
Efficient Automated Online Experimentation
with Multi-Fidelity

Steven Kleinegesse∗
University of Edinburgh

steven.kleinegesse@ed.ac.uk

Zhenwen Dai
Spotify

zhenwend@spotify.com

Andreas Damianou
Spotify

andreasd@spotify.com

Kamil Ciosek
Spotify

kamilc@spotify.com

Federico Tomasi
Spotify

federicot@spotify.com

Abstract

Prominent online experimentation approaches in industry, such as A/B testing, are
often not scalable with respect to the number of candidate models. To address this
shortcoming, recent work has introduced an automated online experimentation
(AOE) scheme that uses a probabilistic model of user behavior to predict online
performance of candidate models. While effective, these predictions of online
performance may be biased due to various unforeseen circumstances, such as
user modeling bias, a shift in data distribution or an incomplete set of features.
In this work, we leverage advances from multi-fidelity optimization in order to
combine AOE with Bayesian optimization (BO). This mitigates the effect of biased
predictions, while still retaining scalability and performance. Furthermore, our
approach also allows us to optimally adjust the number of users in a test cell, which
is typically kept constant for online experimentation schemes, leading to a more
effective allocation of resources. Our synthetic experiments show that our method
yields improved performance, when compared to AOE, BO and other baseline
approaches.

1 Introduction

Industry practitioners of machine learning regularly have to choose which production system or
configuration they should deploy to users. Classical model selection algorithms, however, only
evaluate the offline performance of the machine learning model, which is not representative of the
whole production system. This has led to A/B testing becoming the gold standard in industry, as it
evaluates direct measurements of online performance. Unfortunately, while widely-used, A/B testing
can only compare a few different production systems effectively and is therefore not scalable with
respect to the number of candidate models.

Recently, Dai et al. (2020) have developed an alternative methodology, called Automated Online
Experimentation (AOE), which tackles these issues. AOE works by building a probabilistic surrogate
model of the immediate feedback that is observed during the online experiment, which might, for
instance, be whether or not a user has clicked on a recommendation, how long they have stayed on a
website, etc. This AOE surrogate model can thus be understood as a way of modeling user behavior
that allows us to predict the feedback we may receive from a user. We consider the downstream
online metric that we wish to optimize to be an average of this immediate feedback, e.g. click-through
rate, average time spent on a website, etc. Given recommendations from a particular candidate

∗This work was carried out during an internship at Spotify.

5th Workshop on Meta-Learning at NeurIPS 2021, held virtually.

model M, the AOE surrogate model can then be used to obtain an estimate of the downstream metric
v(M), as well as a corresponding measure of uncertainty. After doing this for all candidate models,
we can use the estimate and its uncertainty to rank all candidates via an acquisition function. The
highest-scoring candidate is then deployed and corresponding data is collected, which is immediately
used to update the surrogate model and repeat the process to select a new candidate. This approach is
notably different to Bayesian optimization (see Shahriari et al., 2016, for a review), as AOE builds a
surrogate model of user behavior and uses that to obtain predictions of v(M), whereas BO directly
builds a surrogate model of v(M).

The AOE approach of Dai et al. (2020) has been shown to significantly improve model selection in
production systems. Their experiments, however, were based on offline data where it was assumed
that it is possible to perfectly model the immediate feedback using the AOE surrogate model. This
allowed them to perfectly recover the ground-truth (online) metric with AOE predictions of this
metric. This should generally not be possible in a real online setting, due to the following reasons:

Limited modeling capacity: We would need an extremely flexible surrogate model and large
amounts of data in order to fully capture complex human behavior. We often do not have the means
and the resources to do this, preventing us from modeling the immediate feedback perfectly.

Distribution shifts in data: Humans often show non-stationary behaviour, meaning that what we
have learned during some part of the online experimentation may not hold true for the remainder.
Furthermore, the training data of the candidate models might be severely different to the online data
because of, for instance, unknown confounding factors or different contexts (e.g. time of the day).

Incomplete sets of features: Before training a candidate model, we generally have to do feature
engineering and select some relevant features. However, if these features are incomplete, or non-
stationary (which relates to the previous point), then even at sufficient modeling capacity, our surrogate
model may not be able to fully-explain the online observations.

