimenting
with Primer. These extraneous modifications can still be found in Appendix A.5.

4 Results

In our experiments, we compare Primer against three Transformer variants:

• Vanilla Transformer: The original Transformer [1] with ReLU activations and layer normaliza-
tion [46] outside of the residual path.

• Transformer+GELU: A commonly used variant of the vanilla Transformer that uses a GELU [40]
approximation activation function [2, 7].

• Transformer++: A Transformer with the following enhancements: RMS normalization [47],
Swish activation [48] and a GLU multiplicative branch [38] in the feed forward inverted bottleneck
(SwiGLU) [39]. These modifications were benchmarked and shown to be effective in T5 [49].

We conduct our comparisons across three different codebases: Tensor2Tensor (T2T) [25], T5 [5],
and Lingvo [50]. Tensor2Tensor is the codebase we use for searching and so a majority of our
side-by-sides are done in T5 and Lingvo to prove transferability. In all cases, we use the default
Transformer hyperparameters for each codebase, with regularization disabled. See Appendix A.8
for more hyperparameter details.
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In the following sections, we will present our results in four main experiments on auto-regressive
language modeling. First, we will show that Primer outperforms the baseline models on the search
task. Next, we will show that the relationship between Primer’s compute savings over Transformers
and model quality follow a power law at optimal model sizes. These savings also transfer across
datasets and codebases. Then, we will study Primer’s gains in an established training regime and
show that it enables 4.2X compute savings at a 500M parameter size using full compute T5 training.
Finally, we will demonstrate that these gains transfer to the pretraining and one-shot downstream
task setup established by GPT-3 [7].

4.1 Search Task Comparison

We first analyze Primer’s performance on the search task: LM1B language modeling with sequence
length 64, ∼35M model parameters, batches of 4096 tokens and 24 hours of training. We compare
against the baseline models in both Tensor2Tensor (T2T) [25] and T5 [5] and on TPUv2s and V100
GPUs. We grade each model’s performance according to how much faster it reaches the vanilla
Transformer’s final quality, which we will refer to as its speedup factor. Figure 6 shows that Primer
provides a speedup factor of 1.7X or more over Transformer in all cases. Figure 6 also shows that
both Primer and Primer-EZ generalize to other hardware platforms and codebases.
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Figure 6: Comparison on the LM1B search task using 35M parameter models. “Speedup Factor”
refers to the fraction of compute each model needs to reach quality parity with the vanilla Transformer
trained for 24 hours. Primer and Primer-EZ both achieve over 1.7X speedup in all cases. Note that
results transfer across codebases and different hardware.
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Figure 7: Left: When sweeping over optimal model sizes, the relationship between Transformer
language model quality and training compute roughly obeys a power law [9]. Right: Comparison of
these power law lines for varying Transformer modifications, fit with smoothed MSE loss. That the
model lines are parallel to one another implies that compute savings by using superior modeling also
scales as a power law with quality. Spacings between vertical dotted lines represent 2X differences in
compute. Note that the x and y-axes in both plots are in log.

Next we study the scaling laws of Primer. Here we compare Primer to our baselines over many sizes
by training each model using every permutation of L ∈ {6, 9, 12} layers, dmodel ∈ {384, 512, 1024}
initial embedding size, and p ∈ {4, 8, 12} feed forward upwards projection ratio, creating a parameter
range from 23M to 385M. The results, shown in Figure 7, corroborate previous claims that, at optimal
parameters sizes, the relationship between compute and language model quality roughly follows a
power law [9]. That is, the relationship between validation loss, l, and training compute, c, follows
the relationship l = ac−k, for empirical constants a and k. This is represented as a line in double
log space (Figure 7): log l = −k log c + log a. However, these lines are not the same for each
architecture. The lines are roughly parallel but shifted up and down. In Appendix A.9 we show that,
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given a vertical spacing of log bk, parallel lines such as these indicate compute savings, s, for superior
modeling also follow a power law of the form l = a1(1− 1/b)ks−k. The intuition behind this is that
b is a constant compute reduction factor for all l and thus a power law investment of training compute
with relation to l results in a power law savings with relation to l as well (see Appendix A.9).
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Primer also has the capacity to improve inference, despite our search
focusing on training compute. Figure 8 shows a Pareto front compar-
ison of quality vs. inference, when using feed forward pass timing
as a proxy for inference. We use forward pass timing as a proxy for
inference because there are multiple ways to decode a language model,
each with varying compute costs. A more in depth study could be
conducted analyzing Primer’s inference performance across different
decoding methods, serving platforms, datasets, etc., but that is beyond
the scope of this work.

