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ABSTRACT

Does explicitly exercising the induction circuit during pretraining improve in-context learn-
ing (ICL), or is natural text sufficient, when compute is held constant (iso-FLOPs)? To
test whether targeted synthetic data can accelerate the emergence of induction heads and
enhance ICL performance, we introduce Bi-Induct, a lightweight curriculum that injects
forward-copy (Induction), backward-copy (Anti, as a control), or a balanced mix, into the
pretraining stream. We conduct iso-FLOPs pretraining across models from 0.13B to 1B
parameters, evaluating effects across three axes: (i) few-shot performance on ICL bench-
marks, (ii) head-level telemetry, and (iii) held-out language modeling perplexity. Our find-
ings challenge the intuition that early induction circuit activation directly translates to better
ICL. While Bi-Induct accelerates induction head emergence at smaller scales, this does not
consistently yield better few-shot generalization. On standard LM benchmarks, Bi-Induct
matches natural-only training; on function-style ICL probes, the 1B natural-only model per-
forms best. Stress tests (e.g., label permutation, HITS@1 vs. HITS@3, 1 vs. 10 shots) pre-
serve these trends. Telemetry reveals that larger models trained only on natural text develop
broader and earlier-peaking induction heads, despite seeing no explicit induction patterns.
Anti-induction data fails to elicit meaningful activation. Perplexity penalties from synthetic
data shrink with scale, suggesting that larger models can absorb non-natural patterns with
minimal cost. Crucially, ablating the top 2% of induction heads per layer degrades ICL
more than random ablations, especially for natural-only models, indicating more central-
ized, load-bearing circuits. Bi-Induct variants exhibit more redundant induction activity,
pointing to different circuit utilization patterns. Overall, we find that inducing activation
is not sufficient: improvements in ICL hinge on whether these circuits become function-
ally necessary. These results underscore the importance of mechanism-aware pretraining
diagnostics and data mixtures that foster load-bearing, not merely present, structure.

1 INTRODUCTION

Transformer language models learn a simple copy pattern early in training: when a token A reap-
pears in context, the model increases the probability of the token that followed the previous A. Prior
work identified a two-head motif implementing this behavior and linked it to in-context learning
on pattern-matching tasks (Olsson et al.,|2022). Despite its simplicity, this motif typically emerges
only after many billions of tokens, well after the first training-loss plateau. Theoretical and empirical
studies frame the delay as a phase transition (Chen et al., 2024} Edelman et al.,[2024)). Accelerating
the onset of this transition could reduce compute and expose internal circuits for analysis earlier.

A practical way to approach this is to intervene on the data rather than the architecture or objective.
In contrast to synthetic-task-only plateau-shortening studies (Kim et al., 2025) and objective-level
interventions such as multi-token prediction (Gloeckle et al., [2024), we adopt a data-rewrite per-
spective that is easy to deploy at scale: inject a small fraction of targeted inputs into the pretraining
stream that selectively excite the putative induction mechanism while keeping the architecture and
objective fixed. Concretely, we replace a small slice of natural tokens with synthetic copy snippets
that cleanly exercise the copier-selector behavior of induction (forward copy) and anti-induction
(backward copy). Copy-style cues are the canonical probe for the induction circuit and are widely
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used to measure it (Olsson et al., [2022; [Nanda & Bloom, [2022). While other synthetic families
have been studied (for example n-gram statistics (Edelman et al., [2024), p-hop tasks (Sanford et al.,
2024), and intrinsic tasks (Gu et al., [2023)), copy snippets align most directly with the hypothe-
sized mechanism and with distributional properties such as burstiness that correlate with the rise of
in-context learning (Chan et al.| [2022)).

These considerations lead to a single, testable question: Under iso-FLOPs, what is more effective for
in-context learning—pure natural text, or natural text with a small fraction replaced by directional
copy snippets that directly exercise the induction circuit?

To answer this, we introduce Bi-Induct, a lightweight curriculum that interleaves short duplicate-
span snippets with natural text during early training. We evaluate three variants under matched
compute: forward induction, backward anti-induction, and a balanced mix where the direction is
chosen independently at each injection. We assess the impact of our pretraining strategies on three
axes: (i) downstream ICL performance on standard few-shot benchmarks; (ii) a mechanistic metric,
namely the concentration of the top 2% most active attention heads per layer; and (iii) language
modeling quality via held-out perplexity. We conduct experiments at three model scales (0.13B,
0.5B, 1B) under iso-FLOPs constraints, also using the 0.13B model as a design space to explore
curriculum parameters, including data mix ratios, and span lengths effects.

Method and scope: We implement Bi-Induct as a lightweight curriculum, introducing a linearly
annealed mixture of synthetic directional-copy data during early pretraining which we compare
against a pure-natural baseline under iso-FLOPs conditions. To disentangle model capability from
calibration, we evaluate few-shot ICL performance alongside two diagnostics: held-out perplexity
(as a quality guardrail) and head-level telemetry measuring attention to copy patterns. Our objective
is not to optimize benchmark scores, but to understand when and how targeted data augmentation
induces load-bearing behavior for ICL.

Contributions:

* Matched-compute comparison across scales: We conduct an iso-FLOPs comparison of pure-
natural pretraining vs. a small directional-copy replacement, run at 0.13B, 0.5B, and 1B param-
eters on the same corpus with identical token budgets and training steps per scale. We report
per-task and composite few-shot ICL results alongside a perplexity guardrail and attention-head
telemetry (forward/anti-copy scores) at the final checkpoint.

* Key empirical finding: Early induction # better ICL. While Bi-Induct accelerates and broad-
ens induction-head activity at 0.13B and 0.5B parameters, this does not translate into superior
ICL endpoints; at 1B, the natural-only baseline outperforms Bi-Induct on function-style probes.

¢ Induction-head ablations revealing circuit load-bearing: Ablating the top 2% induction
heads per layer reduces ICL more than matched random ablations at all scales. The largest rela-
tive drop is seen in the natural-only baseline, while Bi-Induct variants degrade less, suggesting
a more redundant or distributed use of the induction circuit under synthetic augmentation.

* Design-lab ablations (0.13B): We use the 0.13B model as a design lab to sweep curriculum pa-
rameters, including copy-span length, initial synthetic-to-natural ratio, and annealing schedules,
to identify scaling-relevant settings.

* ICL robustness diagnostics: We evaluate model robustness through shot-count variation, label-
permutation stress tests, and decision-rule sensitivity via HITS @k on function-style probes.

For a concise glossary of terms and symbols, see Appendix

2 RELATED WORK

Induction heads and the mechanics of ICL: The induction-head motif—a two-head circuit that
matches a repeated cue and copies its following token—was introduced by |Olsson et al.|(2022)), who
provided multiple converging tests linking it to the rise of in-context learning (ICL). Follow-up the-
ory and controlled synthetic-task studies characterize the behavior as a phase transition: on Markov-
chain data, models move from uniform predictions to unigram heuristics and then abruptly to bigram
induction (Edelman et al.,[2024). Provable analyses show that even shallow transformers implement
generalized induction via a copier-selector-classifier pipeline, tightening the link between optimiza-
tion dynamics and the circuit (Chen et al.,[2024). At scale, targeted head ablations support causality:



Under review as a conference paper at ICLR 2026

removing a small fraction of high-score induction heads reduces few-shot gains by up to ~32% on
abstract pattern tasks and weakens benefits on NLP tasks (Crosbie & Shutova, 2025). Open suites
and tools (e.g., Pythia and TransformerLens) have made these effects reproducible across model
sizes (Biderman et al., 2023; Nanda & Bloom, [2022).

Anti-induction and copy-suppression circuits: Beyond forward copying, models host heads that
suppress copying or implement the backward, “anti-induction” direction. Work on negative heads
explains copy suppression as a coherent mechanism that interacts with induction patterns (Mc-
Dougall et al.l [2023). Large-scale empirical reports find a pretrained asymmetry—transformers
are stronger at forward induction than backward copy—an imbalance that targeted fine-tuning can
reduce while isolating distinct head families (Veitsman et al, |2025)). In parallel, Wang et al.| (2025)
mechanistically link the ‘repetition curse’ to over-dominant induction heads and propose head-level
regularization to restore output diversity.

Curricula that accelerate circuit emergence: A growing line of work seeks to shorten the ICL
plateau. Training on diverse ICL tasks in parallel reduces plateau length and eases optimization
relative to single-task settings (Kim et al., [2025). Orthogonal to data choice, multi-token predic-
tion modifies the objective to encourage longer-range patterns and shows favorable development
of induction-like behaviors together with efficiency gains (Gloeckle et al., 2024). However, these
studies concentrate on forward induction and are typically evaluated in synthetic-task-only train-
ing regimes rather than natural-language pretraining, or they rely on objective/architectural changes
rather than data-only interventions in end-to-end runs. To our knowledge, they also do not system-
atically induce or measure anti-induction emergence.

Embedding induction heads in downstream systems: Architectural and application work has
begun to ‘install’ n-gram induction heads to stabilize in-context RL and reduce data needs, demon-
strating practical leverage of the circuit in agents (Zisman et al.| 2025).

Data rewriting: Beyond filtering, recent work rewrites pretraining text to shift style and structure
before learning. Rephrasing the Web (WRAP) uses instruction-tuned models to paraphrase web
pages into target styles, yielding ~3x faster pretraining on noisy corpora, lower perplexity, and
modest zero-shot gains under matched compute budgets (Maini et al., [2024). |Nguyen et al.| (2025)
pursue a related transform-and-retain strategy focused on discarded low-quality documents. |Fujii
et al.| (2025) expand the rewrite paradigm beyond style, reporting boosts on math and code. In
parallel, large open datasets such as RefinedWeb show that aggressive deduplication and domain
organization improve pretraining without synthetic rewrites, positioning data rewriting as comple-
mentary to quality and mixture knobs (Penedo et al., [2023)).

