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ABSTRACT

Learning meaningful representations for chirographic drawing data such as
sketches, handwriting, and flowcharts is a gateway for understanding and emulat-
ing human creative expression. Despite being inherently continuous-time data, ex-
isting works have treated these as discrete-time sequences, disregarding their true
nature. In this work, we model such data as continuous-time functions and learn
compact representations by virtue of Neural Ordinary Differential Equations. To
this end, we introduce the first continuous-time Seq2Seq model and demonstrate
some remarkable properties that set it apart from traditional discrete-time ana-
logues. We also provide solutions for some practical challenges for such models,
including introducing a family of parameterized ODE dynamics & continuous-
time data augmentation particularly suitable for the task. Our models are validated
on several datasets including VectorMNIST, DiDi and Quick, Draw!.

1 INTRODUCTION

Figure 1: Left: Discrete sequence
representation. Right: More natural
continuous-time functional representa-
tion. The gray line denotes pen-up state.

Drawing-based communications such as sketches, writ-
ing, and diagrams come naturally to humans and have
been used in some form since ancient times. Model-
ing such data is becoming an increasingly important and
topical challenge area for machine learning systems aim-
ing to interpret and simulate human creative expression.
Such chirographic structures are challenging to interpret
and generate due to their complex and unstructured na-
ture. However recent progress has been strong, thanks
to the advances in learning latent representations for se-
quences (Bowman et al., 2016; Graves, 2013; Srivastava
et al., 2015). In particular, with the advent of varia-
tional sequence-to-sequence generative models (Srivas-
tava et al., 2015; Bowman et al., 2016) and the collection
of large-scale datasets (Gervais et al., 2020; Ha & Eck,
2018; Ge et al., 2021), we have seen a surge of advance-
ments (Ha & Eck, 2018; Aksan et al., 2020) in this direction. Nevertheless, a key missing link is
the fact that drawing is intrinsically continuous in time, as is the resulting drawn artefact, when
considered as a sequence rather than a raster image.

The dominant approach to model free-hand sketches, popularized by Ha & Eck (2018), has been to
use a discrete-step recurrent network for capturing the latent process p(h[n]|h[n− 1]) with discrete
step n, and an observation model p (s[n] | h[n]) to explain local structure. The large body of meth-
ods built upon this have a critical flaw: they ignore the very nature of the data, i.e. drawn structures
are inherently continuous in time (Refer to Fig. 1). While a few attempts have been made to use
continuous-time constructs like Bézier curves (Das et al., 2020; 2021), their inconvenient mathe-
matical form affect the representational power as well as training dynamics. The reason for such an
absence of continuous-time models is the lack of fundamental tools for handling continuous time
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data. Lately however, the introduction of Neural Ordinary Differential Equations (Chen et al., 2018)
followed by numerous extensions (Dupont et al., 2019; Yildiz et al., 2019; Kidger et al., 2020) have
opened the possibility of building powerful models that can natively represent continuous time data.

In this paper, we represent chirographic drawing data like handwriting, sketches etc. as continuous-
time function s(t) and model the underlying latent process also as continuous-time latent function
h(t). Specifically, we propose a framework for capturing the derivative (potentially higher order)
of the latent process dKh(t)

dtK
with parameterized neural networks. At inference, a solution trajectory

ŝ(t) is computed from a given Initial Value Problem (IVP) that includes a learned ODE dynamics
and an initial hidden state h0 , h(t = 0). An obvious advantage of the functional representation is
its arbitrary spatial resolution, i.e. we can retrieve a structure at any spatial resolution by sampling
the function at appropriate rate. Moreover, with a functional representation, we can systematically
upgrade the representation along time with additional properties (e.g. line thickness, color etc).

So far, parameterized ODE dynamics models have largely been treated as a “replacement for
ResNets” (Massaroli et al., 2020) where the intermediate states are of little importance. While the
capability of ODE models are beginning to be tested in time-series data (Kidger et al., 2020; Morrill
et al., 2021), they still remain largely unexplored. Following the introduction of Neural ODEs by
Chen et al. (2018), methods have been proposed in order to regularize the solution trajectory to be
as simple as possible (Kelly et al., 2020; Finlay et al., 2020). However, time-series data such as chi-
rography are entirely the opposite. The dynamics model, and consequently the solution trajectory
should be as flexible as possible in order to learn the high degree of local and global variations with
time often exhibited in such data. We increase the flexibility of Neural ODE models by introducing
a new class of parameterized dynamics functions. Our experiments show that this is crucial in order
to model chirographic data with satisfactory fidelity. We also introduce a new data augmentation
method particularly geared towards ODE models and continuous-time sequences.

Finally, we propose a deterministic autoencoder with a global latent variable z that exhibits some
generative model properties by virtue of inherent continuity. Our final model, SketchODE, is similar
to SketchRNN (Ha & Eck, 2018) in terms of high-level design but lifts it to the realm of continuous-
time. Even though employed for chirographic data in this paper, our core model is the first generic
continuous time Seq2Seq architecture. We explore some of the noteworthy features that differentiate
SketchODE from discrete-time Seq2Seq analogoues.

