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Abstract001

Despite advances in mathematical reasoning002
capabilities, Large Language Models (LLMs)003
still struggle with calculation verification when004
using established prompting techniques. We005
present MDToC (Metacognitive Dynamic Tree006
of Concepts), a three-phase approach that007
constructs a concept tree, develops accuracy-008
verified calculations for each concept, and009
employs majority voting to evaluate compet-010
ing solutions. Evaluations across CHAMP,011
MATH, and Game-of-24 benchmarks demon-012
strate our MDToC’s effectiveness, with GPT-013
4-Turbo achieving 58.1% on CHAMP, 86.6%014
on MATH, and 85% on Game-of-24 - outper-015
forming GoT by 5%, 5.4%, and 4% on all these016
tasks, respectively, without hand-engineered017
hints. MDToC consistently surpasses existing018
prompting methods across all backbone models,019
yielding improvements of up to 7.6% over ToT020
and 6.2% over GoT, establishing metacognitive021
calculation verification as a promising direction022
for enhanced mathematical reasoning.023

1 Introduction024

Large Language Models (LLMs) like GPT-4025

(Achiam et al., 2023) and Claude (Anthropic, 2024)026

demonstrate proficiency in various mathematical027

problems, excelling in easy to medium-difficulty028

tasks as evidenced by their performance on bench-029

marks such as GSM8k (Cobbe et al., 2021) and030

SVAMP (Patel et al., 2021). However, their efficacy031

diminishes when faced with complex challenges032

presented in datasets such as MATH (Hendrycks033

et al., 2021) and CHAMP (Mao et al., 2024). In034

these demanding scenarios, LLMs often struggle035

with accurate multi-step reasoning and solution036

derivation. A key factor in this performance degra-037

dation is the models’ propensity for errors in in-038

termediate calculations and logical deductions (Pa-039

tel et al., 2024; Tyagi et al., 2024). These com-040

pounding inaccuracies result in poor performance041

on datasets featuring hard mathematical problems,042

opening a critical area for improvement in the multi- 043

step reasoning capabilities of LLMs. 044

Researchers have widely adopted prompting 045

techniques, particularly Chain-of-Thought (CoT) 046

(Wei et al., 2022) and self-consistency CoT (SC- 047

CoT) (Wang et al., 2023), to enhance LLMs’ multi- 048

step reasoning capabilities without additional train- 049

ing. These methods enable models to decompose 050

complex reasoning processes into smaller steps, 051

improving overall accuracy. In particular, CoT en- 052

courages articulation of thought processes, while 053

SC-CoT generates multiple demonstrations with 054

majority voting. However, these approaches have 055

limitations: CoT may constrain diverse problem- 056

solving pathways, while SC-CoT lacks crucial eval- 057

uation of intermediate reasoning steps. This can 058

lead to erroneous samples and inaccurate voting 059

outcomes. As a result, using these prompting tech- 060

niques, advanced LLMs such as GPT-4 suffer from 061

poor performance. For example, GPT-4 with SC- 062

CoT achieves only 9% accuracy on the Game-of-24 063

task (Yao et al., 2024). Therefore, it is essential to 064

develop more robust reasoning methodologies. 065

Recent hierarchical prompting techniques like 066

Tree-of-Thoughts (ToT) (Yao et al., 2024) (Long, 067

2023) and Graph-of-Thoughts (GoT) (Besta et al., 068

2024) (Yao et al., 2023) have advanced reason- 069

ing capabilities through structured thought repre- 070

sentation and intermediate evaluation, achieving 071

impressive results on complex tasks (74% accu- 072

racy on Game-of-24 (Yao et al., 2024) and 89% on 073

Sequence-Sorting-64-elements (Besta et al., 2024), 074

respectively). However, as shown in Figure 1, 075

these approaches suffer from ill-defined evalua- 076

tion criteria for diverse thought forms (mathemat- 077

ical analysis, concepts, calculations), leading to 078

heavy reliance on powerful LLMs like GPT-4 that 079

produce approximated and unreliable evaluation 080

scores. This standardization challenge creates vul- 081

nerabilities in the critical processes of thought se- 082

lection and connection pruning, while the need for 083

1



domain-specific customization limits generalizabil-084

ity across different problem types.085

Amidst the numerous successes of the CoT, ToT,086

and GoT prompting techniques, there have been087

several explorations of cognitive prompting meth-088

ods for mathematical problem-solving (Fagbohun089

et al., 2024). In the field of psychology, metacog-090

nition enables individuals to reflect on and criti-091

cally analyze their thought processes (Lai, 2011).092

Recent research has enhanced model capabilities093

with metacognitive processes for natural language094

understanding tasks. For example, (Wang and095

Zhao, 2023) demonstrated that LLMs prompted096

with metacognitive thinking outperformed previ-097

ous techniques such as zero-shot (Kojima et al.,098

2022) (Brown et al., 2020) or CoT prompting (Wei099

et al., 2022) across various NLP tasks. (Zhou100

et al., 2024) highlighted the effectiveness of the101

metacognitive approach in improving the retrieval-102

augmented generation process for LLMs. How-103

ever, the application of metacognition to mathemat-104

ical problem-solving remains relatively unexplored,105

with notable exceptions such as (Didolkar et al.,106

2024), who showed that metacognitive approaches107

enhance mathematical reasoning in LLMs by re-108

flecting on clustered math skills and thereby provid-109

ing relevant in-context examples. Our work extends110

this research direction by applying metacognition111

to LLMs for solving mathematical problems.112

Motivated by the aforementioned background,113

we propose MDToC (Metacognitive Dynamic Tree114

of Concepts), a novel three-phase prompting tech-115

nique that transforms abstract thoughts into con-116

cepts and evaluable calculations. MDToC employs117

a depth-two concept tree in the planning phase to118