Circuit discovery and emergence shaping: Mechanistic interpretability maps internal circuits via
activation interventions (Zhang & Nanda, [2024), probing (Gurnee et al., |2023)), and increasingly,
sparse-autoencoder features (Cunningham et al.,|2023)). Our focus is earlier in the lifecycle: shaping
the data distribution so that desirable circuits appear sooner and more predictably, then verifying the
link with head-level telemetry.

Summary: Existing work investigates circuit discovery/emergence shaping and, separately, data
rewriting, but rarely bridges the two—i.e., using mechanistic insight to design pretraining data and
evaluating the outcome under matched-compute conditions. We make that link explicit: we target
a canonical ICL circuit (forward and backward induction) with the minimal inputs that excite it
(directional copy snippets), and compare pure natural pretraining to Bi-Induct, a small, linearly
annealed replacement policy, under iso-FLOPs conditions on the same corpus. We measure effects
behaviorally (few-shot ICL benchmarks) and mechanistically (top 2% head concentration by layer),
alongside a perplexity guardrail. Unlike prior curricula that emphasize forward copy alone, we
study a symmetric forward/backward curriculum side by side to ask whether targeted copy signals
are more valuable than additional natural tokens at the same compute.

3 BI-INDUCT

We investigate the effect of data rewrites on circuit emergence: we interleave synthetic copy snip-
pets into the pretraining stream to explicitly teach the copy algorithm. Bi-Induct has two primary
variants that differ only in the direction of the copy cue (forward vs. backward). A third variant,
balanced, flips a coin between forward and backward injections to provide a mixed signal.
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Induction @ - @
Anti-induction @ N @

Figure 1: Examples of copy-style snippets injected into the pretraining stream. Each snippet is a
span of L random non-special tokens, followed by a separator, then either the same span (induction)
or the reversed span (anti-induction). Colors align repeated tokens across the two halves. The
illustration uses L=5 for clarity.

3.1 SYNTHETIC SNIPPET CONSTRUCTION

Let V be the tokenizer vocabulary and let BPE(-) be the tokenizer. For a span length L, we first
sample a token span

S =(s1,-.-,8L), s; ~ Uniform({|0.05V|],...,|0.95|V|]}),
which avoids special/rare IDs. We use a single space as a neutral separator, SEP = BPE(" ").

Forward/induction (Figure ] top):
Induction(S) =[S || SEP || S].

Backward/anti-induction (Figure (1, bottom):
Anti(S) =[S || SEP || reverse(S)].

Balanced/mix of forward and backward injections: On each injection, flip a fair coin to choose
between forward or backward.

Each snippet has length /g, = 2L + [SEP| (e.g., 2L+1 when SEP is a single space).

3.2 CURRICULUM SCHEDULE AND INJECTION RULE

We interleave snippets on the fly during streaming pretraining. Let m be the initial mix ratioﬂ and
T, an anneal budget (in natural tokens). After ¢ natural tokens have been seen, the instantaneous
injection probability is

m(t) = max{ mo-(1—t/T,), 0 }.

On each natural example, draw u ~ Uniform(0, 1). If u < m(t), we first yield one synthetic snippet
(depending on the current synthetic_task € {induction,anti,balanced}), then yield
the natural tokenized sequence. Else (u > m(t)), we emit only the natural tokenized sequence.
This implements a light interleave rather than full replacement and keeps the natural distribution
dominant.

Expected injection budget (7n): With a linear anneal m(t) = mqo(1 — t/T,) for t € [0,T,] and
m(t)=0 afterwards, the average injection rate over the anneal is mg /2. Let T, be the natural-token
budget of the run. The fraction of injected snippets over the whole run is therefore:

m0/2, To > Thase,

1 Tbase
Tbase[) mo -/ Ta < Tbase~

3
base

Why this schedule? (i) Front-loading the signal: Induction circuits typically emerge after the first
loss plateau; concentrating copy cues early helps trigger the phase transition without interfering with
late-stage calibration; (ii) Stability: A linear anneal avoids abrupt distribution shifts and exposes a
single knob (mg) for clean sweeps; and (iii) Compute considerations: Under standard packing,
snippets can share sequences with natural text so the incremental token cost scales with £, rather
than a full segment. We enforce iso-FLOPs across conditions (fixed sequence length and optimizer
steps), so any potential savings from aggressive packing are intentionally not exploitedE]

'Or mix ratio, for short.
2We fix compute to avoid conflating efficiency optimizations with capability changes; our focus is whether
targeted directional copy improves ICL at the same compute.
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Table 1: Model presets used in experiments. Attention uses head dimension 64; #heads =
hidden/64 and #KV heads = max(1, |#heads/4]).

Model Layers Hidden MLP (intermediate) Head dim #Attn heads #KYV heads

0.13B 12 768 3,072 64 12 3
0.5B 30 1,024 4,096 64 16 4
1B 30 1,536 6,144 64 24 6

4 EXPERIMENTAL SETUP

Model: We use a causal decoder-only Transformer with rotary position embeddings (ROPE,
0#=10,000), pre-norm residual blocks, and a gated MLP with SiLU activation (SwiGLU). Self-
attention uses grouped key-value attention (GQA): for head dimension 64, we set number of atten-
tion heads = hidden/64 and number of KV heads = max(1, |#heads/4|). We train in bfloat16
with context length 1,024 and untied input/output embeddings%] Hidden sizes, heads, KV heads,
layer counts, and proportional MLP widths are shown in Table

Pretraining data: We pretrain on the deduplicated THE PILE dataset (Gao et al.,[2020) in stream-
ing/shuffled mode. A stable MD5-based hash assigns a fixed held-out evaluation slice so train/eval
partitions remain identical across runs; we set this slice to 0.2% of the corpus which corresponds to
roughly 0.4B tokens. Tokenization truncates to 1,024 tokens per sequence. Synthetic snippets are
interleaved by the Bi-Induct iterator as described in Section 3]

Training recipe: We train all model presets with peak learning rate le-3 with linear warmup
of 3% of the token budget then cosine decay for the rest. We optimize using AdamW (8; =
0.9, By = 0.999, weight-decay 0.1), with each update consuming 2'¢ tokens. Following the Chin-
chilla compute-optimal rule (Hoffmann et al.| 2022), we set the total token budget to Tpqse ~= 20N
tokens, where IV is the number of model non-embedding parameters. We compute the baseline up-
date count as U = [Thqs./2'%] and keep U identical across all Bi-Induct curricula at a given scale
to enforce iso-FLOPs. We monitor training loss and evaluate perplexity at the final checkpoint on a
held-out split of the natural corpus (without synthetic snippets).

Variants: We compare four variants, namely BASELINE (no snippets), INDUCTION (forward copy),
ANTI (backward copy), and BALANCED (coin flip per injection).

Metrics and guardrails: We assess Bi-Induct along three complementary axes: (i) downstream
ICL performance on standard few-shot benchmarks; (ii) mechanistic telemetry that targets the in-
tended circuit (induction and anti-induction heads); and (iii) quality guardrails. Benchmarks are run
few-shot (5-shot by default); we also include function-style tasks from the Todd et al.|(2024) suite at
10-shot, evaluated with HITS@ 1 accuracy to stress simple copy and selection behaviors. For mech-
anism evidence, we compute per-head copy scores and, at the final checkpoint, report the top 2% of
heads per layer (and their concentration) for both induction and anti-induction, contrasting Bi-Induct
curricula with the baseline. As a guardrail, we report held-out language modeling perplexity (PPL).
Table [2] summarizes each metric and its preferred direction; for detailed definitions see Appendix B}

Design lab at 0.13B: We use the 0.13B model as a design lab to select the operating point for
larger-scale runs. Unless noted otherwise, all ablations use a 2.6B token budget, a 1024 context
length, and a linear anneal over the full budget.

* Span length (L): We sweep L € {5,20,500} under Bi-Induct and find that L=20 offers the
best trade-off between few-shot ICL performance and held-out perplexity. For detailed analysis
see Section|C.1I] Appendix [C|

e Mix ratio (mg): With span fixed at L=20, we sweep the initial mix ratio my €
{25%, 50%, 100%} (linearly annealed to zero over the full budget). We select 50% because it
yields stronger and more concentrated induction-head activity (top-2% concentration by layer)
while maintaining competitive ICL and PPL; see also Section Appendix

30ur architecture largely follows the Mistral-7B design (decoder-only, pre-norm, RoPE, SwiGLU, GQA)
(Jiang et al.}2023).
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Table 2: Summary of outcome metrics and guardrails. Full definitions in Appendix

Family Metric What it measures / protocol Better

Standard LM benchmarks ICL composite (macro) Unweighted mean across 3-shot tasks (MMLU, ARC-C, 1
BoolQ, LAMBADA, PIQA; plus others where used). Ac-
curacy or exact match per task; averages over demo seeds.

Per-task scores Per-benchmark few-shot evaluation (3-shot by default). 1
Report mean over seeds with the benchmark’s standard
metric (Acc or EM).

Function probes ICL composite (macro) Unweighted mean across ICL tasks probing string T
manipulation/selection (capitalize_x, next_item,
word_-length, alphabetically_*, choose_x).
Default 10-shot; metric is HITS@1 accuracy; seeds aver-

aged.
Per-task scores Per-probe 10-shot (unless stated) with HITS@1 accuracy; 1
seeds averaged.
Mechanistic telemetry Head copy score (top 2% per layer) Per-head induction and anti-induction copy scores at the T

final checkpoint; report, for each layer, the top 2% heads
and their concentration to reveal circuit strength and spe-
cialization vs. baseline.

Quality Perplexity (held-out) PPL on a fixed 0.2% THE PILE validation slice (stable 1
hash), same tokenizer and context across runs; mean over
seeds at iso-FLOPs.

