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Abstract

Despite advances in mathematical reasoning
capabilities, Large Language Models (LLMs)
still struggle with calculation verification when
using established prompting techniques. We
present MDToC (Metacognitive Dynamic Tree
of Concepts), a three-phase approach that
constructs a concept tree, develops accuracy-
verified calculations for each concept, and
employs majority voting to evaluate compet-
ing solutions. Evaluations across CHAMP,
MATH, and Game-of-24 benchmarks demon-
strate our MDToC’s effectiveness, with GPT-
4-Turbo achieving 58.1% on CHAMP, 86.6%
on MATH, and 85% on Game-of-24 - outper-
forming GoT by 5%, 5.4%, and 4% on all these
tasks, respectively, without hand-engineered
hints. MDToC consistently surpasses existing
prompting methods across all backbone models,
yielding improvements of up to 7.6% over ToT
and 6.2% over GoT, establishing metacognitive
calculation verification as a promising direction
for enhanced mathematical reasoning.

1 Introduction

Large Language Models (LLMs) like GPT-4
(Achiam et al., 2023) and Claude (Anthropic, 2024)
demonstrate proficiency in various mathematical
problems, excelling in easy to medium-difficulty
tasks as evidenced by their performance on bench-
marks such as GSM8k (Cobbe et al., 2021) and
SVAMP (Patel et al., 2021). However, their efficacy
diminishes when faced with complex challenges
presented in datasets such as MATH (Hendrycks
et al., 2021) and CHAMP (Mao et al., 2024). In
these demanding scenarios, LLMs often struggle
with accurate multi-step reasoning and solution
derivation. A key factor in this performance degra-
dation is the models’ propensity for errors in in-
termediate calculations and logical deductions (Pa-
tel et al., 2024; Tyagi et al., 2024). These com-
pounding inaccuracies result in poor performance
on datasets featuring hard mathematical problems,

opening a critical area for improvement in the multi-
step reasoning capabilities of LLMs.

Researchers have widely adopted prompting
techniques, particularly Chain-of-Thought (CoT)
(Wei et al., 2022) and self-consistency CoT (SC-
CoT) (Wang et al., 2023), to enhance LLMs’ multi-
step reasoning capabilities without additional train-
ing. These methods enable models to decompose
complex reasoning processes into smaller steps,
improving overall accuracy. In particular, CoT en-
courages articulation of thought processes, while
SC-CoT generates multiple demonstrations with
majority voting. However, these approaches have
limitations: CoT may constrain diverse problem-
solving pathways, while SC-CoT lacks crucial eval-
uation of intermediate reasoning steps. This can
lead to erroneous samples and inaccurate voting
outcomes. As a result, using these prompting tech-
niques, advanced LLMs such as GPT-4 suffer from
poor performance. For example, GPT-4 with SC-
CoT achieves only 9% accuracy on the Game-of-24
task (Yao et al., 2024). Therefore, it is essential to
develop more robust reasoning methodologies.

Recent hierarchical prompting techniques like
Tree-of-Thoughts (ToT) (Yao et al., 2024) (Long,
2023) and Graph-of-Thoughts (GoT) (Besta et al.,
2024) (Yao et al., 2023) have advanced reason-
ing capabilities through structured thought repre-
sentation and intermediate evaluation, achieving
impressive results on complex tasks (74% accu-
racy on Game-of-24 (Yao et al., 2024) and 89% on
Sequence-Sorting-64-elements (Besta et al., 2024),
respectively). However, as shown in Figure 1,
these approaches suffer from ill-defined evalua-
tion criteria for diverse thought forms (mathemat-
ical analysis, concepts, calculations), leading to
heavy reliance on powerful LLMs like GPT-4 that
produce approximated and unreliable evaluation
scores. This standardization challenge creates vul-
nerabilities in the critical processes of thought se-
lection and connection pruning, while the need for



domain-specific customization limits generalizabil-
ity across different problem types.

Amidst the numerous successes of the CoT, ToT,
and GoT prompting techniques, there have been
several explorations of cognitive prompting meth-
ods for mathematical problem-solving (Fagbohun
et al., 2024). In the field of psychology, metacog-
nition enables individuals to reflect on and criti-
cally analyze their thought processes (Lai, 2011).
Recent research has enhanced model capabilities
with metacognitive processes for natural language
understanding tasks. For example, (Wang and
Zhao, 2023) demonstrated that LLMs prompted
with metacognitive thinking outperformed previ-
ous techniques such as zero-shot (Kojima et al.,
2022) (Brown et al., 2020) or CoT prompting (Wei
et al., 2022) across various NLP tasks. (Zhou
et al., 2024) highlighted the effectiveness of the
metacognitive approach in improving the retrieval-
augmented generation process for LLMs. How-
ever, the application of metacognition to mathemat-
ical problem-solving remains relatively unexplored,
with notable exceptions such as (Didolkar et al.,
2024), who showed that metacognitive approaches
enhance mathematical reasoning in LLMs by re-
flecting on clustered math skills and thereby provid-
ing relevant in-context examples. Our work extends
this research direction by applying metacognition
to LLMs for solving mathematical problems.