explore diverse mathematical concepts while con-119

straining the solution space, followed by a moni-120

toring phase that expands sub-concepts with cal-121

culation steps using four specialized LLMs, and122

concludes with a reviewing phase utilizing ma-123

jority voting following the self-consistency vot-124

ing mechanism (Chen et al., 2023). This com-125

prehensive framework has demonstrated signifi-126

cant effectiveness, with GPT-3.5+MDToC achiev-127

ing 39.5% accuracy on CHAMP (outperforming128

GPT-3.5 with annotated concepts by 5.1%) and129

GPT-4o-mini+MDToC attaining 75% accuracy on130

Game-of-24 (surpassing GPT-4o-mini with ToT by131

19%).132

Text

Figure 1: ToT prompting yields initial abstract thoughts
(e.g., analyses, concepts, calculations; in red), which
are challenging to evaluate due to the intangible nature
of conceptual reasoning and the lack of specific crite-
ria to measure their correctness or completeness. Our
MDToC addresses these abstract thoughts by first gen-
erating concrete concepts and then producing relevant
calculations for those concepts. We only evaluate the
preciseness of the calculations through mathematical
accuracy checks, enabling precise evaluation and thus
improving problem-solving reliability.

2 Related Work 133

2.1 Prompting techniques 134

Let pθ be a LLM parameterized by θ. Two of the 135

most common prompting techniques for mathemat- 136

ical reasoning with pθ are described below. 137

1. Chain-of-Thought. Given an input problem 138

x, the LLM is guided through a sequence c 139

of reasoning steps to produce an answer y 140

(Wei et al., 2022). Specifically, the sequence 141

c of reasoning steps is generated by the LLM 142

based on the input problem, expressed as c ∼ 143

pθ(c|x). The final answer y is then generated 144

by the LLM based on both the input problem 145

and the sequence of reasoning steps expressed 146

as y ∼ pθ(y|x, c). 147

2. Tree-of-Thought. Given an input problem 148

x, the LLM navigates a tree structure where 149

each node i represents a state s = [x, z1...i], 150

with z1...i denoting a sequence of thoughts 151

along the current path (Yao et al., 2024). The 152
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Figure 2: Proposed MDToC prompting structure. C represents the first-depth concept, while SC represents the
second-depth sub-concept. P0 and P1 are prompts used in the planning phase shown in Figure 3, while P2, P3, P4,
and P5 are prompts used in the monitoring phase given in Figure 4. Prompts P6 is the prompt in the review phase,
as shown in Fig. 6.

LLM generates a new thought zi+1 based153

on the current state s, expressed as zi+1 ∼154

pθ(zi+1|x, z1...i). A new node with the state155

s′ = [x, z1...i+1] is then appended to the cur-156

rent node i in the tree.157

Each state s in a set of states S undergoes158

evaluation through either numerical values159

or voting to determine the viability of fur-160

ther path exploration. The numerical eval-161

uation V (pθ, s) is expressed as V (pθ, s) ∼162

pθ(v|s) ∀s ∈ S, where v is the numerical163

value. The voting evaluation V (pθ, s) is ex-164

pressed as V (pθ, s) = 1 [s = s∗] where s∗ ∼165

pvoteθ (s∗|S). In this context, The LLM votes166

for state s∗ given the set of states S, employ-167

ing the indicator function 1 [s = s∗] to deter-168

mine whether a state s corresponds to the169

voted state s∗.170

3. Graph-of-Thought Given an input problem171

x, the LLM navigates a directed graph struc-172

ture G = (V,E), where V is the set of ver-173

tices representing thoughts, and E ⊆ V × V174

is the set of edges representing dependencies175

among thoughts (Besta et al., 2024). De-176

note that V + and E+ represent newly added177

vertices and edges, while V − and E− de-178

note removed vertices and edges, respectively.179

Unless stated otherwise, V − = E− = ∅.180

The graph of thoughts is manipulated through181

three primary operations: aggregation, refine-182

ment, and generation.183

Following these operations, the graph is up-184

dated as G′ = T (G, pθ) = (V ′, E′), where185

V ′ = (V ∪ V +)\V −, E′ = (E ∪ E+)\E−.186

Each node v in graph G is subsequently eval-187

uated by the LLM using either a scoring or188

ranking method. The scoring function is ex- 189

pressed as s = E(pθ, v,G) ∼ pθ(s|v,G), 190

where s denotes the score value of node 191

v. Conversely, the ranking function is ex- 192

pressed as {v1, v2, ..., vh} = R(pθ, h,G) ∼ 193

pθ({v1, v2, ..., vh}|G, h), where h represents 194

the number of top-ranking thoughts to be re- 195

turned. 196

2.2 Metacognition 197

Metacognition—the ability to reflect on and regu- 198

late one’s thought processes—plays a crucial role 199

in advanced problem-solving and decision-making. 200

It serves as an overarching framework guiding the 201

effective application of cognitive strategies. This 202

study aims to endow language models with a simu- 203

lated metacognitive process, mimicking the human 204

capacity for “thinking about thinking”. Our MD- 205

ToC approach employs a hierarchical prompting 206

structure incorporating three foundational stages of 207

metacognition: planning, monitoring, and review- 208

ing (Ku and Ho, 2010), specifically designed for 209

mathematical problem-solving. 210

The planning stage creates a conceptual roadmap 211

by establishing strategies and approaches. During 212

monitoring, we implement a metacognitive mech- 213

anism that enables self-evaluation and correction 214

of calculations in progress. The final reviewing 215

stage examines solutions, filtering out empty re- 216

sults and identifying the most frequently occurring 217

valid answer. 218

3 Methodology 219

This research introduces a novel prompting ap- 220

proach, called MDToC, utilizing a dynamic tree 221

of concepts within a tripartite metacognitive frame- 222

work of planning, monitoring, and reviewing. This 223
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method addresses limitations in existing hierarchi-224