An inductive bias for continuity: Discrete-time sequence models (Ha & Eck, 2018) need to use
their capacity to model both global structure and temporal continuity in the data. ODE models on
the other hand, have a strong intrinsic architectural bias towards temporal continuity. Sequences
generated using a well-behaved ODE dynamics function are guaranteed to be continuous. Since
they need not learn the continuity bias from scratch, ODE models are more data-efficient and are
able to use majority of their capacity for modelling higher level structures. We even demonstrate
that our SketchODE supports meaningful 1-shot learning when fine-tuned.

Deterministic Autoencoding with Structured Latent Space: A surprising property of Seq2Seq
ODE models is the ability to perform latent space interpolation and sampling without the necessity
of imposing a prior distribution p(z) on the variational posterior qφ(z|s). This property is also a
consequence of the latent to output mapping being continuous.

2 RELATED WORK

With the advent of recurrent neural networks, sequential time-series models have seen significant
adaptation in a variety of applications. Video (Srivastava et al., 2015) and natural language (Bowman
et al., 2016) were two early applications to have seen significant success. A different but important
time-series modality is chirographic data like handwriting (Graves, 2013) and sketches (Ha & Eck,
2018) which gained traction only recently. Subsequent developments also address data modalities
that are not free-flowing, like Fonts (Lopes et al., 2019) and Icons (Carlier et al., 2020) which require
slightly different models. Mirroring developments in natural language processing (Vaswani et al.,
2017), Transformers are now replacing (Carlier et al., 2020) recurrent networks in such models.

Following the seminal work of Ha & Eck (2018), the primary representation for chirographic data
has been discrete sequence of waypoints or tokens from specialized Domain Specific Languages like
SVG (Scalable Vector Graphics), with a minority continuing to make use of standard raster graphic
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architectures (Ge et al., 2021). Overall, few studies have attempted to develop better representations
using specialized functional forms, with Aksan et al. (2020) learning stroke embeddings and Das
et al. (2020; 2021) directly modeling strokes as parametric Bézier curves. However, to the best of
our knowledge, modelling chirographic data as generic functions have not yet been tried so far.

The Neural ODE (Chen et al., 2018) provides a credible tool for natively modelling continuous-time
functions using dynamical systems. Since their inception, Neural ODEs have sparked a wide range
of discussions and developments (Massaroli et al., 2020), mostly in the theoretical domain. Neural
ODEs have been extended to work with latent states (Dupont et al., 2019), to define generative mod-
els (Song et al., 2021), and have external data control (Kidger et al., 2020). While their practical
training remain a challenge, significant amounts of work have been dedicated towards developing
engineering techniques (Finlay et al., 2020; Grathwohl et al., 2019; Kelly et al., 2020; Poli et al.,
2020) for faster convergence and better regularization. Despite flourishing theoretical interests, due
to high training complexity, applied works have so far been limited to few domains like Reinforce-
ment Learning (Du et al., 2020), reasoning in visual question answering (Kim & Lee, 2019), and
physical system identification (Lutter et al., 2019; Greydanus et al., 2019; Finzi et al., 2020) etc.

3 NEURAL ORDINARY DIFFERENTIAL EQUATIONS (NEURAL ODE)

Figure 2: Vector-field depict-
ing dynamics directly on s(t);
modelled trajectory (red)
learned from VectorMNIST
data (blue).

Neural ODE (Chen et al., 2018) provides a framework for mod-
elling an inherently continuous-time process by means of its time
derivative. Given a continuous-time process s(t) ∈ Rd over a de-
fined time interval [t0, t1], we can approximate its underlying true
dynamics by learning the parameters of a neural networkFΘ(·) act-
ing as a proxy for the same

ṡ(t) = FΘ(t, s) ∈ Rd. (1)

The time derivative of a vector-valued function, i.e. ṡ(t) defines a
vector field over Rd which guides the evolution of the process over
time. Given the initial state s0 := s(t = t0) and the learned set of
parameters Θ∗, the process can be recovered by solving an Initial
Value Problem (IVP) using any Differential Equation solver

s(t) = s0 +

∫ t

t0

FΘ∗(t, s) · dt ∀t ∈ [t0, t1]

Given a set of time-varying functions, one can learn dynamics FΘ capturing high-level concepts.
The learning algorithm provided by Chen et al. (2018) makes it practical to train such models with
constant memory cost (w.r.t time horizon) both in forward and backward pass.

4 FRAMEWORK OVERVIEW

We borrow the notation of Section 3 and denote chirographic structures as continuous functions of
time s(t) defined within [t0, t1]. The exact form of s(t) must include the running 2D coordinates
over time and may include other properties like pen-state (whether ink is visible at time t) etc. In
principle, one could directly model ṡ(t) with a Neural ODE as in Eq. 1 (see Fig. 2). However, such
a model would possess low representational power resulting in underfitting, and furthermore would
be incapable of representing self-overlaps naturally exhibited by chirographic data.

