
Published as a conference paper at COLM 2025

Stop-Think-AutoRegress: Language Modeling with Latent
Diffusion Planning

Justin Lovelace∗, Christian Belardi, Sofian Zalouk, Adhitya Polavaram,
Srivatsa Kundurthy, Kilian Q Weinberger
Department of Computer Science, Cornell University

Abstract

The Stop-Think-AutoRegress Language Diffusion Model (STAR-LDM) in-
tegrates latent diffusion planning with autoregressive generation. Un-
like conventional autoregressive language models limited to token-by-
token decisions, STAR-LDM incorporates a “thinking” phase that pauses
generation to refine a semantic plan through diffusion before continuing.
This enables global planning in continuous space prior to committing to
discrete tokens. Evaluations show STAR-LDM significantly outperforms
similar-sized models on language understanding benchmarks and achieves
> 70% win rates in LLM-as-judge comparisons for narrative coherence
and commonsense reasoning. The architecture also allows straightfor-
ward control through lightweight classifiers, enabling fine-grained steering
of attributes without model retraining while maintaining better fluency-
control trade-offs than specialized approaches. Our code is available at
https://github.com/justinlovelace/STAR-LDM.

1 Introduction

Large Language Models (LLMs), typically based on the Transformer architecture (Vaswani
et al., 2017), have demonstrated remarkable capabilities across a vast range of natural
language tasks (Kojima et al., 2022; Brown et al., 2020). Their success largely stems from the
autoregressive (AR) generation paradigm, where text is produced sequentially, predicting
one token at a time conditioned on the preceding context. However, this strictly left-to-right,
token-by-token generation process fundamentally differs from human writing practices.
Human authors frequently pause, reflect, plan ahead, and revise their text to ensure global
coherence, stylistic consistency, and adherence to overarching goals Hayes & Flower (1996).
In contrast, standard autoregressive models make irrevocable, local decisions at each step,
which inherently limits their capacity for long-range planning or dynamic control over the
generation process (Liu et al., 2021b). Consequently, ensuring that generated text globally
satisfies complex constraints, maintains a consistent persona, or avoids undesirable content
purely through local token predictions remains a significant challenge, often necessitating
computationally expensive fine-tuning or reinforcement learning procedures (Ziegler et al.,
2019; Ouyang et al., 2022).

Recent advancements in generative modeling, particularly score-based diffusion models
(Ho et al., 2020; Song et al., 2020), offer a fundamentally different paradigm. These models
generate data through an iterative denoising process, beginning with pure noise and guided
by a learned score function. Crucially, this score function can be readily modified during
generation to incorporate external guidance signals from lightweight classifiers (Dhariwal
& Nichol, 2021; Ho & Salimans, 2021), enabling flexible control over various attributes
of the generated output (e.g., style, content). This inherent controllability, which can be
effectively applied in continuous spaces such as image latents (Rombach et al., 2021) or text
embeddings (Li et al., 2022; Lovelace et al., 2023), presents a particularly promising direction
for enhancing control mechanisms in large language models.

∗ Corresponding author: jl3353@cornell.edu

1

https://github.com/justinlovelace/STAR-LDM
mailto:jl3353@cornell.edu

Published as a conference paper at COLM 2025

Inspired by the planning capabilities suggested by human writing and the controllability
of diffusion models, we propose Stop-Think-AutoRegress Language Diffusion Model (STAR-
LDM). STAR-LDM is a novel, unified architecture that integrates latent diffusion planning
directly into the autoregressive generation framework. It introduces a “thinking” phase
where standard token generation is paused. During this phase, the model utilizes a diffusion
process operating in a continuous sentence embedding space to refine a latent representation
(a soft prompt) that encodes a plan for the subsequent text. This refined latent representation
then guides the resumption of autoregressive token generation. By jointly training the
autoregressive and diffusion components, STAR-LDM learns to perform global semantic
planning in a continuous space before committing to discrete token choices, enabling more
coherent and controllable generation.

Our contributions are as follows: (1) We propose STAR-LDM, a unified architecture that
integrates latent diffusion planning within an autoregressive language model. (2) We
demonstrate that STAR-LDM achieves improved language generation quality. (3) We show
that our unified architecture leads to substantial improvements on standard language
understanding benchmarks, indicating that the planning mechanism enhances, rather than
hinders, core language capabilities. (4) We validate that STAR-LDM’s integrated diffusion
component enables efficient, plug-and-play control over text attributes (like sentiment and
toxicity) using lightweight classifiers during inference, without requiring model retraining.
STAR-LDM represents a step towards language models that can ”stop and think” entirely
in latent space, leading to higher-quality, more controllable, and potentially more reliable
text generation.

2 Background

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Kingma
& Gao, 2023), are a class of generative models that iteratively refine a sample of noise to
a sample from some data distribution in a coarse-to-fine manner. Given clean data xdata
from q(xdata), diffusion models learn a model pθ(xdata) approximating q(xdata). Here, xdata
could be images, audio, or continuous latent representations relevant to NLP (Li et al., 2022;
Rombach et al., 2021; Lovelace et al., 2024), such as the sentence embeddings used in this
work (Ni et al., 2022).

Forward process. Diffusion models define a forward noising process that transitions clean
data xdata to noise over continuous time t ∈ [0, 1]. The noisy latent zt at time t is given by
q(zt|xdata) = N (zt; αtxdata, σ2

t I), which can be sampled as:

zt = αtxdata + σtϵ, where ϵ ∼ N (0, I). (1)

Using the variance-preserving formulation (Ho et al., 2020) (σ2
t = 1 − α2

t), the noise level is
parameterized by the log Signal-to-Noise Ratio (SNR), λt = log(α2

t /σ2
t). The schedule αt

decreases such that z0 ≈ xdata and the distribution of z1 approaches a standard normal, i.e.,
q(z1|xdata) ≈ N (0, I).

Generative model. The generative process reverses the forward process, starting from noise
z1 ∼ N (0, I) and iteratively denoising it to produce a final sample z0 that approximates the
data distribution q(xdata). This requires the score function ∇zt log pt(zt), the gradient of the
log-density of noisy data at time t. Diffusion models introduce a neural network sθ(zt, t) to
approximate this score. Sampling involves iteratively applying the learned model sθ (or an
equivalent parameterization, like noise prediction) to reverse the diffusion from t = 1 to
t = 0, often using solvers like DDPM (Ho et al., 2020).

Training objective. The score network sθ can be learned via denoising score matching (Song
& Ermon, 2019). An equivalent and common objective (Ho et al., 2020) trains a network
ϵθ(zt, t) to predict the noise ϵ added to xdata to get zt, using a loss like:

L(θ) = Et,xdata∼q(xdata),ϵ∼N (0,I)

[
w(λt) · ∥ϵ − ϵθ(zt, t)∥2

2

]
, (2)

where zt = αtxdata + σtϵ and w(λt) is an SNR-dependent weighting term (Kingma et al.,
2021). The score and noise predictions are related by sθ(zt, t) = −ϵθ(zt, t)/σt.

2

Published as a conference paper at COLM 2025

Plug-and-play control. A key advantage of diffusion, as opposed to autoregressive, models
is their controllability via plug-and-play guidance (Song et al., 2020; Dhariwal & Nichol,
2021). To generate samples conditioned on y, the sampling process is guided by the condi-
tional score ∇zt log pt(zt|y). Using Bayes’ rule, this conditional score can be decomposed:

∇zt log pt(zt|y) = ∇zt log pt(zt)︸ ︷︷ ︸
Unconditional Score

+∇zt log pt(y|zt)︸ ︷︷ ︸
Guidance Term

. (3)

The first term is the standard score approximated by the unconditional diffusion model
sθ(zt, t). The second term guides the sampling towards latents zt that are likely to produce
the condition y. This guidance term can be approximated using gradients from a separate
classifier trained on noisy data, which is often called classifier guidance (Dhariwal & Nichol,
2021).

In practice, a guidance scale s ≥ 0 is introduced to modulate the strength of the condition:

ŝ(zt, t, y) = ∇zt log pt(zt) + s · ∇zt log pt(y|zt). (4)

Setting s = 0 yields unconditional generation, while s > 1 increases the influence of y.
This provides flexible “plug-and-play” control without retraining the base model for each
condition y. This inherent controllability offers a promising avenue to address the control
challenges of autoregressive language generation, which motivates our work.

3 Stop-Think-AutoRegress Language Diffusion Model

Diffusion
Sampling

The

Diffusion Loss

old clock ticked

old clock ticked

relentlessly

as ...

Gaussian
Noise

...

Autoregressive Decoder

Sentence
T5

Language Modeling
Loss

Sentence
Embedding

Autoregressive
Generation

STAR-LDM Training STAR-LDM Generation

DiT

The old clock ticked

old clock ticked

relentlessly

as

as

...

Gaussian Noise

...

DiT

DiT

relentlessly

as

Autoregressive Decoder

DiT
relentlessly

Prefix

Continuation
Noisy Sentence
Embedding

Generated
Continuation

Denoised Sentence
Embedding

Prefix

Figure 1: Unified diffusion-guided language model architecture illustrating the training
(left) and generation (right) processes. See text for details.

We propose Stop-Think-AutoRegress Language Diffusion Model (STAR-LDM), a unified archi-
tecture that augments autoregressive language modeling with latent diffusion planning.
STAR-LDM can pause generation, plan in a continuous latent space, and resume autoregres-
sive token generation with improved coherence.

