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Abstract

We study a theory of reinforcement learning (RL) in which the learner receives
binary feedback only once at the end of an episode. While this is an extreme test
case for theory, it is also arguably more representative of real-world applications
than the traditional requirement in RL practice that the learner receive feedback at
every time step. Indeed, in many real-world applications of reinforcement learning,
such as self-driving cars and robotics, it is easier to evaluate whether a learner’s
complete trajectory was either “good” or “bad,” but harder to provide a reward
signal at each step. To show that learning is possible in this more challenging setting,
we study the case where trajectory labels are generated by an unknown parametric
model, and provide a statistically and computationally efficient algorithm that
achieves sublinear regret.

1 Introduction

The Reinforcement Learning (RL) paradigm involves a learning agent interacting with an unknown
dynamical environment over multiple time steps. The learner receives a reward signal after each
step which it uses to improve its performance over time. This formulation of RL has had significant
empirical success in the recent past [24, 23, 33, 32].

While this empirical success is encouraging, as RL starts to tackle a more wide-ranging class of
consequential real-world problems, such as self-driving cars, supply chains, and medical care, a new
set of challenges arise. Foremost among them is the lack of a well-specified reward signal associated
with every state-action pair in many real-world settings. For example, consider a robot manipulation
task where the robot must fold a pile of clothes. It is not clear how to design a useful reward signal
that aids the robot to learn to complete this task. However, it is fairly easy to check whether the task
was successfully completed (that is, whether the clothes were properly folded) and provide feedback
at the end of the episode.

This is a classical challenge but it is one that is often neglected in theoretical treatments of RL.
To address this challenge we introduce a framework for RL that eschews the need for a Markovian
reward signal at every step and provides the learner only with binary feedback based on its complete
trajectory in an episode. In our framework, the learner interacts with the environment for a fixed
number of time steps (H) in each episode to produce a trajectory (τ ) which is the collection of all
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states visited and actions taken in these rounds. At the end of the episode a binary reward yτ ∈ {0, 1}
is drawn from an unknown distribution Q(·|τ) and handed to the learner. This protocol continues for
N episodes and the learner’s goal is to maximize the number of expected binary “successes.”

One approach to deal with the lack of a reward function in the literature is Inverse Reinforcement
Learning [25], which uses demonstrations of good trajectories to learn a reward function. However,
this approach is difficult to use when good demonstrations are either prohibitively expensive or
difficult to obtain. Another closely related line of work studies reinforcement learning with preference
feedback [2, 15, 3, 5, 37, 26, 38]. Our framework provides the learner with an even weaker form of
feedback than that studied in this line of work. Instead of providing preferences between trajectories,
we only inform the learner whether the task was completed successfully or not at the end.

To study whether it is possible to learn under such drastically limited feedback we study the case
where the conditional rewards (yτ ) are drawn from an unknown logistic model (see Assumption 2.1).
Under this assumption we show that learning is possible—we provide an optimism-based algorithm
that achieves sublinear regret (see Theorem 3.2). Technically our theory leverages recent results
of Russac et al. [31] for the online estimation of the parameters of the underlying logistic model,
and combining them with the UCBVI algorithm [4] to obtain regret bounds. Under an explorability
assumption we also show that our algorithm is computationally efficient and we provide a dynamic
programming algorithm to solve for the optimistic policy at every episode.

We note that Efroni et al. [11] study a similar problem to ours, such that a reward is revealed only
at the end of the episode, but they assume that there exists an underlying linear model that determines
the reward associated with each state-action pair, and reward revealed to the learner is the sum of
rewards over the state-action pairs with added stochastic noise. This assumption ensures that the
reward function is Markovian, and allows them to use an online linear bandit algorithm [1] to directly
estimate the underlying reward function. This is not possible in our setting since we do not assume
the existence of an underlying Markovian reward function. Cohen et al. [6] provided an algorithm
that learns in this setting even when the noise is adversarially chosen. An open problem posed by
Efroni et al. [11] was to find an algorithm that learns in this setting of reinforcement learning, with
once per episode feedback, when the rewards are drawn from an unknown generalized linear model
(GLM). In this paper we consider a specific GLM—the logistic model.