4.1 NEURAL ODE AS DECODER

Augmented ODE. We first augment (Dupont et al., 2019) the original state s(t) with the underly-
ing hidden process h(t) in the same time interval. Unlike discrete-time analogues like recurrent net-
works which model discrete transition of the hidden state followed by an observation model p(s|h),
we model the “co-evolution” of the hidden process along with data using a dynamical system de-
fined over the joint space a(t) := [s(t) h(t)]

T . Augmented ODEs (Dupont et al., 2019) improve
representational power by lifting the vanilla ODE of Eq. 1 to a higher dimension, allowing the data
trajectory to self-overlap in time. In addition, an augmented latent state h(t) provides a principled
way to control the trajectory by simply solving the dynamics with a different initial condition h0.

3



Published as a conference paper at ICLR 2022

Figure 3: Overview of the SketchODE framework. The Neural CDE encodes input sequence s(t) to
a latent vector z and a second-order Augmented Neural ODE decodes it as ŝ(t).

Higher-Order Dynamics. To further increase representational power, we capture the second-
order derivative ä(t) with a parameterized neural network FΘ(·) like Yildiz et al. (2019). This
formulation however, leads to the requirement of an extra initial condition ȧ0 := ȧ(t = t0)[

a(t)
ȧ(t)

]
=

[
a0

ȧ0

]
+

∫ t

t0

[
ȧ(t)
FΘ(·)

]
dt (2)

Traditionally, the quantities a(t) and ȧ(t) are termed as “position” and “velocity” respectively of
the dynamical system represented by ä(t) = FΘ(·). Inspired by SketchRNN (Ha & Eck, 2018),
we simplify the model by dropping the position component a(t) as a dependency to the dynamics
function, leading to a dynamics of ä(t) = FΘ(ȧ(t), t).

Conditioning. Our model so far is deterministic given a particular choice of initial condition. In
order to generate different samples, we need to condition the decoding on a latent vector. Thus, we
introduce the following architectural changes:

1. We define a global latent vector z for each sample and compute the hidden part of initial
conditions by projecting it through Ldec, as H0 := [h0 ḣ0]T = Ldec(z). Without loss of
generality, we fix the visible part of the initial state, i.e. s0 and ṡ0 to be constants.

2. We further include z directly as a fixed parameter to the dynamics function. This is a
specific form of data-controlled dynamics (Massaroli et al., 2020). Please see Appendix B
for implementation details.

The final second order dynamical system represented by our decoder is therefore

ä(t) = FΘ

(
ȧ(t), t, z

)
(3)

Computing the forward pass (Eq. 2) requires the knowledge of the exact value of z. The latent code
can be computed by employing a parameterized encoder. Similar to discrete-time analogues, we
propose to employ a non-causal model as an encoder.

4.2 NEURAL CDE AS ENCODER

We propose to use Neural Controlled Differential Equations or Neural CDEs (Kidger et al., 2020)
to map a given data sample s(i)(t) to its latent code z.

Neural CDEs are dynamical systems where the hidden state g(t) evolves under the control of a
time-varying process. Given a real data sample from the dataset D = {s(i)(t)}Ni=1, an initial state
g0 := g(t = t0) is transformed by running an ODE solver on a surrogate ODE dynamics defined as

ġ(t) = GΦ(t,g) ṡ(i)(t)

where GΦ is a parameterized neural network that is analogues to a Bidirectional-RNN encoder in
discrete-time. The latent code for the data sequence s(i)(t) is a mapping Lenc of the state that fully
encodes the incoming data, i.e. g1 := g(t = t1), which is given by

z = Lenc(g1), where g1 = g0 +

∫ t1

t0

GΦ(t,g) ṡ(i)(t), (4)

where GΦ being a function of time facilitates the usage of non-uniformly sampled data at inference.
As suggested by Kidger et al. (2020), the velocities of data trajectory ṡ(i)(t) can be computed with
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any non-causal interpolation (e.g. Natural Spline curve) of the original discrete data. Alternatively,
with some compromise to accuracy, crude estimates can also be computed from discrete data using
forward/backward/central difference operator. Refer to Fig. 3 for an overview of the architecture.

4.3 LOSS FUNCTION & TRAINING

Given a ground truth trajectory s(i)(t), and the reconstructed trajectory â(i)(t) (or implied ŝ(i)(t))
computed by executing the encoder and decoder above, we can simply minimize a regression loss
(w.r.t Θ,Φ,Lenc,Ldec) at any granularity depending on availability of data and quality requirement

Lfit

(
â(i)(t), s(i)(t)

)
=

∫ t1

t0

L
(
ŝ(i)(t), s(i)(t)

)
dt ≈

∑
t∈[t0,t1]

L
(
ŝ(i)(t), s(i)(t)

)
(5)

Discussion. Note that the solution trajectory computed by Eq. 2 is entirely deterministic given
the latent code. However, the end-to-end continuity of the formulation allows discovering structured
latent space by default. The mapping from the input s(i) to latent code z, and z to predicted trajectory
ŝ(i)(t) is continuous and smooth as long as the dynamics functions governing the encoder CDE and
decoder ODE are lipschitz continuous. Consequently, an infinitesimally small perturbation in latent
space leads to an infinitesimally small change in the predicted trajectory. This property is important
because it enforces structure in the latent space, enables latent space interpolations, and can be
exploited to sample new data – as we will show in Section 5.