Motivated by the aforementioned background,
we propose MDToC (Metacognitive Dynamic Tree
of Concepts), a novel three-phase prompting tech-
nique that transforms abstract thoughts into con-
cepts and evaluable calculations. MDToC employs
a depth-two concept tree in the planning phase to
explore diverse mathematical concepts while con-
straining the solution space, followed by a moni-
toring phase that expands sub-concepts with cal-
culation steps using four specialized LLMs, and
concludes with a reviewing phase utilizing ma-
jority voting following the self-consistency vot-
ing mechanism (Chen et al., 2023). This com-
prehensive framework has demonstrated signifi-
cant effectiveness, with GPT-3.5+MDToC achiev-
ing 39.5% accuracy on CHAMP (outperforming
GPT-3.5 with annotated concepts by 5.1%) and
GPT-40-mini+MDToC attaining 75% accuracy on
Game-of-24 (surpassing GPT-40-mini with ToT by
19%).
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Figure 1: ToT prompting yields initial abstract thoughts
(e.g., analyses, concepts, calculations; in red), which
are challenging to evaluate due to the intangible nature
of conceptual reasoning and the lack of specific crite-
ria to measure their correctness or completeness. Our
MDToC addresses these abstract thoughts by first gen-
erating concrete concepts and then producing relevant
calculations for those concepts. We only evaluate the
preciseness of the calculations through mathematical
accuracy checks, enabling precise evaluation and thus
improving problem-solving reliability.

2 Related Work

2.1 Prompting techniques

Let py be a LLM parameterized by 6. Two of the
most common prompting techniques for mathemat-
ical reasoning with pg are described below.

1. Chain-of-Thought. Given an input problem
x, the LLM is guided through a sequence c
of reasoning steps to produce an answer y
(Wei et al., 2022). Specifically, the sequence
c of reasoning steps is generated by the LLM
based on the input problem, expressed as ¢ ~
pe(c|z). The final answer y is then generated
by the LLM based on both the input problem
and the sequence of reasoning steps expressed

as y ~ po(ylz, c).

2. Tree-of-Thought. Given an input problem
x, the LLM navigates a tree structure where
each node i represents a state s = [z, z1._;],
with 27 _; denoting a sequence of thoughts
along the current path (Yao et al., 2024). The
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Figure 2: Proposed MDToC prompting structure. C' represents the first-depth concept, while SC' represents the
second-depth sub-concept. Py and P; are prompts used in the planning phase shown in Figure 3, while P», P35, Py,
and P are prompts used in the monitoring phase given in Figure 4. Prompts P is the prompt in the review phase,

as shown in Fig. 6.

LLM generates a new thought z;;; based
on the current state s, expressed as z;y1 ~
po(zit1|2, z1..4). A new node with the state
s’ =[x, 21..i+1] is then appended to the cur-
rent node ¢ in the tree.

Each state s in a set of states .S undergoes
evaluation through either numerical values
or voting to determine the viability of fur-
ther path exploration. The numerical eval-
uation V' (pg, s) is expressed as V' (pg, s) ~
po(v|s) Vs € S, where v is the numerical
value. The voting evaluation V (pg, s) is ex-
pressed as V(pg, s) = 1 [s = s*| where s* ~
pp°¢(s*|S). In this context, The LLM votes
for state s* given the set of states .S, employ-
ing the indicator function 1 [s = s*] to deter-
mine whether a state s corresponds to the
voted state s*.

3. Graph-of-Thought Given an input problem
x, the LLM navigates a directed graph struc-
ture G = (V, E), where V is the set of ver-
tices representing thoughts,and E C V x V
is the set of edges representing dependencies
among thoughts (Besta et al., 2024). De-
note that V' and E™ represent newly added
vertices and edges, while V~ and E~ de-
note removed vertices and edges, respectively.
Unless stated otherwise, V- = E~ = (.
The graph of thoughts is manipulated through
three primary operations: aggregation, refine-
ment, and generation.

Following these operations, the graph is up-
dated as G’ = T(G,pg) = (V', E’), where
V =(VUVtI\V~, B = (FEUET)\E".
Each node v in graph G is subsequently eval-
vated by the LLM using either a scoring or

ranking method. The scoring function is ex-
pressed as s = E(py,v,G) ~ po(slv, G),
where s denotes the score value of node
v. Conversely, the ranking function is ex-
pressed as {v1,ve,...,vn} = R(pg,h,G) ~
po({vi,v2,...,vn}|G, h), where h represents
the number of top-ranking thoughts to be re-
turned.

2.2 Metacognition

Metacognition—the ability to reflect on and regu-
late one’s thought processes—plays a crucial role
in advanced problem-solving and decision-making.
It serves as an overarching framework guiding the
effective application of cognitive strategies. This
study aims to endow language models with a simu-
lated metacognitive process, mimicking the human
capacity for “thinking about thinking”. Our MD-
ToC approach employs a hierarchical prompting
structure incorporating three foundational stages of
metacognition: planning, monitoring, and review-
ing (Ku and Ho, 2010), specifically designed for
mathematical problem-solving.

The planning stage creates a conceptual roadmap
by establishing strategies and approaches. During
monitoring, we implement a metacognitive mech-
anism that enables self-evaluation and correction
of calculations in progress. The final reviewing
stage examines solutions, filtering out empty re-
sults and identifying the most frequently occurring
valid answer.