cal prompting techniques for LLMs, such as un-225

reliable evaluations of abstract thoughts and lack226

of generalizability. Our approach enables the ex-227

ploration of diverse reasoning paths and selects the228

final solution through majority voting. Figure 2229

shows a visual representation of our methodology.230

3.1 Planning231

During the initial planning phase, we construct a232

concept tree T = (V,E) with a depth of two where233

V is a set of nodes and E is a set of edges. We234

begin by instructing our LLM planner pθp with235

prompt P0 to extract the objective of the ques-236

tion, called q, and generate n distinct concepts237

{cd=1
1 , cd=1

2 , ..., cd=1
n } ∼ pθp(q), where d = 1 rep-238

resents the first depth of the tree. Each i-th concept239

is articulated as a detailed sentence, providing a240

mathematical or programmatic response to q. We241

then incorporate n concepts as nodes within the242

tree structure, where V = {cd=1
1 , cd=1

2 , ..., cd=1
n }.243

For each i-th concept at depth d = 1,244

we further prompt our LLM planner pθp with245

prompt P1 to produce m distinct sub-concepts246

{cd=2
i1 , cd=2

i2 , ..., cd=2
im } ∼ pθp(q, c

d=1
i ). These sub-247

concepts, each expressed in two detailed sentences,248

serve to elucidate and expand upon the i-th concept249

with question-solving information. Within our tree250

structure, we position each j-th sub-concept as a251

child node to its corresponding i-th concept. Figure252

3 demonstrates our prompts for P0 and P1. Our253

tree T is then expressed as:254

V = {cd=1
1 , ..., cd=1

n , cd=2
11 , ..., cd=2

1m , ..., cd=2
n1 , ..., cd=2

nm }255

E = {(cd=1
1 , cd=2

11 ), ..., (cd=1
n , cd=2

nm )}256

.257

Prompt 0 

Prompt 1 

Generate a minimum of C_min and a maximum of C_max distinct problem-specific
concepts

Extract all problem-solving information. Then generate a minimum of SC_min and a
maximum of SC_max distinct sub-concepts filled with the extracted information given an

explored concept

Figure 3: Prompts for the planning phase.

The construction of our dynamic tree T incorpo-258

rates four key parameters: Cmin, Cmax, SCmin,259

and SCmax. These parameters define the concept260

range (Cmin and Cmax) and sub-concept range261

(SCmin and SCmax), as illustrated in prompts P0262

and P1 of Figure 3, respectively. The magnitude263

of these parameters directly correlates with the264

breadth of concept exploration, where larger val-265

ues facilitate a more extensive conceptual land-266

scape. Upon examining the annotated concepts in 267

CHAMP (Mao et al., 2024) where each problem 268

receives 3 hints, we decided to opt for a two-depth 269

dynamic tree structure. We aim to prevent LLMs 270

from excessively relying on generated concepts 271

while fostering a more flexible problem-solving 272

process that can adapt to various problem types 273

and complexities. 274

Prompt 2

Prompt 3 

Derive the next small calculation step to deduce the partial solution.
Any unknown computation not in the solution is not allowed for the deduction.

Do not generate explanation texts of the step.

Verify if the next calculation is correctly computed.
Use code to confirm your verification. Only verify the accuracy.

Prompt 4 Recalculate the next calculation step-by-step.
Verify if the output of the recalculation matches the original calculation. If not match, fix

the output!

Prompt 5
Given the partial solution, continue solving and derive the final answer! 

Figure 4: Prompts for the monitoring phase.