4.2 Primer
Transferability to Other Codebases, Datasets, and Model Types

We now study Primer’s ability to transfer to larger datasets, PG19
and C4, in another codebase, T5. We additionally scale up to a
higher compute regime that has been used as a proxy for large scale
training by previous studies [49, 5]; the batches are increased to 65K
tokens, the sequence lengths are a longer 512, each decoder is 110M
parameters (dmodel = 768, dff = 3072, L = 12) and each model is
trained to ∼525K steps on 4 TPUv3 chips. We also continue training
each model to 1M steps to study the effect of larger compute budgets
on Primer savings. The results, shown in Figure 9, indicate that the
Primer models are as strong in larger data, higher compute regimes,
as they are in the smaller LM1B regime. Compared to the vanilla baseline, Primer and Primer-EZ
are at least 1.8X more efficient at the end of training on both PG19 and C4.
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Figure 9: Comparison transferring Primer to larger datasets (C4 and PG19) and different model
families (Switch Transformer and Synthesizer) in a different codebase (T5) with an order of magnitude
more compute than the search task. Compared to the vanilla baseline, Primer and Primer-EZ are
at least 1.8X more efficient at the end of training on both PG19 and C4. In all cases, the fraction
of Primer compute savings increases as more compute is invested. Primer-EZ modifications also
improve Switch Transformer (550M params) and Synthesizer (145M params), showing that it is
compatible with other efficient methods. Compute budgets are selected according to how long it takes
each baseline to train for 525K and 1M steps. See Appendix A.10 for exact numbers.

Figure 9 also shows that the Primer modifications are compatible with other efficient model families,
such as large sparse mixture-of-experts like Switch Transformer [8] and efficient Transformer approx-
imations like Synthesizer [23]. For these experiments, we use the T5 implementations provided by
Narang et al. [49]. The Primer-EZ techniques of added depthwise convolutions and squared ReLUs
reduce Switch Transformer’s compute cost by a factor of 1.5X; this translates to a 0.6 perplexity im-
provement when controlling for compute (see Appendix A.10). Adding squared ReLUs to Synthesizer
reduces training costs by a factor of 2.0X and improves perplexity by 0.7 when fully trained.
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4.3 Large Scale T5 Auto-Regressive Language Model Training

Model Steps TPUv3 Hours PPLX

Original T5 1M 15.7K 13.25
T5++ 251K 4.6K 13.25
Primer 207K 3.8K 13.25

T5++ 1M 16.5K 12.69
Primer 480K 8.3K 12.69

Primer 1M 17.3K 12.35

Table 1: Comparison in compute usage to
reach target qualities on C4 LM at 537M pa-
rameters using the full T5 compute scale. Tar-
get qualities are selected according to the final
performances of the baseline models. Primer
achieves the same quality as the original T5
architecture using 4.2X less compute.

In large scale compute configurations, the Primer
compute savings ratios are even higher. To demon-
strate Primer’s savings in an established high compute
training setup, we scale up to the full T5 compute
regime, copying Raffel et al. exactly [5]. This is the
same as the C4 configuration in the previous section,
but uses batches of ∼1M tokens, 64 TPUv3 chips
and 537M parameters (dmodel = 1024, dff = 8192,
L = 24). Primer is 4.2X more compute efficient than
the original T5 model and 2X more efficient than our
strengthened Transformer++ baseline (Table 1).

The reason why savings are even better here is be-
cause, at fixed sizes, more compute invested yields
higher Primer compute savings. Figure 10 shows
how the fraction of compute Primer needs to achieve
parity with the original T5 architecture shrinks as
the models are trained for longer; this is due to the
asymptotic nature of both the control and variable per-
plexity training curves. This differs from the power
law savings described in Section A.6. There, we use
the optimal number of parameters for each compute budget, and so the compute saving factor, b,
remains constant. For fixed model sizes, the compute saving factor grows as more compute is
invested, meaning that compute savings can exceed the power law estimation. Note, this means
that comparisons such as the ones given here can be “gamed” by investing more compute than is
necessary for baseline models. It is for this reason that we use an exact replica of Raffel et al.’s [5]
training regime: to demonstrate Primer’s savings in an already published training configuration.

CP

CT

F = CP

CT 

Figure 10: Compute savings of Primer vs. the original T5 architecture on C4 LM over time. The
more compute invested in training, the higher the savings due to the asymptotic nature of both
perplexity curves. Primer achieves the same performance as the original T5 architecture with 4.2X
less compute.

