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Abstract

Dataset distillation synthesizes compact datasets that re-
tain the training utility of much larger ones. While diffu-
sion models are natural candidates for this task due to their
generative capabilities, there are few methods that adopt
them in dataset distillation compared to the matching-based
approaches and label-relaxation approaches. A key rea-
son is the fundamental mismatch between diffusion objec-
tives and distillation goals: diffusion models are trained
to reconstruct high-fidelity data, whereas distillation re-
quires compressed, task-relevant representations. We ad-
dress this gap by proposing a reinforcement learning (RL)-
guided framework that steers diffusion models from re-
construction toward compression. By formulating sam-
pling as a decision process, we optimize the generative
trajectory using rewards derived from student model per-
formance. This enables the generation of synthetic sam-
ples that maximize learning utility under strict compression
budgets. Unlike prior static modifications of the diffusion
process, our method dynamically adapts generation based
on downstream outcomes. Experiments on standard bench-
marks show that our RL-guided diffusion approach consis-
tently improves both performance and efficiency, advancing
the frontier of generative dataset distillation.

1. Introduction

Dataset distillation [3, 4, 6, 11, 16, 32, 36] emerges as a
scalable alternative to coreset selection, with a critical shift
in paradigm: instead of selecting a subset from the original
dataset, it aims to synthesize a small number of synthetic
samples that can train models to comparable performance.
This synthesis-oriented nature makes generative models,
particularly diffusion models [4, 21], natural candidates for
distillation backbones. Given their ability to model com-
plex data distributions and generate diverse samples, dif-
fusion models appear well-suited to construct informative,
compact datasets. As visualized in Figure 1, this shift in ob-

Reconstruction-Oriented Distillation

Compression-Oriented Distillation (Ours)

Figure 1. Illustration of reconstruction-oriented vs.
compression-oriented distillation. Top: Existing diffusion-
based distillation reconstructs high-fidelity samples by directly
mapping a latent code z to individual data points, optimizing for
pixel-level realism. Bottom: Our proposed Compression-Oriented
Distillation introduces reward-guided sampling, enabling z
to dynamically steer generation toward task-informative and
compact representations, thereby capturing dense supervision
with fewer samples.

jective—from faithfully reconstructing individual samples
to selectively synthesizing task-informative ones—calls for
a fundamental rethinking of how diffusion models are em-
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ployed in this context.

However, despite the popularity of dataset distilla-
tion [17, 24] and the great success of diffusion mod-
els [15, 21], their integration remains rare. We identify a key
reason behind this gap: a fundamental mismatch in objec-
tives. Diffusion models are trained to reconstruct individual
data samples with high fidelity by reversing a noise corrup-
tion process. In contrast, dataset distillation is inherently
a compression task, aiming to concentrate task-relevant in-
formation into a minimal number of synthetic instances. As
a result, the stronger a diffusion model becomes at recon-
structing original data, the less effective it is for generating
compressed data optimized for downstream learning.

Existing dataset distillation methods primarily fall into
two families: (i) matching-based approaches that directly
optimize synthetic samples to approximate gradients or
training trajectories [3, 7, 8, 18]; and (ii) label-relaxation ap-
proaches such as SRe2L [34], which guide learning through
softened targets. While both have achieved considerable
progress, they suffer from scalability and generalization
bottlenecks—either due to reliance on differentiable super-
vision or overly rigid label semantics. These limitations
further motivate a flexible, model-driven distillation frame-
work, one that can generate rather than optimize, and adapt
based on downstream training outcomes.

To this end, we introduce Compression-Oriented Dis-
tillation (COD), a novel framework that reformulates dif-
fusion sampling as a reinforcement learning (RL) [2, 10,
12, 19, 37] problem aimed at utility-aware data compres-
sion. Instead of statically following the reverse denoising
process, we learn a policy that dynamically controls the
generative trajectory to favor samples that are compact yet
highly effective for downstream training. By directly op-
timizing this policy with task-driven reward signals, our
method moves beyond heuristic guidance and enables prin-
cipled generation of high-utility synthetic data under strict
budget constraints.