3.2 Monitoring 275

In the monitoring phase, we employ a ToT-based 276

structure (Yao et al., 2024) to solve a concept tree in 277

t iterations. We denote a mathematical calculation 278

as χ. Unlike the traditional ToT approach which 279

samples k thoughts and selects a subset of them, 280

our MDToC samples and evaluates all k mathemat- 281

ical calculations with two LLM components: an 282

LLM evaluator pθe and an LLM generator pθg . The 283

generator pθg prompted with P2 samples k calcu- 284

lations, while the evaluator pθe prompted with P3 285

assesses the accuracy of each calculation. Specifi- 286

cally, when the evaluator pθe identifies an error in 287

a calculation, it returns a negative response ("No") 288

accompanied by a detailed explanation of the error. 289

The k-th calculation χd≥3
ijk is sam- 290

pled from the generator as χd≥3
ijk ∼ 291

pθg(χ
d≥3
ijk |cd=1

i , cd=2
ij , χd−1≥3

ijk ) where χd−1≥3
ijk 292

represents previous calculations. The eval- 293

uation result V (pθe , χ
d≥3
ijk ) for the k-th cal- 294

culation is expressed as V (pθe , χ
d≥3
ijk ) ∼ 295

pθe(ve, re|(cd=1
i , cd=2

ij , χd−1≥3
ijk , χd≥3

ijk )], where 296

ve is the binary result of 0 or 1 and re is the 297

evaluation reason when ve = 0. If ve = 0, 298

the generator regenerates the calculation 299

χd≥3
ijk ∼ pθg(χ

d≥3
ijk |cd=1

i , cd=2
ij , χd−1≥3

ijk , χd≥3
ijk , re). 300

We further introduce an LLM fixer pθf prompted 301

with P5 to fix the errors in the k-th calculation as 302

χd≥3
ijk ∼ pθf (χ

d≥3
ijk |χd≥3

ijk ). Specifically, after the 303

complete cycle of generation and evaluation of cal- 304

culations, pθf addresses and corrects any remaining 305

calculation errors. Subsequently, these k calcula- 306
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Figure 5: Comparative analysis of reasoning steps: GPT-3.5-Turbo with CoT and CH versus GPT-3.5-Turbo
with our MDToC approach. Subfigure (a) displays GPT-3.5-Turbo’s reasoning with CoT, supplemented by
annotated concepts and hints (CH) intended to guide the model’s step-by-step reasoning; IT denotes intermediate
thoughts, and FA indicates the final answer. Although these conceptual hints attempt to structure the problem-solving
process, GPT-3.5-Turbo still yields an incorrect count of 34. Because there is no automatic mechanism to spot and
correct mistakes in intermediate steps, the model’s calculation errors persist through to the final answer. Subfigure
(b) shows our proposed concept tree (CT) approach under a multi-attempt evaluator–fixer framework, referred to
here as MDToC. IC stands for intermediate calculations, and each is evaluated by an evaluator component. In this
example, IC3 and IC4 are identified as incorrect, triggering the fixer to regenerate corrected values in IC5. This
iterative refine-and-fix process avoids propagating calculation errors, ultimately yielding the correct final answer FA
of 41. Notably, this process requires no extra annotated hints — only the concept tree plus repeated evaluation up to
2 attempts, a threshold chosen to reduce the risk of model “hallucinations” (erroneous or fabricated steps).

tions are appended as nodes to the tree. After some307

iterations, we treat the current series of calculations308

as a partial solution and employ an LLM solver309

pθs to resolve the partial solution. The solver’s re-310

sponse is subsequently appended to the tree and311

marked as a ’Finished Node’, thereby terminating312

the exploratory process. Figure 4 illustrates our313

prompts P2, P3, P4, and P5.314

To monitor our concept tree with calculations,315

we introduced two additional parameters: cs, t.316

cs specifies the number of intermediate calcula-317

tions generated, respectively, while t represents318

the number of iterations. These parameters allow319

us to control the exploration behavior, balancing320

between breadth and depth.321

3.2.1 Example Analysis322

Figure 5 compares intermediate reasoning steps be-323

tween GPT-3.5-Turbo with CoT + CH and GPT-3.5-324

Turbo with MDToC. It highlights challenges in re-325

cursive calculations requiring precise intermediate326

computations. Figure 5a shows GPT-3.5-Turbo’s 327

performance is limited to accurate calculation of 328

the base case only, with errors emerging in y2 and 329

cascading through subsequent steps. This leads to 330

an incorrect final sum of 34. 331

Conversely, Figure 5b illustrates the efficacy of 332

our MDToC approach in mitigating computational 333

errors. When applying MDToC, the likelihood 334

of erroneous intermediate calculations is signifi- 335

cantly reduced with 2 evaluation and regeneration 336

attempts. This is evidenced by the correct compu- 337

tation of y2, accurately determined as the sum of 338

x1 = 1, y1 = 1, and z1 = 1, yielding the correct 339

result of 3. This precise evaluation of x2, y2, and 340

z2 serves as a crucial foundation, enabling accurate 341

subsequent calculations for strings of lengths of 3 342

and 4, ultimately leading to the correct final answer 343

of 41. 344
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Determine the most common answers from a list of answers.
Prompt 6 

Figure 6: Prompts for the reviewing phase.