Our model can also be instantiated as a stochastic generative model (Kingma & Welling, 2014; Ha
& Eck, 2018) by assuming a standard isotropic Gaussian prior on the latent code and parameters of
the dynamics. Please refer to Appendix A for the exact factorization of the joint distribution and
the resulting ELBO objective Lprob. However, we focus on the deterministic variant in the main
paper in order to investigate the unique properties it exhibits, as mentioned in Section 1. This also
has the benefit of leading to relatively simple learning dynamics due to the absence of VAE-style
KL-divergence loss (Kingma & Welling, 2014), which is known to be notoriously challenging to
optimize and require specialized engineering tricks (Higgins et al., 2017; Bowman et al., 2016).

4.4 DATA FORMAT

Our model does not make any assumption on the exact form of s(t). However, we propose two
practical data format which might be useful for different applications and lead to different trade-offs
between computational cost and representation power.

Full-sequence format: s(t) is comprised of two components, the position of the pen x(t) and the
state of the pen y(t) ∈ {0, 1} which denotes whether the ink should be rendered or not. Following
Section 4.1, we fix x0 = 0 and y0 = 0. Please note that y(t) is different to the traditional “pen-
change” state popularized by Ha & Eck (2018) which denotes whether the pen switched its state.

Multi-stroke format: Alternatively, we may represent each sample as a set of its constituent
strokes {x1(t),x2(t), · · · }, where x := [x y]

T ∈ R2, each of which is represented as continuous
time functions. In order to incorporate such data format, a slightly modified version of the model is
required. For CDE based encoder, we encode every stroke xk(t) individually using Eq. 4 with initial
state set to an updated version of the last state from previous stroke with a simple transformation.
A similar approach is followed for the decoder ODE with the end of sample decided using a binary
flag predicted from last state of a stroke. Please refer to Appendix C for detailed description.

4.5 A FLEXIBLE FAMILY OF ODE DYNAMICS

A vital component of the model with regard to capturing chirographic data properly is the family of
parameterized dynamics FΘ and GΦ. So far, the dynamics functions have been chosen to be MLPs
(Chen et al., 2018; Massaroli et al., 2020) with standard activation functions like ReLU(·), Tanh(·)
and Sigmoid(·), even for time-series data (Kidger et al., 2020; Yildiz et al., 2019). This class of
dynamics functions are restricted in terms of the complexity of trajectories they can model and not
flexible enough to capture high frequency temporal changes (e.g. multiple overlaps in short time,
sharp edges etc.) in the data trajectories. Inspired by SIREN (Sitzmann et al., 2020), which intro-
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Figure 4: Left: 2D vector fields induced by MLPs (with random weights) with different activation
functions. A few randomly sampled solution trajectories are shown below the corresponding vector
fields. Right: Original data and augmented versions with different strengths of Perlin Noise.

duced a way to increase spatial frequency content, we propose to use periodic activation functions
in order to increase the temporal frequency content of solution trajectories. We use sinusoidal func-
tions, i.e. SIN(ω · x) or COS(ω · x) as pointwise non-linearities. ω is a parameter of the activation
function and controls the extent of flexibility of the dynamics function. ω can be treated as hyperpa-
rameter or can be learned individually for each layer. Fig. 4 (left) visualizes the dynamics functions
induced by MLPs with different activation functions as well as the effect of ω on periodic activation.
By controlling ω, it is possible to reduce the frequency content of the solution trajectories under the
model, leading to an “abstraction effect” (see Sec. 5.5).

4.6 CONTINUOUS DATA AUGMENTATION

Data augmentation is performed for increasing the effective number of samples by creating synthetic
ones from real data. It aims to create a data cloud around the real samples, helping the model
discover local manifolds. Discrete time chirographic models are trained primarily by augmenting
sequential data with independent Gaussian noise on its constituent points (Ha & Eck, 2018). We
propose a new data augmentation strategy specifically fit for continuous time sequences. We use
Perlin Noise (Perlin, 1985; 2002), a popular continuous noise algorithm heavily used in Procedural
Generation (Lagae et al., 2010), to sample continuous function p(t) ∈ R2 in the same time interval
as a given s(t). The noise function is inherently continuous but can be sampled at any necessary
granularity. The noise function is then centered (by subtracting its center of gravity) and added to
coordinates of the original sample. Refer to Fig. 4 (right) for visual examples. The simplest way to
sample an augmented version is by adding σ · (p(t)−pCG) to the constituent strokes of s(t), where

p(t) =

[
Perlin2D(s(t) + εx + ε)
Perlin2D(s(t) + εy + ε)

]
and pCG =

∫ t1

t0

p(t)dt

The Perlin2D(·) is the original 2D Perlin Noise function in two dimension, [εx, εy] and ε are coor-
dinate and sample level seeds to simulate pseudo-random behavior. σ is the strength of the noise.

5 OBSERVATIONS & EXPERIMENTS

5.1 DATASETS & SETUP

We experimented with three chirographic datasets to evaluate our model and compare it to traditional
discrete time models. We use a 80%− 20% train-test split for each.