We instantiate this framework COD using Group Rel-
ative Policy Optimization (GRPO) [12], a lightweight yet
stable policy optimization method that avoids explicit value
estimation. To guide sample generation, we design a reward
function that combines two complementary components:
(1) an entropy-based signal (Rgy) that promotes informa-
tive samples by maximizing predictive uncertainty [20], and
(2) a diversity-aware penalty (Rpjy) that discourages redun-
dancy by comparing with a memory bank of previously gen-
erated outputs. This reward-driven feedback loop steers the
diffusion model beyond pixel-level fidelity, enabling it to
explore and exploit regions of the data space that are opti-
mized for learning efficiency [2]. Compared to prior meth-
ods like Minimax Diffusion that statically reshape sampling
behavior, our approach offers dynamic, goal-aware control
over generative processes.

In summary, this paper presents the first comprehensive
study of reinforcement learning for controlling diffusion-
based dataset distillation. By reinterpreting generative
modeling as a compression-driven decision process, we
bridge the gap between reconstruction-centric generation
and training-centric distillation, setting the stage for a new
class of adaptive, goal-aware synthetic data pipelines. Our
contributions are summarized as follows:

* We identify a fundamental mismatch between diffusion
models and dataset distillation: diffusion prioritizes re-
construction, while distillation demands compression.
This insight explains the limited integration of the two
paradigms.

* We propose Compression-Oriented Distillation (COD), a
novel dataset distillation framework that formulates diffu-
sion sampling as a reinforcement learning process guided
by downstream utility.

* We instantiate COD using Group Relative Policy Op-
timization (GRPO) with a reward function combining
entropy-based informativeness and diversity-aware regu-
larization, enabling principled and adaptive sample gen-
eration.

2. Preliminaries

2.1. Problem Formulation: Dataset Distillation

Given a large-scale dataset 7 = {(x;,;)} Y, where z; €
R? are data samples drawn i.i.d. from a natural distribution
D. Wedenote y; € Y = {1, ..., C} to represent class labels.
Dataset distillation aims to construct a compact synthetic
dataset S = {(s;,7;)}}L, with M < N such that a model
trained solely on S performs comparably to one trained on
T [3, 32]:

S* = arg SCIE}’I;)) IE(;c,y)fv’D [E(fes (ZL’), y)] ) (D
where 65 denotes the model parameters obtained by training
on S, and £(-) is a task-specific loss function (e.g., cross-
entropy). Most existing dataset distillation methods fall
into two broad categories: matching-based approaches and
label-relaxation approaches.

Matching-based approaches optimize synthetic data by
aligning gradients or training trajectories between real and
synthetic datasets [3, 6, 7, 36]. A common objective is gra-
dient matching [36]:

min Y [Vol(fo(s;).45) — Vol(fo(x:).ua)lI”, @)
(s5,8;)€S

where the gradient computed on synthetic samples is forced
to approximate that from real data. Trajectory-based vari-
ants extend this idea across multiple steps of optimization.
While effective, such methods often require differentiabil-
ity, second-order gradients, and suffer from limited scala-
bility on larger datasets.
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Label-relaxation approaches assign soft labels to syn-
thetic samples to improve generalization [27, 29, 34]. In-
stead of using hard one-hot labels y;, each synthetic sample
is paired with a learnable probability vector 3; € AC—L:

min D> U fo(s5),T5), 3)

(s5,3;)€S

where 7; encodes label uncertainty or class similarity.
While this approach improves performances significantly, it
requires a pretained model to serve as the teacher model to
generate soft labels. Xiao and He [33] reveals that remov-
ing the soft labels will cause dramatic performance drop in
Label-relaxation approaches.

Both paradigms rely on direct supervision over synthetic
instances. In contrast, our framework shifts the problem
toward a reward-driven generative formulation, using rein-
forcement learning to synthesize utility-optimized training
data. Unlike coreset selection [1, 5, 13, 26, 31], dataset dis-
tillation synthesizes new data instances rather than selecting
from 7. This makes generative models, in particular the dif-
fusion models, a promising approach for dataset distillation.