3 Methodology

This research introduces a novel prompting ap-
proach, called MDToC, utilizing a dynamic tree
of concepts within a tripartite metacognitive frame-
work of planning, monitoring, and reviewing. This



method addresses limitations in existing hierarchi-
cal prompting techniques for LLMs, such as un-
reliable evaluations of abstract thoughts and lack
of generalizability. Our approach enables the ex-
ploration of diverse reasoning paths and selects the
final solution through majority voting. Figure 2
shows a visual representation of our methodology.

3.1 Planning

During the initial planning phase, we construct a
concept tree 7' = (V, E') with a depth of two where
V' is a set of nodes and E is a set of edges. We
begin by instructing our LLM planner py, with
prompt Py to extract the objective of the ques-
tion, called ¢, and generate n distinct concepts
{cf=1,e371, L, 871} ~ pp, (q), where d = 1 rep-
resents the first depth of the tree. Each i-th concept
is articulated as a detailed sentence, providing a
mathematical or programmatic response to q. We
then incorporate n concepts as nodes within the

tree structure, where V' = {cf=1 c4=1 .. cd=1},
For each i-th concept at depth d = 1,

we further prompt our LLM planner py, with
prompt P; to produce m distinct sub-concepts

d=2 =2 d=2 d=1 )
{eiT% ¢l s i} ~ 0o, (q,¢f~"). These sub
concepts, each expressed in two detailed sentences,
serve to elucidate and expand upon the i-th concept
with question-solving information. Within our tree
structure, we position each j-th sub-concept as a
child node to its corresponding i-th concept. Figure
3 demonstrates our prompts for Py and P;. Our
tree T' is then expressed as:

d=1 d=1 _d=2 d=2 d=2
V= o e s Clon s ooy Gl 5 oees €

E={(cF1, ), (cffl, =)y

Prompt 0 L . . .
i Generate a minimum of C_min and a maximum of C_max distinct problem-specific

) concepts

Prompt 1 Extract all problem-solving information. Then generate a minimum of SC_min and a
®) maximum of SC_max distinct sub-concepts filled with the extracted information given an
explored concept

Figure 3: Prompts for the planning phase.

The construction of our dynamic tree 71" incorpo-
rates four key parameters: C.,;, Cruazr SCrmin,
and SCiq.. These parameters define the concept
range (Chpin and Cine,) and sub-concept range
(SChin and SCh,q4z), as illustrated in prompts Py
and P of Figure 3, respectively. The magnitude
of these parameters directly correlates with the
breadth of concept exploration, where larger val-
ues facilitate a more extensive conceptual land-

scape. Upon examining the annotated concepts in
CHAMP (Mao et al., 2024) where each problem
receives 3 hints, we decided to opt for a two-depth
dynamic tree structure. We aim to prevent LLMs
from excessively relying on generated concepts
while fostering a more flexible problem-solving
process that can adapt to various problem types
and complexities.

Prompt 2 Derive the next small calculation step to deduce the partial solution.
) Any unknown computation not in the solution is not allowed for the deduction.
Do not generate explanation texts of the step.

P 3 . .
LT Verify if the next calculation is correctly computed.

(P) Use code to confirm your verification. Only verify the accuracy.

Prompt 4 the next
(P) Verify if the output of the recalculation matches the onglnal ca\culanon If not match, fix
the output!

Prompt 5
(Py) Given the partial solution, continue solving and derive the final answer!

Figure 4: Prompts for the monitoring phase.

3.2 Monitoring

In the monitoring phase, we employ a ToT-based
structure (Yao et al., 2024) to solve a concept tree in
t iterations. We denote a mathematical calculation
as x. Unlike the traditional ToT approach which
samples k thoughts and selects a subset of them,
our MDToC samples and evaluates all £ mathemat-
ical calculations with two LLM components: an
LLM evaluator py, and an LLM generator py, . The
generator py, prompted with P samples k calcu-
lations, while the evaluator pg, prompted with P3
assesses the accuracy of each calculation. Specifi-
cally, when the evaluator py, identifies an error in

4—2+a calculation, it returns a negative response ("No")
> nm Jaccompanied by a detailed explanation of the error.

The k-th
pled from the

calculation sam-

>3 .

Xijk 18
>

generator  as d=3

Xuk
d>3)| d=1 d—1>3
p@g( zgk |C ) ’5] 7Xij ) where lek

represents previous calculations.  The eval-
uation result V(pgc,xfjig) for the k-th cal-

~

d—12>3

culation is expressed as V(pge,xf;k?’)