Figure 1 depicts our proposed architecture, which consists of three major components,
each with a primary role in enabling our ”stop-think-autoregress” approach: (1) The Au-
toregressive Decoder (in purple) serves as the foundation of our model, handling token
generation in a sequential manner similar to traditional language models. This component
maintains the local fluency and grammatical structure necessary for coherent text. (2) The
continuous Sentence Embedding Space (blue vectors) provides a latent planning space
that captures semantic meaning. Using 768-dimensional Sentence-T5 XL embeddings (Ni
et al., 2022), this space represents text at a higher level of abstraction than tokens, with
representations that capture core semantic content while being invariant to shallow. (3) Two
Diffusion Transformers (DiTs) (Peebles & Xie, 2022) (in green) facilitate the translation
between the continuous embedding space and the discrete token representations used by
the decoder. These transformer encoders are also conditioned on the noise level through
adaptive normalization layers following Peebles & Xie (2022).

3

Published as a conference paper at COLM 2025

In our approach, text generation is conceptualized as a two-part process: first processing
a prefix (the initial portion of text that has already been generated), then planning and
generating a coherent continuation. The prefix might be a prompt provided by a user
or previously generated text, while the continuation represents new text the model will
generate with guidance from a semantic plan.

During training, these components work together as follows. First, the autoregressive de-
coder processes the prefix text xpref (“The old clock ticked”) like a standard autoregressive
language model. The model also processes a noisy representation of the continuation’s
semantic meaning. This representation is created by encoding the ground truth continuation
xcont (“relentlessly as...”) into a clean embedding zdata using Sentence-T5, then adding
noise according to the diffusion schedule to obtain zt = αtzdata + σtϵ.

We linearly project this noisy embedding into a sequence of 8 soft vectors, which the first DiT
processes (conditioning on the current noise level) to form a soft prompt. This prompt will
both be used to guide diffusion denoising and subsequent token generation. For diffusion
denoising, the autoregressive decoder naturally incorporates information from the prefix
as it processes this soft prompt. The decoder’s outputs then flow to the second DiT, which
generates the final representations for the diffusion prediction. We apply a learned linear
projection to obtain the final diffusion prediction z̃data, completing a step of the denoising
process.

After processing this soft prompt, the decoder reverts to standard next-token prediction. The
predictions for the text continuation are therefore conditioned on both the textual prefix and
the (noisy) sentence embedding of that text continuation. The sentence embedding provides
a valuable signal for the token prediction objective, teaching the decoder to generate text
aligned with the sentence embedding.

This integrated design creates a model that can simultaneously handle token-level predic-
tion and semantic-level planning. As noise levels decrease during training or sampling, the
semantic guidance becomes increasingly precise, enabling the model to generate continua-
tions that follow the semantic content in the denoised embedding while maintaining both
local fluency and global coherence.

3.1 Training Procedure

Our training approach combines autoregressive language modeling with diffusion-based
planning in a multi-task learning framework. This training strategy will enable STAR-
LDM to learn both token generation and semantic planning simultaneously. During self-
supervised pre-training (left side of Figure 1), we sample text segments and randomly split
each into a prefix xpref and continuation xcont. This simulates stopping points where the
model would pause to plan. We jointly optimize with two objectives:

Language Modeling Loss (LLM). The loss combines standard prefix modeling and noise-
conditioned continuation modeling:

LLM = −
p

∑
i=1

log P(xpref,i|xpref,<i; θ)︸ ︷︷ ︸
Prefix modeling

−
n−p

∑
j=1

log P(xcont,j|xpref, xcont,<j, zt; θ)︸ ︷︷ ︸
Continuation modeling

, (5)

where p is the prefix length, n the total length, and zt the noisy embedding of xcont.

Diffusion Loss (LDM). We encode the continuation xcont using Sentence-T5 to obtain the
clean embedding z0. Following standard diffusion training, we then sample a timestep t
and noise vector ϵ ∼ N (0, I), compute the noisy embedding zt = αtz0 + σtϵ, and train the
model to predict the added noise conditioned on the prefix and timestep:

LDM = Et,xcont,ϵ

[
w(λt) · ∥ϵ − ϵθ(zt, t, xpref)∥2

2

]
(6)

4

Published as a conference paper at COLM 2025

This objective is weighted by w(λt), a function of the log(SNR) that balances the im-
portance of different noise levels1. The final training objective combines both losses,
L = LLM + βLDM, where the scalar β balances the two components. STAR-LDM is therefore
trained for autoregression and diffusion in a multi-task manner.

Noise Conditioning. The diffusion training process exposes the autoregressive decoder
to embeddings zt with varying noise levels, from α1 ≈ 0 (pure noise) to α0 ≈ 1 (clean).
Like prior work that has utilized noise-conditioning to improve robustness (Ho et al., 2022;
Lovelace et al., 2024), our decoder learns to adapt based on noise level: relying heavily on
the semantic plan at low noise while falling back to standard prefix conditioning at high
noise. This creates a natural control parameter during inference—the noise level—that
adjusts the balance between diffusion planning and autoregressive generation.

3.2 Generation Process

While our training process optimizes STAR-LDM to both generate coherent text and denoise
semantic embeddings, the inference process leverages these capabilities in a sequential
”Stop-Think-AutoRegress” workflow. During inference, we assume a prompted setting
where the user provides a prefix, and the model plans and generates a continuation.

During inference (Figure 1, right), our approach unfolds in three distinct phases: 1) Stop: The
model processes the input prompt xpref (provided by the user) through the autoregressive
decoder. 2) Think: The model then “thinks” by sampling initial noise z̃1 = ϵ ∼ N (0, I) and
performing iterative denoising to obtain a semantic plan. This iterative denoising process,
guided by the prefix xpref, gradually transforms random noise into a coherent semantic
embedding, z̃0.

Starting from pure noise z̃1, the model applies its trained noise prediction network ϵθ ,
consisting of a pass through the network, over multiple timesteps (e.g. 50 steps). At each
step t, the model uses the predicted noise component to reduce the noise level of the
embedding following a predetermined schedule. This process iteratively refines a coherent
plan consistent with the given prefix. The generation process concludes with the third phase:
3) AutoRegress. Here, the generated semantic plan z̃0 guides the autoregressive decoder to
produce a fluent continuation x̃cont. This is achieved by processing z̃0 through the first DiT
to create a soft prompt that conditions the decoder alongside xpref. Once conditioned on
this combined prompt, the decoder generates the continuation via standard autoregressive
sampling.

Prompt guidance. During the thinking phase, we can optionally strengthen the influence of
the prefix on the generated plan using classifier-free guidance (Ho & Salimans, 2021). This
technique combines an unconditional prediction (ignoring the prefix) with a conditional
prediction (using the prefix) to amplify the prefix’s influence:

ϵ̃t = ϵθ(zt, t, ∅) + w · (ϵθ(zt, t, xpref)− ϵθ(zt, t, ∅)) (7)

where w is the guidance scale and ϵθ(zt, t, ∅) represents an unconditional prediction ob-
tained by masking the prefix embeddings from the diffusion model. Higher values of w
increase the prompt’s influence on the semantic plan.

Plug-and-Play Control with Classifier Guidance. To enable efficient classifier guidance
(Dhariwal & Nichol, 2021), we train an MLP that directly operates on noisy sentence
embeddings:

pt(y|zt) ≈ fϕ(zt, t) = MLP(zt, TimeEmb(t)), (8)

where TimeEmb(t) encodes the noise level via sinusoidal embeddings. To make the MLP
robust to varying noise levels, we follow Dhariwal & Nichol (2021) and train on labeled
data that we perturb with randomly chosen noise levels. During inference, we compute the
guidance gradient directly:

∇zt log pt(y|zt) ≈ ∇zt fϕ(zt, t) (9)

1We adopt the sigmoid weighting and cosine noise schedule used by Hoogeboom et al. (2024).

5

Published as a conference paper at COLM 2025

This lightweight approach enables attribute control with negligible computational overhead.

Implementation Details. We implement our model using GPT2-Large as the autoregressive
backbone which has 770M parameters. Our unified architecture, with the two small DiT
encoders, has 956M trainable parameters. During training, we use the sigmoid loss weight-
ing and cosine noise schedule following Hoogeboom et al. (2024). For diffusion generation,
we use a cosine noise schedule (Dhariwal & Nichol, 2021) with 50 diffusion steps and add
small noise (σ2

t = 0.1) to the final generated embedding z̃0 to ensure robustness to minor
errors introduced by diffusion sampling. We train our model on approximately 16B tokens
from the FineWeb dataset (Penedo et al., 2024). We report full architecture details and
hyperparameters in Appendix F.

4 Impact of Diffusion Process on Language Modeling

Next token prediction in traditional autoregressive models focuses primarily on local coher-
ence, making these models inherently myopic in their generation decisions. In contrast, our
diffusion-based planning approach introduces a form of non-local semantic guidance. To un-
derstand how this semantic guidance influences token prediction, we conducted a controlled
experiment visualized in Figure 2. We begin with a simple prefix (”I went to the carnival
and”) and two distinct continuations describing different experiences. For each continuation,
we compute token probabilities under two conditions: (1) when conditioned on a clean
semantic embedding of the entire continuation (z0) and (2) when conditioned on pure Gaus-
sian noise (ϵ). The difference in log likelihoods, log p(xcont|xpre f , z0)− log p(xcont|xpre f , ϵ),
reveals which tokens are most influenced by semantic planning with the ground-truth
embedding.