The remainder of the paper is organized as follows. In Section 2 we introduce notation and describe
our setting. In Section 3 we present our algorithm and main results. Under an explorability assumption
we prove that our algorithm is computationally efficient (in Appendix E). Section 4 points to other
related work and we conclude with a discussion in Section 5. Other technical details, proofs and
experiments are deferred to the appendix.

2 Preliminaries

This section presents notational conventions and a description of the setting.

2.1 Notation

For any k ∈ N we denote the set {1, . . . , k} by [k]. Given any set T , let ∆T denote the simplex
over this set. Given a vector v, for any p ∈ N, let ‖v‖p denote the `p norm of the vector. Given a
vector v and positive semi-definite matrix M, define ‖v‖M :=

√
v>Mv. Given a matrix M let

‖M‖op denote its operator norm. For any positive semi-definite matrix M we use λmax(M) and
λmin(M) to denote its maximum and minimum eigenvalues respectively. We will use C1, C2, . . .
to denote absolute constants whose values are fixed throughout the paper, and c, c′, . . . to denote
“local” constants, which may take different values in different contexts. We use the standard “big Oh
notation” [see, e.g., 7].

2.2 The Setting

We study a Markov decision process (MDP)M = (S,A,P, H), where S is the set of states, A is the
set of actions, P(·|s, a) is the law that governs the transition dynamics given a state and action pair
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(s, a), and H ∈ N is the length of an episode. Both the state space S and action space A are finite
in our paper. The learner’s trajectory τ is the concatenation of all states and actions visited during
an episode; that is, τ := (s1, a1, · · · , sH , aH). Given any h ∈ [H] and trajectory τ , a sub-trajectory
τh := (s1, a1, . . . , sh, ah) is all the states and actions taken up to step h. Also set τ0 := ∅. Let
τh:H := (sh, ah, . . . , sH , aH) denote the states and action from step h until the end of the episode.
Let Γ be the set of all possible trajectories τ . Analogously, for any h ∈ [H] let Γh be the set of all
sub-trajectories up to step h. At the start of each episode the initial state s1 is drawn from a fixed
distribution ρ that is known to the learner.

At the end of an episode the trajectory τ gets mapped to a feature map φ(τ) ∈ Rd. We also assume
that the learner has access to this feature map φ. Here are two examples of feature maps:

1. Direct parametrization: Without loss of generality assume that S = {1, . . . , |S|} and
A = {1, . . . , |A|}. The feature map φ(τ) =

∑H
h=1 φh(sh, ah), where the per-step maps

φh(s, a) ∈ R|S||A|H are defined as follows:

(φh(s, a))j =

{
1 if j = (h− 1)|S||A|+ (s− 1)|A|+ a,

0 otherwise.

The complete feature map φ(τ) ∈ R|S||A|H is therefore an encoding of the trajectory τ .

2. Reduced parametrization: Any trajectory τ is associated with a feature φ(τ) ∈ Rd, where
d < |S||A|H .

After the completion of an episode the learner is given a random binary reward yτ ∈ {0, 1}. Let
w? ∈ Rd be a vector that is unknown to the learner. We study the case where the rewards are drawn
from a binary logistic model as described below.
Assumption 2.1 (Logistic model). Given any trajectory τ ∈ Γ, the rewards are said to be drawn
from a logistic model if the law of yτ |τ is

yτ |τ =

{
1 w.p. µ

(
w>? φ(τ)

)
0 w.p. 1− µ

(
w>? φ(τ)

)
,

(1)

where for any z ∈ R, µ(z) = 1
1+exp(−z) is the logistic function. We shall refer to w? as the “reward

parameters.”

We make the following boundedness assumptions on the features and reward parameters.
Assumption 2.2 (Bounded features and parameters). We assume that

• ‖w?‖2 ≤ B for some known value B > 0 and

• for all τ ∈ Γ, ‖φ(τ)‖2 ≤ 1.