VectorMNIST: We collected a small scale dataset of vectorized MNIST digits, i.e. handwritten 0
to 9. We recorded dense points along the trajectory to capture its functional form with least degree
of error. A total of 1000 instances of MNIST digits were collected. The dataset is then expanded
synthetically by augmenting the real data the with Perlin Noise, as explained in Section 4.6.

QuickDraw:1 Released by Ha & Eck (2018), Quick, Draw! is the largest collection of publicly
available free-hand doodling dataset. These doodles are casual representations of familiar concepts
drawn within a short amount of time, and are diverse and free-flowing in nature. We use a few cate-
gories (face, fish, flower) in order to compare our model against traditional discrete time alternatives.

1https://github.com/googlecreativelab/quickdraw-dataset
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DiDi Dataset2: Released by Gervais et al. (2020), Digital Ink Diagram dataset is a large collection
of synthetically generated flowcharts comprising of different components connected by arrows and
lines. It has previously been used for modelling compositional relations by Aksan et al. (2020). We
use the “unlabeled” version of DiDi dataset which doesn’t have labels drawn on the diagrams.

Implementation Details To train our framework in practice, we require discretized but possibly
non-uniformly sampled ground-truth data along time. For the full-sequence format, each sample in
the dataset is represented by an N length sequence each including pen-states. For multi-stroke, each
data sample may consists of multiple strokes each represented as a discrete coordinate sequence. For
computational and representational convenience, we re-scale the time-range for both full-sequence
and every stroke in multi-stroke format to [0, T ] with T being a hyperparameter. For time-sensitive
applications, time can be left as it is in the raw data and can be regressed from the latent vector
(full-sequence format) or initial decoder state (multi-stroke format). Please refer to Appendix D for
a full description of the data structures, resampling and batching mechanism used in practice.

Computing the latent code using CDE based encoder requires a functional form s(t) at training and
inference. We use Natural Spline as suggested by Kidger et al. (2020) to construct a spline function
from discrete data in order to compute the time-derivative in Eq. 4. For both encoder and decoder,
the forward passes involve computing the ODE solution using a black-box ODE solver. Instead of a
more accurate adaptive solver, we use RK4 (The classic Runge-Kutta method) as it strikes a perfect
balance between computation efficiency and solution accuracy.

The pointwise regression loss L in Eq. 5 is chosen to be Huber Loss or Smooth L1 loss (Girshick,
2015) and the summation is computed for a fixed sequence of uniform time points with granularity
Gseq for full-sequence format and Gstroke for multi-stroke format. The granularity does not affect
memory consumption as both forward and backward pass of Neural ODE models are constant-
memory wrt to the number of points to be evaluated. Due to complex nature of data, Quick, Draw!
and DiDi are trained using multi-stroke model with Gstroke = 30; otherwise Gseq = 75, Gstroke =
25. The dimensionality of the hidden state in CDE/ODE is denoted d and the latent dimension as
l. For experimentation, we choose d = 64, l = 48 for VectorMNIST, d = 96, l = 84 for DiDi and
d = 144, l = 96 for Quick, Draw!. Dynamics networks (for both CDE and ODE) are MLPs with
few (2 for full-sequence, 1 for multi-stroke) hidden layers of size d1.2de. For a fair comparison
with discrete time models, we use an LSTM-LSTM Seq2Seq model with same hidden dimension.
We empirically found the best value of the upper limit of time range to be T = 5. All models are
trained with AdamW (Loshchilov & Hutter, 2019) optimizer, learning rate of 1×10−4 for RNN and
3 × 10−3 for CDE-ODE, annealed using cosine scheduler (100 epoch period) with decreasing (by
factor of 4) amplitude. We also used 10−2 as weight decay (L2 penalty) regularizer on the weight
of the dynamics networks and gradients are clipped at a magnitude of 0.01.

5.2 RECONSTRUCTION & GENERATION TASKS

Quick,Draw! VectorMNIST DiDi
Loss % acc. Loss % acc. Loss % acc.

SketchODE 0.0056 93.89 0.0016 98.41 0.0024 96.22
RNN-RNN 0.0048 94.20 0.0011 98.48 0.0020 96.24

CoSE 0.0034 95.27 0.0007 99.02 0.0018 96.31
BézierSketch 0.0121 82.12 0.0034 96.04 0.0094 91.46

Table 1: Autoencoding loss and recognition accu-
racy of reconstructed input between SketchODE
and traditional models.

We first evaluate our framework for the tra-
ditional reconstruction task and compare with
discrete time RNN model. Reconstruction per-
formance is an indicator of a model’s ability
to faithfully capture an input by means of a
compact latent code. We compare our deter-
ministic SketchODE model with an RNN-RNN
Seq2Seq model trained for deterministic recon-
struction. We also train a recognition CNN on
the train data and apply it to the rasterized re-
construction of test data as a semantic measure of reconstruction fidelity. We compute test loss and
recognition accuracy for both model on all datasets. The results (in Table. 1) show that SketchODE
performs comparably to standard RNN-RNN Seq2Seq models. While reconstruction loss is slightly
worse, SketchODE retains recognizable visual semantics. This confirms that continuous time mod-
els have a strong inductive bias towards semantic content rather than exact point-wise reconstruction.
We also compare with two related alternatives: BézierSketch (Das et al., 2020) and CoSE (Aksan
et al., 2020) trained deterministically.