3.3 Reviewing345

In the last phase, we obtain the results from the346

monitored tree and select the top-voted answers.347

Given a list of solutions marked by ’Finished Node’348

as A, we use an LLM reviewer pθr prompted with349

P6 shown in Figure 6 to conduct a majority voting350

of A. This stage involves finding the most common351

answer from A, returning the most common one352

as ã ∼ pθe(A), where ã is the final solution to the353

objective q.354

4 Experiments355

4.1 Dataset356

Our MDToC approach is evaluated using three357

datasets: CHAMP (Mao et al., 2024) (270 high358

school-level competition math problems across359

five categories, providing insight into concept tree-360

driven reasoning), MATH (Hendrycks et al., 2021)361

(12,500 competition-level problems from sources362

like AIME (AoPS, a) and AMC 10/12 (AoPS, b)363

covering various advanced topics including alge-364

bra, geometry, and number theory), and a subset365

of 100 challenging Game-of-24 puzzles (indexed366

901-1000, selected for direct comparison with ToT367

approaches) (Yao et al., 2024).368

4.2 Parameters369

Planning phase For the CHAMP and MATH370

datasets, we set Cmin = 2, Cmax = 3, SCmin = 1,371

and SCmax = 2 (see our 3.1). In contrast, all pa-372

rameters were set to 1 for Game-of-24 experiments,373

as these problems require diverse calculation com-374

binations rather than varied mathematical concepts.375

Monitoring phase For the CHAMP and MATH376

datasets, we use cs = 2 and t = 10 (see our 3.2),377

emphasizing in-depth concept decomposition and378

analysis. Game-of-24 employs cs = 10 and t = 4,379

focusing on broader analysis of calculation combi-380

nations.381

4.3 Model Configuration382

In our experiments, we use OpenAI LLMs through-383

out. GPT-4o handles the planning phase for con-384

cept diversification and the review phase for re-385

sponse standardization and voting. For the mon-386

itoring phase’s fixer component pθf (see Fig. 2),387

we deploy GPT-4o-mini for cost efficiency while 388

maintaining accuracy. The generator, evaluator, 389

and solver components (see Fig. 2) utilize four dif- 390

ferent models (GPT-3.5-Turbo, GPT-4o-mini, GPT- 391

4-Turbo, and GPT-4o) to enable direct comparison 392

with other prompting methods. Therefore, GPT- 393

3.5-Turbo+MDToC, GPT-4o-mini+MDToC, GPT- 394

4-Turbo+MDToC, and GPT-4o+MDToC schemes 395

each use their namesake model for monitoring 396

phase components, while all sharing GPT-4o for 397

planning/reviewing and GPT-4o-mini for fixing. 398

To demonstrate the fairness of these comparisons 399

despite including GPT-4o and GPT-4o-mini, we an- 400

alyzed token consumption across all models and 401

phases for three datasets in Table 1. The analysis 402

shows that GPT-4o for the planning and reviewing 403

phase uses less than 1% of total tokens for both 404

CHAMP and MATH datasets and approximately 405

2% for Game-of-24. In the fixer component, GPT- 406

4o-mini consumes 23,428, 21,599, and 1,945 to- 407

kens for CHAMP, MATH, and Game-of-24 respec- 408

tively, accounting for about 6% of total tokens in 409

the monitoring phase. Since the remaining three 410

GPT models are responsible for roughly 93% of 411

overall token usage, we can confidently make valid 412

comparisons with alternative prompting techniques 413

that utilize these four primary GPT models. 414

Table 1: Average tokens used per response of GPT-4o,
GPT-3.5-Turbo, GPT-4o-mini, and GPT-4-Turbo across
the planning, reviewing, and monitoring phases for the
CHAMP, MATH, and Game-of-24 (G24).

GPT Phase Dataset
CHAMP MATH G24

4o
Planning 2,671 2,292 655
Reviewing 346 424 127

3.5-Turbo
Generator
Evaluator

Solver

548,202 472,175 36,151
4o-mini 465,420 443,532 34,437
4-Turbo 433,588 378,745 33,804

4o 367,091 316,275 29,668
4o-mini Fixer 23,428 21,599 1,945

4.4 CHAMP evaluation 415

Table 2 compares various prompting techniques 416

across GPT-3.5-Turbo, GPT-4o-mini, GPT-4- 417

Turbo, and GPT-4o models. While traditional ap- 418

proaches like zero-shot, CoT, five-shot prompt- 419

ing show modest results, incorporating concepts 420

and hints into prompting techniques demonstrates 421

greater success. CoT + CH improves accuracy, 422
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with partial solution provision (1/3 sln) offering423

further gains. For instance, GPT-4-Turbo achieves424

53.0% accuracy with CoT+CH, significantly out-425

performing its 37.8% CoT and 43.1% 5-shot results.426

Table 2: Comparative performance of different prompt-
ing approaches for various GPTs on the CHAMP dataset.
’0-shot’ and ’5-shot’ denote in-context examples in
prompts; ’1/3 sln’ indicate the proportion of complete
solution provided; CoT and CH represent Chain-Of-
Thought and Annotated concepts and hints in prompts.

Prompt GPT
3.5-Turbo 4o-mini 4-Turbo 4o

0-shot 28.5 36.2 41.9 55.3
CoT 29.6 36.5 37.8 55.2
5-shot 34.8 38.7 43.1 56.5
CoT +
CH

34.4 42.3 53.0 60.0

1/3 sln 33.7 43.4 53.7 63.5
ToT 31.7 37.8 52.7 61.3
GoT 30.5 39.6 53.1 60.9
Our
MDToC

39.5 48.3 58.1 68.2

427

Our MDToC demonstrates superior performance428

across all models, achieving 39.5% (GPT-3.5-429

Turbo), 48.3% (GPT-4o-mini), 58.1% (GPT-4-430

Turbo), and 65.2% (GPT-4o). These results repre-431

sent substantial improvements over ToT and GoT,432

with gains ranging from 5.4% to 10.5%, underscor-433

ing the effectiveness of dynamically structuring434

relevant concepts and employing a metacognitive435

feedback mechanism to refine calculation steps.436

4.5 MATH evaluation437

In Table 3, 0-shot prompts yield 45.7% for GPT-3.5-438

Turbo, 71.4% for GPT-4o-mini, 72.6% for GPT-439

4-Turbo, and 81.5% for GPT-4o on the MATH440

dataset. Adding reasoning steps through CoT im-441

proves these scores slightly (e.g., from 45.7% to442

48.6% for GPT-3.5-Turbo), while increasing the443

number of examples (5-shot) provides further gains444

(up to 79.3% for GPT-4-Turbo and 87.1% for GPT-445

4o). The ToT and GoT method surpass standard446

few-shot prompts for the two more advanced mod-447

els, pushing GPT-4-Turbo to 80.4% and 81.2% and448

GPT-4o to 87.1% and 87.6% — a notable jump of449

around 7% from CoT.450

Even so, our MDToC outperforms all these451

strategies, achieving 60.8% for GPT-3.5-Turbo,452

83.8% for GPT-4o-mini, 86.6% for GPT-4-Turbo, 453

and 89.5% for GPT-4o. Compared to ToT, our 454

MDToC provides an extra 7.6-% boost for GPT- 455

3.5-Turbo, 5.3% for GPT-4o-mini, and 6.2% for 456

GPT-4-Turbo. These results strengthen our claim 457

that our MDToC not only overcomes the evaluation 458

constraints in ToT but also achieves more robust 459

performance than purely tree-based approaches like 460

ToT.