As shown in Figure 2, the semantic plan primarily increases the likelihood of content-bearing
words that capture the essence of each narrative. In the first continuation, words like ”ring
toss,” ”gold fish,” ”named,” and ”Flash” show the largest positive shifts. These precisely
correspond to the key narrative elements describing winning a pet fish at a carnival game.
Similarly, in the second continuation, words like ”lost,” ”mirrors,” ”eaten,” and ”funnel”
experience the greatest positive influence—all central to a different carnival experience
involving a hall of mirrors and food. This analysis demonstrates that our model’s diffusion-
based planning mechanism effectively captures and emphasizes semantically meaningful
content, rather than merely influencing surface-level linguistic patterns. By explicitly
integrating a latent semantic plan, STAR-LDM generates coherent language that maintain
global semantic consistency. We present additional experiments exploring this semantic
influence across varying noise levels in Appendix A.

Prompt (xpref): I went to the carnival and
Forced Continuation (xcont)
t ried my luck at the ring toss , somehow winning a gold fish that survived exactly three days in my apartment .
 I named him Flash due to his brief but memorable tenure in my life .

Forced Continuation (xcont)
got lost in the hall of mirrors , spending nearly an hour trying to find my way out while my friends waited
 impatient ly . When I finally emerged , they had already eaten most of my funnel cake .

-6.17 -4.06 -1.94 0.17 2.28 4.40 6.51
log p(xcont|xpref, z0) log p(xcont|xpref,)

Figure 2: Visualization of the change in log likelihood due to conditioning on the clean con-
tinuation embedding versus pure noise. Tokens highlighted in red represent the information
provided by the semantic plan.

6

Published as a conference paper at COLM 2025

Gaussian
Noise

Autoregressive Decoder

Sentence
T5Sentence Embedding

Zero-Shot NLU (STAR-LDM)

DiT

DiT

Autoregressive Decoder

Zero-Shot NLU (LM)

old person

What type of person typically
contracts illness? Answer:

old person

old person
old person

What type of person typically
contracts illness? Answer:

Figure 3: Diagram comparing zero-shot NLU evaluation for standard LMs (left) and STAR-
LDM (right). Both models score candidate answers (Ai) given a question (Q). STAR-LDM
utilizes both the answer text Ai and its latent embedding zi,0 from Sentence-T5 for scoring.

5 Natural Language Understanding

Standard Natural Language Understanding (NLU) benchmarks, particularly multiple-
choice question answering (QA) datasets (e.g., CSQA, SIQA, ARC), assess a model’s ability
to identify the most plausible answer or completion (A) from a set of candidates, given a
context or question (Q). Conventional autoregressive models (Figure 3, Left Panel) typically
score each candidate answer Ai by its negative log-likelihood: LLM(Ai|Q) = − log p(Ai|Q).
This likelihood is calculated using teacher forcing, and the candidate with the lowest score
(highest probability) is selected as the answer.

We adapt this protocol for STAR-LDM to select the most likely candidate answer given
the question Q (Figure 3, Right Panel). We assess candidate answers by approximating
− log p(Ai|Q) using the variational lower bound on the likelihood (Kingma et al., 2021), as
direct calculation is intractable. We encode each candidate Ai using Sentence T5 to produce
a semantic latent plan zi,0, add Gaussian noise to generate zi,t at a specific timestep t, and
compute our scoring function derived from the Evidence Lower Bound (ELBO):
− log p(Ai|Q) ≤ LLM(Ai|zi,0, Q) + LDM(zi,t|Q) (10)

= −
|Ai |

∑
j=1

log p(Aj
i |A

<j
i , zi,0, Q) + Et,ϵ∼N (0,I)[wELBO(λt) · ||ϵ − ϵθ(zi,t, t, Q)||22]

where the weighting wELBO(λt) for the regression objective follows from the derivation of
the lower bound (Kingma et al., 2021). We present a detailed derivation of this scoring
function in Appendix C. The LM term measures how well the model reconstructs Ai
given Q and zi,0, while the diffusion term measures how plausible the latent plan zi,0 is for
question Q. We select the candidate with the minimum overall score, choosing the answer
that is both linguistically well-formed and has a plausible semantic meaning. We compute
the expectation in Equation 10 with an unbiased Monte Carlo estimate of the weighted
reconstruction error. In practice, autoregressive models often normalize the log-likelihood,
LLM, by the length of the candidate Ai to improve performance. We also adopt this approach
as we observe it similarly improves performance.

Results. STAR-LDM outperforms similarly sized autoregressive models on standard zero-
shot NLU benchmarks2, as shown in Table 1. The model excels particularly on commonsense
reasoning tasks (CSQA, SIQA), demonstrating the effectiveness of latent semantic plan-
ning. Notably, the diffusion component alone performs strongly, indicating that semantic
plausibility contributes significantly to reasoning capabilities. While the autoregressive
component underperforms independently, combining it with diffusion yields the best re-
sults, suggesting complementary strengths. This demonstrates that our diffusion planning
enhances the NLU capabilities of comparable autoregressive models.

2The benchmarks include CommonsenseQA (CSQA), Social IQA (SIQA), HellaSwag (HS), Wino-
grande (WG), Physical IQA (PIQA), OpenBookQA (OBQA), and ARC (Easy and Challenge).

7

Published as a conference paper at COLM 2025

Model Params Scoring CSQA SIQA HS WG PIQA OBQA ARC:E ARC:C Avg

Random Baseline — 20.0 33.3 25.0 50.0 50.0 25.0 25.0 25.0 31.7

GPT2-Large .77B LM Loss 36.6 42.1 42.9 51.9 69.2 34.2 46.6 25.1 43.6
GPT2-XL 1.5B LM Loss 36.3 42.3 47.9 53.1 70.5 34.4 51.1 28.5 45.5
Pytha-1b 1B LM Loss 35.3 42.4 45.6 52.6 69.2 32.4 49.1 27.0 44.2
Pytha-1.4b 1.4B LM Loss 35.7 43.2 50.9 54.2 71.1 36.0 54.0 28.3 46.7

STAR-LDM .96B
LM Loss 35.20.4 42.20.2 44.00.1 50.50.1 69.30.1 27.10.3 37.60.5 26.30.3 41.50.1

Diffusion Loss 48.70.3 46.80.5 37.90.1 50.40.2 65.50.2 39.30.1 55.00.6 32.10.5 47.00.1
LM + Diff Loss 49.80.3 46.80.3 39.00.1 51.40.1 66.10.1 41.30.2 55.00.3 31.40.8 47.60.1

Table 1: Zero Shot NLU Evaluation Results. We report mean and standard error over three
monte-carlo evaluations for STAR-LDM.

6 StoryCloze Generation

Experimental Setup. To evaluate generation quality, we assess narrative continuations on
the StoryCloze dataset (Mostafazadeh et al., 2016), which requires coherent fifth-sentence
completions for four-sentence stories. We employ Claude 3.7 Sonnet (Anthropic, 2025)
as a judge to compare STAR-LDM against baseline models (GPT-2 Large/XL and Pythia
models (Biderman et al., 2023)) in blind head-to-head evaluations across 200 contexts,
using four criteria: Narrative Coherence, Commonsense Reasoning, Language Quality, and
Emotional/Psychological Plausibility. Full evaluation details, including the prompt, are in
Appendix D.

Results. STAR-LDM significantly outperforms similar-sized and larger models across
all criteria (Figure 4), with win rates exceeding 70% against models like GPT-2 XL on
Coherence/Reasoning (p < 0.01). These substantial gains suggest our latent diffusion
planning effectively improves global structure and logical consistency compared to pure
autoregression. While competitive against much larger models (Pythia 6.9/12B), STAR-
LDM’s improvements in Language Quality are less pronounced, indicating the planning
mechanism primarily enhances semantic coherence rather than surface fluency.

Figure 4: LLM-Judge evaluation. Results presented with 95% confidence intervals.

7 Language Generation Evaluation

Experimental Setup. We evaluate generation on 5000 C4 validation samples (Raffel et al.,
2019), generating 64-token continuations from 32-token prefixes. We evaluate using three
complementary metrics: (1) Llama Ppl measures fluency using perplexity computed by
Llama-3.2-3B (Grattafiori et al., 2024); (2) MAUVE (Pillutla et al., 2021) assesses distributional
similarity to human-written text using GPT-2 Large embeddings; and (3) Div quantifies

8

Published as a conference paper at COLM 2025

C4 Validation

Params CFG (w) MAUVE ↑ Generative Perplexity ↓ Diversity ↑
GPT-2 Large .77B - 85.20.6 30.50.3 41.80.1
GPT-2 XL 1.5B - 86.60.4 27.10.6 43.30.1
Pythia-1b 1B - 85.50.1 36.50.7 45.60.1
Pythia 1.4b 1.4B - 84.80.5 33.1.1 47.10.0

STAR-LDM .96B 1.0 94.60.2 36.10.5 45.30.0
STAR-LDM .96B 1.5 94.10.2 31.10.5 45.40.0
STAR-LDM .96B 2.0 94.00.2 29.80.6 45.40.0

Table 2: Language generation evaluation on C4 validation examples. We report mean and
standard error over three sets of generations.

lexical diversity as ∏4
n=2

|unique n-grams|
|total n-grams| (Su et al., 2022). For STAR-LDM, we report metrics

across different classifier-free guidance strengths (w), which increase the influence of the
prefix, during diffusion planning.