Po, (ve, el (871, 872 X122 X)), where
ve 1S the binary result of 0 or 1 and 7. is the
evaluation reason when v, = 0. If v, = 0,
the generator regenerates the calculation
X ~ o, (X =0 =2 X 20 x re)

We further introduce an LLM fixer pg, prompted
with P; to fix the errors in the k-th calculation as
X?ﬁ; ~ po,( Xfﬁf’ |X§lfks) Specifically, after the
complete cycle of generation and evaluation of cal-
culations, pg, addresses and corrects any remaining

calculation errors. Subsequently, these k calcula-
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Figure 5: Comparative analysis of reasoning steps: GPT-3.5-Turbo with CoT and CH versus GPT-3.5-Turbo
with our MDToC approach. Subfigure (a) displays GPT-3.5-Turbo’s reasoning with CoT, supplemented by
annotated concepts and hints (CH) intended to guide the model’s step-by-step reasoning; I'T denotes intermediate
thoughts, and FA indicates the final answer. Although these conceptual hints attempt to structure the problem-solving
process, GPT-3.5-Turbo still yields an incorrect count of 34. Because there is no automatic mechanism to spot and
correct mistakes in intermediate steps, the model’s calculation errors persist through to the final answer. Subfigure
(b) shows our proposed concept tree (CT) approach under a multi-attempt evaluator—fixer framework, referred to
here as MDToC. IC stands for intermediate calculations, and each is evaluated by an evaluator component. In this
example, IC3 and IC4 are identified as incorrect, triggering the fixer to regenerate corrected values in ICS. This
iterative refine-and-fix process avoids propagating calculation errors, ultimately yielding the correct final answer FA
of 41. Notably, this process requires no extra annotated hints — only the concept tree plus repeated evaluation up to
2 attempts, a threshold chosen to reduce the risk of model “hallucinations” (erroneous or fabricated steps).

tions are appended as nodes to the tree. After some
iterations, we treat the current series of calculations
as a partial solution and employ an LLM solver
Dg, to resolve the partial solution. The solver’s re-
sponse is subsequently appended to the tree and
marked as a ’Finished Node’, thereby terminating
the exploratory process. Figure 4 illustrates our
prompts P, P3, Py, and Ps.

To monitor our concept tree with calculations,
we introduced two additional parameters: c;, t.
cs specifies the number of intermediate calcula-
tions generated, respectively, while ¢ represents
the number of iterations. These parameters allow
us to control the exploration behavior, balancing
between breadth and depth.

3.2.1 Example Analysis

Figure 5 compares intermediate reasoning steps be-
tween GPT-3.5-Turbo with CoT + CH and GPT-3.5-
Turbo with MDToC. It highlights challenges in re-
cursive calculations requiring precise intermediate

computations. Figure 5a shows GPT-3.5-Turbo’s
performance is limited to accurate calculation of
the base case only, with errors emerging in y2 and
cascading through subsequent steps. This leads to
an incorrect final sum of 34.

Conversely, Figure 5b illustrates the efficacy of
our MDToC approach in mitigating computational
errors. When applying MDToC, the likelihood
of erroneous intermediate calculations is signifi-
cantly reduced with 2 evaluation and regeneration
attempts. This is evidenced by the correct compu-
tation of yo, accurately determined as the sum of
1 = 1,y1 = 1, and z; = 1, yielding the correct
result of 3. This precise evaluation of x2, y2, and
z9 serves as a crucial foundation, enabling accurate
subsequent calculations for strings of lengths of 3
and 4, ultimately leading to the correct final answer
of 41.



Prompt 6 ‘
(Py) Determine the most common answers from a list of answers.

Figure 6: Prompts for the reviewing phase.

3.3 Reviewing

In the last phase, we obtain the results from the
monitored tree and select the top-voted answers.
Given a list of solutions marked by ’Finished Node’
as A, we use an LLM reviewer py, prompted with
FPs shown in Figure 6 to conduct a majority voting
of A. This stage involves finding the most common
answer from A, returning the most common one
as a ~ py, (A), where a is the final solution to the
objective q.

4 Experiments

4.1 Dataset

Our MDToC approach is evaluated using three
datasets: CHAMP (Mao et al., 2024) (270 high
school-level competition math problems across
five categories, providing insight into concept tree-
driven reasoning), MATH (Hendrycks et al., 2021)
(12,500 competition-level problems from sources
like AIME (AoPS, a) and AMC 10/12 (AoPS, b)
covering various advanced topics including alge-
bra, geometry, and number theory), and a subset
of 100 challenging Game-of-24 puzzles (indexed
901-1000, selected for direct comparison with ToT
approaches) (Yao et al., 2024).

4.2 Parameters

Planning phase For the CHAMP and MATH
datasets, we set Copin = 2, Criae = 3, SCin = 1,
and SC)q: = 2 (see our 3.1). In contrast, all pa-
rameters were set to 1 for Game-of-24 experiments,
as these problems require diverse calculation com-
binations rather than varied mathematical concepts.

Monitoring phase For the CHAMP and MATH
datasets, we use c; = 2 and t = 10 (see our 3.2),
emphasizing in-depth concept decomposition and
analysis. Game-of-24 employs c; = 10 and ¢ = 4,
focusing on broader analysis of calculation combi-
nations.

4.3 Model Configuration

In our experiments, we use OpenAl LLMs through-
out. GPT-40 handles the planning phase for con-
cept diversification and the review phase for re-
sponse standardization and voting. For the mon-
itoring phase’s fixer component py, (see Fig. 2),

we deploy GPT-40-mini for cost efficiency while
maintaining accuracy. The generator, evaluator,
and solver components (see Fig. 2) utilize four dif-
ferent models (GPT-3.5-Turbo, GPT-40-mini, GPT-
4-Turbo, and GPT-40) to enable direct comparison
with other prompting methods. Therefore, GPT-
3.5-Turbo+MDToC, GPT-40-mini+MDToC, GPT-
4-Turbo+MDToC, and GPT-40+MDToC schemes
each use their namesake model for monitoring
phase components, while all sharing GPT-40 for
planning/reviewing and GPT-40-mini for fixing.