We note that such boundedness assumptions are standard in the logistics bandits literature [13, 31,
14].

A policy π is a collection of per-step policies (π1, . . . , πH) such that

πh : Γh−1 × S → ∆A.

If the agent is using the policy π then at round h of the episode the learner plays according to the
policy πh. We let Πh denote the set of all valid policies at step h and let Π denote the set of valid
policies over the trajectory. Let Pπ(·|s1) denote the joint probability distribution over the learner’s
trajectory τ and the reward yτ when the learner plays according to the policy π and the initial state is
s1. Often when the initial state is clear from the context we will refer to Pπ(·|s1) by simply writing Pπ .
Also with some abuse of notation we will sometimes let Pπ denote the distribution of the trajectory
and the reward where the initial state is drawn from the distribution ρ.

Given an initial state s ∈ S the value function corresponding to a policy π is

V π(s) := Eyτ ,τ∼Pπ [yτ | s1 = s] = Eτ∼Pπ
[
µ
(
w>? φ(τ)

) ∣∣ s1 = s
]
,
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where the second equality follows as the mean of yτ conditioned on τ is µ(w>? φ(τ)). With some
abuse of notation we denote the average value function as V π := Es1∼ρ [V π(s1)] .

Define the optimal policy as π? ∈ arg maxπ∈Π V
π. It is worth noting that in our setting the

optimal policy may be non-Markovian. The learner plays for a total of N episodes. The policy played
in episode t ∈ [N ] is π(t) and its value function is V (t) := V π

(t)

. Also define the value function for
the optimal policy to be V? := V π? . Our goal shall be to control the regret of the learner, which is
defined as

R(N) :=

N∑
t=1

V? − V (t). (2)

The trajectories in these N episodes are denoted by {τ (t)}Nt=1 and rewards received are denoted by
{y(t)}Nt=1.

3 Optimistic Algorithms that Use Trajectory Labels

We now present an algorithm to learn from labeled trajectories. Throughout this section we assume
that both Assumptions 2.1 and 2.2 are in force.

The derivative of the logistic function is µ′(z) = exp(−z)
(1+exp(−z))2 , and therefore, µ is 1/4-Lipschitz.

The following quantity will play an important role in our bounds

κ := max
τ∈Γ

sup
w:‖w‖≤B

1

µ′(w>φ(τ))
.

A consequence of Assumption 2.2 is that κ ≤ exp(B). We briefly note that κ is a measure of
curvature of the logistic model. It also plays an important role in the analysis of logistic bandit
algorithms [13, 31].

Since the true reward parameter w? is unknown we will estimate it using samples. At any episode
t ∈ [N ], a natural way of computing an estimator of w?, given past trajectories {τ (q)}q∈[t−1] and
labels {y(q)}q∈[t−1], is by minimizing the `2-regularized cross-entropy loss:

Lt(w) := −
t−1∑
q=1

y(q) log
(
µ
(
w>φ(τ (q))

))
− (1− y(q)) log

(
1− µ

(
w>φ(τ (q))

))
+
‖w‖22

2
.

This function is strictly convex and its minimizer is defined to be

ŵt := arg min
w∈Rd

Lt(w). (3)

Define a design matrix at every episode

Σ1 := κI, and Σt := κI +
t−1∑
q=1

φ(τ (q))φ(τ (q))>, for all t ≥ 1.

Further, define the confidence radius βt(δ) as follows

βt(δ) :=
(

1 +B + ρt(δ)
(√

1 +B + ρt(δ)
))3/2

(4)

where, ρt(δ) := d log

(
4 +

4t

d

)
+ 2 log

(
N

δ

)
+

1

2
.