Results. As shown in Table 2, STAR-LDM consistently outperforms baselines in MAUVE
score, while maintaining competitive perplexity and diversity. Increasing prefix guidance
improves fluency without sacrificing diversity. We present results regarding inference
latency in Appendix B.

8 Plug-and-Play Control

Experimental Setup. STAR-LDM enables attribute steering during generation without
model retraining. We evaluate sentiment control and toxicity mitigation and compare
against DeXperts (Liu et al., 2021a)—a strong baseline that fine-tunes specialized language
models to guide generation. In contrast, our approach needs only requires training a
lightweight MLP classifier on the target attribute to guide diffusion planning.

For toxicity control, we trained our MLP on the Jigsaw Unintended Bias dataset (cjadams
et al., 2019). The toxicity guidance was evaluated using 1,000 randomly selected neutral
prompts from RealToxicityPrompts (Gehman et al.). For sentiment control, we used both
Amazon Polarity 3 and Stanford Sentiment Treebank (SST-2) (Socher et al., 2013) to train
our sentiment MLP classifier. We tested sentiment steering using 1,000 randomly selected
neutral prompts from OpenWebText (Gokaslan & Cohen, 2019; Liu et al., 2021a).

For evaluation in both settings, we generated 10 continuations per prompt. We measure the
alignment with the control condition, language fluency, and language diversity. For toxicity,
we follow prior work Deng & Raffel (2023); Liu et al. (2021a)and use the Perspective API. For
sentiment we utilize RoBERTa-Large4 (Liu et al., 2020) fine-tuned on sentiment classification
across diverse domains. For language fluency, we report the generative perplexity with
Llama-3.2-3B. To quantify generation diversity, we follow prior work (Lu et al., 2022b) and
measure the average number of unique 3-grams in each set of continuations.

Results. Figure 5 shows STAR-LDM achieves better control-fluency trade-offs than DeXperts
across guidance scales for both negative sentiment and toxicity reduction. Our model
generates near-zero positive sentiment text at lower perplexity than GPT-2 Large, while
maintaining lexical diversity even under strong guidance (additional results presented in
Appendix E).

3https://huggingface.co/datasets/amazon polarity
4https://huggingface.co/siebert/sentiment-roberta-large-english

9

https://huggingface.co/datasets/amazon_polarity
https://huggingface.co/siebert/sentiment-roberta-large-english

Published as a conference paper at COLM 2025

40 60 80 100 120 140

Llama-3.2-3B Generative Perplexity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n
of

 P
os

iti
ve

 S
en

tim
en

t

GPT-2 Large
GPT-2 Large (DeXperts)
STAR-LDM
STAR-LDM (s=1.0)
STAR-LDM (s=2.0)
STAR-LDM (s=3.0)
STAR-LDM (s=4.0)

(a) Negative Sentiment (Lower is better)

40 50 60 70 80 90

Llama-3.2-3B Generative Perplexity

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

M
ax

im
um

 To
xi

cit
y

GPT-2 Large
GPT-2 Large (DeXperts)
STAR-LDM
STAR-LDM (s=1.0)
STAR-LDM (s=2.0)
STAR-LDM (s=3.0)
STAR-LDM (s=4.0)
STAR-LDM (s=5.0)

(b) Toxicity Mitigation (Lower is better)

Figure 5: Relationship between perplexity and content attributes across guidance scales (s).

9 Related Work

Prior work explores both discrete diffusion (applying noise to token sequences (Hoogeboom
et al., 2021; Austin et al., 2021; Hoogeboom et al., 2022; Lou et al., 2024; Sahoo et al., 2024))
and continuous approaches (in embedding space (Li et al., 2022; Gong et al., 2022; Strudel
et al., 2022; Gulrajani & Hashimoto, 2023) or latent spaces (Lovelace et al., 2023; Zhang et al.,
2023; Lovelace et al., 2024)). While discrete models lag behind autoregressive transformers
(Zheng et al., 2024), continuous models show promise for controllability but face integration
challenges that our unified architecture addresses. Controlled generation methods include
model fine-tuning (domain-adaptive pretraining (Gururangan et al., 2020), control tokens
(Lu et al., 2022b), RLHF (Wu et al., 2023; Ouyang et al., 2022; Jang et al., 2023)) and guided
decoding with lightweight components (classifier guidance (Dathathri et al., 2019; Yang &
Klein, 2021; Deng & Raffel, 2023) or specialized LMs (Krause et al., 2021; Liu et al., 2021a)).
Our approach performs guidance during diffusion planning for semantic control.

Recent work enhances LM capabilities through natural language reasoning (chain-of-
thought prompting (Wei et al., 2022; Zelikman et al., 2022; 2024)), specialized tokens for
paused thinking (Goyal et al.), recurrent computation over hidden states (Hao et al., 2024;
Geiping et al., 2025)), or by learning discrete latent actions via inverse dynamics models (Jia
et al., 2025). Our work introduces ”thinking” through diffusion in semantic space, comple-
menting discrete token generation. Hybrid generative architectures have been explored in
prior work primarily for multimodal settings rather than enhancing language generation
alone (Zhou et al., 2024; Wang et al., 2024; Team, 2024; Liang et al., 2024).

10 Conclusion

We presented STAR-LDM, a unified architecture that integrates autoregressive language
modeling with latent diffusion planning. Our experiments demonstrate three key advan-
tages: (1) improved natural language understanding capabilities, (2) higher quality narrative
generation with better coherence and reasoning, and (3) effective plug-and-play control
without model fine-tuning. By enabling models to ”stop and think” in a continuous seman-
tic space before generating text, STAR-LDM combines the global planning capabilities of
diffusion models with the fluency of autoregressive generation. This approach not only
improves performance on standard tasks but also enables precise control of generated text
attributes through lightweight guidance mechanisms. Our work represents a step toward
language models that more closely mirror human writing processes, pausing to plan before
committing to specific wording.

10

Published as a conference paper at COLM 2025

Acknowledgments

CB is supported by the National Science Foundation (NSF) through the NSF Research
Traineeship (NRT) program under Grant No. 2345579. SZ is supported by the Defense
Advanced Research Projects Agency (DARPA) under Grant No. D24AP00259-00. This
research is supported by grants from the National Science Foundation NSF (OAC- 2118310,
OAC-1934714, IIS-2107161, and IIS-1724282, HDR-2118310), the Cornell Center for Materials
Research with funding from the NSF MRSEC program (DMR-1719875), DARPA, arXiv,
and the New York-Presbyterian for the NYP-Cornell Cardiovascular AI Collaboration. The
authors acknowledge the National Artificial Intelligence Research Resource Pilot (NAIRR-
240157) and TACC Vista for contributing to this research result.

References
Anthropic. Claude 3.7 Sonnet and Claude Code, February 2025. URL https://www.

anthropic.com/news/claude-3-7-sonnet.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=h7-XixPCAL.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle
O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models
across training and scaling. In International Conference on Machine Learning, pp. 2397–2430.
PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

cjadams, Daniel Borkan, inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasserman, and
nithum. Jigsaw unintended bias in toxicity classification, 2019. URL https://kaggle.
com/competitions/jigsaw-unintended-bias-in-toxicity-classification.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino,
Jason Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to
controlled text generation. In International Conference on Learning Representations, 2019.

Haikang Deng and Colin Raffel. Reward-augmented decoding: Efficient controlled text
generation with a unidirectional reward model. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Realtox-
icityprompts: Evaluating neural toxic degeneration in language models.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R.
Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-
time compute with latent reasoning: A recurrent depth approach, 2025. URL https:
//arxiv.org/abs/2502.05171.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq:
Sequence to sequence text generation with diffusion models. In The Eleventh International
Conference on Learning Representations, 2022.

11

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://openreview.net/forum?id=h7-XixPCAL
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://arxiv.org/abs/2502.05171
https://arxiv.org/abs/2502.05171
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Published as a conference paper at COLM 2025

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and
Vaishnavh Nagarajan. Think before you speak: Training language models with pause
tokens. In The Twelfth International Conference on Learning Representations.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models.
arXiv preprint arXiv:2305.18619, 2023.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A Smith. Don’t stop pretraining: Adapt language models to domains
and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 8342–8360, 2020.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuan-
dong Tian. Training large language models to reason in a continuous latent space. arXiv
preprint arXiv:2412.06769, 2024.

John R Hayes and Linda S Flower. The science of writing: Theories, methods, individual
differences, and applications. Lawrence Erlbaum Associates, Inc, 1996.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim
Salimans. Cascaded diffusion models for high fidelity image generation. The Journal of
Machine Learning Research, 23(1):2249–2281, 2022.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Towards non-autoregressive language models. CoRR,
abs/2102.05379, 2021. URL https://arxiv.org/abs/2102.05379.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg,
and Tim Salimans. Autoregressive diffusion models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=Lm8T39vLDTE.

Emiel Hoogeboom, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim
Salimans. Simpler diffusion (sid2): 1.5 fid on imagenet512 with pixel-space diffusion.
arXiv preprint arXiv:2410.19324, 2024.