Summary and choice for scaling: For the main experiments across 0.13B, 0.5B, and 1B, we adopt
L=20 and mo=50%, which we linearly anneal to 0 over each model’s full training token budget
(anneal horizon T, = T}

5 NATURAL-ONLY VS. DIRECTIONAL COPY-SNIPPET MIX (IsO-FLOPS)

5.1 DOWNSTREAM ICL PERFORMANCE

We evaluate two groups of tasks under iso-FLOPs and average over three seeds: (i) standard LM
benchmarks (14 tasks; e.g., MMLU, BBH, GSM8K, ARC-C, HellaSwag) and (ii) function-style
probes from the [Todd et al.[(2024) suite (19 tasks). For the full inventory of both groups see Ta-
ble[5] Appendix [B| We report macro-averages per group here and provide per-task scores in Table[8]

Appendix [D.T]

Standard LM benchmarks: Figure [2a] reports 5-shot macro-averages across 14 benchmarks. At
each scale, at least one Bi-Induct variant matches or very slightly exceeds the natural-only baseline:
at 0.13B, Anti is closest (22.5 vs. 22.7); at 0.5B, Induction leads (23.9 vs. 23.6); at 1B, Balanced is
on par or marginally higher (24.3 vs. 24.2). Within measurement noise, copy-snippet curricula are
largely performance-neutral at these scales (i.e., neither clearly degrading nor reliably improving
downstream ICL).

Function probes (Todd et al.,[2024): Figure 2b]shows 10-shot macro-averages over 19 probes. At
0.13B and 0.5B, Bi-Induct variants are comparable to baseline; at 1B, the natural-only baseline is
clearly stronger across the suite.

Robustness checks (1-shot evaluation, label permutation, and shifting the decision rule from
HITS @1 to HITS @3) shift absolute scores, but preserve the cross-regime ordering; for details

see Appendix

5.2 MECHANISTIC TELEMETRY

Figure [3] visualizes layerwise copy scores for the top 2% attention heads per layer (with a floor of
one head per layer to avoid sampling artifacts). Three clear patterns emerge.

(i) Emergence timing: At0.13B and 0.5B, Bi-Induct variants show earlier induction-head emergence
than the baseline (by roughly 3 and 2 layers, respectively). At 1B, the trend reverses: the baseline
is the first to form clear induction peaks (around layers 10-11) and its early peaks are higher than

* Annealing over the full budget avoids introducing a second scheduling timescale, reduces re-tuning, and
keeps the recipe portable across scales.
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Figure 2: ICL Composite (macro) across two evaluation families: (a) Standard LM benchmarks;
(b) (2024)’s function-probe suite. Each panel groups by model size (0.13B, 0.5B, 1B),
bar colors by training regime (Baseline, Induction, Anti, Balanced); error bars show +1 s.d. For
per-task results see Appendix [D.1] Table (8]

any Bi-Induct variant. For anti-induction, absolute scores are small at all scales; the largest peak
we observe is &~ 0.04 at 0.5B (Induction curriculum), followed by ~ 0.02 at 1B (Baseline). In
keeping with [Veitsman et al.| (2025), forward-induction heads dominate in pretrained LMs; in our
runs, even the Anti curriculum did not materially increase anti-induction copy scores. Notably, the
strongest induction activity is concentrated in mid layers, in keeping with prior observations of

where induction heads typically emerge (Olsson et al,[2022).

(ii) Peak strength: The maximum normalized induction score reaches values close to 1.0 at 0.13B
and 0.5B, but stays well below 0.5 at 1B. Thus, even when induction emerges early at 1B (Baseline),
its strongest heads are less polarized than at smaller scales.

(iii) Spread: We count heads with a positive copy score among those selected by our per-layer
top-2% criterion (Section[B.2). Using the best-performing Bi-Induct variant at each scale for a like-
for-like comparison (Balanced at 0.13B/0.5B; Induction at 1B) we observe: for 0.13B, Baseline 3
vs. Balanced 5; for 0.5B, Baseline 7 vs. Balanced 8; for 1B, Baseline 12 vs. Induction 6. In short,
Bi-Induct tends to yield earlier and slightly broader induction activity at 0.13B/0.5B, whereas at 1B
the natural-only Baseline shows the broader spread.

Link to ICL performance: These mechanistics results line up with the aggregate ICL results. On
standard LM benchmarks (Figure [2a), macro ICL composites are similar across curricula at each
scale: when Bi-Induct makes induction emerge earlier/stronger (0.13B/0.5B), performance is com-
parable to Baseline; when Baseline emerges earlier (1B), Bi-Induct is still comparable. A plausible
explanation is a path shift: larger models can route more prediction mass through FFN/residual
pathways, so head-peak magnitude and spread are not the sole determinants of few-shot accuracy
on these tasks—especially because many of these benchmarks are knowledge and calibration-heavy,
where FFN ‘key-value’ memories are known to contribute substantially 2021). In con-
trast, on (2024)’s function-style suite (Figure [2b), the 1B Baseline’s earlier and broader
induction spread coincides with a clear performance advantage over all Bi-Induct variants, suggest-
ing these probes are more sensitive to the presence/strength of explicit copy heads.

Across scales, ablating the top-2% induction heads per layer at evaluation decreases the ICL com-
posite more than ablating an equal number of random heads (Table ). The effect is largest for the
natural-only Baseline, and remains visible, though smaller, for all Bi-induct variants, a pattern that
is consistent with either redundancy or a more distributed implementation of the behavior (random
head ablations sometimes yield small improvements, as expected from noise/regularization effects).
Detailed per-task comparisons for clean runs vs. induction-head and random-head ablations can be
found in Table[T2] Appendix [E]
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Table 3: Percent change in the ICL composite on the function-probe suite of|Todd et al.| (2024) when
ablating either the top-2% highest-scoring induction heads per layer(Ajyquet) Or an equal number of
random heads (A.nq), each measured relative to the model’s clean run. Negative values indicate a
drop in accuracy; positive values indicate an improvement.

Baseline Induction Anti-induction Balanced
Model Ainducl Arzmd Ainducl Arand Ainduct Amnd Ainduct Arand
0.13B —22.6%  +17.0% —4.9% +7.3% —5.3% +5.3% —-19.2% 0.0%
0.5B —14.6% —4.2% -10.3%  +3.8% —-8.3% —-1.2% —-12.5% 0.0%
1B —-19.5% —4.0% —14.5% -2.6% —-12.9% +0.7% —-8.7% —4.0%
Lo §os §oa
gm Em Enz
8 AAAl anls0aAnAA 00 f~aRk 8,
s E AR R R
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Figure 3: Layer-wise copy-head telemetry. Top row: induction scores; bottom row: anti-induction
scores. For each layer we plot the best-scoring head (top 2% by score with a floor of one head per
layer), averaged over three seeds, for the 0.13B, 0.5B, and 1B models. Head counts for each model
are given in Table

What might drive the 1B-scale behavior? Two non-exclusive factors may contribute, both con-
sistent with prior literature: (1) Width-dilution: the 1B model has the same depth as the 0.5B model
but a larger hidden size and more attention heads (24) per layer. As a result, copy behavior may
be spread across more heads, reducing the peak score of any single head even if the behavior is
presentE] (2) Pathway shift. larger models may increasingly leverage FFN and residual pathways,
reducing reliance on localized, high-scoring induction heads (Geva et al.l 2021).

Overall, the mechanistic readout suggests that Bi-Induct consistently accelerates and broadens in-
duction activity at smaller scales, but at 1B the natural-only baseline exhibits earlier and broader
consolidation of induction, aligning with its stronger performance on the |Todd et al.| (2024) suite.
In contrast, standard LM few-shot appear largely insensitive to these differences, likely due to the
availability of alternative computation pathways.

>Prior work finds substantial head redundancy and small subsets of specialized/important heads (Voita et al.,
2019 Michel et al., 2019} |Olah et al.| 2020). In wider models, this redundancy may spread copy behavior across
more heads, lowering any single head’s score (a speculative ‘Width-dilution’ effect).
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Table 4: Held-out perplexity (PPL |) on the fixed THE PILE eval split at iso-FLOPs. Values are
averaged over three seeds. For each model size, curricula use a 50% mix ratio linearly annealed
over the full training budget.

Curriculum 0.13B 0.5B 1B

Induction 258 179 149
Anti-induction 26.2 182 14.9
Balanced 26.2 182 14.9
Baseline 21.8 16.0 14.1

5.3 GUARDRAIL: LANGUAGE MODELING PERPLEXITY

Table [] reports held-out perplexity (mean over three seeds) under iso-FLOPs for each model size.
We observe a consistent pattern: the perplexity gap between copy-snippet curricula and the baseline
shrinks with scale, suggesting that larger models can absorb a small synthetic perturbation of the
training stream without lasting calibration cost. Qualitatively, this trend is consistent with benign
overfitting/double-descent intuitions: larger models can accommodate mild training perturbations
while continuing to improve test loss (Nakkiran et al.,|2019).

These observations validate our choice of a light, annealed Bi-Induct schedule: it preserves LM
usability (competitive perplexity) and remains increasingly acceptable with scale, as the PPL gap
consistently narrows across scale.

6 CONCLUSION AND FUTURE WORK

We posed a single matched-compute question: At iso-FLOPs, does pure natural-text pretraining out-
perform a curriculum that explicitly targets the induction circuit via synthetic copy snippets? Using
Bi-Induct (with forward, backward, or balanced directional copy injections), we evaluated models
from 0.13B to 1B parameters, combining few-shot ICL performance with head-level telemetry and
held-out perplexity as diagnostic tools.

Key finding: Natural data yields load-bearing heads, Bi-Induct induces more distributed, re-
dundant heads. Bi-Induct consistently accelerates and broadens induction-head activity. In con-
trast, the natural-only baseline relies on a smaller subset of highly active heads. As can be seen from
Figure [3]and Table 3] ablating top induction heads leads to larger performance drops in the natural-
only model (evidence that its induction heads are more load-bearing), whereas Bi-Induct spreads
responsibility across more redundant ‘backup’ heads.