We adapt a result due to Russac et al. [31, Proposition 7] who studied the online logistic bandits
problem to establish that at every episode and every trajectory the difference between µ(w>? φ(τ))
and µ(ŵ>t φ(τ)) is small.
Lemma 3.1. For any δ ∈ (0, 1], define the event

Eδ :=
{

for all t ∈ [N ], τ ∈ Γ :
∣∣µ(w>? φ(τ))− µ(ŵ>t φ(τ))

∣∣ ≤ √κβt(δ)‖φ(τ)‖Σ−1
t

}
. (5)

Then P(Eδ) ≥ 1− δ.
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We provide a proof in Appendix B.2. The proof follows by simply translating [31, Proposition 7]
into our setting. We note that we specifically adapt these recent results by Russac et al. [31] since they
directly apply to ŵt, the minimizer of the `2-regularized cross-entropy loss. In contrast, previous work
on the logistic bandits problem [see, e.g., 14, 13] established confidence sets for an estimator that
was obtained by performing a non-convex (and potentially computationally intractable) projection of
ŵt onto the ball of Euclidean radius B.

Our algorithm shall construct an estimate of the transition dynamics P̂t. LetNt(s, a) be the number
of times that the state-action pair (s, a) is encountered before the start of episode t, and letNt(s′; s, a)
be the number of times the learner encountered the state s′ after taking action a at state s before the
start of episode t. Define the estimator of the transition dynamics as follows:

P̂t(s′|a, s) :=
Nt(s

′; s, a)

Nt(s, a)
. (6)

Also define the state-action bonus at episode t

ξ(t)
s,a := min

{
2, 4

√√√√ log
(

6(|S||A|H)H(8NH2)|S| log(Nt(s,a))
δ

)
Nt(s, a)

}
. (7)

In this definition whenever Nt(s, a) = 0, that is, when a state-action pair hasn’t been visited yet, we
define ξ(t)

s,a to be equal to 2. Finally, we define the optimistic reward functions

µ̄t(w, τ) := min
{
µ
(
w>φ(τ)

)
+
√
κβt(δ)‖φ(τ)‖Σ−1

t
, 1
}

and (8a)

µ̃t(w, τ) := µ̄t(w, τ) +

H−1∑
h=1

ξ(t)
sh,ah

. (8b)

The first reward function µ̄t is defined as above to account for the uncertainty in the predicted value
of w? in light of Lemma 3.1, and the second reward function µ̃t is designed to account for the error
in the estimation of the transition dynamics P. With these additional definitions in place we are ready
to present our algorithms and main results.

3.1 UCBVI with Trajectory Labels

Our first algorithm is an adaptation of the UCBVI algorithm [4] to our setting with labeled trajectories.

Algorithm 1: UCBVI with trajectory labels.
1 Input: State and action spaces S,A.
2 Initialize P̂1 = 0, visitation set K = ∅.
3 for t = 1, · · · do
4 1. Calculate the ŵt by solving equation (3).
5 2. If t > 1, compute π(t)

π(t) ∈ arg max
π∈Π

Es1∼ρ, τ∼P̂πt (·|s1) [µ̃t(ŵt, τ)] . (9)

Else for all h, s, τh−1 ∈ [H]× S × Γh−1, set π(1)
h (·|s, τh−1) to be the uniform distribution

over the action set.
6 3. Observe the trajectory τ (t) ∼ Pπ(t)

and update the design matrix

Σt+1 = κI +

t∑
q=1

φ(τ (q))φ(τ (q))>. (10)

7 4. Update the visitation set K = {(s, a) ∈ S ×A : Nt(s, a) > 0}.
8 5. For all (s, a) ∈ K, update P̂t+1(·|s, a) according to equation (6).
9 6. For all (s, a) /∈ K, set P̂t+1(·|s, a) to be the uniform distribution over states.
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Theorem 3.2. For any δ̄ ∈ (0, 1], set δ = δ̄/(6N) then under Assumptions 2.1 and 2.2 the regret of
Algorithm 1 is upper bounded as follows:

R(N) ≤ Õ
([
H
√

(H + |S|)|S||A|+H2 +
√
κd(d3 +B3/2)

]√
N + (H + |S|)H|S||A|

)
,

with probability at least 1− δ̄.