These limitations of AOE, which are not exhaustive, mean that we should expect to see a bias between
AOE predictions and the ground-truth metric in a true online setting. In this work, we aim to reduce
such biases by using advances from multi-fidelity optimization, which concerns the trade-off of
high-fidelity (expensive but accurate) and low-fidelity (cheap but inaccurate) evaluations. We make
use of multi-fidelity optimization in two crucial ways. First, we supplement high fidelity observations
with low-fidelity AOE predictions in order to reduce bias. Second, our notion of fidelity includes the
number of users in a test cell as well, which we can then optimally adjust. This is unlike AOE and
A/B testing, where the number of users in a cell is usually kept constant.

We provide background on AOE and multi-fidelity optimization in Section 2 and explain how to
combine these in Section 3. We evaluate our method in Section 4 using a toy experiment where we
can actively control unwanted biases and a more realistic experiment that uses image data. Finally,
we conclude our findings and provide future directions in Section 5.

2 Background

2.1 Model Selection for Production Systems

We consider the problem of finding a candidate model M∗ that, given an online budget, maximizes
an online metric v, i.e.

M∗ = argmax
M∈M

v(M), (1)

whereM is the set of candidate models. In our setting, a candidate model takes a representation x as
input, e.g. user features, and outputs decisions a, e.g. recommendations.

We also assume that, given inputs x and decisions a, we receive some immediate feedback m from
the user, e.g. whether or not they have clicked on the provided recommendation. We define the online,
or accumulative, metric that we wish to maximize as the expectation of this immediate feedback, i.e.

v(M) ≈ 1

N

N∑
j=1

mj , (2)

2

where {mj}Nj=1 is the set of immediate feedback received when deploying the candidate model M.

When the set of candidate modelsM is small, e.g. consisting of two models, then we could simply
deploy all candidate models to a random sub-set of users, as done in A/B testing or multi-variate
testing, and compare the accumulative metric observations for each of them. However, this commonly-
used approach corresponds to an exhaustive search over the space of candidate models, which
consumes a prohibitive amount of resources when there are many candidate models.

2.2 Automated Online Experimentation

Following Dai et al. (2020) we formally define the sample-average in Equation 2 as follows. First,
we assume that the output of a candidate model can be represented by a distribution over decisions,
i.e. p(a|x,M). This corresponds to a Dirac delta function in the case of deterministic mappings
(such as neural networks). Second, we assume that the distribution of immediate feedback is given
by p(m|a, x) which, importantly, does not depend on the candidate model (only on its provided
decisions). The accumulative online metric for a candidate model is then defined as an expectation
over these distributions, yielding

v(M) =

∫ ∫ ∫
mp(m|a, x)p(a|x,M)p(x) da dxdm, (3)

where p(x) is the distribution of input representations. Unfortunately, the above high-dimensional
integral is generally not analytically or computationally tractable.

The distribution of inputs p(x) can generally be approximated empirically and the distribution
p(a|x,M) of the candidate model outputs is assumed to be known. Thus, the key to computing
the integral in Equation 3 is the distribution of immediate feedback p(m|a, x), which is generally
unknown. Dai et al. (2020) advocated to build a Bayesian surrogate model of the distribution of
immediate feedback, which should then allow us to compute the desired integral, analytically in some
cases and via Monte-Carlo integration otherwise, yielding an estimate v̂AOE(M) of the metric.

The probabilistic surrogate model p̂(m|a, x,D) depends on previously-gathered dataD and is updated
with newly-gathered data at every online iteration. Dai et al. (2020) use a Gaussian Process (GP)
surrogate model, which allows them to analytically compute the integral in Equation 3 in some
cases. Furthermore, it is possible to propagate the GP uncertainty and compute an estimate of the
uncertainty in v(M) as well (see their paper for more information). When the integral cannot be
computed analytically, we can also sample from the probabilistic surrogate model and approximate
the integral with a Monte-Carlo sample-average. However, we are not necessarily limited in using
GPs, as other surrogate models might be similarly appropriate depending on the problem.