2https://github.com/google-research/google-research/tree/master/didi dataset
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Figure 5: Left: Conditional sampling in SketchODE vs discrete RNN-RNN vs CoSE. Middle: Ab-
lation study to validate the use of periodic activations & Perlin noise augmentation in SketchODE.
Right: SketchODE provides more data efficient learning than an RNN-RNN analogue.

We also validated our design choices of periodic activations and continuous noise augmentation for
reconstruction task with an ablation study shown in Figure. 5 (middle).

The generative model trained with an extra Lprob (as described in Section 4.3) as loss can generate
plausible data even unconditionally (Refer to Appendix A). However, a special property of continu-
ous time Seq2Seq models like ours is conditional sampling from a deterministically trained network.
Since the mapping from latent code to output is defined by an ODE solution trajectory, infinitesi-
mal perturbation of latent codes leads to similar perturbation in the data, thus preserving semantic
structure. For the discrete counterpart i.e. RNN Seq2Seq models, the sampling-based autoregressive
nature of inference makes the latent to output map discontinuous. For CoSE (Aksan et al., 2020),
even if the the individual strokes remain continuous, their geometry and relational structures (autore-
gressive) break down. We deterministically encode input data into latent code z and sample from
N (z, σI). Figure 5 (left) shows qualitative results for conditional sampling with σ = 0.05. Clearly,
the autoregressive models (i.e. RNN and CoSE) failed to retain both smoothness and semantics,
whereas samples from SketchODE are diverse, visually pleasing and meaningful.

5.3 DATA EFFICIENCY

Temporally continuous models are data efficient for chirographic representation due to their strong
inductive bias towards continuous data. The implicit distribution defined by our SketchODE model
has a support only over all possible continuous trajectories. Discrete time sequence models on the
other hand, define a distribution over all possible trajectories and hence are required to “learn” the
bias (over continuous trajectories) from data itself. To illustrate this we train both RNN-RNN and
our SketchODE model on varying amounts of data. Dimensionality of state/hidden vectors are kept
to be same for fair comparison. Fig. 5 (right) shows the test reconstruction error as a function of
training data. We can see that SketchODE has a particular advantage in the low data regime.

5.4 INTERPOLATION & ANIMATION

Continuing the discussion about the strong inductive bias toward continuous data, SketchODE can-
not generate temporal discontinuity for any latent vector z. This leads to the property that smooth
interpolation in latent codes leads to smooth interpolation in the data. This is a noteworthy properly
for a deterministic autoencoder like SketchODE as it is not true for traditional RNN-RNN models.
To illustrate this we train SketchODE and extract latent codes z0 and z1 for two data samples s(1)

and s(2). We interpolate between latent codes and produce zinterp = z0∗α+z1∗(1−α) and decode
zinterp for several values of α ∈ [0, 1]. Fig. 6 (left, right) illustrate interpolation in VectorMNIST,
QuickDraw and DiDi datasets. More examples are shown in Appendix E.

One-shot interpolation between unseen classes Existing latent models like (Ha & Eck, 2018)
need to be trained on substantial amounts of data in order to learn the manifold required for latent-
space exploration. A unique capability of SketchODE is the ability to perform interpolation after
1-shot learning of new categories. This is due to the strong inductive bias of continuity that must
be learned from scratch in discrete-time analogues. We demonstrate this by creating two extra
handwritten samples “A” and “B”, and fine-tune our trained VectorMNIST model for approx 1k
iterations. We are then able to interpolate between novel letters as shown in Fig. 6(middle).
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Figure 6: Illustration of SketchODE latent space interpolation and animation. Left: Interpolation
5 → 8 → 2 → 0 → 5 in VectorMNIST. Middle: SketchODE(top) supports interpolation be-
tween novel categories (e.g., A → B and B → D) unseen during training (on VectorMNIST),
SketchRNN(bottom) fails to do this. Right: Interpolation examples in QuickDraw and DiDi datasets.

5.5 ABSTRACTION EFFECT

Strong inductive bias towards temporal continuity enables another capability which we term the “ab-
straction effect”. In the context of sketch, “abstraction” (Berger et al., 2013; Muhammad et al., 2019)
refers to removing details from the data while keeping as much semantic content as possible. Our
proposed continuous SketchODE model is a perfect fit for creating such abstraction. As discussed
before, SketchODE can use almost the entirety of its capacity for modelling the semantic content
since temporal continuity comes for free. We observed that by reducing the capacity of the decoder,
we can systematically control the amount of detail that can be captured by the model. Due to our
specific choice of dynamics family, an easy way to do so is by controlling the frequency of periodic
activation functions. We use SIN(·) as activation due to the fact that ω → 0⇒ SIN(ω · x)→ x (i.e.
linear activation) and hence the model looses most of its capacity. Figure 7 shows that as we reduce
activation function frequency, high frequency content is removed from the data in the reconstruction.
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Figure 7: Illustration of SketchODE abstraction effect by varying activation frequency ω. Decreas-
ing the value of ω, leads to increasing abstraction/reduced high-frequency detail.