To demonstrate the fairness of these comparisons
despite including GPT-40 and GPT-40-mini, we an-
alyzed token consumption across all models and
phases for three datasets in Table 1. The analysis
shows that GPT-4o for the planning and reviewing
phase uses less than 1% of total tokens for both
CHAMP and MATH datasets and approximately
2% for Game-of-24. In the fixer component, GPT-
4o0-mini consumes 23,428, 21,599, and 1,945 to-
kens for CHAMP, MATH, and Game-of-24 respec-
tively, accounting for about 6% of total tokens in
the monitoring phase. Since the remaining three
GPT models are responsible for roughly 93% of
overall token usage, we can confidently make valid
comparisons with alternative prompting techniques
that utilize these four primary GPT models.

Table 1: Average tokens used per response of GPT-40,
GPT-3.5-Turbo, GPT-40-mini, and GPT-4-Turbo across
the planning, reviewing, and monitoring phases for the
CHAMP, MATH, and Game-of-24 (G24).

Dataset
GPT | Phase G raipl MATH | G24

4o Planning | 2,671 2,292 655

Reviewing | 346 424 127
3.5-Turbo Generator 548,202 | 472,175 36,151
40-mini Evaluator 465,420 | 443,532 | 34,437
4-Turbo Solver 433,588 | 378,745| 33,804
4o 367,091 | 316,275| 29,668

4o-mini | Fixer 23,428 | 21,599 | 1,945

44 CHAMP evaluation

Table 2 compares various prompting techniques
across GPT-3.5-Turbo, GPT-40-mini, GPT-4-
Turbo, and GPT-40 models. While traditional ap-
proaches like zero-shot, CoT, five-shot prompt-
ing show modest results, incorporating concepts
and hints into prompting techniques demonstrates
greater success. CoT + CH improves accuracy,



with partial solution provision (1/3 sln) offering
further gains. For instance, GPT-4-Turbo achieves
53.0% accuracy with CoT+CH, significantly out-
performing its 37.8% CoT and 43.1% 5-shot results.

Table 2: Comparative performance of different prompt-
ing approaches for various GPTs on the CHAMP dataset.
’0-shot’ and ’5-shot’ denote in-context examples in
prompts; ’1/3 sln’ indicate the proportion of complete
solution provided; CoT and CH represent Chain-Of-
Thought and Annotated concepts and hints in prompts.

Prompt GPT

3.5-Turbo | 40-mini | 4-Turbo | 4o
0-shot 28.5 36.2 41.9 55.3
CoT 29.6 36.5 37.8 55.2
5-shot 34.8 38.7 43.1 56.5
CoT + 344 42.3 53.0 60.0
CH
1/3 sln 33.7 434 53.7 63.5
ToT 31.7 37.8 52.7 61.3
GoT 30.5 39.6 53.1 60.9
Our 39.5 48.3 58.1 68.2
MDToC

Our MDToC demonstrates superior performance
across all models, achieving 39.5% (GPT-3.5-
Turbo), 48.3% (GPT-40-mini), 58.1% (GPT-4-
Turbo), and 65.2% (GPT-40). These results repre-
sent substantial improvements over ToT and GoT,
with gains ranging from 5.4% to 10.5%, underscor-
ing the effectiveness of dynamically structuring
relevant concepts and employing a metacognitive
feedback mechanism to refine calculation steps.

4.5 MATH evaluation

In Table 3, 0-shot prompts yield 45.7% for GPT-3.5-
Turbo, 71.4% for GPT-40-mini, 72.6% for GPT-
4-Turbo, and 81.5% for GPT-40 on the MATH
dataset. Adding reasoning steps through CoT im-
proves these scores slightly (e.g., from 45.7% to
48.6% for GPT-3.5-Turbo), while increasing the
number of examples (5-shot) provides further gains
(up to 79.3% for GPT-4-Turbo and 87.1% for GPT-
40). The ToT and GoT method surpass standard
few-shot prompts for the two more advanced mod-
els, pushing GPT-4-Turbo to 80.4% and 81.2% and
GPT-40 to 87.1% and 87.6% — a notable jump of
around 7% from CoT.

Even so, our MDToC outperforms all these
strategies, achieving 60.8% for GPT-3.5-Turbo,

83.8% for GPT-40-mini, 86.6% for GPT-4-Turbo,
and 89.5% for GPT-40. Compared to ToT, our
MDToC provides an extra 7.6-% boost for GPT-
3.5-Turbo, 5.3% for GPT-40-mini, and 6.2% for
GPT-4-Turbo. These results strengthen our claim
that our MDToC not only overcomes the evaluation
constraints in ToT but also achieves more robust
performance than purely tree-based approaches like
ToT.