Once we have constructed and fitted a surrogate model p̂(m|a, x,D) during an online iteration, we
can use Equation 3 and the predictions from a candidate model M to obtain an estimate v̂AOE(M)
of the online metric, as well as a measure of uncertainty. We can then use these to score the candidate
model by means of an acquisition function from the BO literature, e.g. Expected Improvement (EI)
or Entropy Search (ES). After doing this for all candidate models, we then deploy the candidate with
the highest score and repeat the aforementioned procedure until convergence or budget exhaustion.

2.3 Multi-Fidelity Optimization

When trying to optimize a function f we often also have access to evaluations from different levels of
fidelity f1, . . . , fn, where low-fidelities (e.g. f1) are cheap but inaccurate and high-fidelities (e.g. fn)
are expensive but accurate. The field of multi-fidelity optimization advocates that observations from
lower fidelities can be used to improve the fit and optimization of the exact function f , or higher
fidelities. Prominent approaches then differ in the way that they combine different fidelities and how
they weigh, or rank, them (e.g. Forrester et al., 2007; Kandasamy et al., 2016; Marco et al., 2017;
Song et al., 2019; Li et al., 2020).

3 Methodology

In this section we introduce automated online experimentation with multi-fidelity (AOE-MF), which
combines AOE and Bayesian optimization (BO; see Shahriari et al., 2016, for a review) in order to
mitigate the effect of biased AOE predictions and improve performance.

3

3.1 Treating AOE predictions as low-fidelity data

There are many potential causes that may result in a mis-match, or bias, between AOE predictions
and real online observations in the online setting (see Section 1). We thus propose to treat the AOE
predictions as a low-fidelity source of information that is readily available, while we treat expensive
observations of the online metric as a high-fidelity source of information. To do so, we supplement
the high-fidelity (real) observations with the low-fidelity (simulated) observations by conditioning
our belief of the online metric on AOE predictions, effectively acting as a prior.

Following standard BO approaches, we fit a Gaussian Process (GP) surrogate model to observations
of the online metric, i.e.

v(M) = f(M) + ε, with f ∼ GP(µ(M), k(M,M′)), (4)

where M is an element of the candidate model space, ε is Gaussian noise with standard deviation
σ and f is a sample of the GP. The GP prior is defined by the mean function µ(M) and the kernel
function k(M,M′).

It is standard practice in BO, and GP fitting in general, to define a mean function µ(M) that is zero
everywhere (see Rasmussen and Williams, 2006, for a theoretical discussion on this). In our approach,
however, we define the mean function to be the AOE predictions, i.e.

BO =⇒ µ(M) = 0 (5)
AOE-MF =⇒ µ(M) = v̂AOE(M). (6)

Fortuin et al. (2020) have recently shown that using a customised, or meta-learned, GP mean function
can indeed lead to an improved fit. Intuitively, by using the AOE predictions as a mean function, we
effectively leverage prior knowledge of the online metric. This knowledge, or belief, can then be
updated upon observing real data, reducing the risk of getting misled by biased AOE predictions.

After specifying the GP mean function to be the AOE predictions at every online iteration, we can
then gather data according to a regular BO scheme. We refer to the approach explained above as
AOE-MF-PM, where PM stands for prior mean. Below we explain how to take this one step further
and also include the number of users within a test cell as a measure of fidelity.

3.2 Variable number of users as different fidelity levels

Selecting the number of users within a test cell is an important task when performing online experi-
mentation such as A/B testing or AOE. A large number of users in the test cell lead to a more accurate
and representative observation of the online metric, at an increased cost. Conversely, reducing the
number of users decreases the cost, but we may not easily conclude which of our candidate models
perform best. For more rigid approaches, such as A/B testing, it is common to select the maximum
test cell size that fits within the budget. However, for automated online procedures, such as AOE or
AOE-MF, differently-sized test cells also change the exploration-exploitation behavior (as smaller
test sizes lead to more exploration) and is therefore a crucial point of consideration.

We propose to factor the test cell size into the decision process of AOE-MF by further leveraging
results from multi-fidelity optimization. We assume that we have access to different fidelity levels of
the observations, i.e. different number of users within a test cell. At every online iteration, we then
wish to find the optimal fidelity level to use, as well as the corresponding optimal candidate model.