6 CONCLUSIONS

In this paper, we proposed a fundamentally new paradigm for representing chirographic drawing
data like handwriting, diagrams, and sketches. The SketchODE framework and its unique functional
data representation posses several qualities that its discrete-time analogues do not: generation of
inherently scalable arbitrary-resolution images, data efficient learning due to a built-in inductive
bias towards continuity, ability to conditionally sample and perform 1-shot interpolation with a
deterministically trained model. One drawback however is the computational complexity (approx
4-5×more computation time than discrete counterparts) of training which require computing higher
order derivatives in both forward and backward pass. The constant-memory (w.r.t time horizon)
nature of the training algorithm however, allows packing more samples in a batch for the same
memory footprint. Despite computational challenges, this work may provide a conceptual primitive
for modelling more complex but constrained structures (e.g. fonts, icon and vector arts). More
generally, this is the first continuous-time Seq2Seq model, which may find application in diverse
domains beyond chirography, like finance, audio or video, which are inherently continuous in nature.
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A GENERATIVE LOSS FUNCTION

Figure 8: The generative model
as probabilistic graph.

In order to provide extra flexibility to model variations, we can
define an explicit density over decoded trajectories. We enforce
distributions q(z|s(i)) and q(Θ) over the latent code and the pa-
rameters of the dynamics respectively. With a conditional density
on z, we can treat the ODE trajectory as Continuous Normalizing
Flow or CNF (Chen et al., 2018) that transforms the induced den-
sity q(H0|z) through a continuous mapping. We sample from the
conditional and prior by means of reparameterization (Kingma &
Welling, 2014) and compute the full loss which includes another
component Lprob along with Lfit accounting for the probabilistic
form.

We first define the generative model q(s) comprised of a global
latent vector z with prior p(z), the stochastic ODE parameters Θ with prior p(Θ) on all its parameters
(i.e. ODE dynamics being a Bayesian Network) and the initial hidden state H0. The variational
distribution is assumed to be factorized as

q(H,H0, z,Θ|s) = q(Θ) · q(z|s) · q(H0|z) · q(H|H0,Θ)

Please refer to Fig. 8 for visual illustration of the dependency structure. The notations s and H
(without time suffix) denote random variables that describe continuous time sequences within the
time range (t0, t1]. Therefore, the Evidence Lower Bound objective denoted as Lprob is given by

Lprob(z,Θ; s(i)) = −KL
[
q(z,H,Θ|s(i))‖p(z,H,Θ)

]
+ Eq(z,H,Θ|s(i))

[
log q(s(i)|H,Θ)

]
(6)

For deterministic mappings, we assume uninformative priors, i.e. the densities are one. So,
p(H0|z) = p(H|H0,Θ) = 1. Also, we are not defining any explicit observation model, i.e.
q(s|H,Θ) = 1. The following simplification can be done to Eq. 6 based on assumptions

Lprob = −KL [q(z,H,Θ|s)‖p(z,H,Θ)]

= −Eq(z,H,Θ|s)
[
log

q(z|s)
p(z)

· q(Θ)

p(Θ)
· q(H|z,Θ)

p(H|z,Θ)

]
= −Eq(z|s)

[
log

q(z|s)
p(z)

]
︸ ︷︷ ︸

KL Divergence

−Eq(Θ)

[
log

q(Θ)

p(Θ)

]
︸ ︷︷ ︸

KL Divergence

− E
q(z,H,Θ|s)

[
log qCNF(H|H0,Θ)qNF(H0|z)

]

= −KL [q(z|s)‖p(z)]−KL [q(Θ)‖p(Θ)]− E
z∼q(z|s),Θ∼q(Θ)

H0=Ldec(z)
H=ODE(H0,Θ)

[
log qCNF(H|H0,Θ)qNF(H0|z)

]

Restricting Ldec to be invertible, the log-density of the induced q(H0|z) can be computed using
change of variable formula as shown in Rezende & Mohamed (2015)

log qNF(H0|z) = log q(z|s)− log

∣∣∣∣det
∂Ldec
∂z

∣∣∣∣
The log density of the hidden trajectory can be computed using the instantaneous density formula
for Continuous Normalizing Flow (CNF) derived by Yildiz et al. (2019)

log qCNF(H|H0,Θ) ≈
∑
t

[
log qNF(H0|z)−

∫ t

t0

tr

(
dFΘ

dȧ

)]
Both q(z|·) and p(Θ) are modelled with isotropic Gaussians. With a reparameterized sample from
both, Eq. 6 can be computed and added to the regression loss. Note that all hidden states in above
equation can be replaced with its augmented version since visible states are deterministic given other
unobserved quantities.
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Figure 9: Original data from VectorMNIST on the left and unconditional samples on the right. Just
like any VAE-based generative model, reconstruction is traded-off by posterior-matching objective.
Sometimes, the model generates samples that are blend of two categories (dotted boxed; blend of 4
and 5), or samples that are entirely unrecognizable (solid boxed).

We experimented with a basic version of the generative model on VectorMNIST dataset and samples
unconditional samples from the model. Please refer to figure 9 for visual examples.