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer,
Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups:
Personalized large language model alignment via post-hoc parameter merging. arXiv
preprint arXiv:2310.11564, 2023.

Chengxing Jia, Ziniu Li, Pengyuan Wang, Yi-Chen Li, Zhenyu Hou, Yuxiao Dong, and Yang
Yu. Controlling large language model with latent actions. arXiv preprint arXiv:2503.21383,
2025.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
Advances in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with
simple data augmentation. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=NnMEadcdyD.

12

https://arxiv.org/abs/2102.05379
https://openreview.net/forum?id=Lm8T39vLDTE
https://openreview.net/forum?id=NnMEadcdyD

Published as a conference paper at COLM 2025

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. Advances in neural information processing
systems, 35:22199–22213, 2022.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty,
Richard Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided
sequence generation. In Findings of the Association for Computational Linguistics: EMNLP
2021, pp. 4929–4952, 2021.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto.
Diffusion-LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=3s9IrEsjLyk.

Weixin Liang, Lili Yu, Liang Luo, Srinivasan Iyer, Ning Dong, Chunting Zhou, Gargi Ghosh,
Mike Lewis, Wen-tau Yih, Luke Zettlemoyer, et al. Mixture-of-transformers: A sparse and
scalable architecture for multi-modal foundation models. arXiv preprint arXiv:2411.04996,
2024.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A
Smith, and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts
and anti-experts. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 6691–6706, 2021a.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and Yejin Choi. Dexperts: Decoding-
time controlled text generation with experts and anti-experts. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 6691–6706.
Association for Computational Linguistics, 2021b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A robustly optimized
{bert} pretraining approach, 2020. URL https://openreview.net/forum?id=SyxS0T4tvS.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by
estimating the ratios of the data distribution, 2024. URL https://openreview.net/forum?
id=71mqtQdKB9.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Seo Shekhtman, and Kilian Q Weinberger.
Latent diffusion for language generation. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=NKdtztladR.

Justin Lovelace, Varsha Kishore, Yiwei Chen, and Kilian Weinberger. Diffusion guided
language modeling. In Findings of the Association for Computational Linguistics ACL 2024,
pp. 14936–14952, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-
solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022a.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj
Ammanabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced
unlearning. Advances in neural information processing systems, 35:27591–27609, 2022b.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy
Vanderwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for
deeper understanding of commonsense stories. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 839–849, 2016.

13

https://openreview.net/forum?id=3s9IrEsjLyk
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=71mqtQdKB9
https://openreview.net/forum?id=71mqtQdKB9
https://openreview.net/forum?id=NKdtztladR

Published as a conference paper at COLM 2025

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer, and
Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models.
In Findings of the Association for Computational Linguistics: ACL 2022, pp. 1864–1874, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the
web for the finest text data at scale. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/
forum?id=n6SCkn2QaG.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin
Choi, and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human
text using divergence frontiers. Advances in Neural Information Processing Systems, 34:
4816–4828, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. arXiv e-prints, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pp. 234–241. Springer, 2015.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin,
Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked
diffusion language models, 2024.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over
a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1631–1642, 2013.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.
org/abs/1503.03585.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
In International Conference on Learning Representations, 2020.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch,
Will Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, et al. Self-conditioned
embedding diffusion for text generation. arXiv preprint arXiv:2211.04236, 2022.

14

https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585

Published as a conference paper at COLM 2025

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A
contrastive framework for neural text generation. arXiv preprint arXiv:2202.06417, 2022.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv
preprint arXiv:2405.09818, 2024. doi: 10.48550/arXiv.2405.09818. URL https://github.
com/facebookresearch/chameleon.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang,
Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all
you need. arXiv preprint arXiv:2409.18869, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in neural information processing systems, 35:24824–24837, 2022.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A
Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives
better rewards for language model training. arXiv preprint arXiv:2306.01693, 2023.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 3511–3535, 2021.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning
with reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Eric Zelikman, Georges Raif Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah
Goodman. Quiet-STar: Language models can teach themselves to think before speaking.
In First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
oRXPiSOGH9.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, Josh Susskind, and Navdeep Jaitly.
Planner: Generating diversified paragraph via latent language diffusion model. arXiv
preprint arXiv:2306.02531, 2023.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang.
Masked diffusion models are secretly time-agnostic masked models and exploit inaccurate
categorical sampling. arXiv preprint arXiv:2409.02908, 2024.

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis,
Jacob Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next
token and diffuse images with one multi-modal model. arXiv preprint arXiv:2408.11039,
2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human prefer-
ences. arXiv preprint arXiv:1909.08593, 2019.

15

https://github.com/facebookresearch/chameleon
https://github.com/facebookresearch/chameleon
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=oRXPiSOGH9
https://openreview.net/forum?id=oRXPiSOGH9

Published as a conference paper at COLM 2025

A Additional Visualizations of the Impact of Diffusion Process on
Language Modeling

We provide a number of additional results in this section to help build intuition for the
contribution of the diffusion model to language generation. Both Figure 2 and Figure 6,
show the change in log likelihood at a token level when conditioned on a semantic plan.
Figure 2 shows this for arbitrary text continuations which we embed as semantic plans with
Sentence T5, while Figure 6 shows this for latent plans sampled from STAR-LDM.

Prompt (xpref): I went for a run

Generated Continuation (xcont)
 Saturday morning . It was a lovely day and I felt great ! I am lucky that my weather isn 't too cold (I 'm

 usually freezing) so it 's

Generated Continuation (xcont)
 yesterday . I started out really slow and my body just wasn 't in the mood to go hard . My butt hurt like hell ,

 but I knew that was

-9.18 -6.91 -4.64 -2.37 -0.09 2.18 4.45
log p(xcont|xpref, z0) log p(xcont|xpref,)

Figure 6: Visualization of the change in log likelihood due to conditioning on a semantic
plan. Shown for two different generations. Positive values (red) indicate tokens that become
more likely when conditioned on the plan, while negative values (blue) indicate tokens that
become less likely.

In order to quantitatively assess the impact of the semantic plans, we measure the perplexity
of STAR-LDM as a function of the log(SNR) in Figure 7. We do this on a subset of the C4
validation set, as well as on a set of generations nucleus sampled from STAR-LDM. We see
that at high log(SNR), where the semantic plan is very clean, the perplexity is much lower.
However at low log(SNR), where the semantic plan is very noisy, the perplexity is much
higher. This demonstrates that the semantic plan reduces the uncertainty in the language
generation; helping the language model focus on a specific semantic direction.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
log Signal-to-Noise Ratio (t)

10

15

20

25

30

Pe
rp

le
xi

ty

Validation

Autoregression
p(xcont|xpref)
Diffusion + Autoregression
p(xcont|xpref, zt)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
log Signal-to-Noise Ratio (t)

12

14

16

18

20

Sampling

Autoregression
p(xcont|xpref)
Diffusion + Autoregression
p(xcont|xpref, zt)

Perplexity Comparison by log(SNR) on Subset of C4 Evaluation Set

Figure 7: Perplexity at various noise levels on a subset of 100 examples from the C4
evaluation set (left), or 100 sampled generations (right).

Additionally we show the same perplexity comparison but at the maximum log(SNR),
corresponding to t = 0, in Figure 8.

Finally to complement our quantitative evaluation of STAR-LDM across noise levels, we
visualize how the token wise log likelihoods change with the log(SNR) in Figure 9.

16

Published as a conference paper at COLM 2025

Autoregression
p(xcont|xpref)

Diffusion + Autoregression
p(xcont|xpref, z0)

0

20

40

60

80

100
Pe

rp
le

xi
ty

Validation

Autoregression
p(xcont|xpref)

Diffusion + Autoregression
p(xcont|xpref, z0)

Sampling

Perplexity Comparison on Subset of C4 Evaluation Set

Figure 8: Perplexity on a subset of 100 examples from the C4 evaluation set (left), or 100
sampled generations (right).

t
ri
ed m

y
 l
uc
k
 a
t
 t
he
 r
in
g
 t
os
s ,

 s
om
eh
ow

 w
in
ni
ng a

 g
ol
d
fi
sh
 t
ha
t

 s
ur
vi
ve
d

 e
xa
ct
ly

 t
hr
ee
 d
ay
s
 i
n
 m
y

 a
pa
rt
me
nt . I

 n
am
ed
 h
im

 F
la
sh
 d
ue t

o
 h
is

 b
ri
ef
 b
ut

 m
em
or
ab
le

 t
en
ur
e
 i
n
 m
y
 l
if
e .

Continuation Tokens

-10.00
-7.78
-5.56
-3.33
-1.11
1.11
3.33
5.56
7.78

10.00

lo
g(

SN
R

)

Teacher Forced Continuation Token Log Likelihoods

10

5

Lo
g

Li
ke

lih
oo

d

t
ri
ed m

y
 l
uc
k
 a
t
 t
he
 r
in
g
 t
os
s ,

 s
om
eh
ow

 w
in
ni
ng a

 g
ol
d
fi
sh
 t
ha
t

 s
ur
vi
ve
d

 e
xa
ct
ly

 t
hr
ee
 d
ay
s
 i
n
 m
y

 a
pa
rt
me
nt . I

 n
am
ed
 h
im

 F
la
sh
 d
ue t

o
 h
is

 b
ri
ef
 b
ut

 m
em
or
ab
le

 t
en
ur
e
 i
n
 m
y
 l
if
e .