We here use the prominent linear-fidelity model of Kennedy and O’Hagan (2000) because of its
simplicity and applicability, but we note that non-linear variations and more recent methods (e.g.
Kandasamy et al., 2016; Song et al., 2019; Li et al., 2020) may be appropriate as well depending on
the problem at hand. In this model, a higher fidelity function fl is modeled as a scaled sum of a lower
fidelity function fl−1 and an error term δl, i.e.

fl(M) = δl(M) + ρl−1fl−1(M), for l = 2, . . . , L (7)

where L is the total number of fidelity levels and ρl−1 is a regression parameter that indicates the
correlation between the lower and higher fidelity functions. The fidelity functions {fl}Ll=1 and error
terms {δl}Ll=2 in Equation 7 are all taken to be separate Gaussian Processes (GPs). The fidelity
functions {fl}Ll=1 can be expressed as a single GP with a modified kernel function (see Kennedy and
O’Hagan, 2000), which allows us to jointly fit the separate GPs.

4

Algorithm 1 Automated Online Experimentation with Multi-Fidelity (AOE-MF-PM)
Input: Candidate models M ∈M, AOE surrogate model p̂(m|a,x), test cell sizes c = (c1, . . . , cL),

surrogate models for each fidelity {fl}Ll=1, total online budget
Output: Optimal candidate model M∗, trained AOE surrogate model

1: Gather initial training data for each fidelity {fl}Ll=1
2: while online budget not exhausted do
3: Fit the AOE surrogate model p̂(m|a,x) to the training data
4: Compute AOE predictions v̂AOE(M) for all M ∈M according to Equation 3
5: Initialize the GP surrogate models for each fidelity using v̂AOE(M) as the prior mean
6: Fit each GP surrogate model using data gathered at the corresponding fidelity level
7: Compute an acquisition function α(l)(M) for all l = 1, . . . , L and M ∈M
8: Find the optimal fidelity l∗ according to Equation 8
9: Find the current optimal candidate model M∗ according to Equation 9

10: Deploy candidate M∗ at fidelity level l∗ and gather online data
11: Update the training data with the newly-gathered online data

At every online iteration, we then use data gathered from each fidelity level l to model the correspond-
ing fidelity function using separate GPs. To decide at which fidelity level to gather data during the
next online iteration, we here follow the method of Marco et al. (2017). First, using GPs fitted to
each fidelity function, we compute entropy search (Hennig and Schuler, 2012) acquisition functions
α
(l)
ES(M) for each of them over the whole space of candidate models. If each of the fidelity levels has

an associated cost cl, e.g. the number of users within a test cell, the optimal fidelity level l∗ is given
by the maximum value of α(l)

ES(M) per unit cost, i.e.

l∗ = argmax
l

max
M

[
α
(l)
ES(M)/cl

]
(8)

The optimal candidate model M∗ to deploy is then the one that maximises the acquisition function
for that optimal fidelity, i.e.

M∗ = argmax
M

α
(l∗)
ES (M). (9)

We summarise and combine our approaches from Sections 3.1 and 3.2 in Algorithm 1.

4 Experiments

We evaluate our AOE-MF-PM method on a toy experiment where the candidate models are contextual
bandits, as well as a more realistic experiment where the candidate models are convolutional neural
networks (CNNs). Where appropriate, we also compare our approach to baseline methods such as
random deployment, BO and regular AOE. We only consider a single test cell size for the contextual
bandits experiment, in order to better investigate the effect of conditioning on AOE predictions as
discussed in Section 3.1.

4.1 Contextual Bandits

As an example of a commonly-used algorithm in industry, we turn to contextual bandits. We consider
5-armed bandits with 10 possible contexts x ∈ R. The immediate feedback m that we observe
is binary, e.g. whether or not a user has clicked on a recommendation, and the online metric v is
simply the average of the feedback collected from several users, e.g. a click-through rate. Given
a recommended bandit arm a and a context x, we generate immediate feedback m ∈ {0, 1} using
(known) ground-truth reward probabilities (see the appendix for a plot showing these). In this
experiment we keep the test cell size constant to 200 users for every online iteration.

Each contextual bandit generates recommendations a by means of a policy π(x) that takes the context
as an input. We here consider a simple quadratic policy with two hyper-parameters α ∈ [0, 2] and
β ∈ [0, 2], i.e.