Table 3: Comparative performance of different prompt-
ing approaches for various GPTs on the MATH dataset

Prompt GPT
3.5-Turbo 4o-mini 4-Turbo 4o

0-shot 45.7 71.4 72.6 81.5
CoT 48.6 72.4 73.3 81.6
5-shot 54.3 77.1 79.5 82.4
ToT 53.2 78.5 80.4 87.1
GoT 51.8 80.0 81.2 87.6
Our
MDToC

60.8 83.8 86.6 89.5

461

4.6 Game-of-24 evaluation 462

Table 4 now reports six prompting 463

strategies—0-shot, CoT, 5-shot, ToT, GoT, 464

and our MDToC—evaluated on four models 465

(GPT-3.5-Turbo, GPT-4o-mini, GPT-4-Turbo, and 466

the new GPT-4o). The broad pattern remains: 467

minimal prompting (0-shot or CoT) yields very 468

low accuracy (2–10%), while adding a handful of 469

demonstrations (5-shot) produces a modest gain 470

(6–18%). ToT then brings a significant jump for 471

GPT-4o-mini to 56%, GPT-4-Turbo to 74%, and 472

GPT-4o to 88%. GoT raises scores further to 62%, 473

81%, and 90% for GPT-4o-mini, GPT-4-Turbo, 474

and GPT-4o, respectively; even GPT-3.5-Turbo 475

climbs from 19% (ToT) to 21% (GoT). 476

Despite these gains, our MDToC still delivers 477

the best accuracy across the board: 30% (+9% 478

over GoT) on GPT-3.5-Turbo, 75% (+13%) on 479

GPT-4o-mini, 85% (+4%) on GPT-4-Turbo, and 480

a top-tied 90% on GPT-4o. These margins under- 481

score the critical role of MDToC’s evaluator pθe 482

and fixer pθf , which detect and repair erroneous 483

intermediate expressions involving the four num- 484

bers in Game-of-24, maintaining logical consis- 485

tency and reducing hallucinations throughout the 486

reasoning chain. 487
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Table 4: Comparative performance of different prompt-
ing approaches for various GPTs on the Game-of-24
dataset.

Prompt GPT
3.5-Turbo 4o-mini 4-Turbo 4o

0-shot 2 3 4 10
CoT 3 3 4 9
5-shot 6 8 10 18
ToT 19 56 74 88
GoT 21 62 81 90
Our
MDToC

30 75 85 90

5 Discussion488

5.1 Cost analysis of our MDToC configuration489

Dataset GPT Cost ($) Accuracy
w w/o w w/o

MATH

3.5-Turbo 0.58 0.62 60.8 54.1
4-Turbo 19.79 21.16 86.6 86.9
4o-mini 0.23 0.23 83.8 82.9

4o 3.5 3.7 89.5 89.7

CHAMP

3.5-Turbo 0.69 0.72 39.5 33.9
4-Turbo 22.59 24.15 58.1 59.0
4o-mini 0.24 0.24 48.3 47.1

4o 3.94 4.08 68.2 68.5

G24

3.5-Turbo 0.03 0.05 30 25
4-Turbo 1.79 1.92 85 85
4o-mini 0.02 0.02 75 74

4o 0.37 0.39 90 90

Table 5: Per-case cost and accuracy for our MDToC
with GPT models on MATH, CHAMP, and Game-of-24
(G24). W stands for using GPT-4o-mini in the fixer
component and GPT-4o in the planning and reviewing
phase in our MDToC configuration. W/o stands for
using the same LLMs across all components.

Replacing the planner and reviewer with GPT-4o490

and the fixer with GPT-4o-mini reduces costs while491

maintaining or improving accuracy across all back-492

bone models and datasets tested (shown in Table 5).493

For GPT-3.5-Turbo, costs decreased while accuracy494

increased on MATH (54.1% to 60.8%), CHAMP495

(33.9% to 39.5%), and Game-of-24 (25% to 30%).496

GPT-4-Turbo saw cost reductions with minimal497

accuracy changes on all datasets, while GPT-4o498

as backbone showed 5-7% cost savings with neg-499

ligible accuracy differences (≤0.3%). These re-500

sults demonstrate that delegating auxiliary roles to501

lighter models is an effective strategy for reduc- 502

ing computational expenses without compromising 503

performance, with weaker models particularly ben- 504

efiting from the diverse planning concepts provided 505

by GPT-4o. 506

5.2 Hyperparameter Sensitivity Test 507

(Cmin,
Cmax,
SCmin,
SCmax)

(cs, t) MATH
Acc

G24
Acc

MATH
Cost

G24
Cost

(2,4,1,2) (2,10) 89.5% 87% $3.5 $0.7
(3,5,1,2) (2, 10) 89.6% 88% $4.9 $0.8
(3,5,2,4) (3, 15) 89.9% 88% $5.8 $1.0
(1,1,1,1) (15, 5) 83.4% 90% $2.6 $0.4

Table 6: Hyperparameters (see our 3.1 and 3.2) in MD-
ToC with GPT-4o on MATH and Game-of-24 (G24).
Acc stands for Accuracy.