B DATA-CONTROLLED DYNAMICS

A dynamical system can be controlled by a parameter that do not “evolve” over time but can be dif-
ferentiated with. Such design is loosely inspired by SketchRNN (Ha & Eck, 2018) which concate-
nates decoder inputs with the global latent vector in order to prevent the recurrence from forgetting
the initial state. With the dynamics function FΘ(ȧ, t, z), we can easily achieve this in practice by
solving the following dynamical system

ä(t) = F̂Θ

( [[ȧ t
]T

z

] )
=

[
FΘ(ȧ, t, z)

0

]
The fixed zero vector as second derivative of z prevents it from co-evolving along with ȧ. Since
z is now a part of the state, Adjoint Backpropagation (Chen et al., 2018) naturally allows easy
computation of the partial derivative.

C MULTI-STROKE FORMAT

Figure 10: SketchODE variant for multi-stroke format.

Unlike full-sequence format, we use the architecture defined in the main paper for processing one
single stroke at a time while sharing the parameters across different strokes. Refer to Fig. 10 for a
concise diagram.

For CDE based encoder, a sequence of strokes {x1(t),x2(t), · · · } is processed individually with a
CDE with initial state gk0 := gk(t = t0) and final state gk1 := gk(t = t0). The time range for each
stroke, if not available in dataset, can be fixed as a hyperparameter. Initial state for the kth stroke
can be computed by projecting the last state of (k − 1)th stroke with parametric transform U (e.g.
MLP)
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gk0 = U(gk−1
1 ), where gk−1

1 = gk−1
0 +

∫ t1

t0

GΦ(t,g) ẋk−1(t) · dt

The initial state of the very first stroke is always fixed to a constant, e.g. g0
0 = 0.

For ODE based decoder, a similar strategy is followed with the exception that the initial state of the
first stroke is set to A0 where ṡ0 = s0 = 0 and H0 = Lenc(z). The initial state of the kth stroke
is produced by transforming the last state of (k − 1)th stroke with another parametric transform V
(e.g. MLP)

Hk
0 = V(Ak−1

1 ), where

Ak−1
1 = Ak−1

0 +

∫ t1

t0

[
ȧ(t)
FΘ

]
dt

Please note that for every stroke, the initial position and velocity is fixed to zero. Such a strategy
leads to the ODE dynamics learning shared stroke model. It follows earlier works like Das et al.
(2020; 2021); Aksan et al. (2020) and require a starting position vk for every stroke to be predicted
separately, which can be regressed during training. Also, an end-of-sample flag is necessary for
terminating the inference which can be achieved by defining a random variable rk ∈ {0, 1} as
whether the kth stroke is the last stroke and predicting the probability of it being one

p(rk = 1|Ak
1 ; θ) = Sigmoid(Rθ(Ak

1))

D PRACTICAL DATA STRUCTURES & MINI-BATCHING

Figure 11: Visual illustration of data formats, resampling and mini-batching strategy.

Samples in full-sequence data format is represented by a length N sequence [(tj , s(t = tj))]Nj=1

where tj ∈ [0, T ] are non-uniform time-points. For multi-stroke format, each data sample may
consists of multiple strokes each represented as a discrete coordinate sequence. The end coordinate
of the previous stroke and starting coordinate of the following stroke are connected via straight line
and y(t = tj) is set to 1 for all time points on it; otherwise y(t = tj) = 0. Please refer to Fig. 11
for visual illustration. For more time-sensitive applications, the time-range can be left as it is in the
raw data and can be regressed from the latent vector (full-sequence format) or initial decoder state
(multi-stroke format). At inference, given a latent code, the decoder ODE can be solved using the
predicted time-range.

In practice, every sample in the dataset needs to have a format shown in Fig. 11. For full sequence
format, every stroke including the pen-up strokes (i.e. joining line between previous stroke-ending
and next stroke-begining) are kept in order. The pen-up stroke is shown in gray and the correspond-
ing y(t) is set to one. The multi-stroke format do not require any y(t). All samples are spatially
scaled down inside the unit circle, i.e. ‖x(t)‖2 ≤ 1 ∀t ∈ [0, T ]. For datasets with high temporal
sampling rate (e.g. DiDi and Quick, Draw!), we reduce it by Ramer–Douglas–Peucker algorithm
(Douglas & Peucker, 1973) as a preprocessing step.
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Efficient training of Neural ODE/CDE models further require mini-batching, which is different than
traditional models. For samples with different number of time-points, we create a common sequence
of time-points by union-ing individual time-point sequences. An ODE solution trajectory is then
evaluated at the time points in the union and masking is done to discard irrelevant time points for
each sample. For even more efficiency, we can re-sample each data in a mini-batch at a fixed
sequence of uniform time-points. This is achieved by linear interpolation of points along time.
Please refer to Fig. 11 for visual illustration.

E VISUAL SAMPLES

Figure 12: Interpolation on latent space by cyclic walk through 6 samples of different categories.
SketchODE (above) is far better with smooth animatic interpolation while RNN-RNN not only fails
to faithfully reconstruct but also suffers from severe mode collapse.
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Figure 13: Some examples of conditional sampling (above) and animatic interpolation (below).
For conditional sampling, the samples are conditioned on the sketch in the first row. Each of the
interpolation examples is to be viewed left to right.
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