The regret of our algorithm scales with
√
N and polynomially with the horizon, number of states,

number of actions, κ, dimension of the feature maps and length of the reward parameters (B). The
minimax regret in the standard episodic reinforcement learning is O(

√
H|S||A|N) [27, 4]. Here we

pay for additional factors in H , |S| and κ since our rewards are non-Markovian and are revealed to
the learner only at the end of the episode. We provide a proof of this theorem in Appendix B. For a
more detailed bound on the regret with the logarithmic factors and constants specified we point the
interested reader to inequality (41) in the appendix.

Proof sketch. First we show that with high probability at each episode the value function of the
optimal policy V? is upper bounded by Ṽ (t) := E

s1∼ρ, τ∼P̂π
(t)
t (·|s1)

[µ̃t(ŵt, τ)] (the value function

of the policy π(t) when the rewards are dictated by µ̃t and the transition dynamics are given by P̂t).
Then we provide a high probability bound on the difference between the optimistic value function
Ṽ (t) and the true value function V (t) to obtain our upper bound on the regret. In both of these steps
we need to relate expectations with respect to the true transition dynamics P to expectations with
respect to the empirical estimate of the transition dynamics P̂t. We do this by using our concentration
results: Lemmas B.1 and B.2 proved in the appendix. While analogs of these concentration lemmas
do exist in previous theoretical studies of episodic reinforcement learning, here we had to prove these
lemmas in our setting with non-Markovian trajectory-level feedback (which explains why we pay
extra factors in H and |S|).

3.2 UCBVI with Added Exploration

Although the regret of Algorithm 1 is sublinear it is not guaranteed to be computationally efficient
since finding the optimistic policy π(t) (in equation (9)) at every episode might prove to be difficult.
In this section, we will show that when the features are sum-decomposable and the MDP satisfies an
explorability assumption then it will be possible to find a computationally efficient algorithm with
sublinear regret (albeit with a slightly worse scaling with the number of episodes N ).

Assumption 3.3 (Sum-decomposable features). We assume that the feature maps φ ∈ Rd are
sum-decomposable over the different steps of the trajectory, that is, φ(τ) =

∑H
h=1 φh(sh, ah).

Under this assumption, given any w ∈ Rd and any trajectory τ ∈ Γ, w>φ(τ) =∑H
h=1 w>φh(sh, ah). We stress that even under this sum-decomposablity assumption, the opti-

mal policy is potentially non-Markovian due to the presence of the logistic map that governs the
reward.

We also make the following explorability assumption.

Assumption 3.4 (Explorability). For any s, s′ ∈ S, a, a′ ∈ A, and h 6= h′ ∈ [H], suppose that

φh(s, a)>φh′(s
′, a′) = 0.

Further assume that there exists ω ∈ (0, 1) such that for any unit vector v ∈ Rd we have that

sup
π∈Π

Es1∼ρ,τ∼Pπ

 ∑
h∈[H]

v>φh(sh, ah)

 ≥ ω.
In a setting with Markovian rewards a similar assumption has been made previously by

Zanette et al. [40]. This assumption allows us to efficiently “explore” the feature space, and con-
struct a sum-decomposable bonus

√
κβt(δ)

∑H
h=1‖φh(sh, ah)‖Σ−1

t
that we will use instead of
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√
κβt(δ)‖φ(τ)‖Σ−1

t
in the definition of µ̄t (see equation (8a)). Define the reward functions

µ̄sd
t (w, τ) := min

{
µ
(
w>φ(τ)

)
+
√
κβt(δ)

H∑
h=1

‖φh(sh, ah)‖Σ−1
t
, 1

}
and (11a)

µ̃sd
t (w, τ) := µ̄sd

t (w, τ) +

H−1∑
h=1

ξ(t)
sh,ah

. (11b)

To prove a regret bound for an algorithm that uses these rewards our first step shall be to prove that
the sum-decomposable bonus also leads to an optimistic reward function (that is, the value function
defined by these rewards sufficiently over-estimates the true value function). To this end, we will first
use Algorithm 2 to find an exploration mixture policy Ū and play according to it at episode t with
probability 1/t1/3. This policy Ū will be such that the minimum eigenvalue of

Es1∼ρ, τ∼PŪ (·|s1)