2.2. Diffusion Models for Generative Synthesis

Diffusion models [15, 21, 30] generate data via a two-stage
process: a forward noising process and a reverse denoising
process. Let g ~ D denote a real data sample; fy denote
the denoising network f parameterized with 6. The forward
process gradually corrupts xy with Gaussian noise, yielding
a sequence {z;}~_,. The reverse process then aims to iter-
atively reconstruct xy from pure noise 7 ~ AN(0, ), by
learning a parameterized denoising network fy.

Given a discretized time schedule {t;} ,, the sampling
trajectory starts from zo ~ N(0,b(tmax)?I) and proceeds
via the following iterative update:

Xip1 = KiXi + i fo(Xi | ts) + G, “4)

where € ~ AN(0,I) is an optional sampling noise term
(present only in SDE-based solvers), and x;, 1;, and ; are
time-dependent coefficients derived from the training-time
noise schedule.

This reverse process is fundamentally designed to re-
construct a high-fidelity individual instance from Gaussian
noise. The denoising network fy is explicitly trained to re-
verse the corruption applied in the forward process, which
encourages the generation of samples that closely match the
data distribution in pixel space or feature space. As a result,
the learned generative trajectory is inherently biased toward
reproducing realistic and data-faithful samples—making it
highly suitable for reconstruction tasks, but potentially sub-
optimal for generating compressed or task-optimized repre-
sentations such as those needed in dataset distillation.

6|3r’r(1)pact of Diffusion Steps on Distillation Accuracy and FslzDo
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Sampling Steps in Reverse Process
Figure 2. Impact of Diffusion Steps on Distillation Accuracy
and FID. We vary the number of sampling steps in the reverse dif-
fusion process and observe a trade-off between image fidelity and
distillation performance. As the number of steps increases, the
Fréchet Inception Distance (FID) consistently improves, indicat-
ing better reconstruction quality. However, the distillation accu-
racy declines, confirming that high-fidelity samples are not neces-
sarily more informative for downstream learning. This highlights
a fundamental mismatch between reconstruction and compression
objectives in diffusion-based distillation.

3. Method

3.1. The Reverse Process Performs Denoising, Not
Compression

The reverse diffusion process is inherently designed as a
denoising mechanism [15], not a compression pipeline. At
each time step, the denoising network f, estimates either
the original clean sample x( or the noise € added during the
forward process, conditioned on a noisy input x;. This iter-
ative reconstruction from Gaussian noise is shown in Equa-
tion 4, where the objective is to minimize reconstruction
error between predicted and true clean samples.

This training formulation encourages the model to re-
produce high-fidelity instances that resemble the original
dataset distribution. However, in dataset distillation, the ob-
jective shifts: instead of reproducing all modes of the data,
we seek to selectively generate samples that are maximally
informative for training under tight data budgets. As shown
in Figure 2, while the Fréchet Inception Distance (FID) im-
proves with more steps the classification performance of
distilled datasets degrades. This confirms that better recon-
struction does not equate to better compression, and high-
fidelity images are not necessarily information-dense for
learning.

To address this mismatch, we aim to systematically bias
the reverse process away from denoising and toward com-
pression. The most direct solution appears to be modifying
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the reverse process itself, which replaces the reconstruction-
oriented dynamics with a utility-driven sampling process
that prioritizes the generation of high-information-content
samples.

Howeyver, this direction faces several fundamental limi-
tations. First, shifting the diffusion objective toward com-
pression would require defining or learning a new target dis-
tribution S that represents the ideal distilled dataset distri-
bution. We denote by S the empirical distribution formed
by all synthetic datasets produced by existing dataset dis-
tillation methods. Each method A; generates a synthetic
dataset S; = A;(7T), where T is the original training set.
The distribution S can thus be conceptualized as:

S =Pam [A(T)], ®)

where M is the space of known distillation algorithms (e.g.,
DM, MTT, SRe2L, IGD).

Attempting to train a diffusion model to approximate
S poses three major challenges. First, S is implicitly
defined and lacks a closed-form representation—sampling
from it requires exhaustively running and storing outputs
from many distillation pipelines. Second, synthetic datasets
from different methods are structurally inconsistent, often
varying in label granularity, resolution, or supervision for-
mat, making them hard to unify under a coherent distribu-
tion. Third, even if S were learnable, any generative model
trained to replicate it would be fundamentally limited by the
diversity and quality of the existing methods. That is, the
best it can do is imitate prior solutions, but never surpass
them.