Implications and Future Directions: Acceleration is not the whole story: what matters is whether
the mechanism becomes load-bearing for task success. Our results align with previous reports
that induction heads can evolve into ‘function heads’ that are causally necessary for ICL perfor-
mance (Yin & Steinhardt, [2025). This helps explain why the baseline—despite slower emergence
in most of our runs, and a lack of redundancy in all—can achieve stronger endpoints: its induction
circuitry is more load-bearing.

The above points to a shift in focus: from inducing activity earlier to ensuring that such activity
is necessary for the task. To support this, rather than relying solely on across-scale comparisons,
future work should prioritize within-scale trajectory analysis to identify when behaviors become
load-bearing, crucial for connecting data rewrites to mechanistic insights. While one might spec-
ulate that a stronger Bi-Induct schedule could push induction behavior towards more load-bearing
circuits, that was not our design goal. We intentionally used a light, annealed curriculum to preserve
LM usability (competitive perplexity) while probing ICL endpoints. Substantially heavier synthetic
schedules could plausibly succeed in forcing functional induction, but at the cost of degraded lan-
guage modeling quality and less plausible training data mixes. Accordingly, our claims are scoped
to realistic, usability-oriented pretraining where synthetic data is a small perturbation annealed early.
We would argue that future work should be similarly scoped.
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USE OF LARGE LANGUAGE MODELS (LLMS)

We used general-purpose large language models as assistive tools for writing and typesetting. Con-
cretely: (i) LLMs helped draft and polish prose across multiple sections (e.g., Introduction, Related
Work, and Conclusion), including line-level rewrites for clarity, grammar, and flow; and (ii) LLMs
assisted with LaTeX boilerplate and table scaffolding (e.g., column definitions, \resizebox, and
booktabs structure) but did not determine the content of any table.

LLMs were not used to design experiments, analyze data, run code, generate results, or make sci-
entific claims. All technical decisions, datasets, models, and analyses originated from the authors.
Every LLM suggestion was reviewed, edited, and verified by the authors; all references and factual
statements were cross-checked against primary sources.
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A GLOSSARY AND TERMINOLOGY

This section defines the terms and metrics used throughout the paper. We group entries by theme for
quick reference.

COPY-STYLE CIRCUITS AND INTERPRETABILITY

Mechanistic interpretability The study of internal circuits and features that give rise to behavior
in neural networks. Typical tools include ablations/masking, activation patching, causal tracing,
and sparse autoencoders.

Interpretability challenges Practical difficulties include superposition (features sharing parame-
ters), circuit non-uniqueness (multiple decompositions fit the data), intervention fragility (ab-
lations can misattribute causality), scale transfer (circuits shift across sizes), and dataset con-
founds (spurious correlations masquerading as mechanisms).

Induction head / induction circuit A two-head attention motif that implements forward copy:
when a cue token reappears in the context, attention retrieves what followed the previous occur-
rence and predicts it again. Empirically linked to few-shot pattern matching.
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Anti-induction The mirror of induction: backward copy. Given a repeated cue, the model predicts
the preceding token from an earlier occurrence (useful for reversal-style tasks and some code
transforms).

Copy-suppression (negative) heads Attention heads whose contribution reduces copying (e.g.,
down-weights repeated spans), often interacting with induction heads to prevent degenerate
repetition.

CURRICULUM AND DATA-REWRITE TERMS

Data rewrite Deliberate modification of a small fraction of pretraining tokens to teach a target
algorithm (here, copy patterns) without changing the model architecture.

Bi-Induct Our symmetric copy-style curriculum that injects synthetic snippets during pretraining
in one of two directions: induction (forward copy) or anti (backward copy). Injection
probability linearly anneals to zero.

Span length (L) Number of random tokens in the snippet’s base span before duplication or reversal
(e.g., L € {5,20,100}).

(Initial) Mix ratio Initial probability of injecting a synthetic snippet before annealing (e.g., 25%).

Anneal tokens The number of natural tokens over which the injection probability decays linearly
to zero (e.g., the full 2.5B-token budget).

“Balanced” variant A coin-flip per injection between forward and backward copy. Used as an
additional control in some ablations.

COMPUTE AND EFFICIENCY

Chinchilla (compute-optimal) budget The token-parameter trade-off that minimizes validation
loss at fixed compute for dense decoder-only LMs. Rule of thumb: a tokens-to-parameters
ratio of =~ 20:1, i.e., T' =~ 20N (tokens 7, parameters V).

EVALUATION ENDPOINTS

ICL benchmarks (few-shot endpoints) Standard few-shot (kK > 1) tasks evaluated at the final
checkpoint (e.g., 5-shot MMLU, ARC-C, BoolQ, LAMBADA, PIQA). We aggregate with a
macro-average as the ICL composite. These are the main outcome metrics. Regarding the
standard deviation (s.d.) of the ICL composite: In Tables [6] and [7] we compute the s.d. of the
per-seed composite across seeds, which is the appropriate uncertainty. Elsewhere, for brevity,
we approximate the composite’s uncertainty by averaging per-task s.d.s computed across seeds;
this is a readable proxy but not a pooled s.d. and it ignores cross-task covariance.

Cross-entropy and perplexity Language-model loss on a held-out split of the pretraining corpus.
Perplexity PPL = exp(CE). Used as a quality and calibration guardrail.

B METRICS AND GUARDRAILS: DETAILED DEFINITIONS

B.1 BENCHMARKS AND PROTOCOLS

Aggregation: We report a macro ICL composite (unweighted mean across selected tasks) and
per-task scores. All figures and tables show mean over seeds. Full list of benchmarks used is in
table 3]

Prompting controls: For few-shot tasks, we fix a template and average across multiple demon-
stration seeds. For robustness, we randomize demonstration order and, in evaluate sensitivity
to number of shots and a label-permutation stress test.
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B.2 MECHANISTIC TELEMETRY

Targeted circuits: We measure two equality-based copy circuits—induction and anti-induction—
highlighted in prior work(e.g., (Olsson et al.,[2022; [Veitsman et al., 2025))@ In a left-to-right causal
decoder, attention flows from the later span back to the earlier span. Consider a repeated sequence
T=25081 ... S—1 (sep) 5o 8t ... s,y with s} = s;:

* Induction (forward copy). At position s} in the second span, the head locates the earlier repeat
and retrieves payload that helps predict the next token s; , ;. We operationalize this with a next-
token alignment (defined below).

* Anti-induction (backward copy). At position s}, the head again locates the earlier repeat but
retrieves payload that helps predict the token immediately to the left, s;_,. We operationalize
this with a same-token alignment (defined below).

Probe sequences: We evaluate on 50,000 fresh copy probes disjoint from training, each built as
x = s (sep) s with a uniformly sampled token span s of length L:50(ﬂ

Per-head scores (how we compute them): Let Alh) ¢ RTXT pe the attention map (rows =
target positions, columns = source positions) for layer ¢, head h on x. Index ¢; as the row of s/
(second span) and m; as the column of s; (first span).

. . L—2 .
Induction (next-token) score: Using Dpext = {(t;,mit1)};—, (later s; to earlier s;41),

! (t,h)
L—1 Z At»,‘,,771,i+1 .

(ti,mit1)€Drext

Score;(¢,h) = E,

Anti-induction (same-token) score: Using the same-token diagonal Dsame = { (¢4, mi)}f:_ol (later s/

to earlier s;),
1 (0,h)
Z Z Atumi :

(ti 31 ) €Dsame

Scores (¢, h) = E,

Higher is better for both Score; and Score 4 (stronger, more localized copy behavior).

Top 2% concentration by layer: Let H, be the heads in layer £ and &k, = max{1, [0.02 |H,|]}.
For Score € {Scorey, Scorea}, let Top,(S) be the k; heads with largest S(¢, h). We report the
mass share

EhGTOp((Score) SCO’I‘@(@, h)

> hen, Score(l, h) ’

and the layer mean Scorey = |T1A > nem, Score(l, h). Larger values indicate stronger specializa-
tion (copy mass concentrated in a few heads).

MassShareéSCOTe) =

B.3 LANGUAGE MODELING QUALITY

Perplexity: We compute cross-entropy and PPL on a fixed 0.2% THE PILE validation slice (stable
hash partition), at iso-FLOPs and identical tokenization settings across runs.

C ABLATION STUDY

C.1 SPAN LENGTH

We begin by testing how the snippet span L affects outcomes. At 0.13B, with a fixed initial mix
of 25% linearly annealed over the full token budget, we sweep L € {5,20,500} and report two

%See also (Wang et al.; 2025} Yin & Steinhardt, [2025)).
"We evaluate with a span length of L = 500 (rather than I = 20) to reduce potential confounds from the
Bi-Induct pretraining curriculum, which used L = 20.
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endpoints of practical interest—(i) a 5-shot ICL composite over five standard LM benchmarks and
(i1) held-out LM perplexity (PPL). We defer the function-probe suite of [Todd et al.| (2024) to the
cross-scale experiments, where relative differences are more interpretable and the added compute is
justified; the span-length results for this subsection are summarized in Table[6]

Across curricula, L=20 is a stable operating point that balances ICL and calibration: for Induction,
31.9 ICL / 23.9 PPL (vs. 30.7/23.8 at L=>5 and 31.8/24.0 at L=500); for Anti, 32.1/24.0 (vs.
31.6/23.8 at L=5, 31.7/24.5 at L=>500) respectively; for Balanced, 31.2/24.0 (vs.31.4/23.8 at
L=5, 32.0/24.0 at L=500). Very short spans (L=5) underperform on the ICL composite, while
very long spans (L=500) offer no consistent ICL gain and tend to slightly worsen PPL. Hence
we adopt L=20 for the remaining experiments. Beyond the ICL / PPL balance, shorter spans are
operationally attractive: they minimize snippet length 2.+ |SEP|, which reduces potential overhead
and makes it easier to pack snippets alongside natural sequences to exploit variable-length kernels—
yielding compute savings when such packing is enabled

C.2 Mix RATIO

We fixed the anneal to the full training budget (2.6B token, following the Chinchilla parameter-token
rule of thumb (Hoffmann et al.,[2022)), held the span length at L=20, and swept the initial mix ratio
over {25%, 50%, 100% }. Tablereports full per-task results.