Table 3: Comparative performance of different prompt-
ing approaches for various GPTs on the MATH dataset

Prompt GPT
3.5-Turbo | 40-mini | 4-Turbo | 4o

0-shot 45.7 71.4 72.6 81.5
CoT 48.6 72.4 73.3 81.6
5-shot 54.3 77.1 79.5 82.4
ToT 53.2 78.5 80.4 87.1
GoT 51.8 80.0 81.2 87.6
Our 60.8 83.8 86.6 89.5
MDToC

4.6 Game-of-24 evaluation

Table 4 now reports six prompting

strategies—O0-shot, CoT, 5-shot, ToT, GoT,

and our MDToC—evaluated on four models
(GPT-3.5-Turbo, GPT-40-mini, GPT-4-Turbo, and
the new GPT-40). The broad pattern remains:
minimal prompting (0-shot or CoT) yields very
low accuracy (2-10%), while adding a handful of
demonstrations (5-shot) produces a modest gain
(6-18%). ToT then brings a significant jump for
GPT-40-mini to 56%, GPT-4-Turbo to 74%, and
GPT-40 to 88%. GoT raises scores further to 62%,
81%, and 90% for GPT-40-mini, GPT-4-Turbo,
and GPT-4o, respectively; even GPT-3.5-Turbo
climbs from 19% (ToT) to 21% (GoT).

Despite these gains, our MDToC still delivers
the best accuracy across the board: 30% (+9%
over GoT) on GPT-3.5-Turbo, 75% (+13%) on
GPT-40-mini, 85% (+4%) on GPT-4-Turbo, and
a top-tied 90% on GPT-40. These margins under-
score the critical role of MDToC’s evaluator pg,
and fixer py,, which detect and repair erroneous
intermediate expressions involving the four num-
bers in Game-of-24, maintaining logical consis-
tency and reducing hallucinations throughout the
reasoning chain.



Table 4: Comparative performance of different prompt-
ing approaches for various GPTs on the Game-of-24
dataset.

Prompt GPT

3.5-Turbo | 40-mini | 4-Turbo | 40
0-shot 2 3 4 10
CoT 3 3 4 9
5-shot 6 8 10 18
ToT 19 56 74 88
GoT 21 62 81 90
Our 30 75 85 90
MDToC

5 Discussion

5.1 Cost analysis of our MDToC configuration

Dataset GPT Cost ($) Accuracy
w wlo | w w/o

3.5-Turbo | 0.58 | 0.62 | 60.8 | 54.1

4-Turbo | 19.79] 21.16| 86.6 | 86.9

MATH 4o-mini | 0.23 | 0.23 | 83.8 | 82.9
40 3.5 |37 |89.5]| 89.7

3.5-Turbo | 0.69 | 0.72 | 39.5| 33.9

4-Turbo | 22.59| 24.15| 58.1 | 59.0

CHAMP 4o-mini | 0.24 | 0.24 | 48.3 | 47.1
4o 3.94 | 4.08 | 68.2 | 68.5

3.5-Turbo | 0.03 | 0.05 | 30 | 25

G24 4-Turbo | 1.79 | 192 | 85 | 85
40-mini | 0.02 [ 002 |75 |74

40 0.37 | 0.39 | 90 | 90

Table 5: Per-case cost and accuracy for our MDToC
with GPT models on MATH, CHAMP, and Game-of-24
(G24). W stands for using GPT-40-mini in the fixer
component and GPT-40 in the planning and reviewing
phase in our MDToC configuration. W/o stands for
using the same LLMs across all components.

Replacing the planner and reviewer with GPT-40
and the fixer with GPT-40-mini reduces costs while
maintaining or improving accuracy across all back-
bone models and datasets tested (shown in Table 5).
For GPT-3.5-Turbo, costs decreased while accuracy
increased on MATH (54.1% to 60.8%), CHAMP
(33.9% to 39.5%), and Game-of-24 (25% to 30%).
GPT-4-Turbo saw cost reductions with minimal
accuracy changes on all datasets, while GPT-40
as backbone showed 5-7% cost savings with neg-
ligible accuracy differences (<0.3%). These re-
sults demonstrate that delegating auxiliary roles to

lighter models is an effective strategy for reduc-
ing computational expenses without compromising
performance, with weaker models particularly ben-
efiting from the diverse planning concepts provided
by GPT-4o.

5.2 Hyperparameter Sensitivity Test

(Chmin, | (cs,t) | MATH | G24 | MATH| G24
Crazs Acc Acc | Cost | Cost
SCmin,

SCnaz)

(2,4,1,2)] (2,10) | 89.5% | 87% | $3.5 | $0.7
(3,5,1,2)| (2,10) | 89.6% | 88% | $4.9 | $0.8
(3,5,2,4)| (3,15) | 89.9% | 88% | $5.8 | $1.0
(1,1,1,1)| (15,5) | 83.4% | 90% | $2.6 $0.4

Table 6: Hyperparameters (see our 3.1 and 3.2) in MD-
ToC with GPT-40 on MATH and Game-of-24 (G24).
Acc stands for Accuracy.

Table 6 shows important hyperparameter com-
binations. Increasing concept exploration (up to 5
concepts (Chhax = 5 and 20 subconcepts in total
(SCmax = 4) marginally improves the accuracy of
our MDToC on MATH (0.4%), confirming our find-
ing that about 4 concepts (Chhax = 4) subconcepts
are sufficient while reducing the cost significantly
(from $5.8 to $3.5). For Game-of-24, the accuracy
slightly decreases (90% to 88%) with less broad
explorations, indicating this dataset does not ben-
efit from concept variety. Meanwhile, despite of
cost decrease (down to $2.6), limited concepts with
broad computational exploration reduce MATH ac-
curacy (to 83.4%). However, these suit exploration-
based datasets like Game-of-24.