Table 6 shows important hyperparameter com- 508

binations. Increasing concept exploration (up to 5 509

concepts (Cmax = 5 and 20 subconcepts in total 510

(SCmax = 4) marginally improves the accuracy of 511

our MDToC on MATH (0.4%), confirming our find- 512

ing that about 4 concepts (Cmax = 4) subconcepts 513

are sufficient while reducing the cost significantly 514

(from $5.8 to $3.5). For Game-of-24, the accuracy 515

slightly decreases (90% to 88%) with less broad 516

explorations, indicating this dataset does not ben- 517

efit from concept variety. Meanwhile, despite of 518

cost decrease (down to $2.6), limited concepts with 519

broad computational exploration reduce MATH ac- 520

curacy (to 83.4%). However, these suit exploration- 521

based datasets like Game-of-24. 522

6 Conclusion 523

Our proposed MDToC framework enhances math- 524

ematical reasoning in LLMs through structured 525

metacognition—planning, monitoring, and review- 526

ing. It outperforms ToT and GoT techniques, 527

achieving up to 11% higher accuracy on Game- 528

of-24 and showing consistent improvements on 529

CHAMP and MATH. Our MDToC excels in 530

calculation-intensive tasks through dynamic con- 531

cept structuring and iterative error correction, estab- 532

lishing a foundation for future research in complex 533

problem-solving. 534
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7 Limitations535

Despite MDToC’s superior performance compared536

to previous prompting methodologies, several no-537

table limitations affect its practical implementation.538

First, our metacognitive calculation approach ex-539

hibits domain-specific constraints, particularly in540

mathematical fields such as geometry, where spa-541

tial reasoning predominates over calculation verifi-542

cation. In such domains, the iterative verification543

processes central to MDToC may offer diminishing544

returns, as the primary cognitive challenges relate545

to geometry visualization rather than computational546

validation.547

Second, the performance improvements deliv-548

ered by our MDToC incur computational costs.549

As demonstrated in our analyses (see Tables 1550

and 5), the method introduces significant resource551

overhead, particularly when implementing MDToC552

with expensive LLMs such as GPT-4-Turbo. Token553

consumption for CHAMP and MATH benchmark554

problems reaches approximately 450, 000 tokens555

per problem, translating to approximately $20 per556

problem—a cost scale that may prove prohibitive557

for educational institutions and research organiza-558

tions with limited budgets. These economic con-559

straints potentially restrict MDToC’s deployment560

in resource-limited environments.561
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A Appendix672

A.1 Complexity Analysis673

Table 7 demonstrates that our MDToC achieves674

higher accuracy than ToT. On the MATH bench-675

mark with GPT-4-Turbo, our MDToC with GPT-4-676

Turbo raises accuracy from 80.4% to 86.6% (+6.2677

% gain) while consuming only 16% more tokens678

(346k → 403k) and about 40 seconds of extra time679

— yielding roughly 1% of extra accuracy for every680

2.5% of extra tokens. A similar pattern appears on681

CHAMP: our MDToC with GPT-4-Turbo delivers682

5.4% gain (52.7% → 58.1%) for just 14% more683

tokens and a 0.2-minute latency increase. On the684

Game-of-24 task, our MDToC converts a five-fold685

token increase into an 11% accuracy jump (74% →686

85%) for GPT-4-Turbo while keeping runtime un-687

der 2 minutes. With GPT-4o, for example, our MD-688

ToC converts a 28% rise in tokens on MATH into689

2.4% accuracy gain over ToT (87.1% → 89.5%)690

and turns a 26% token increase on CHAMP into691

6.9% accuracy gain (61.3% → 68.2%). These re- 692

sults confirm that the added metacognitive steps for 693

calculation evaluation pay for themselves: each ad- 694

ditional cost generates more correct answers than 695

ToT can perform with the same model.

Dataset Prompt GPT Token Cost Time Acc

MATH
MDToC

4-Turbo 403,060 19.79 12.1 86.6
4o 286,935 3.5 11.1 89.5

ToT
4-Turbo 346,193 12.98 11.5 80.4

4o 223,088 2.79 11.0 87.1

CHA-
MP

MDToC
4-Turbo 460,033 22.59 12.3 58.1

4o 315,561 3.94 11.4 68.2

ToT
4-Turbo 404,881 15.18 12.1 52.7

4o 249,713 3.12 11.1 61.3

G24
MDToC

4-Turbo 36,531 1.79 1.8 85
4o 29,464 0.37 1.7 90

ToT
4-Turbo 6,958 0.74 1.0 74

4o 6,179 0.08 1.0 88

Table 7: Token and cost analysis of our MDToC and ToT
on MATH, CHAMP, and Game-of-24 (G24). The token
and cost are per case. Time is measured in minutes.
Acc stands for Accuracy.

696

A.2 LLM Benchmark 697

To better understand the performance of our MD- 698

ToC, Table 8 shows the performance of our MD- 699

ToC when using the same GPT models and other 700

open-source LLMs across all three components. 701

Across a broad sweep of language models, our MD- 702

ToC consistently outperforms both ToT and GoT. 703

With GPT-4-Turbo, accuracy rises from 52.7% 704

(ToT) and 54.2% (GoT) to 59.0% on CHAMP, 705

from 80.4% and 80.8% to 86.9% on MATH, and 706

from 79% and 81% to 85% on Game-24. No- 707

tably, the gains are even larger for smaller models: 708

GPT-4o-mini sees a 9.3-point jump on CHAMP 709

and an 8.9-point boost on Game-24, underscoring 710

MDToC’s ability to compensate for limited param- 711

eter capacity. 712

The trend extends to open-source LLMs. When 713

applied to Mistral-7B, our MDToC improved 714

MATH accuracy from 23.5% to 27.2% (+3.7% in- 715

crease), CHAMP accuracy from 18.1% to 19.7%, 716

and Game-of-24 accuracy from 8% to 9%. For the 717

stronger Mistral 8×22B model, MDToC yielded im- 718

provements on MATH (52.7% to 55.4%), CHAMP 719

(31.9% to 34.5%), and Game-of-24 (22% to 26%). 720

The Llama-3 family showed similar benefits: the 721

8B variant experienced increases on MATH (26.8% 722
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LLM Prompt Dataset
CHAMP MATH G24