Continuation Tokens

-10.00
-7.78
-5.56
-3.33
-1.11
1.11
3.33
5.56
7.78

10.00

lo
g(

SN
R

)

Teacher Forced Continuation Token Log Likelihood Deltas

0

5

10

Lo
g

Li
ke

lih
oo

d
D

el
ta

Figure 9: Visualization of the token wise log likelihood by log(SNR) (top). Visualization of
the token wise change in log likelihood by log(SNR) (bottom).

B Inference Latency

To provide a comprehensive view of the practical trade-offs of our method, we analyze the
inference latency of STAR-LDM. As the primary source of computational overhead is the
iterative ”thinking” phase, we evaluate how generation quality varies with the number of
diffusion sampling steps. For this analysis, we adopt the DPM-Solver++(2M) SDE sampler
(Lu et al., 2022a), which is highly effective for few-step sampling, and we sweep the number
of steps from 5 to 50. We set the prefix guidance to w = 2.0 for this study.

We generate 96-token continuations for 32-token prompts, using a set of 250 examples
randomly drawn from the C4 validation set. We report generative perplexity and diversity
as a function of the wall-clock time per generation in Figure 10. For reference, we also
benchmark the inference speed and quality of the standard GPT-2 Large and GPT-2 XL
autoregressive models.

It is important to note that our current STAR-LDM implementation is not optimized for
inference speed. Specifically, key-value (KV) caching, a standard technique for accelerating
autoregressive generation, is not yet implemented for the diffusion planning phase, during

17

Published as a conference paper at COLM 2025

which the prefix is re-processed at each denoising step. Our reported wall-clock times for
STAR-LDM are therefore a loose upper bound on its inference speed.

As shown in Figure 10, STAR-LDM introduces a tunable trade-off between computation
time and generative perplexity. We observe diminishing returns as the number of sampling
steps increases; perplexity improves up to around 15-20 steps and then largely plateaus,
while latency continues to increase. In that sampling step range, the latency is similar to
GPT-2 XL, which STAR-LDM consistently outperforms in NLU evaluations and generative
metrics such as MAUVE score.

2 3 4 5 6
Time per Sample (seconds)

0

10

20

30

40

50

Ge
ne

ra
tiv

e
Pe

rp
le

xi
ty

10

15

20

25

50

Numbers indicate diffusion timesteps

Quality-Speed Tradeoff in Language Generation

STAR-LDM
GPT-2 Large
GPT-2 XL

Figure 10: Quality-Speed Tradeoff in Language Generation. We plot generative perplexity
(lower is better) against the wall-clock time to generate a 96-token continuation. The
STAR-LDM curve shows performance as the number of diffusion sampling steps is varied.
Baselines are standard autoregressive models.

C NLU Derivation

In this appendix, we derive the Evidence Lower Bound (ELBO) for our STAR-LDM model,
which serves as the foundation for both training and evaluation. This derivation illustrates
how standard diffusion ELBO principles are adapted when the reconstruction term is
parameterized with an autoregressive decoder.

C.1 Standard Diffusion ELBO

We first recall the standard diffusion ELBO for continuous diffusion models (Kingma et al.,
2021). For a diffusion model that generates data starting from pure noise, the log-likelihood
of data point x can be bounded from below as:

18

Published as a conference paper at COLM 2025

log p(x) ≥ LELBO(x) = Eq(zλmax |x)[log p(x|zλmax)]︸ ︷︷ ︸
Reconstruction term

(11)

− DKL(q(zλmin |x) ∥ p(zλmin))︸ ︷︷ ︸
Prior matching term

(12)

−
∫ λmax

λmin

1
2
∥ϵ − ϵθ(zλ, λ)∥2dλ︸ ︷︷ ︸

Diffusion loss term

(13)

Where: zλ represents the noisy latent variable at noise level parameterized by λ (log-SNR);
q(zλ|x) is the forward process that adds noise to the data; p(x|zλmax) is the reconstruction
term (generating data from noisy latent); DKL(q(zλmin |x) ∥ p(zλmin)) is the prior matching
term; and the integral term represents the diffusion denoising objective.

C.2 ELBO for STAR-LDM

For STAR-LDM, we adapt this framework to the language modeling context where we have
a prefix xpref and continuation xcont. The key innovation is that the reconstruction term is
parameterized using an autoregressive decoder. We derive the ELBO for p(xcont|xpref) as
follows:

First, we introduce the latent sentence embedding z that represents the semantic plan for
the continuation. The joint probability can be factorized as:

p(xcont, z|xpref) = p(xcont|xpref, z)p(z|xpref) (14)

The marginal probability of the continuation is:

p(xcont|xpref) =
∫

p(xcont|xpref, z)p(z|xpref)dz (15)

Since this integral is intractable, we derive a lower bound using variational inference.
We introduce a variational posterior q(z|xcont) which in our case is implemented by the
Sentence-T5 encoder which produces a clean embedding, which then serves as the basis for
the forward diffusion process.

Applying the standard variational inference procedure and Jensen’s inequality, we arrive at
the Evidence Lower Bound. Here, z represents the full hierarchy of latent variables defined
by the diffusion process::

log p(xcont|xpref) ≥ Eq(z|xcont)

[
log p(xcont|xpref, z)

]
− DKL(q(z|xcont) ∥ p(z|xpref)) (16)

For the diffusion model part, we expand the KL term using its standard parameterization.
The reconstruction term p(xcont|xpref, z) is evaluated at a specific low-noise level λmax, which
corresponds to the latent variable zλmax . The KL divergence over the full diffusion path
from the variational posterior q(z|xcont) to the prefix-conditioned prior p(z|xpref) can then
be expressed as:

DKL(q(z|xcont) ∥ p(z|xpref)) = DKL(q(zλmin |xcont) ∥ p(zλmin)) (17)

+
∫ λmax

λmin

1
2

Eq(zλ |xcont)[∥ϵ − ϵθ(zλ, λ, xpref)∥2]dλ (18)

19

Published as a conference paper at COLM 2025

The first term is the KL divergence between the prior and the most noisy distribution.
Substituting this back into (16), our final, complete ELBO is:

log p(xcont|xpref) ≥ Eq(zλmax |xcont)

[
log pθ(xcont|xpref, zλmax)

]
− DKL(q(zλmin |xcont) ∥ p(zλmin)) (19)

−
∫ λmax

λmin

1
2

Eq(zλ |xcont)[∥ϵ − ϵθ(zλ, λ, xpref)∥2]dλ (20)

The prior matching term (19) ensures that the distribution of the most-noised latents matches
a standard Gaussian prior. In many practical applications, this term is either assumed to be
approximately zero (if the noise schedule is such that q(zλmin |xcont) collapses to a standard
normal) or is omitted from the training objective as it is often small and constant with
respect to the model parameters θ.

C.3 Parameterization with Autoregressive Decoder

For STAR-LDM, we parameterize the reconstruction term with an autoregressive decoder.
Specifically:

log pθ(xcont|xpref, z) =
|xcont|

∑
i=1

log pθ(xcont,i|xpref, xcont,<i, z) (21)

This allows the model to generate text token-by-token while being guided by the semantic
plan represented by the latent variable z.

C.4 ELBO for Zero-Shot Evaluation

For zero-shot NLU evaluation, we use the negative of the ELBO derived above to score
candidate answers Ai given a question Q. For the purpose of creating a practical scoring
function, we drop the prior matching term (DKL(...) in (19)). This is a common practice as
the term is constant with respect to the model parameters θ being evaluated and does not
affect the relative ranking of candidate answers. Its non-negativity ensures that we are still
optimizing a valid (though slightly looser) bound.

A key aspect of our evaluation protocol is that the reconstruction noise level, λmax, is a
tunable hyperparameter. This allows us to precisely control the trade-off between the influ-
ence of the semantic plan (the diffusion component) and the fluency of the autoregressive
decoder.

The resulting scoring function is based on the two main components of the ELBO bound:
the reconstruction loss and the diffusion loss.

Score(Ai|Q; λmax) = −Eq(zi,λmax |Ai)

[|Ai |

∑
j=1

log pθ(Aj
i |A

<j
i , zi,λmax , Q)

]
(22)

+ Et,ϵ∼N (0,I)

[
wELBO(λt) · ∥ϵ − ϵθ(zi,t, t, Q)∥2

]
(23)

In practice, we compute an unbiased estimate of this score by approximating both expecta-
tions with Monte Carlo sampling5.

In this formulation, zi,λmax represents the candidate answer’s clean embedding noised to the
level λmax, while zi,t is the same embedding noised to a random level t. By varying λmax,
we control how much the autoregressive decoder relies on the semantic plan versus its own

5We use 16 Monte Carlo samples for the reconstruction term and 128 for the diffusion term, which
we found sufficient for stable estimates.

20

Published as a conference paper at COLM 2025

internal knowledge. We fix λmax = −2 across all datasets, though we observed that tuning
this on a per-dataset basis would lead to further improvements. The candidate answer with
the lowest score is selected as the most probable answer.

This derivation provides the theoretical foundation for the zero-shot evaluation protocol for
STAR-LDM.