Mechanistic readout: Figure [] summarizes layerwise copy-head activity across mix ratios. We
quantify head quality in two complementary ways: (i) spread, the number of heads per model whose
induction score is non-zero (and, for comparability, the count above a fixed “specialization” thresh-
old > 0.5); and (ii) peak sharpness, the maximum head score in each condition. We also note
concentration in depth (whether peaks cluster in the canonical mid-layers).

Does synthetic injection improve induction-head quality vs. baseline? By counts above the 0.5
threshold, yes up to moderate mixes. The baseline shows 2 specialized heads. With Induction snip-
pets we observe {3, 3, 1} specialized heads at {25%, 50%, 100%} mixes, Balanced yields {4,4, 1},
and Anti yields {3,1,2}. By peak sharpness, Balanced-25% attains the highest induction head,
with Induction and Anti close behind; at > 50% mixes, Balanced and Baseline retain similar peaks
while Induction then Anti trail.

Does the curriculum create anti-induction heads? No. Even under Anti mixes, anti-induction
scores remain far below the specialization threshold; the best peaks are ~ 0.01 (at 50% Anti and in
Baseline), indicating no robust anti-induction circuit emerges.

How does mix ratio affect spread and depth concentration (induction)? For Induction, spread
rises from 25% to 50% (3—5 heads) then contracts at 100% (2). For Balanced, spread is largest at
25% (5), then declines (4 at 50%, 2 at 100%). For Anti, induction heads peak at 25-50% (4 each)
and drop to 2 at 100%. Depthwise, specialized heads shift deeper as mix increases: clusters are
earlier at 25% (layers ~2-4), mid-depth at 50% (layers ~4-6), and later at 100% (around layer ~8).

Takeaways: Baseline naturally forms a few strong induction heads. Adding snippets increases
the number of specialized induction heads up to moderate mixes (< 50%); higher mixes reduce
spread and push peaks deeper. None of the curricula—especially Anti—produces meaningful anti-
induction heads.

D IN-CONTEXT LEARNING CAPABILITY

D.1 IN-CONTEXT LEARNING PERFORMANCE

In Table 8] (summarized in Figure 2aland Figure 2b} see §3.1)), we report per-task few-shot ICL per-
formance across scales for two families: (i) 14 standard LM benchmarks/tasks and (ii) 19 function-
style probes from the [Todd et al.|(2024) suite. For the standard LM benchmarks we use 3-shot
evaluation; for the Todd et al.| (2024)) suite we use 10-shot evaluation. (Table E] lists all tasks and

8 All reported results are at iso-FLOPs; we do not take packing credits in our comparisons. Packing is a
deployment optimization, not part of the evaluation protocol.
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Figure 4: Layer-wise copy-head telemetry. Top row: induction scores; bottom row: anti-induction
scores. For each layer we plot the best-scoring head (top 2% by score with a floor of one head per
layer), averaged over six seeds, for the 0.13B model with initial mix ratios: 25%, 50%, and 100% .
Head counts for each model are given in Table

provides a brief description of each.) Unless otherwise noted, metrics are accuracy (ACC) or exact
match (EM) as standard, and all results are averaged over three seeds.

Because any > 0 shot setting exercises in-context learning, we also study 1-shot sensitivity for the
same tasks/benchmarks in Appendix[D.2]

D.2 IN-CONTEXT LEARNING ROBUSTNESS

D.2.1 SENSITIVITY TO NUMBER OF SHOTS

We assess how the ICL results in (with details in Appendix vary with the number of
in-context demonstrations. Concretely, we change the evaluation from the main-text setting (3-shot
for standard LM benchmarks and 10-shot for function-probe tasks) to a unified 1-shot setting for
both families. Summaries appear in Figure [5a] (standard LM) and Figure [5b| (function probes);
per-task scores are in Table 0]

For the standard LM benchmarks, moving to 1-shot produces negligible changes across all model
sizes (0.13B, 0.5B, 1B). In contrast, the function-style probes degrade notably at 0.5B and 1B when
reduced to 1-shot, while the 0.13B model shows only a small drop. This scale-dependent sensitivity
aligns with prior observations that larger models more reliably use the demonstration label—token
mapping (and thus benefit from more shots), whereas smaller models often gain primarily from for-
mat/structure and topical priming (Wei et al.| 2023} Min et al.,[2022;[Zhao et al.|[2021)). Consistently,
our label-permutation stress test shows minimal impact at 0.13B but clear degradation at 0.5B/1B,
indicating that bigger models lean more on the (now corrupted) mapping signal.

Across shot conditions, the BASELINE vs. BI-INDUCT ordering remains stable: reducing shots
changes the absolute level but not the ranking among curricula.
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Figure 5: Sensitivity of ICL composite (macro) to the number of shots across two evaluation fami-
lies: (a) standard LM benchmarks (3-shot vs. 1-shot); (b) Function-probe suite of (2024)
(10-shot vs. 1-shot). Each panel groups models by size (0.13B, 0.5B, 1B), colors the bars by regime
(Baseline, Induction, Anti, Balanced), and shows =41 s.d. error bars.

D.2.2 FUNCTION-PROBE TASK STRESS TESTS

Because stress tests were explicitly considered during the development of the [Todd et al| (2024)
function-probe suite, we evaluate two that directly target ICL robustness: (i) label permutation
within the in-context demonstration shots, and (ii) decision-rule sensitivity, contrasting the com-
monly reported HITS @3 with our primary metric, HITS@ 1. These tests probe robustness to spuri-
ous label-token mappings and to the choice of evaluation rule, respectively.

Label-Permutation Stress Test: We stress-test in-context usage on the probes
by randomly permuting the targets within the 10 demonstration shots (inputs unchanged) and evalu-
ating on the true task distribution. If a model relies on the demonstrations, accuracy should drop; if
it leans on parametric priors, it should be less affected. As shown in Figure [f]and Table[I0] the rel-
ative ordering between Baseline and Bi-Induct variants is largely preserved. At 0.13B, permutation
produces no degradation for either, suggesting heavier reliance on parametric knowledge. At 0.5B
and 1B, all curricula degrade, indicating increased sensitivity to the in-context mapping. Overall,
Bi-Induct mirrors Baseline at each scale: robust at 0.13B and increasingly demonstration-sensitive
as scale grows.

Why permutation hurts 0.5B-1B but not 0.13B? At 0.13B, the robustness to label permutation
suggests it benefits from demonstrations via format/topical priming and answer-frequency priors,
but does not reliably exploit the label—token mapping. In contrast, 0.5B-1B models more strongly
use the in-context mapping; permuting labels therefore contradicts a cue they have learned to trust,
producing clear drops. This is consistent with reports that (i) labels in demos can be non-essential
for smaller/less capable settings—format and priors often dominate (Min et al., 2022} [Zhao et al
[2021), and (ii) the ability to override priors and follow contradictory, flipped labels emerges with

scale 2023).
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Figure 6: Function-probe suite of [Todd et al.| (2024) — ICL Composite (macro). Three panels
(0.13B, 0.5B, 1B). For each model, bars compare ICL (default — no label shuffle) vs ICL (label
shuffle) across four regimes (Baseline, Induction, Anti, Balanced). Error bars show +1 s.d.
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Figure 7: Function-probe suite of [Todd et al.| (2024) — ICL Composite (macro). Three panels
(0.13B, 0.5B, 1B). For each model, bars compare ICL (HITS@]1) vs ICL (HITS@3) across four
regimes (Baseline, Induction, Anti, Balanced). Error bars show £1 s.d.

Decision-Rule Sensitivity - HITS@% (k € {1,3}): Following common practice for function-
probe tasks in the [Todd et al.| (2024) suite—which reports HITS@3 (top-3 token accuracy)—we
compare our primary decision rule (HITS@1) with HITS@3. ICL performance is summarized
in Figure [7] and per-task HITS@3 accuracies are listed in Table [[I} While HITS@3 increases
absolute scores across the board, the relative ordering and gaps between variants remain effectively
unchanged.

E INDUCTION HEAD ABLATION

We quantify how much the in-context learning (ICL) composite depends on the model’s most
induction-like attention heads by ablating them at evaluation time and comparing the drop to ab-
lating an equal number of random heads.

Selecting induction heads: For each model, we compute a per-head copy score exactly as in
Section[B-2]and select the top 2% per layer for ablation.

Ablation mechanism (value-stream zeroing): At inference, for a chosen set of heads Sy in layer
¢, we zero their value-stream contribution before the output projection:

7O = [QrvO | . 0| ... | QEVID],  awnow® = ZOWS),
heS,

Queries/keys/softmax are unchanged; only the selected heads’ post-attention vectors are set to zero.
This follows common practice in mechanistic interpretability and avoids softmax renormalization
artifacts. We compare two conditions:

¢ Induct-head ablation: zero the per-layer top-2% induction heads defined above.
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Figure 8: Function-probe suite of [Todd et al.) (2024) - ICL composite under clean, induct-
head ablation, and random-head ablation. Three panels (0.13B, 0.5B, 1B), across four regimes
(Baseline, Induction, Anti, Balanced). Error bars show +1 s.d.

* Random-head ablation: zero the same count of uniformly random heads per layer.