GPT-
3.5-

Turbo

ToT 31.7 51.2 19
GoT 32.3 51.6 21
MDToC 33.9 54.1 25

GPT-
4-

Turbo

ToT 52.7 80.4 79
GoT 54.2 80.9 81
MDToC 59.0 86.9 85

GPT-
4o-

mini

ToT 37.8 78.5 56
GoT 39.3 79.0 62
MDToC 47.1 82.9 74

GPT-
4o

ToT 61.3 87.1 88
GoT 63.4 87.9 90
MDToC 68.5 89.7 90

Mistral-
7B

ToT 18.1 23.5 8
GoT 18.8 24.2 9
MDToC 19.7 27.2 9

Mistral
8x22B

ToT 31.9 52.7 22
GoT 32.4 53.2 23
MDToC 34.5 55.4 26

Llama-
3 8B

ToT 19.2 26.8 7
GoT 20.9 27.5 8
MDToC 21.5 30.6 10

Llama-
3

70B

ToT 31.3 52.1 24
GoT 32.7 53.6 26
MDToC 36.1 57.3 29

Table 8: Accuracy achieved by MDToC, ToT, and GoT
on the CHAMP, MATH, and Game-24 datasets using
eight language models: GPT-3.5-Turbo, GPT-4o-mini,
GPT-4-Turbo, GPT-4o, Mistral-7B, Mistral-8×22B,
Llama-3-8B, and Llama-3-70B

to 30.6%) and CHAMP (19.2% to 21.5%), while 723

the 70B variant saw substantial gains on MATH 724

(52.1% to 57.3%), CHAMP (31.3% to 36.1%), 725

and Game-of-24 (24% to 29%). These consistent 726

performance improvements of 2-5% across four 727

open-source LLMs demonstrate that our MDToC 728

enhances community models, mirroring the bene- 729

fits previously observed with GPT architectures. 730

A.3 Problem types on MATH dataset 731

algebra

counting_and_probabilitygeometry

intermediate_algebra

number_theory

prealgebra
precalculus

20 40 60 80 100

MDToC
ToT

Figure 7: Radar chart comparing our MDToC and
ToT performance on the MATH dataset in terms of
the percentage accuracy—both evaluated with GPT-4-
Turbo—on various math problems of this dataset.

Figure 7 employs GPT-4-Turbo—selected for 732

its superior performance over GPT-3.5-Turbo and 733

GPT-4o-mini—to evaluate two prompting meth- 734

ods, ToT and our MDToC. Results were collected 735

across seven math topics (algebra, counting and 736

probability, geometry, intermediate algebra, num- 737

ber theory, prealgebra, and precalculus). MDToC 738

outperformed ToT in five categories, showing no- 739

table leads in algebra (93.3% vs. 87.6%), inter- 740

mediate algebra (88.7% vs. 82.9%), and counting 741

and probability (92.8% vs. 86.1%). The methods 742

performed similarly in geometry and pre-calculus 743

(72.4% vs. 70.2% in geometry). 744

These experimental results show that while ToT 745

and MDToC perform similarly on geometry-related 746

and visual-understanding problems, notable dif- 747

ferences emerge when more precise calculation 748

steps are required. Geometry questions often hinge 749

on spatial reasoning and visual understanding, do- 750

mains in which both prompting methods perform 751

equally well. In these tasks, the abstract thought 752

evaluations encompassed by ToT appear sufficient 753

to address the reasoning needed for shapes, angles, 754

and other geometric relationships, while MDToC’s 755
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exclusive focus on calculations does not confer a756

distinct advantage. However, for algebra problems757

demanding intensive numeric manipulation, MD-758

ToC strongly outperforms ToT. This result aligns759

with MDToC’s design, which specifically targets760

explicit calculation steps to enhance accuracy in761

computation-heavy contexts.762

A.4 Problem types on CHAMP dataset763

Combinatorics

Inequality

Number Theory

Polynomial

Sequence

20 40 60

MDToC
ToT

Figure 8: Radar chart comparing our MDToC and
ToT performance on the CHAMP dataset in terms
of the percentage accuracy—both evaluated with GPT-
4-Turbo—across Combinatorics, Inequality, Number
Theory, Polynomial, and Sequence.

A comparative analysis of MDToC and ToT764

across five CHAMP dataset math topics in Figure765

8 shows MDToC’s clear advantages in most cate-766

gories. MDToC demonstrated significantly higher767

accuracy in Combinatorics (65.7% vs. 55.7%), In-768

equality (60.8% vs. 52.6%), and Number Theory769

(63.2% vs. 56.5%), highlighting its effectiveness in770

problems requiring detailed numeric calculations771

and methodical computation. While ToT showed772

a slight edge in Polynomial problems (49.9% vs.773

48.2%), likely due to its strength in abstract sym-774

bolic manipulation, MDToC maintained superiority775

in Sequence problems (51.1% vs. 49.1%), suggest-776

ing that its explicit calculation framework better777

handles iterative, arithmetic-driven tasks. These778

results underscore how MDToC’s focus on de-779

tailed numeric processes generally yields stronger780

performance in calculation-oriented mathematical781

problem-solving.782
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