4.4 Primer Transferability to Downstream One-Shot Tasks

In our final comparison, we demonstrate Primer’s improvements also hold in the pretraining and
one-shot downstream task transfer regime. Recent trends in language modeling have moved towards
training large models on large datasets, which is referred to as “pretraining.” These models are then
transferred to unseen datasets and tasks, and, without much or any additional training, demonstrate
the capacity to perform well on those “downstream” tasks [2, 51]. In the decoder-only auto-regressive
language modeling configuration we study here, the most impressive results have been achieved by
GPT-3 [7], which showed that large language models can exhibit strong performance on unseen tasks
given only one example – referred to as “one-shot” learning. In this section, we demonstrate that
Primer’s training compute savings stretch beyond reaching a target pretraining perplexity and indeed
transfer to downstream one-shot task performance.

To do this, we replicate the GPT-3 pretraining and one-shot evaluation setup. This replication is
not exactly the same as the one used for GPT-3 because GPT-3 was not open sourced. Thus, these
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experiments are not meant to compare directly to GPT-3, as there are configuration differences.
Instead, these experiments are used as a controlled comparison of the Transformer and Primer
architectures. We conduct these experiments in the Lingvo codebase using a proprietary pretraining
dataset. The downstream tasks are configured in the same one-shot way described by Brown et al. [7],
with single prefix examples fed into each model with each task’s inputs. We compare (1) a baseline
1.9B parameter Transformer (dmodel = 2048, dff = 12288, L = 24) with GELU activations, meant
to approximate the GPT-3 XL architecture, and (2) a full Primer without shared QK representations,
which only hurt performance according to Appendix A.7. Each model is trained using batches of
∼2M tokens using 512 TPUv4 chips for ∼140 hours (∼71.8K total accelerator hours or ∼1M train
steps). We once again use the T5 training hyperparemeters without any additional tuning.
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Figure 11: Comparison between Transformer+GELU and Primer at 1.9B parameters and varying
training compute budgets on downstream one-shot tasks, similar to GPT-3. Primer achieves slightly
better performance than Transformer when given 3X less pretraining compute and substantially better
performance when given the same pretraining compute. Here we stop at 72K TPUv4 hours to roughly
match the quality of GPT-3 XL, but the compute savings of Primer would be larger if we let the two
models run longer (see Figure 10). Note, this is a crude comparison that uses averaged scores from
the 27 one-shot tasks we evaluate. See Appendix A.11 (Table 6 and Figure 27) for exact task scores.

Figure 11 shows that Primer achieves the same pretraining perplexity and one-shot downstream
performance as Transformer+GELU while using 3X less compute. Table 6 in the Appendix gives
the exact performance numbers for each of the 27 evaluated downstream tasks. Primer, despite
using 3X less compute, outperforms Transfomer+GELU on 5 tasks, does worse on 1 task, and
performs equivalently on the remaining 21 tasks. The same table shows that when given equivalent
compute, Primer outperforms Transformer+GELU on 15 tasks, does worse on 2 tasks, and performs
equivalently on the remaining 10 tasks. This result shows that not only can Primer improve language
modeling perplexity, but the improvements also transfer to downstream NLP tasks.

5 Conclusion

Limitations: There are limitations to this study. First, although our comparisons are at substantial
sizes, they are still orders of magnitude smaller than state-of-the-art models such as the full-scale
GPT-3 [7]. Second, we focus primarily on decoder-only models, while encoder-based sequence
models are still widely used [1, 2, 3, 4, 6, 52]. In Appendix A.12, we perform encoder-decoder
masked language modeling comparisons in T5, but do not study the results in significant depth. The
main finding there is that, although Primer modifications improve upon vanilla Transformer, they
perform only as well as Transformer++. This result suggests that architectural modifications that
work well for decoder-only auto-regressive language models may not necessarily be as effective for
encoder-based masked language models. Developing better encoders is a topic of our future research.

Recommendations and Future Directions: We recommend the adoption of Primer and Primer-EZ
for auto-regressive language modeling because of their strong performance, simplicity, and robustness
to hyperparameter and codebase changes. To prove their potential, we simply dropped them into
established codebases and, without any changes, showed that they can give significant performance
boosts. Furthermore, in practice, additional tuning could further improve their performance.

We also hope our work encourages more research into the development of efficient Transformers.
For example, an important finding of this study is that small changes to activation functions can
yield more efficient training. In the effort to reduce the cost of Transformers, more investment in the
development of such simple changes could be a promising area for future exploration.
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