We evaluate the same prompts, shots, and metrics as in the main text (Section @): the macro-
averaged ICL composite aggregates task scores (e.g., HITS@1 unless otherwise specified). For
each model-curriculum pair we report (i) the clean score, and (ii) the percent change under each
ablation relative to its own clean run:

ICLjnguct-abl — ICLelean o ICL ang-abt — ICLctean
, Arana = 100 x .
ICLclean ICLClean

Ainduct =100 x

Figure[8]shows the ICL composite for clean vs. ablations across scales and curricula; per-task deltas
are in Table
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Table 5: Benchmarks, evaluation metrics, and shot counts used to compute the ICL composite in

Section @

Benchmark / Tasks Metric Shots  Notes

MMLU (Hendrycks et al.}2021) Acc 3 57 subject areas; standard 5-shot setup.

Winogrande (Sakaguchi et al.,[2019) Acc 3 Commonsense coreference.

CommonSenseQA (Talmor et al.,|2019) Acc 3 Multiple choice commonsense.

PIQA (Bisk et al.,|2020) Acc 3 Physical commonsense.

HellaSwag (Zellers et al.||2019) Acc 3 Story completion.

TriviaQA-Wiki (Joshi et al.;2017) EM 3 Open-domain QA, Wikipedia evidence.

BBH (CoT) (Suzgun et al.; 2022) EM 3 Few hard tasks with chain-of-thought prompts.

OpenBookQA (Mihaylov et al.||2018) Acc 3 Elementary science QA.

ARC-Challenge (Clark et al., 2018) Acc 3 Difficult science questions.

GPQA (Rein et al., [2023) Acc 3 Graduate-level QA.

GSM-8K (Cobbe et al., [2021) EM 3 Math word problems with short CoT.

MathQA (Amini et al.|[2019) Acc 3 Programmatic math QA.

BoolQ (Clark et al., |2019) Acc 3 Yes/No reading comprehension.

LAMBADA (OpenAl) (Paperno et al., [2016) Acc 3 Cloze final-word prediction.

From|Todd et al.|(2024) function-probe suite:

capitalize HITS@1 Acc 10 Convert the entire input string to uppercase (e.g.,
“hello” — “HELLO”).

capitalize_first_letter HITS@1 Acc 10 Uppercase the first character only; leave the rest un-
changed (“alpha” — “Alpha”).

capitalize_last_letter HITS@1 Acc 10 Uppercase the final character only (“gamma” —
“gammA”).

lowercase_first_letter HITS@1 Acc 10 Lowercase the first character only (“Alpha” — “al-
pha”).

lowercase_last_letter HITS@1 Acc 10 Lowercase the final character only (“GammA” —
“Gamma”).

next_capital_letter HITS@1 Acc 10 Map an uppercase letter to its successor in the alpha-
bet (e.g., A—B; wraparound optional).

next_item HITS@1 Acc 10 Given an item from an ordered category (day, month,
letter, number word), output the next item (“Monday”
— “Tuesday”).

prev_item HITS@1 Acc 10 As above, but return the previous item (“Tuesday” —
“Monday”’; wraparound for cyclic lists).

word_length HITS@1 Acc 10 Return the number of characters in the input word
(“token” — 5).

alphabetically first_3 HITS@1 Acc 10 From a list of 3 strings, choose the alphabetically ear-
liest.

alphabetically first.5 HITS@1 Acc 10 From a list of 5 strings, choose the alphabetically ear-
liest.

alphabetically_last_3 HITS@1 Acc 10 From a list of 3 strings, choose the alphabetically lat-
est.

alphabetically_last.5 HITS@1 Acc 10 From a list of 5 strings, choose the alphabetically lat-
est.

choose_first_of.3 HITS@1 Acc 10 From a list of 3 items, select the first item by position.

choose_first_of.5 HITS@1 Acc 10 From a list of 5 items, select the first item by position.

choose_last_of.3 HITS@1 Acc 10 From a list of 3 items, select the last item by position.

choose_last_of.5 HITS@1 Acc 10 From a list of 5 items, select the last item by position.

choosemiddle_of_3 HITS@1 Acc 10 From a list of 3 items, select the middle item by po-
sition.

choosemiddle_of_5 HITS@1 Acc 10 From a list of 5 items, select the middle item by po-

sition.
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Table 6: Span-length sweep at 0.13B on THE PILE. All curricula are linearly annealed over the full
training budget with initial mix of 25%. Results are averaged over six seeds. Evaluation is 5-shot.
We report per-task accuracies, the macro ICL composite, and held-out perplexity (PPL).

Baseline Induction Anti-induction Balanced

- 5 20 500 5 20 500 5 20 500
MMLU *+ 252+03 253+£05 25.1+04 253+£05 253+04 251+05 248+05 2524+04 24.8+03 251402
ARC-Challenge 1 181+0.6 187+04 186413 181406 185+0.7 181+04 176+0.6 18.6+0.2 185+06 17.6+0.4
BoolQ 1 52.8+4.6 462+52 535+59 53.4+£37 50.8+6.8 545+14 534+29 512425 50.1+£35 54.7+£49
LAMBADA 1 76+07 67+06 64+06 68+06 64+05 67+£05 624+02 7.0+£01 69+04 65£0.5
PIQA 1 56.6+0.5 56.5+0.6 558+0.5 555+0.2 55.9+0.3 55.9+0.6 564+08 56.0+0.6 558+0.5 56.0+0.5
ICL composite (macro) + 32.1+0.9 30.7+24 31.9+11 31.8+1.7 31.6x12 321+03 31.7+14 314431 31.2+0.7 320£22
PPL | 21.8 23.8 239 24.0 23.8 24.0 24.5 23.8 24.0 242

Table 7: Initial mix-ratio sweep at 0.13B on THE PILE. All curricula are linearly annealed over the
full training budget with span fixed at L = 20. Results are averaged over six seeds. Evaluation is
5-shot. We report per-task accuracies, the macro ICL composite, and held-out perplexity (PPL).

Baseline Induction Anti-induction Balanced

- 25% 50% 100% 25% 50% 100% 25% 50% 100%
MMLU 1 25.240.26 2514038 25040.33 249+0.33 251+£048 252+£040 24.9+041 2484029 2504027 24.6+0.38
ARC-Challenge 1 18.1£0.64 18.6 £1.28 18.1 £0.65 17.9 £0.89 18.1£0.42 18.0+£047 17.5£0.91 18.5 £ 0.58 18.1+£0.44 17.8 £0.52
BoolQ 1 52.84+4.64 5354592 49.64+6.92 51.8+4.51 545+£1.36 47.8+£6.78 51.1£287 50.14£3.52 46.94+4.68 51.8%5.37
LAMBADA 1 7.6 £ 0.69 6.4 = 0.60 5.6 = 0.50 4.7+ 0.50 6.7+ 0.45 5.6 £0.51 4.4+0.45 6.9 4 0.43 5.9 £ 0.66 4.6 £0.38
PIQA 1 56.6+£0.49 5584048 5544+0.27 549+049 559+£0.55 554+037 55.2+055 55.840.50 55.84+0.72 5444045
ICL composite (macro) T 32.06 £0.89 31.88£1.08 30.76 £1.48 30.83+0.98 32.06+0.25 30.40+1.40 30.62+0.66 31.22+0.69 30.34+£0.92 30.64£1.10
PPL | 218 239 26.0 314 24.0 26.4 329 24.0 26.2 328

Table 8: Results across model scales (0.13B, 0.5B, 1B) on THE PILE at iso-FLOPs. Copy snip-
pets use span L=20. Evaluation is few-shot: 3-shot for standard LM benchmarks, and 10-shot for
function-style probes. We report per-task accuracy (or EM where standard), averaged over three
seeds, and the ICL composite (macro-average across tasks). Higher is better.

Baseline Induction Anti-induction Balanced
0.13B 0.5B 0.13B 0.5B 1B 0.13B 0.5B 1B 0.13B 0.5B 1B