π(x;α, β) = α(x− β)2. (10)

5

Figure 1: Low-bias results for the contextual bandit experiments. The left plot shows a comparison
of our method with baseline methods using the best online observation of the metric so far (higher is
better). The right plot shows a similar comparison using the metric gap, which measures how close
each method is to the maximum of the ground-truth (lower is better). The dashed lines in the right
plot show the AOE predictions computed as part of the respective methods. See the appendix for a
corresponding plot with error bars.

The contextual bandit has a finite action space, however, and therefore we discretize the output
of Equation 10 to select the appropriate bandit arm (by closeness). The set of candidate models
M ∈ M is defined by a 100 × 100 grid of (α, β) ∈ [0, 2]2. This means that we have over 10,000
candidate models that could be deployed to users, which is prohibitively large for standard online
experimentation procedures such as A/B testing.

Following Dai et al. (2020) we use a sparse Gaussian Process (GP) as a surrogate model of the
distribution of feedback p(m|a, x). We vary the number of (fixed) inducing points to manually
control the bias, which allows us to emulate an online setting where we might experience limited
modeling capacity. By decreasing the number of inducing points we limit the sparse GP fitting
capabilities, leading to an imperfect approximation of p(m|a, x) and, thus, a biased estimation of the
online metric according to Equation 3. Conversely, we can reduce this bias by increasing the number
of (fixed) inducing points.

Baselines The random baseline involves a uniformly random candidate model being deployed
every online iteration. For the BO baseline we use a GP surrogate model of v(M) with a Matérn-5/2
kernel and the Expected Improvement (EI) acquisition function. The AOE baseline uses a sparse GP
to approximate p(m|a, x) and the EI acquisition function to decide which candidate model to deploy;
these settings follow those of Dai et al. (2020). We also include a naive multi-fidelity approach
which we call AOE-MF-UCB, inspired by the approach of Kandasamy et al. (2016). Here, we first
compute the EI acquisition functions of BO and AOE and then we compute the minimum of those,
i.e. α(M) = min(αBO(M), αAOE(M)) over the space of candidate models. We then maximize
this overlap to decide which candidate model to deploy.

Metrics We evaluate and compare the performance of our method on two different, common
metrics: 1) the best metric observation up to that iteration and 2) the metric gap, which measures the
difference between the maximum of the ground-truth metric and the ground-truth metric value at the
optimum predicted by each respective method. See the appendix for a plot of the ground-truth of the
online metric v(M).

Results We present the findings for 10 inducing points, which corresponds to a relatively low bias,
in Figure 1. As can be seen in both plots, our method (AOE-MF-PM) and our naive multi-fidelity
baseline (AOE-MF-UCB) perform better than the remaining baseline methods. AOE-MF-PM is
particularly strong on the metric gap metric (right plot), with almost no difference to the ground-
truth. AOE on the other hand, takes much longer to converge, with a final value worse than that
of AOE-MF-PM. We also present results for 5 inducing points in Figure 2, which corresponds to a
relatively large bias. Here, AOE-MF-PM matches the performance of BO almost exactly and AOE
performs particularly poorly. This is because the surrogate model approximation of p(m|a, x) is

6

Figure 2: High-bias results for the contextual bandit experiments. The left plot shows a comparison
of our method with baseline methods using the best online observation of the metric so far (higher is
better). The right plot shows a similar comparison using the metric gap, which measures how close
each method is to the maximum of the ground-truth (lower is better). The dashed lines in the right
plot show the AOE predictions computed as part of the respective methods. See the appendix for a
corresponding plot with error bars.

quite inaccurate, resulting in biased metric predictions, which means that the AOE predictions do not
actually help much in our multi-fidelity approach. Nonetheless, our approach does not perform any
worse than the BO baseline on both metrics. The AOE-MF-UCB baseline performs slightly better
than the AOE baseline on the best observation metric, but only the same on the metric gap baseline.
Interestingly, the random baseline performs better than both the AOE and AOE-MF-UCB baseline on
the best observation metric, suggesting that AOE predictions may even be misleading when there is a
large bias.