D StoryCloze Evaluation Details

For our Claude judged StoryCloze evaluation we randomly sample a subset of 200 stories
from the StoryCloze validation split. For each story in our sample, we generate a 32-token
continuation from each baseline as well as STAR-LDM. We then compare for each story
each baseline generation against that of STAR-LDM by inserting the two continuations into
the prompt show in Figure 11. The ordering of the continuations (i.e. which is given as
option A/B) is randomized for every comparison. The prompt gives explicit instruction on
the criteria to use to evaluate the continuations as well as how to denote the winner. The
winner is indicated with specific formatting that is easily parsed with a regular expression.
We present a qualitative example in Figure 12.

E Additional Control Experiments

In this appendix, we provide additional results for our controlled text generation experi-
ments that complement the findings presented in Section 7.

E.1 Control-Perplexity Trade-offs

While the main paper shows negative sentiment control and the average maximum toxicity
metric, here we present additional control-perplexity trade-offs for positive sentiment and
the average toxicity metric.

Figure 13 demonstrates that STAR-LDM effectively controls positive sentiment and reduces
average toxicity scores while maintaining competitive perplexity. For positive sentiment
control, our model achieves high scores (> 0.95) with guidance scale s = 2.0, showing
minimal fluency degradation compared to the base model. Similarly, for toxicity reduction,
STAR-LDM achieves substantially lower average toxicity scores than both GPT-2 Large and
DeXperts at comparable perplexity levels.

E.2 Control-Diversity Trade-offs

We also evaluate the relationship between attribute control and lexical diversity, measured
by the ratio of unique trigrams in the generated output. These metrics complement the
perplexity evaluations by assessing whether controlled generation maintains vocabulary
richness and avoids repetitive patterns.

Figures 14 and 15 show that STAR-LDM consistently outperforms DeXperts by achieving
better attribute control while maintaining higher lexical diversity. For both positive and neg-
ative sentiment control, our approach preserves trigram diversity even at strong guidance
scales. Similarly, for toxicity mitigation, STAR-LDM with guidance scale s = 5.0 dramati-
cally reduces both average and maximum toxicity while maintaining diversity comparable
to the base model.

These results highlight a key advantage of our diffusion planning approach: by guiding
generation at the semantic level before committing to specific tokens, STAR-LDM achieves
natural attribute control that preserves linguistic richness without resorting to repetitive or
restricted vocabulary choices.

21

Published as a conference paper at COLM 2025

LLM-as-a-Judge Prompt

Task Overview
You are evaluating two competing language models that generate story continuations. Given a four-sentence story context, each model will
generate a continuation. Your task is to judge which continuation is better based on a set of defined criteria.
Evaluation Criteria
Narrative Coherence How well does the continuation logically follow from the context? Does it maintain consistency with characters, events,
and situations established in the first four sentences? Does it advance the narrative in a natural and satisfying way?
Commonsense Reasoning Does the continuation demonstrate understanding of causal and temporal relationships? Is it consistent with
real-world knowledge about how events typically unfold? Does it avoid contradicting established facts about the world?
Language Quality Is the continuation grammatically correct and well-formed? Does it match the style, tone, and vocabulary level of the
context? Does it flow naturally from the preceding text?
Emotional/Psychological Plausibility Does the continuation reflect plausible human reactions, motivations, or emotions? Does it appropri-
ately address characters’ goals, feelings, or intentions set up in the context?
Scoring Process Read the four-sentence context carefully. Read both generated continuations (labeled A and B) without knowing which
system produced which text. Rate each continuation on all four criteria using a 1-5 scale. For each criteria select the continuation with the
higher score as the winner. Provide a brief justification (2-3 sentences) explaining your decision.
Clearly indicate your final judgment for each criteria by placing the criteria (either ”Coherence” or ”Reasoning” or ”Quality” or ”Plausibility”)
and winning continuation (either ”A” or ”B”) within double brackets, like: [[Coherence A]]. Make sure to provide a winner for each criteria.
Missing Judgements for Criteria will be considered a tie.
Example Evaluations
Example 1:
Context: Bob was bored at his job as a school teacher. He had been working so hard this past month. He decided to treat himself with
something special. He ordered tickets for a weekend snowboarding trip.
Continuation A: He was looking forward to getting away.
Continuation B: His boss told him he had to work this weekend.
Judgement: Narrative Coherence: Continuation A (4/5) follows the established narrative arc of Bob’s self-reward better than Continuation B
(3/5). A naturally builds on his anticipation while B introduces a conflicting element that shifts away from the focus on Bob’s well-deserved
break. [[Coherence A]] Commonsense Reasoning: Continuation A (5/5) demonstrates better understanding of the natural progression
from planning a trip to looking forward to it, while B (4/5) introduces a plausible but less aligned obstacle that breaks the causal flow of
treating oneself. [[Reasoning A]] Language Quality: Both continuations are grammatically sound and match the context’s tone, with A
(4/5) flowing slightly more naturally than B (4/5) as it maintains the focus on Bob’s perspective rather than shifting to his boss’s actions.
[[Quality A]] Emotional/Psychological Plausibility: Continuation A (4/5) better addresses Bob’s established intention to reward himself
with positive anticipation, while B (4/5), though realistic, introduces disappointment that contradicts the emotional trajectory set up in the
context. [[Plausibility A]]
Example 2:
Context: Olivia went out with Harry on a date. Harry thought the date was going well. Olivia thinks he is a complete jerk and never wants to
see him again. Harry keeps raving about their chemistry.
Continuation A: Olivia is about to leave.
Continuation B: Olivia had her friend call her, to tell her that her mother was ill so as not to offend him.
Judgement: Narrative Coherence: Continuation B (5/5) provides a more specific action that builds upon Olivia’s established discomfort and
desire to end the date without confrontation, while A (4/5) is logical but less developed. [[Coherence B]] Commonsense Reasoning: Continu-
ation B (5/5) demonstrates better understanding of complex social dynamics and face-saving strategies commonly used in uncomfortable
dating situations, compared to A (4/5) which is direct but lacks social nuance. [[Reasoning B]] Language Quality: Both continuations are
grammatically correct, but B (4/5) provides more detail matching the context’s complexity, while A (3/5) is much simpler than the established
narrative style. [[Quality B]] Emotional/Psychological Plausibility: Continuation B (5/5) shows deeper understanding of Olivia’s conflicting
desires to escape while avoiding direct confrontation, consistent with her awareness of Harry’s obliviousness, while A (4/5) captures her
desire to leave but not her likely approach. [[Plausibility B]]
Example 3:
Context: Jack and Ferris always fought for headphones. One day Jack broke Ferris’ headphones while jogging. Ferris was furious at Jack.
Their parents yelled at them.
Continuation A: Jack promised Ferris to buy him new headphones.
Continuation B: Jack promised to take Ferris jogging.
Judgement: Narrative Coherence: Continuation A (5/5) directly addresses the central conflict (broken headphones) with an appropriate
resolution, while B (2/5) ignores the primary issue established in the context. [[Coherence A]] Commonsense Reasoning: Continuation A
(5/5) offers a logical resolution consistent with real-world problem-solving, while B (2/5) fails by suggesting the very activity that caused the
problem, which would likely worsen the situation. [[Reasoning A]] Language Quality: Both continuations are grammatically correct, but A
(4/5) flows more naturally from the context’s focus on the headphone conflict, while B (4/5) creates a jarring shift in focus. [[Quality A]]
Emotional/Psychological Plausibility: Continuation A (5/5) acknowledges responsibility and offers appropriate compensation addressing
Ferris’s established anger, while B (3/5) shows poor understanding of the emotional situation and would likely increase Ferris’s frustration.
[[Plausibility A]]
Implementation Notes Judge continuations primarily on how well they follow from the established context. Prioritize narrative coherence
and commonsense reasoning over creativity or surprise. Be consistent in applying the evaluation criteria across different story types. Consider
the natural progression of events and character motivations when evaluating plausibility. Avoid bias toward specific narrative styles or genre
preferences.

Figure 11: Prompt template used for LLM-as-Judge evaluations with Claude 3.7 Sonnet on
StoryCloze generations.

22

Published as a conference paper at COLM 2025

Context: Rick grew up in a troubled household. He never found good support in family,
and turned to gangs. It wasn’t long before Rick got shot in a robbery. The incident
caused him to turn a new leaf.

STAR-LDM (A): Ricks attempt to change his life was long and hard. However, the
process has been worth it. The way he lived changed when he started a new chapter...

GPT2-XL (B): Rick now looks after his younger brother, who is disabled.

The two are the heart of what is perhaps the most important project this summer: a
massive...