MMLU 26.7£0.1 2754+04 27.7£0.0 259400 274£00 266400 27.1£0.0 2684+00 272+£0.1 262+0.1 27.1£0.2
Winogrande 504+£06 508+14 498£1.1 47.0%£09 505£1.1 51.14£08 51.2+£09 501+1.0 498+£1.3 509+16 509=£04
CommonSenseQA 208+1.2 200+1.1 21.2+09 203+03 205+09 205+08 208+03 200+1.2 20.0+04 206+0.7 20.5+0.3
PIQA 56.6£0.3 585+12 592405 55.0+02 58.6+0.1 584403 56.1+£02 569403 589+06 55.5+0.7 57.2+06 584+0.3
HellaSwag 26.5+£0.1 271404 27.8+£0.1 263+0.1 265+£01 272401 264+£01 268+01 27.3£01 262+0.1 265+01 27.3+0.1
TriviaQA-Wiki 0.140.0 02400 0.440.0 0.1£0.0 0.1£0.0 0.340.0 0.140.0 0.140.0 0.340.0 0.14£0.0 0.1£0.0 0.3£0.0
BBH (CoT) 0.14£0.0 1.5£0.2 2.8£0.0 0.3+0.0 1.6£0.1 1.2£0.1 0.840.1 0.14£0.0 0.64+0.0 0.14£0.0 22£0.0 4.2£0.0
OpenBookQA 143+0.6 140+16 159+1.1 13.9+0.8 15.3+0.1 153+0.4 147407 139+13 156+04 13.1+0.1 13.6+1.0 16.5+0.5
ARC-Challenge 186+0.6 184+1.1 182+0.6 183+03 185+0.7 181404 176+04 178404 19.0+04 17.1+£08 17.9+04 179403
GPQA 252422 26.14+21 252420 237+23 252417 243415 239+£20 249414 241+£1.1 2414+22 228+08 24608
GSM-8K 1.5+£04 1.5+0.3 1.7+£0.2 1.1+£0.3 1.5+£0.3 1.5£0.2 1.4+£0.2 1.2£0.1 1.64+0.1 1.1+£04 1.7+£0.2
MathQA 205£04 209%£07 205£07 199%+06 203£02 207+06 202+£03 204404 21.1£02 21.0£07 208£04
BoolQ 488+0.5 53.4+09 547+02 49.1+0.7 605+£03 57.0+09 491+08 522422 52.7+£03 51.4+05 57.1+£1.0
LAMBADA (OpenAl) 82402 11.0£04 13.2+0.1 55+0.1 8.6 £0.1 122402 52402 84403 12.2+£0.2 6.0£0.2 82+£0.2
ICL composite (macro) t  22.7+0.5 23.6+0.8 24.2+0.5 219405 23.9+04 239405 225+04 228406 23.6+04 224406 23.3+£04
alphabetically_first 3 49 + 0.6 94406 19.7+09 46+ 06 73+£03 151409 33405 85409 144+ 15 48406 11.5+06 153+ 1.0
alphabetically_first_5 40+ 06 67+08 124+14 42+08 65+£10 109+09 28+£07 74406 84+11 39+£10 82+08 102%0.7
alphabetically_last 3 34+£05 102+09 208 £06 24£05 77x£02 158+10 19+£06 80%£09 133£08 39£05 109 £05 153 x1.3
alphabetically-last-5 25+£07 60+£13 99+£08 16+03 55+£04 8503 18+£04 61+08 78+£05 25+£08 67£06 93x=04
capitalize 80+ 1.0 207+ 14 548 £21 33=+03 324+ 1.3 +13 37+01 135+13 392+£27 6.0=£16 147+ 13 336+ 21
capitalize_first_letter 101 £ 1.2 125+ 1.8 286+ 1.1 53+ 10 + 1.7 13.7+12 52403 112+12 174+08 89+0.7 100+ 1.1 204+ 1.2
capitalize_last_letter 48+13 96+10 83+£12 86%x11 7518 86+09 91+14 934+12 73+£15 554+£07 58+£14 6707
choose_first_of 3 103 £23 255+ 18 694 £18 6.1 £09 190+ 1.7 5244+20 41+£07 191+ 1.8 460 £20 11.3+0.7 352 £ 1.7 541+ 1.7
choose_first-of 5 87+13 197+19 555£13 49£07 153 £09 426 +30 36+£07 162+ 15 32716 79+£10 282=£24 42114
choose_last_of 3 2.0+ 04 324+ 0.2 44 +£ 1.0 14+04 28+03 5.4 %+ 0.9 1.4 +£05 3.0 £ 0.5 5.0 + 0.5 1.7+£03 30%£05 52%03
choose. _of 5 1.5 4+ 0.3 29+ 0.6 39+ 1.1 17405 24+£04 46+06 11404 29+ 0.5 5.6 + 0.5 15403 26+04 51+04
choose_middle_of 3 17406 33+£05 42+05 21+£08 22+03 60+£10 134+05 31+£02 504£03 1.7+£07 34£07 49£07
choose_middle_of 5 1.64+03 30+£06 27+04 16+02 21%+03 31x£06 1.7+04 29+£07 39+£07 1.7+£04 23+£06 47£06
lowercase first_letter 55+08 84£09 285+£22 41£09 61x12 201+16 47+£07 65+06 206=x11 22£06 88+£07 133%x08
lowercase_last_letter 11.1+£08 77+£07 105+11 36+£07 80%+07 96=*1.0 T4+ 12 89+ 1.0 133+05 78+ 11 109+15 89+12
next_capital _letter 49+ 1.1 424£09 244+08 39+03 42410 36+07 47408 41407 31409 48+09 35+09 42+11
next_item 34+£22 86425 168+£21 29+19 57+£13 11.8+12 13+£09 78411 118£25 63+08 90£16 94+1.7
prev_item 25+£08 77£16 151 £23 20%£08 59+£07 103+£10 14+£05 66425 114£25 57+13 84+£12 7722
word_length 99+ 1.0 133+09 128+ 1.1 134+08 140+ 1.0 133+08 120+ 1.3 143+ 0.6 13.6 £1.6 108 £ 1.1 147 + 1.8 126 £ 0.7
ICL composite (macro) t 5.3 £ 0.9 9.6 £ 1.1 200+13 41+07 78+ 09 152+11 38+07 84+£10 147+12 52+08 104+11 149+ 1.1
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Table 9: Results across model scales (0.13B, 0.5B, 1B) on THE PILE at iso-FLOPs. Copy snippets
use span L=20. Evaluation is few-shot: 1-shot for both standard LM benchmarks, and function-style
probes. We report per-task accuracy (or EM where standard), averaged over three seeds, and the ICL.
composite (macro-average across tasks). Higher is better.

Baseline Induction Anti-induction Balanced
0.13B 0.5B 1B 0.13B 0.5B 1B 0.13B 0.5B 1B 0.13B 0.5B 1B
MMLU 258400 252403 268+00 258+0.0 244+03 264+00 258+£00 247+03 268+£00 259+£00 243+£02 273£00
Winogrande 498+£08 503+£05 49.6+04 489+£03 502+£03 506+£04 509+12 504+08 493+09 508403 520+04 51.0+00
CommonSenseQA 209+09 206+10 205+05 208408 206+09 206+06 209+08 206+1.0 207+0.1 21.0+£08 207+09 20.6+0.6
PIQA 568404 58.74+08 599404 554402 588+02 583+03 559+0.1 574+£05 590+1.1 554+£09 573+£03 581+£02
HellaSwag 264401 27.0+01 278401 262401 267+00 273+0.1 263+0.1 267+02 273+£0.1 262+£0.1 266+01 272+02
TriviaQA-Wiki 01£00 01£00 034£00 01%£00 01£00 01£00 01x00 01£00 01£00 01£00 01£00 02£0.0
BBH (CoT) 0.0 £0.0 0.6 +0.0 34£00 01£002 20£00 43£00 044£000 01£00 06%x01 044000 18E1.1 28£0.0
OpenBookQA 143+£05 156+07 158+£05 1434+02 145+£08 155+£05 13.0+£00 147+£02 167407 133+£0.1 13.9+£01 156+12
ARC-Challenge 184402 190404 18.1£0.1 187404 182401 183402 17.7+03 178+02 184+05 17.5+£04 178+04 17.7+£0.7
GPQA 248406 250%+10 262425 250+08 244+13 252+06 251+£1.1 259+12 257+£12 255+£03 242+£21 260£20
GSM-8K 1.3£0.1 1.9+£03 1.3£0.1 1.5+£06 22+03 1.5+£02 1.3+£05 18+£02 1.6 £03 1L.1£0.1 20+£03 1.5+£02
MathQA 207+£03 204402 207+£03 203405 202+03 20.1£03 201401 203+£01 208£07 206+04 202£03 21.0%1.0
BoolQ 532408 534+08 542403 532408 57.6+1.1 560+02 508+£08 530+£07 541+£0.1 531£08 53.1£07 552+04
LAMBADA 95401 11.9+01 151+01 65+01 99+02 134+02 59+02 96+03 135+02 70+01 92+01 138+£05
ICL composite (macro) ~ 23.0+£0.3 23.6+04 243+04 226+03 236+04 242403 224+04 231+£04 239+£04 227403 231£05 241£05
alphabetically_first_3 26+06 3.0%+07 132+13 33%x07 48+06 89+08 19+04 35+£08 5810 36£07 44404 85+£08
alphabetically_first_5 27+£04 33+£05 89+£05 33£01 43£02 75+£04 20£03 37+£08 44408 22+04 31+06 68+1.1
alphabetically_last_3 21+£05 29+£05 133£1.2 31£04 43£09 92£1.0 19+£04 29£03 68+06 45+03 38%05 10.6 =09
alphabetically_last_5 1.6 £05 28+04 85+09 19£06 32+04 60£03 1404 23+05 45+04 22x+04 3.0£08 6806
capitalize 29+06 15+04 44+£07 18%+03 51+£08 26408 1.8+£02 25+£05 49+06 27+£04 31405 37£11
capitalize first_letter 41+11 30+09 34£07 3510 56+14 40412 35+£10 47+£12 40+£09 44£10 49+08 35=£11
capitalize_last_letter 9.0£07 74+£04 56£09 91£08 60£07 84+£04 92£08 87+£09 84408 8707 88+08 8805
choose_first_of 3 56 £05 67+10 370%+12 55+08 74+13 251+21 15+04 60+£11 146+£1.0 89£1.0 72+08 261=%18
choose_first_of_5 59+04 69+08 320+12 39+08 56+£06 249+19 1.1+£03 61+£08 125+£19 53 £03 48+ 06 238+ 14
choose_last_of 3 08+03 1.1£03 37+£06 13£04 19+£03 24£05 12£04 13£07 20404 07£02 19407 37+03
choose_last_of 5 09+03 1.1+£04 24+£04 14+£03 15£03 20£04 09£03 13£04 19406 0602 13404 31%06
choose_middle_of_3 07+03 11+04 35£06 09%+01 16+04 25+06 07x02 1.1£01 19+05 06=x01 11+02 3.6=x04
choose_middle_of_5 09+04 14+05 23+£05 12+03 14+£02 22405 12+03 13+£05 16+04 08+04 15407 3.0+£06
lowercase first letter 49+07 37+07 40£03 40%+07 39+06 46+08 26+05 47+£07 47+08 23+£05 47407 44+08
lowercase_last_letter 106 +£12 93+12 95+12 66+09 77+13 106+12 76+05 106+ 1.2 106 £1.2 87+ 1.3 106 £+ 1.2 103 £ 1.2
next_capital_letter 45+03 38%+06 36+£10 46x05 39+04 45+04 44+04 47£01 41+05 41+£04 45+04 46=£05
next_item 25+04 20£17 974+10 39+£08 51+14 514+12 1511 28+11 35+£08 44+21 42+11 34=£15
prev_item 25+12 23+17 92+£16 30%+11 51+£16 57420 18+07 33£19 34+19 46+£07 30+15 38+13
word_length 13.8 £ 1.9 13.7 £ 1.7 127 £22 127+ 15 134 £ 21 13.6 £ 1.5 125 £ 1.6 13.9 £ 1.7 139 £ 1.4 10.6 £ 1.0 13.9 £ 1.7 13.9 £ 1.9

ICL composite (macro) + 4.1 £ 0.6 4.1 £08 98+ 09 39+06 4808 79+10 31%+05 45+£08 60+09 42+06 47£07 80+£1.0

Table 10: Function-probe suite of [Todd et al. (2024) under label-permutation stress
(2024) suite): HITS@1 accuracy on 10-shot prompts with demonstration labels randomly permuted;
reported as mean=std across three seeds for 0.13B, 0.5B, and 1B, comparing Baseline, Induction,
Anti, and Balanced curricula.