6 Conclusion

Our proposed MDToC framework enhances math-
ematical reasoning in LLMs through structured
metacognition—planning, monitoring, and review-
ing. It outperforms ToT and GoT techniques,
achieving up to 11% higher accuracy on Game-
of-24 and showing consistent improvements on
CHAMP and MATH. Our MDToC excels in
calculation-intensive tasks through dynamic con-
cept structuring and iterative error correction, estab-
lishing a foundation for future research in complex
problem-solving.



7 Limitations

Despite MDToC’s superior performance compared
to previous prompting methodologies, several no-
table limitations affect its practical implementation.
First, our metacognitive calculation approach ex-
hibits domain-specific constraints, particularly in
mathematical fields such as geometry, where spa-
tial reasoning predominates over calculation verifi-
cation. In such domains, the iterative verification
processes central to MDToC may offer diminishing
returns, as the primary cognitive challenges relate
to geometry visualization rather than computational
validation.

Second, the performance improvements deliv-
ered by our MDToC incur computational costs.
As demonstrated in our analyses (see Tables 1
and 5), the method introduces significant resource
overhead, particularly when implementing MDToC
with expensive LLMs such as GPT-4-Turbo. Token
consumption for CHAMP and MATH benchmark
problems reaches approximately 450, 000 tokens
per problem, translating to approximately $20 per
problem—a cost scale that may prove prohibitive
for educational institutions and research organiza-
tions with limited budgets. These economic con-
straints potentially restrict MDToC’s deployment
in resource-limited environments.
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A Appendix

A.1 Complexity Analysis

Table 7 demonstrates that our MDToC achieves
higher accuracy than ToT. On the MATH bench-
mark with GPT-4-Turbo, our MDToC with GPT-4-
Turbo raises accuracy from 80.4% to 86.6% (+6.2
% gain) while consuming only 16% more tokens
(346k — 403k) and about 40 seconds of extra time
— yielding roughly 1% of extra accuracy for every
2.5% of extra tokens. A similar pattern appears on
CHAMP: our MDToC with GPT-4-Turbo delivers
5.4% gain (52.7% — 58.1%) for just 14% more
tokens and a 0.2-minute latency increase. On the
Game-of-24 task, our MDToC converts a five-fold
token increase into an 11% accuracy jump (74% —
85%) for GPT-4-Turbo while keeping runtime un-
der 2 minutes. With GPT-4o, for example, our MD-
ToC converts a 28% rise in tokens on MATH into
2.4% accuracy gain over ToT (87.1% — 89.5%)
and turns a 26% token increase on CHAMP into

10

6.9% accuracy gain (61.3% — 68.2%). These re-
sults confirm that the added metacognitive steps for
calculation evaluation pay for themselves: each ad-
ditional cost generates more correct answers than
ToT can perform with the same model.

Dataset Prompt | GPT Token | Cost | Time| Acc
4-Turbo | 403,060 | 19.79] 12.1 | 86.6

MATH MDToC 86035 | 3.5 | 1.1 | 89.5
o |4 Turbo | 346,193 | 12.98[ 115 | 804

° 4o | 223,088 | 2.79 | 11.0 | 87.1

4-Turbo | 460,033 | 22.59] 12.3 | 58.1

CHA- | MPToC I 1315561 [ 3.04 | 11.4 | 68.2
MP Tor | A-Turbo | 404,881 | 15.18] 12.1 | 527
4o | 249,713 | 3.12 |11.1 | 61.3

4-Turbo | 36531 | 1.79 | 1.8 | 85

24 MDToC |2 29.464 | 037 | 1.7 | 90
ToT 4-Turbo | 6,958 | 0.74 | 1.0 74

%o 6,179 | 0.08 | 1.0 | 88

Table 7: Token and cost analysis of our MDToC and ToT
on MATH, CHAMP, and Game-of-24 (G24). The token
and cost are per case. Time is measured in minutes.
Acc stands for Accuracy.

A.2 LLM Benchmark

To better understand the performance of our MD-
ToC, Table 8 shows the performance of our MD-
ToC when using the same GPT models and other
open-source LLLMs across all three components.
Across a broad sweep of language models, our MD-
ToC consistently outperforms both ToT and GoT.
With GPT-4-Turbo, accuracy rises from 52.7%
(ToT) and 54.2% (GoT) to 59.0% on CHAMP,
from 80.4% and 80.8% to 86.9% on MATH, and
from 79% and 81% to 85% on Game-24. No-
tably, the gains are even larger for smaller models:
GPT-40-mini sees a 9.3-point jump on CHAMP
and an 8.9-point boost on Game-24, underscoring
MDToC'’s ability to compensate for limited param-
eter capacity.