Evaluation of Story Continuations
After analyzing the four-sentence context about Rick and the two competing continua-
tions, here is my assessment based on the specified criteria:
Narrative Coherence
Continuation A follows the context’s redemption arc naturally, describing Rick’s diffi-
cult but rewarding journey to change his life after the shooting incident. Continuation
B introduces Rick caring for a disabled younger brother (new information) and then
abruptly shifts to discussing a ”project” without clear connection to the established
narrative. A maintains consistent focus on Rick’s transformation while B introduces
disconnected elements.
[[Coherence A]]
Commonsense Reasoning
Continuation A demonstrates understanding of how personal transformation is typi-
cally difficult but rewarding, showing appropriate causal relationships. Continuation
B presents a plausible caregiving scenario but fails to connect this to the ”important
project” mentioned afterward, breaking logical flow. The second sentence in B feels
disconnected from both the context and the first sentence of the continuation.
[[Reasoning A]]
Language Quality
Continuation A has minor issues (e.g., ”Ricks” missing apostrophe) but maintains the
narrative’s tone and flows naturally from the context. Continuation B starts cohesively
but abruptly transitions to an incomplete thought about a ”project,” creating a jarring
stylistic break that doesn’t match the established narrative voice. A feels more like a
complete thought while B seems fragmented.
[[Quality A]]
Emotional/Psychological Plausibility
Continuation A acknowledges the psychological reality that changing one’s life after
trauma is challenging but worthwhile, reflecting plausible emotional growth. Con-
tinuation B presents a plausible caring relationship but fails to connect this to Rick’s
emotional journey established in the context, and the sudden mention of a ”project”
lacks psychological grounding in the character’s established motivations.
[[Plausibility A]]

Figure 12: Qualitative example of story completions from the StoryCloze dataset. The LLM
judge evaluated both continuations, where Continuation A is STAR-LDM and Continuation
B is GPT2-XL. The judge preferred STAR-LDM’s continuation across all evaluation criteria.

F Implementation Details

F.1 STAR-LDM

We report additional architecture details and hyperparemeters for STAR-LDM in Table 3.
Our architecture processes the noisy latent embedding through a sequence of two DiT
blocks, with the main autoregressive decoder situated in between (see Figure 1). To enable
classifier-free guidance for the prefix, we must simultaneously train our model to perform
unconditional prediction, i.e. without information from the prefix. We achieve this with two
modifications. First, to remove the prefix conditioning, we replace the output representations

23

Published as a conference paper at COLM 2025

40 60 80 100 120 140 160 180 200

Llama-3.2-3B Generative Perplexity
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
op

or
tio

n
of

 P
os

iti
ve

 S
en

tim
en

t

GPT-2 Large
GPT-2 Large (DeXperts)
STAR-LDM
STAR-LDM (s=1.0)
STAR-LDM (s=2.0)

(a) Perplexity vs. Positive Sentiment

40 50 60 70 80 90

Llama-3.2-3B Generative Perplexity

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Av
er

ag
e

To
xi

cit
y

Sc
or

e

GPT-2 Large
GPT-2 Large (DeXperts)
STAR-LDM
STAR-LDM (s=1.0)
STAR-LDM (s=2.0)
STAR-LDM (s=3.0)
STAR-LDM (s=4.0)
STAR-LDM (s=5.0)

(b) Perplexity vs. Average Toxicity

Figure 13: Additional control-perplexity trade-offs beyond those shown in the main paper.

0.845 0.850 0.855 0.860 0.865 0.870

Ratio of Unique Trigrams

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

or
tio

n
of

 P
os

iti
ve

 S
en

tim
en

t

GPT-2 Large
GPT-2 Large (DeXperts)
STAR-LDM
STAR-LDM (s=1.0)
STAR-LDM (s=2.0)
STAR-LDM (s=3.0)
STAR-LDM (s=4.0)

(a) Diversity vs. Negative Sentiment

0.856 0.858 0.860 0.862 0.864 0.866 0.868 0.870 0.872

Ratio of Unique Trigrams
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pr

op
or

tio
n

of
 P

os
iti

ve
 S

en
tim

en
t

GPT-2 Large
GPT-2 Large (DeXperts)
STAR-LDM
STAR-LDM (s=1.0)
STAR-LDM (s=2.0)

(b) Diversity vs. Positive Sentiment

Figure 14: Relationship between n-gram diversity and sentiment control.

0.850 0.855 0.860 0.865 0.870 0.875

Ratio of Unique Trigrams
0.00

0.02

0.04

0.06

0.08

0.10

Av
er

ag
e

To
xi

cit
y

Sc
or

e

GPT-2 Large
GPT-2 Large (DeXperts)
STAR-LDM
STAR-LDM (s=1.0)
STAR-LDM (s=2.0)
STAR-LDM (s=3.0)
STAR-LDM (s=4.0)
STAR-LDM (s=5.0)

(a) Diversity vs. Average Toxicity

0.850 0.855 0.860 0.865 0.870 0.875

Ratio of Unique Trigrams
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

M
ax

im
um

 To
xi

cit
y

GPT-2 Large
GPT-2 Large (DeXperts)
STAR-LDM
STAR-LDM (s=1.0)
STAR-LDM (s=2.0)
STAR-LDM (s=3.0)
STAR-LDM (s=4.0)
STAR-LDM (s=5.0)

(b) Diversity vs. Maximum Toxicity

Figure 15: Relationship between n-gram diversity and toxicity control.

24

Published as a conference paper at COLM 2025

Table 3: Implementation details for STAR-LDM training.

Architecture
Base Language Model GPT-2 Large (774M parameters)
Sentence Embedding Model Sentence-T5 XL (768 dimensions)
Total Trainable Parameters 956M

DiT Architecture — Prompt Encoder and Diffusion Prediction
DiT Layers per Module 6
DiT Hidden Dimension 1024
DiT Attention Heads 16
DiT Head Dimension 64
Activation Function SwiGLU (Shazeer, 2020)
Normalization Layer Adaptive RMSNorm (Zhang & Sennrich, 2019; Peebles & Xie, 2022)
Soft Prompt Sequence Length 8

Diffusion Configuration
Output Parameterization v-prediction (Salimans & Ho, 2022)
Diffusion Steps (Inference) 50
Diffusion Sampler (Inference) DDPM (Ho et al., 2020)
Loss Weighting Sigmoid (Hoogeboom et al., 2024)
Noise Schedule Cosine (Dhariwal & Nichol, 2021)

Training Details
Dataset FineWeb
Training Tokens 16B
Max Sequence Length 128
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning Rate 5e-4
Training Steps 250000
Batch Size 512
Weight Decay .01
Gradient Clipping 1.0
Diffusion Loss Weight (β) 5.0

from the autoregressive decoder with a single, learnable null-context embedding. However,
this embedding contains no information about the noisy sentence embedding processed
by the first DiT block. To preserve this initial processing, we therefore introduce a UNet-
style skip connection (Ronneberger et al., 2015) that concatenates the output of the first
DiT directly to the null-context embedding before it is passed to the second DiT. This
design ensures the unconditional path still benefits from the initial latent processing while
remaining independent of the prefix. For the conditional path, the output of the first DiT is
concatenated with the output of the autoregressive backbone, integrating information from
the prefix.

F.2 Decoding Parameters

For all of our generation experiments, we utilize nucleus sampling (p=0.95) (Holtzman et al.)
with a repetition penalty of 1.2 for the STAR-LDM decoder and the autoregressive baselines.

F.3 Baseline NLU Results

All baseline results are computed with the lighteval evaluation harness6 using the FineWeb
(Penedo et al., 2024) evaluation prompts7.

6https://github.com/huggingface/lighteval
7https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval tasks.py

25

https://github.com/huggingface/lighteval
https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval_tasks.py

Published as a conference paper at COLM 2025

Table 4: Implementation details for the Noise-Conditioned MLP classifier.

MLP Architecture
Input Dimension 768
Hidden Dimension 1536
Number of MLP Blocks 4
Number of Hidden Layers 1 hidden layer
Normalization Pre-norm with adaptive RMSNorm
Residual Connections Applied after each MLP
Activation Function SwiGLU
Time Embedding Sinusoidal positional encoding

Diffusion Configuration
Noise Schedule Cosine (Dhariwal & Nichol, 2021)
Loss Weighting Sigmoid (Hoogeboom et al., 2024)

Training Details
Optimizer AdamW
Learning Rate 1e-4
Batch Size 256
Weight Decay .01
Gradient Clipping 1.0

F.4 Noise-Conditioned MLP

We present results of the noise conditioned classifier for sentiment and toxicity detection
on held-out sets for our dataset in Figure 16. We observe that they smoothly improve in
performance as noise levels decrease, outperforming a logistic regression baseline for even
moderately noisy data.

6 3 0 3 6
Log Signal-to-Noise Ratio ()

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

(a) Sentiment Classification

6 3 0 3 6
Log Signal-to-Noise Ratio ()

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) Toxicity Classification

F1 Score (Noise-conditioned MLP)
AUROC (Noise-conditioned MLP)

F1 Score (Logistic Regression)
AUROC (Logistic Regression)

Figure 16: Classifier performance across noise levels for sentiment (left), and toxicity (right)
classification.

26

	Introduction
	Background
	Stop-Think-AutoRegress Language Diffusion Model
	Training Procedure
	Generation Process

	Impact of Diffusion Process on Language Modeling
	Natural Language Understanding
	StoryCloze Generation
	Language Generation Evaluation
	Plug-and-Play Control
	Related Work
	Conclusion
	Additional Visualizations of the Impact of Diffusion Process on Language Modeling
	Inference Latency
	NLU Derivation
	Standard Diffusion ELBO
	ELBO for STAR-LDM
	Parameterization with Autoregressive Decoder
	ELBO for Zero-Shot Evaluation

	StoryCloze Evaluation Details
	Additional Control Experiments
	Control-Perplexity Trade-offs
	Control-Diversity Trade-offs

	Implementation Details
	STAR-LDM
	Decoding Parameters
	Baseline NLU Results
	Noise-Conditioned MLP