[
φ(τ)φ(τ)>

]
(12)

is lower bounded by a function of d, ω and N (see Lemma 3.5). This property shall allow us to upper
bound the condition number of the design matrix Σt and subsequently ensure that the rewards µ̄sd

t

and µ̃sd
t are optimistic. Given a unit vector v define a reward function at step h as follows:

rvh(s, a) := v>φh(s, a). (13)

Let rv := (rv1 , . . . , r
v
H) be a reward function over the entire episode. As a subroutine Algorithm 2

uses the EULER algorithm [39]. (We briefly note that other reinforcement learning algorithms with
PAC or regret guarantees [e.g., 4, 19] could also be used here in place of EULER.)

Algorithm 2: Find exploration mixture.
1 Input: Initial unit vector v1, Exploration lower bound ω, number of EULER episodes NEUL,

number of evaluation episodes NEVAL.
2 Initialize: A0 = ω2

16 I, n = 0 and λmin = infz∈Rd z>A0z.
3 while λmin <

ω2

8 do
4 Update the counter n← n+ 1.
5 Set Un ← EULER({rvn , NEUL) //run EULER for NEUL episodes.
6 for t=1,. . . ,NEVAL episodes do
7 Sample a trajectory τ (t)

n ∼ ρ× PUn .

8 Calculate the average feature ân =
∑NEVAL

t=1 φ(τ
(t)
n )/NEVAL.

9 Update the matrix An ← An−1 + ânâ>n .
10 Update the minimum eigenvalue: λmin ← infz∈Rd z>Anz.
11 Set vn to be the minimum eigenvector of An.

12 Set nloop = n.
13 Return: (i) Ū = Unif(U1, · · · , Unloop

) //the uniform mixture over the policies;
14 (ii) Nexp = nloop × (NEUL +NEVAL) //total number of episodes.

Lemma 3.5. There exist positive absolute constants C1 and C2 such that, under Assumptions 2.2, 3.3

and 3.4, if Algorithm 2 is run withNEUL =
C1|S|2|A|H2 log

(
|S||A|N2d

δω2

)
ω2 andNEVAL =

C2d
3 log3

(
Nd2

δω2

)
ω4 ,

and N >
d log(1+ 16N

dω2 )
log(3/2) (NEUL +NEVAL) =: N̄exp then, with probability at least 1 − 2δ, we have

Nexp ≤ N̄exp and furthermore:

Es1∼ρ, τ∼PŪ (·|s1)

[
φ(τ)φ(τ)>

]
� ω2 log(3/2)

32d log
(
d log

(
1 + 16N

dω2

))I.
This lemma is proved in Appendix C. With this lemma in place we now present our modified

algorithm under the explorability assumption. In the first few episodes this algorithm finds the
exploration mixture policy Ū . In a subsequent episode t this algorithm acts according to the policy
π(t) which maximizes the value function associated with the rewards µ̃sd

t (ŵt, τ) with probability
1− 1

t1/3 . Otherwise it uses the exploration mixture policy Ū .
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Algorithm 3: UCBVI with trajectory labels and added exploration.
1 Input: State and action spaces S,A, Initial unit vector v1, Exploration lower bound ω, number

of EULER episodes NEUL, number of evaluation episodes NEVAL.
2 Initialize P̂1 = 0, visitation set K = ∅.
3 Find exploration mixture policy Ū in Nexp episodes by running Algorithm 2.
4 for t = Nexp + 1, · · · , N do
5 1. Calculate ŵt by solving equation (3).
6 2. If t > Nexp + 1, compute π(t)

π(t) ∈ arg max
π

Es1∼ρ, τ∼P̂πt (·|s1)

[
µ̃sd
t (ŵt, τ)

]
. (14)

Else for all h, s, τh−1 ∈ [H]× S × Γh−1, set π(1)
h (·|s, τh−1) to be the uniform distribution

over the action set.

7 3. Sample bt =

{
0 w.p. 1− 1

t1/3 ,

1 w.p. 1
t1/3 .