This motivates us to abandon the idea of statically fitting
a proxy to S and instead adopt a reward-driven sampling
mechanism that actively explores beyond it.

3.2. Reinforcement Learning for Compression-
Oriented Diffusion Sampling

To explore beyond the empirical limits of S, we propose
to steer the generative trajectory using reinforcement learn-
ing (RL). Rather than statically mimicking prior synthetic
datasets, our goal is to actively discover high-utility sam-
ples by assigning rewards to diffusion outcomes based on
their downstream training performance. This framing natu-
rally casts the sampling procedure as a sequential decision
process, where the reverse steps of the diffusion model form
a Markov chain governed by a policy .

The idea of prioritizing high-information-content sam-
ples is inspired by the success of dataset pruning, which
shows that even within natural datasets, only a subset of ex-
amples contributes meaningfully to generalization. This ob-
servation implies that data samples are inherently unequal
in the perspective of information.

Concretely, at each reverse timestep ¢, the policy mg(ay |
x¢) selects an action a;—such as modifying the noise pre-

diction or controlling the denoising step size—based on
the current sample state z;. The final output x( is evalu-
ated via a reward function R(x¢) that reflects its utility for
distillation. This reward can be instantiated using down-
stream classification accuracy, teacher-student agreement,
or information-theoretic proxies such as entropy or mutual
information. The policy is then optimized to maximize ex-
pected reward:

mgx, ]Exo,\/ﬂ-qg [R(JJ())] . (6)

This formulation transforms the role of the diffusion
model from a passive denoiser into an active sampler that
learns to navigate toward information-rich regions of the
data space. Unlike traditional guidance strategies, which
rely on heuristics or task-agnostic priors (e.g., classifier gra-
dients or class embeddings), our RL-based controller can be
trained end-to-end to align sample generation directly with
dataset distillation objectives.

In doing so, we depart from the conventional recon-
struction pipeline and reframe dataset distillation as a
compression-driven search problem over the generative tra-
jectory space. This dynamic mechanism allows us not only
to circumvent the ill-posed nature of S but also to transcend
the limitations of existing synthetic datasets by continu-
ously refining the sampling policy in response to feedback
from training performance.

3.3. Instantiating RL-Based Sampling with GRPO
and Entropy Rewards

To realize the RL formulation described above, we adopt
Group Relative Policy Optimization (GRPO) as our policy
learning algorithm. While standard reinforcement learning
methods such as PPO [25] offer stable policy improvement,
they rely heavily on value function estimation and surro-
gate clipping objectives, which are costly and unstable in
our context. Diffusion-based sampling is inherently high-
dimensional and slow, and accurate value estimation across
diverse generative trajectories is impractical.

GRPO circumvents these issues by discarding value es-
timation altogether. Instead of modeling long-term returns,
GRPO computes relative advantages within a group of sam-
pled actions. Specifically, for each reverse step state xy,
we sample a group of candidate actions {ay) & |, generate
corresponding samples {x((f)}, and compute their rewards

{r: = R(x(()i))}. We then normalize the rewards using z-
score normalization to obtain relative advantages:

r; — mean(r)

= T(r)7 (7)

where r = {ry,...,7g} is the reward vector within the
group. The policy 74 is updated to increase the probability
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of actions with higher 7;, encouraging exploration of trajec-
tories that outperform their peers without needing explicit
value estimation.

Reae (20) = H(fo(0)) ch logpe,  (8)
where p. denotes the softmax probablhty assigned to class
c by the model pretrained on original dataset. High entropy
indicates model uncertainty and implies that the sample x
lies near the decision boundary—thus being more informa-
tive for training. Unlike label-matching losses, entropy re-
wards are task-agnostic, differentiable, and directly aligned
with the goal of generating useful training signals.

While entropy-based rewards encourage the generation
of uncertain and potentially informative samples, optimiz-
ing solely for entropy may lead to mode collapse—the re-
peated synthesis of ambiguous yet similar examples. To
mitigate this, we introduce a diversity reward that explic-
itly penalizes redundancy among generated samples.