The trend extends to open-source LLMs. When
applied to Mistral-7B, our MDToC improved
MATH accuracy from 23.5% to 27.2% (+3.7% in-
crease), CHAMP accuracy from 18.1% to 19.7%,
and Game-of-24 accuracy from 8% to 9%. For the
stronger Mistral 8x22B model, MDToC yielded im-
provements on MATH (52.7% to 55.4%), CHAMP
(31.9% to 34.5%), and Game-of-24 (22% to 26%).
The Llama-3 family showed similar benefits: the
8B variant experienced increases on MATH (26.8%




Dataset

LLM | Prompt b [ MATH | G24
GPT- | ToT 31.7 51.2 | 19
3.5- | GoT 32.3 51.6 | 21
Turbo | MDToC 33.9 54.1 25
GPT- | ToT 52.7 804 | 79
4- [ GoT 54.2 80.9 | 81

Turbo | MDToC| 59.0 869 | 85
GPT- | ToT 37.8 785 | 56
40- | GoT 39.3 790 | 62
mini | MDToC| 47.1 829 | 74
ToT 61.3 87.1 | 88

(ZIZT' GoT 63.4 87.9 | 90
MDToC| 68.5 89.7 | 90

. ToT 18.1 23.5 8

M7‘]S;ral GoT 188 | 242 | 9
MDToC| 19.7 27.2 9

Mistral LT 31.9 527 | 22
g0op | 99T 32.4 532 | 23
MDToC| 34.5 554 | 26

Llama. | 0T 19.2 26.8 7
3gg | 09T 20.9 275 8
MDToC| 21.5 306 | 10

Llama- | ToT 31.3 52.1 24
3 GoT 32.7 53.6 | 26

70B | MDToC| 36.1 573 | 29

Table 8: Accuracy achieved by MDToC, ToT, and GoT
on the CHAMP, MATH, and Game-24 datasets using
eight language models: GPT-3.5-Turbo, GPT-40-mini,
GPT-4-Turbo, GPT-40, Mistral-7B, Mistral-8x22B,
Llama-3-8B, and Llama-3-70B
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to 30.6%) and CHAMP (19.2% to 21.5%), while
the 70B variant saw substantial gains on MATH
(52.1% to 57.3%), CHAMP (31.3% to 36.1%),
and Game-of-24 (24% to 29%). These consistent
performance improvements of 2-5% across four
open-source LLMs demonstrate that our MDToC
enhances community models, mirroring the bene-
fits previously observed with GPT architectures.

A.3 Problem types on MATH dataset

counting_and_probability

geometry

- MDToC
ToT

intermediate_algebra

number_theory

precalculus

prealgebra

Figure 7: Radar chart comparing our MDToC and
ToT performance on the MATH dataset in terms of
the percentage accuracy—both evaluated with GPT-4-
Turbo—on various math problems of this dataset.

Figure 7 employs GPT-4-Turbo—selected for
its superior performance over GPT-3.5-Turbo and
GPT-40-mini—to evaluate two prompting meth-
ods, ToT and our MDToC. Results were collected
across seven math topics (algebra, counting and
probability, geometry, intermediate algebra, num-
ber theory, prealgebra, and precalculus). MDToC
outperformed ToT in five categories, showing no-
table leads in algebra (93.3% vs. 87.6%), inter-
mediate algebra (88.7% vs. 82.9%), and counting
and probability (92.8% vs. 86.1%). The methods
performed similarly in geometry and pre-calculus
(72.4% vs. 70.2% in geometry).

These experimental results show that while ToT
and MDToC perform similarly on geometry-related
and visual-understanding problems, notable dif-
ferences emerge when more precise calculation
steps are required. Geometry questions often hinge
on spatial reasoning and visual understanding, do-
mains in which both prompting methods perform
equally well. In these tasks, the abstract thought
evaluations encompassed by ToT appear sufficient
to address the reasoning needed for shapes, angles,
and other geometric relationships, while MDToC’s



exclusive focus on calculations does not confer a
distinct advantage. However, for algebra problems
demanding intensive numeric manipulation, MD-
ToC strongly outperforms ToT. This result aligns
with MDToC’s design, which specifically targets
explicit calculation steps to enhance accuracy in
computation-heavy contexts.

A.4 Problem types on CHAMP dataset

Inequality

—a— MDToC
Number Theory

'ombinatorics

Polynomial

Sequence

Figure 8: Radar chart comparing our MDToC and
ToT performance on the CHAMP dataset in terms
of the percentage accuracy—both evaluated with GPT-
4-Turbo—across Combinatorics, Inequality, Number
Theory, Polynomial, and Sequence.

A comparative analysis of MDToC and ToT
across five CHAMP dataset math topics in Figure
8 shows MDToC'’s clear advantages in most cate-
gories. MDToC demonstrated significantly higher
accuracy in Combinatorics (65.7% vs. 55.7%), In-
equality (60.8% vs. 52.6%), and Number Theory
(63.2% vs. 56.5%), highlighting its effectiveness in
problems requiring detailed numeric calculations
and methodical computation. While ToT showed
a slight edge in Polynomial problems (49.9% vs.
48.2%), likely due to its strength in abstract sym-
bolic manipulation, MDToC maintained superiority
in Sequence problems (51.1% vs. 49.1%), suggest-
ing that its explicit calculation framework better
handles iterative, arithmetic-driven tasks. These
results underscore how MDToC’s focus on de-
tailed numeric processes generally yields stronger
performance in calculation-oriented mathematical
problem-solving.
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