8 4. If bt = 1 then set π(t) ← Ū .
9 5. Observe the trajectory τ (t) ∼ Pπ(t)

and update the design matrix

Σt+1 = κI +

t∑
q=Nexp+1

φ(τ (q))φ(τ (q))>. (15)

10 6. Update the visitation set K = {(s, a) ∈ S ×A : Nt(s, a) > 0}.
11 7. For all (s, a) ∈ K, update P̂t+1(·|s, a) according to equation (6).
12 8. For all (s, a) /∈ K, set P̂t+1(·|s, a) to be the uniform distribution over states.

The following is our regret bound for Algorithm 3.
Theorem 3.6. For any δ̄ ∈ (0, 1], set δ = δ̄/(12N). Under Assumptions 2.1, 2.2, 3.3 and 3.4, and
for all N > N̄exp (see its definition in Lemma 3.5) if Algorithm 3 is run with the parameters NEUL

and NEVAL set as specified in Lemma 3.5 then its regret is upper bounded as follows:

R(N) ≤ Õ

(√
κHd

ω
(d3 +B3/2)N2/3 +

[
H
√

(H + |S|)|S||A|+H2
]√

N

+(H + |S|)H|S||A|+ d2

ω2

(
d2

ω2
+ |S|2|A|H2

))
,

with probability at least 1− δ̄.

The proof of Theorem 3.6 is in Appendix D. For a more detailed bound on the regret with the
logarithmic factors and constants specified we point the interested reader to inequality (58) in the
appendix. The bound on the regret of this algorithm scales with N2/3 up to poly-logarithmic factors.
This is larger than the

√
N regret bound (again up to poly-logarithmic factors) that we proved above

for Algorithm 1 since here the learner plays according to the exploration policy Ū with probability
1/t1/3 throughout the run of the algorithm. However, the next proposition shows that by using the
sum-decomposable reward function µ̃sd

t the policy π(t) defined in equation (14) can be efficiently
approximated.

Proposition 3.7. For any t ∈ [N ] define Ṽ sd
t (π) := Es1∼ρ, τ∼P̂πt (·|s1)

[
µ̃sd
t (ŵt, τ)

]
. Given any ε > 0,

under Assumptions 2.2, 3.3 and 3.4 it is possible to find a policy π̂(t) that satisfies

Ṽ sd
t (π(t))− Ṽ sd

t (π̂(t)) ≤ ε,

using at most poly
(
|S|, |A|, H, d,B, ‖ŵt‖2, 1

ε , log
(
N
δ

))
time and memory.

We describe the approximate dynamic programming algorithm that can be used to find this
policy π̂(t) and present a proof of this proposition in Appendix E. We also note that if we use an
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ε-approximate policy π̂(t) instead of π(t) in Algorithm 3 then its regret increases by an additive factor
of at most εN . (It is possible to easily check this by inspecting the proof of Theorem 3.6.) Thus, for
example a choice of ε = 1/N1/3 ensures that the regret of Algorithm 3 is bounded by O(N2/3) with
high probability if the approximate policy π̂(t) (which can be found efficiently) is used instead.

4 Additional Related Work

There have been many theoretical results that analyze regret minimization in standard episodic
reinforcement [18, 29, 16, 28, 4, 19, 8, 39, 34, 10, 30]. Recently Efroni et al. [12] introduced a
framework of “sequential budgeted learning” which includes as a special case the setting of episodic
reinforcement learning with the constraint that the learner is allowed to query the reward function
only a limited number of times per episode. They show learning is possible in this setting by using a
modified UCBVI algorithm.

As stated above to estimate the reward parameter we rely on the recent results by Russac et al. [31]
who in term built on earlier work [13, 14] that analyzed the GLM-UCB algorithm. Dong et al. [9]
provided and analyzed a Thompson sampling approach for the logistic bandits problem.

5 Discussion

We have shown that efficient learning is possible when the rewards are non-Markovian and delivered
to the learner only once per episode. It would be interesting to see if one can establish guarantees
under more general reward models than the logistic model that we study here. Another interesting
question is if faster rates of learning are possible when the learner obtains ranked trajectories (that is,
moving beyond binary labels).
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