We maintain a memory bank B that stores the embed-
dings or output logits of previously generated synthetic
samples. The details to implement the memory bank is
clearly stated in the experiment section. For each new can-
didate x, we compute its similarity to the most similar en-
try in the bank and apply a penalty accordingly. The final
reward function becomes:

R(xo) = Rgne (CUO) + RDiv(mO)»

Rpiy(xo) = =X~ glg)g sim(zg, z').

where  (9)
(10)

where sim(zg, ') measures the similarity between xy and
a stored sample 2’ using cosine similarity. Ry, (z0) is de-
fined in Equation 8.The hyperparameter A > 0 controls the
trade-off between uncertainty and novelty.

This diversity-aware reward encourages the sampling
policy to explore broader, less redundant regions of the gen-
erative space—promoting sample diversity without sacri-
ficing informativeness. Empirically, we find that combin-
ing entropy and diversity signals leads to synthetic datasets
that are both challenging and complementary, resulting in
stronger downstream performance.

Altogether, our instantiation combines (1) a policy op-
timization algorithm (GRPO), (2) an information-theoretic
reward signal (entropy), and (3) a diversity-aware constraint
(memory bank filtering). These design choices strike a bal-
ance between sample informativeness and diversity—two
pillars of effective dataset distillation.

4. Experiments

4.1. Experimental Setup

Datasets and baselines. We evaluate our method on three
benchmark datasets with increasing resolution and com-

Algorithm 1 Compression-Oriented Diffusion for Dataset
Distillation
Require: Pretrained diffusion model fy, pretrained evalu-
ation network hy, policy 7,, memory bank B, group
size GG, reward weight A
: for each RL iteration do ‘
Sample G initial noise vectors {z{ %, ~ A/(0,1)

1

2

3:  for each a:éf) do

4 Sample actions {aii)} from 7, (a; | acgl)) at each

timestep
5: Generate sample J}( ") via controlled reverse diffu-
sion trajectory
6: Compute entropy reward:
R (z) = — ch logp. where p = hy(z)
c=1
7 Compute diversity penalty:
. By _ . . (@) s
Rpiv(zy’) = —A max sim(zy”, x")
z'e
8: Total reward: R = REm(a:gi)) + RDiv(xéi))
9:  end for - o
10:  Normalize rewards: R() = R%I%H(R)

11:  Update policy ,, using GRPO with R(?)
12:  Update memory bank: B < B U {IE(Z) &
13: end for

plexity: ImageNet-1K (224 x224) and two wellknown sub-
sets of ImageNet [23]: ImageNette, ImageWoof. For large-
scale evaluation, we follow common practice and report
top-1 classification accuracy under varying image-per-class
(IPC) settings (e.g., 10, 50, 100). We compare with repre-
sentative baselines including pixel-level methods (DM [35],
IDC-1 [16]), generative methods (DiT [21]), and fine-
tuned diffusion (Minimax [11]). Random and Full serve
as lower and upper bounds respectively. We also compare
with label-relaxation methods including Sre2L. [34] and G-
VBSM [27].

Evaluation protocol. Following prior work, we train
standard ConvNet or ResNet architectures on the synthetic
datasets for 50 to 200 epochs, depending on resolution, us-
ing SGD or Adam optimizers. We adopt consistent training
schedules across baselines for fair comparison. Unless oth-
erwise stated, evaluation is performed on the same test sets
as the original datasets. For ImageNet-1K, pretrained clas-
sifiers are also used for reward calculation but not for final
evaluation. While SRe2L [34] adopts an evaluation proto-
col using soft labels to have better performance, we only
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Original

DiT

COD

Figure 3. Visualization of random original images, images generated by baseline diffusion model (DiT) and our proposed method (COD).
For each column, the generated images are based on the same random seed. Compared to DiT, COD intentionally departs from pixel-level
faithfulness and produces samples that are less visually similar to the originals. This shift is consistent with our core view that high-fidelity

reconstruction is misaligned with the objective of dataset distillation.

adopt this protocol for ImageNet-1K experiments; all sub-
set results are reported under standard hard-label evaluation
for comparability.