Baseline Induction Anti-induction Balanced
0.13B 0.5B 1B 0.13B 0.5B 1B 0.13B 0.5B 1B 0.13B 0.5B 1B
alphabetically first -3 44+04 92+07 166 +06 44+03 70+£07 123+14 36+05 82+08 11.0+£13 42+£07 107+ 14 125 £ 0.8
alphabetically_first_5 41+07 71+11 11.1+09 42+06 59+04 94+05 26+09 70£09 70+04 35+£04 78+1.0 9.0=£05
alphabetically_last_3 32£06 97+£08 161 £16 2606 73x£09 12306 2710 T74+£13 104£09 48+ 0.6 10.7 £ 14 13.0 £ 0.6
alphabetically_last_5 26+03 58+09 95+02 16+03 53+03 78+07 16+05 55+06 64+08 20+02 67+05 85=£09
capitalize 87+08 182+ 1.9 493 +29 3.6+ 10 133+ 1.8 299 +08 43 +£0.7 135+ 16 343 +£14 68 £06 145+09 310+ 1.9
capitalize_first_letter 104 £2.1 132+ 14 290+ 14 64+04 133 £08 1562+14 6409 122+19 175+ 13 92+ 15 108 22 21.2 £ 0.7
capitalize_last_letter 47+10 82%+10 77£07 79%x12 67+£08 T74+13 8917 86£09 5914 52£07 3+£09 65=%14
choose _first_of_3 112 £ 1.2 21.9 £ 2.1 549 £26 6.9+ 1.2 19.1 4+25 3504+ 25 52+04 19.0+ 20 289 4+ 0.8 134 £ 1.0 324 £ 1.1 345+ 1.6
choosefirst of 5 93+ 15 173 £1.6 420+ 23 56 +09 153+ 1.8 289 +£2.1 3.6+ 04 168+ 19 203 £13 85+ 1.7 237+ 19 264+ 19
choose_last_of 3 1.6 04 27+06 43+09 21£06 26+04 49+£05 13+04 28+03 49+12 13+03 33£07 54%06
choose_last_of 5 1.7+04 22£06 39+08 19+04 21+03 45£06 11x+04 23+06 5507 12+05 23£08 47+03
choose_middle_of_3 19+03 35+£05 45+09 23+06 28+07 56+11 14+05 30+04 46+03 15+£02 31403 52+08
choose_middle_of 5 1.8 +£07 36+08 29+05 19+03 224+06 33+£04 15+06 28+04 39+05 1.7+02 24+04 46+07
lowercase_first_letter 6.7+08 93+06 278+ 16 49+07 65+04 190+11 54+11 75+11 184+£19 25£06 104 +09 139 £ 1.4
lowercase_last_letter 101 +£1.0 75+12 88+19 35%+12 80%+16 82+12 7109 84+17 128+ 18 71+07 95£13 78%x15
next_capital_letter 43+£09 43+05 28+04 42+06 35+£06 36+06 47+06 42+07 3.0+06 43+05 33+£06 3.0=£0.1
next_item 33+10 73+13 1563+ 1.8 27+08 47+08 108+22 18+10 49+12 97+27 53+£15 66+14 72+10
prev_item 32+ 17 65+23 135%+16 25%x14 56+14 86+18 23%x15 49+£11 92+11 48+£17 6514 78+£10
word_length 97 +08 126 £1.3 114 + 1.8 128 £1.0 129+ 1.4 124+ 1.1 121 £ 1.1 145+ 1.6 132 £ 0.2 11.1 £ 09 143 £ 0.8 126 = 1.0

ICL composite (macro) + 5.4 0.9 9.0 £11 174+ 13 43+07 76+10 126 +12 41+08 81411 11.9+11 52+08 97+10 124+ 1.0
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Table 11: Function-probe suite of [Todd et al.

under decision-rule sensitivity: HITS@3 ac-

curacy on 10-shot prompts, reported as mean=std across three seeds, for 0.13B, 0.5B, and 1B,
comparing Baseline, Induction, Anti, and Balanced curricula.

Baseline Induction Anti-induction Balanced
0.13B 0.5B 1B 0.13B 0.5B 1B 0.13B 0.5B 1B 0.13B 0.5B 1B
alphabetically first 3 88 +£08 153+ 05 310+ 05 86+ 13 127+ 03 23.0+08 7.1+£03 13.7+08 226 +£14 93+ 12 186 £ 0.6 241+ 0.8
alphabetically _first_5 86 13 13.0+£05 20.7+15 83+09 121 £10 164 +0.6 74 x0.7 136+ 13 155+ 13 78+ 13 133 £ 06 159 £ 0.8
alphabetically_last_3 73+£09 174+07 303 £10 6307 143 £05 245+ 1.1 57x07 146+ 1.5 + 1.5 89403 191+ 1.1 240 +£09
alphabeticallylast 5 58 +08 126+ 17 186 £ 11 49+08 114+£08 146 +£07 45£05 109+ 1.4 140+ 1.0 56 +08 129+ 09 156 £ 1.0
capitalize 178 £ 1.1 3974+ 1.6 738 £ 14 10.6 £ 04 285+ 09 577+ 1.3 11.5+£ 1.2 289+ 1.3 60.6 £ 0.8 14.0 £ 2.0 322 + 1.4 56.0 + 0.8
capitalize first_letter 25.6 £ 1.6 3474+ 1.8 552 £2.0 171 £ 1.1 30.7 £ 1.7 40.1 £1.6 191 & 1.5 29.9 £ 1.7 435 £ 2.1 223 = 1.7 29.6 £ 1.3 42.0 £ 2.1
capitalize_last_letter 141 £ 1.7 256 £ 1.7 204 £28 200+ 1.1 188 £ 1.9 23.0 £24 208 £21 232 %28 172+ 1.8 156 £ 0.8 159 = 1.7 18.6 = 2.7
choose-first_of 3 183 £ 1.9 386+ 19 836=+06 129+ 1.0 278 £ 1.7 66.6 + 1.6 9.8 £ 1.1 283 £ 1.2 60.7 £ 0.9 195 £ 1.1 50.3 £ 2.1 67.7 &+ 1.0
choose_first_of 5 171 £ 1.7 306 £ 1.9 741 £ 1.1 113 +0.7 244 +£16 562+ 1.3 80+ 1.3 263+ 1.7 483 £ 1.5 154 £ 1.2 41.5 £ 1.8 56.7 + 1.8
choose_last_of 3 51+04 80£06 11.0x£10 454+09 87£07 115+13 39x05 79£06 11.6 £06 4.0x06 87*12 124 +04
choose_last_of_5 40+06 7107 93+11 49+06 70+£08 103+07 35+06 7.6+08 101=£06 41+07 66+04 106+ 1.0
choose_middle_of 3 48+ 1.1 87+07 125+£10 55+£04 77+£07 131£07 40£02 78+£04 103+07 44+06 81+11 11.4+£07
choose_middle_of 5 46 £07 76+05 77+£08 45+£02 62+£08 74409 45+£09 T74+£11 84+07 42£08 65+09 93=£1.0
lowercase_first_letter 19.4 £2.0 28.7£09 586 23 114 £ 1.0 221 £ 1.4 495+ 1.9 124 £ 1.7 228 &£ 32 451 £22 55+ 0.3 305+ 1.6 387 £0.5
lowercase_last_letter 280+ 14 194+ 1.1 235+12 87+12 231£06 262+13 202+11 240x09 29709 132+ 1.2 268 £20 228 + 1.8
next_capital letter 150 £ 0.5 132 £ 12 125+ 0.7 132 £09 124+ 1.8 11.7 £ 14 1604 1.0 13.7 £ 14 109 £2.0 125 £ 08 11.1 £ 14 133 £ 15
next_item 85+£22 187+39 295+32 90+19 158+ 19 234+08 58+20 182+ 34 254+ 19 135+ 1.2 205+ 3.0 203 £ 2.1
prev_item 8408 151414 247£24 76 +12 149 +21 173 £1.3 53 £ 1.8 170+ 29 20.1 £3.7 13.8 £0.8 171 £ 2.1 17.6 £ 0.8
word_length 31.0 £ 2.2 365 £ 21 376 06 334 £ 14 402+ 22 384 £22 285+ 1.1 399 £ 1.9 40.0+ 32 315 £ 1.0 41.1 £ 24 366 £ 1.1
ICL composite (macro) + 13.3 4+ 1.2 20.6 + 1.3 33.4 £ 14 10.7 £09 178 £1.2 279 £ 1.3 104 £+ 1.1 187+ 1.6 272+ 1.5 11.8 £ 10 21.6 £ 1.5 27.0 £ 1.2

Table 12: Function-probe suite of [Todd et al| (2024): HITS@1 accuracy on 10-shots prompts,
reported as meanzstd across three seeds, for 0.13B, 0.5B, and 1B, comparing Clean run, top-2%
induction heads drop ({Induct Hd 2 %), random heads drop ({Rand) across Baseline, Induction,
Anti, and Balanced curricula.
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