4.2 Convolutional Neural Networks

Next, we turn to convolutional neural networks (CNNs) as an expressive class of candidate models
for image classification. We consider relatively small CNNs, with three convolutional layers and two
dense layers, that we train on CIFAR-10 image data (Krizhevsky, 2009) with cross-entropy loss and a
stochastic gradient-descent (SGD) optimizer. In this setting, the context x are the CIFAR-10 images
and the decisions a are the class predictions of the CNN candidate models. The immediate feedback
m is binary again, with m = 0 when the classes are incorrectly predicted and m = 1 when they are
correctly predicted. The online metric we wish to maximize is the average of this feedback, i.e. the
test set accuracy. The caveat here, however, is that we first need to gather the test set data through
online experimentation. We here also consider the case of gathering data from differently-sized test
cells, specifically either from 1,000 or 5,000 users, as discussed in Section 3.2.2

The set of candidate modelsM is defined by four hyper-parameters: the learning rate lr, the SGD
momentum α, the batch-size b and the learning rate exponential decay parameter λ. The learning rate
can take 10 values between 10−5 and 10−1 in the log-space and the momentum can take 10 values
between 0.5 and 1. The batch-size can take values b ∈ {32, 64, 128, 256, 512}, while the learning
rate decay can take values λ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. Altogether, this means that
our set of candidate models consists of 3,000 different CNNs.

Unlike for the contextual bandit experiments, we cannot easily use a sparse GP as the surrogate
model to approximate p(m|a,x). The image data x is 3072-dimensional, which is generally too
high for GPs to handle. Instead, we here use a residual neural network (ResNet) surrogate model
to learn the mapping x,a → m. To do so, we use a standard ResNet50 architecture that has 48
convolutional layers, followed by a few fully-connected layers. We pre-train this surrogate model
on the training set that was used to train the candidate models (104 CIFAR-10 images) and use
the learned mapping to compute AOE predictions v̂AOE(M) with a sample-average of Equation 3.
During the online experimentation, we then freeze the convolutional layers and only re-train the

2We note that our method does not place a restriction on the number of fidelities, i.e. different test cell sizes.

7

Figure 3: Results for the CNN experiments. The left plot shows a comparison of our method with
baseline methods using the best online observation of the metric so far (higher is better). The right
plot shows a similar comparison using the metric gap, which measures how close each method is to
the maximum of the ground-truth (lower is better). See the appendix for a corresponding plot with
error bars.

fully-connected layers upon gathering new data. We found that this generally improves robustness, at
only a small performance cost.

Baselines Similarly to the contextual bandit experiment, we compare our AOE-MF-PM approach
to a random and BO baseline. However, because we cannot use a sparse GP as a surrogate model,
due to the high-dimensional image data, we also cannot use AOE and AOE-MF-UCB as a baseline in
this experiment. Our ResNet surrogate model only provides a mean estimate of the feedback m and
not an uncertainty estimate, which is required by regular AOE (but not our approach).

Results We present our findings in Figure 3, where we evaluate our methods on the same two
metrics introduced in Section 4.1. Our AOE-MF-PM method with two fidelity levels (1,000 and
5,000 users) performs better than the baseline approaches and our method with a single fidelity level
(5,000 users), on both metrics. When looking at the red and brown lines, it becomes clear that we are
indeed more resource-efficient when taking the number of users into account.

5 Conclusions

In this work we have introduced automatic online experimentation with multi-fidelity (AOE-MF),
which combines AOE with Bayesian optimization (BO) by means of multi-fidelity optimization.
Our method, called AOE-MF-PM, allows us to mitigate the effect of biased AOE predictions by
using them as a prior mean to a probabilistic surrogate model of online observations. Furthermore,
our method allows us to find the optimal number of users in a test cell, unlike previous approaches.
Our experiments show that our method effectively mitigates biases from inaccurate modeling of
user behavior, outperforming all baseline methods. Additionally, when the bias is extremely large
and AOE predictions are not particularly useful, our method does not perform worse than BO. Our
experiments on high-dimensional image data show that finding the optimal number of users in a
test cell further improves resource allocation. These findings suggest that multi-fidelity approaches
provide an exciting new direction of research in automated online experimentation.

There are many interesting future directions of this particular work. First, we utilised a linear
combination of different fidelity levels, which could be taken further by considering non-linear
combinations or more advanced methods from recent work in multi-fidelity optimization (e.g. Song
et al., 2019; Li et al., 2020). Second, we do not take the uncertainty of AOE predictions into account
when using them as a prior mean, which could further improve efficiency and resource allocation.
Lastly, it would be fruitful to evaluate our method with a real, online experiment, which could further
help to understand the sources of biases and how to mitigate them.

8

References
Zhenwen Dai, Praveen Chandar, Ghazal Fazelnia, Benjamin Carterette, and Mounia Lalmas. Model

selection for production system via automated online experiments. In Advances in Neural Informa-
tion Processing Systems, volume 33, pages 1106–1116. Curran Associates, Inc., 2020.

A. Forrester, A. Sobester, and A. Keane. Multi-fidelity optimization via surrogate modelling. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463:3251 –
3269, 2007.

Vincent Fortuin, Heiko Strathmann, and Gunnar Rätsch. Meta-Learning Mean Functions for Gaussian
Processes. arXiv e-prints, art. arXiv:1901.08098, 2020.

Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global optimization.
J. Mach. Learn. Res., 13(null):1809–1837, June 2012.

Kirthevasan Kandasamy, Gautam Dasarathy, Junier Oliva, Jeff Schneider, and Barnabás Póczos.
Gaussian process bandit optimisation with multi-fidelity evaluations. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, page 1000–1008,
Red Hook, NY, USA, 2016. Curran Associates Inc.

M. C. Kennedy and A. O’Hagan. Predicting the output from a complex computer code when fast
approximations are available. Biometrika, 87(1):1–13, 2000.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Shibo Li, Wei Xing, Robert Kirby, and Shandian Zhe. Multi-fidelity bayesian optimization via
deep neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 8521–8531. Curran
Associates, Inc., 2020.

Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas Krause, Stefan
Schaal, and Sebastian Trimpe. Virtual vs. real: Trading off simulations and physical experiments
in reinforcement learning with bayesian optimization. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 1557–1563, 2017. doi: 10.1109/ICRA.2017.7989186.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning,
volume 2. MIT Press, 2006.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016. doi: 10.1109/JPROC.2015.2494218.

Jialin Song, Yuxin Chen, and Yisong Yue. A general framework for multi-fidelity bayesian optimiza-
tion with gaussian processes. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89
of Proceedings of Machine Learning Research, pages 3158–3167. PMLR, 16–18 Apr 2019.

9

A Appendix

A.1 Contextual Bandit Experiment: Ground-Truths

Figure 4: Ground-truth reward probabilities (indi-
cated by the colorbar) for each combination of the
possible contexts x and actions a.

Figure 5: Ground-truth online metric v(M)
as a function of the contextual bandit policy
hyper-parameters (α and β in Equation 10.
This was computed using the ground-truth re-
ward probabilities in Figure 4 and Equation 3.

A.2 Contextual Bandit Experiment: Results with Error Bars

Figure 6: Low-bias results for the contextual bandit experiments with error bars, obtained through
repeat runs with different random seeds, corresponding to Figure 1. Each method was repeated 50
times, with the bold curves showing the mean and the shaded regions showing the standard deviation.

10

Figure 7: High-bias results for the contextual bandit experiments with error bars, obtained through
repeat runs with different random seeds, corresponding to Figure 2. Each method was repeated 50
times, with the bold curves showing the mean and the shaded regions showing the standard deviation.

A.3 CNN Experiment: Results with Error Bars

Figure 8: Results for the CNN experiments with error bars, obtained through repeat runs with different
random seeds, corresponding to Figure 3. The BO and random baseline were repeated 100 times,
while AOE-MF-PM and AOE-MF-PM + #Users were repeated 20 and 10 times, respectively, due to
computational limitations. The solid lines show the means and the shaded regions show the standard
deviation.

11

	Introduction
	Background
	Model Selection for Production Systems
	Automated Online Experimentation
	Multi-Fidelity Optimization

	Methodology
	Treating AOE predictions as low-fidelity data
	Variable number of users as different fidelity levels

	Experiments
	Contextual Bandits
	Convolutional Neural Networks

	Conclusions
	Appendix
	Contextual Bandit Experiment: Ground-Truths
	Contextual Bandit Experiment: Results with Error Bars
	CNN Experiment: Results with Error Bars