Diffusion backbone. We adopt latent DiT [21] as our dif-
fusion backbone, using a pretrained VAE encoder-decoder
to map between image and latent space. All experiments
use DDIM [28] sampling with 50 steps. The policy net-
work 7, operates over the noise prediction module of the
reverse process and is trained using GRPO. For reward com-
putation, we use a pretrained ImageNet-1K classifier fy to
evaluate entropy.

Memory Bank Implementation. To support the
diversity-aware reward Rgy, we maintain a dynamic
memory bank that stores previously generated synthetic
samples. At the beginning of policy training, the memory
bank is cold-started by populating it with a fixed number
of synthetic samples generated unconditionally from the
pretrained diffusion model. The total number of stored
samples is set equal to the target dataset size to avoid
memory growth.

During training, each newly generated sample is com-
pared against existing entries in the memory bank. If a
sample is found to be highly similar to any stored instance
(based on cosine similarity in a pretrained feature space),
it is discarded from reward calculation and excluded from
memory bank updates. Otherwise, the sample is appended
to the memory bank, and the most similar existing item is
removed to maintain a fixed memory size. This design en-
sures continual refresh of diverse representations without
allowing the memory bank to grow, enabling efficient and
scalable diversity estimation.

Reward

Reward
— R

0.025

0.02

0.015

0.01

0.005

| | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
Steps

Figure 4. Reward components over training steps. The to-
tal reward (blue) increases steadily throughout training, driven by
the entropy-based component Ry (red) and the diversity-based
penalty Ry (yellow). Notably, Ren saturates early, while Ry
continues to rise, indicating a shift in policy focus from informa-
tiveness to sample diversity as training progresses.

Training details. All experiments are conducted on a sin-
gle NVIDIA RTX 4090 GPU. Each GRPO update uses
group size G = 4, and the memory bank retains up to 512
embeddings per class. We adopt cosine annealing for the
policy learning rate and freeze the pretrained diffusion and
classifier networks throughout the process. Further details
(e.g., entropy temperature, policy depth) are detailed in Ap-
pendix A.

4.2. Experimental Results

Main Results on ImageNet. We report the top-1 classi-
fication accuracy on Nette and Woof subsets under varying
architectures (ConvNet-6, ResNetAP-10, ResNet-18) [14]
and image-per-class (IPC) budgets (10, 50, 100). The re-
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Table 1. Comparison of distillation performance across multiple methods, architectures, and datasets. We report top-1 classification
accuracy (%) on Nette and Woof subsets of the ImageNet-1K dataset under varying architectures (ConvNet-6, ResNetAP-10, ResNet-18)
and image-per-class (IPC) budgets (10, 50, 100). COD (Ours) consistently achieves competitive or superior performance across settings,
particularly under low IPC (e.g., 10), demonstrating its advantage in generating informative and compressed synthetic datasets. Full
denotes training on the complete original dataset and serves as an upper bound.
Subset Nette Woof
Architecture ConvNet-6 ResNetAP-10 ResNet-18 ConvNet-6 ResNetAP-10 ResNet-18
IPC 10 50 100 | 10 50 100 | 10 50 100 | 10 50 100 | 10 50 100 | 10 50 100
Random 46.0 71.8 799 |54.2 773 81.1|558 758 82.0|24.3 41.3 522|294 472 592|277 479 615
+0.5 1.2 +0.8 1.2 1.0 0.6 1.0 1.1 0.4 1.1 +0.6 +0.4 +0.8 +1.3 +0.9 0.9 1.8 1.¢
DM 49.8 70.3 785 |60.2 76.7 80.9|60.9 750 81.5|26.9 43.8 50.1 |29.8 47.1 56.4 | 30.2 46.2 60.2
1.1 +0.8 +0.8 0.7 1.0 0.7 0.7 1.0 0.4 t1.2 1.1 +0.9 1.0 1.1 +0.8 0.6 0.6 1.0
IDC-1 48.2 724 80.6 |604 774 81.5|61.0 778 81.7|33.3 42.6 51.0|38.5 48.3 56.1|36.7 483 57.7
t1.2 0.7 1.1 0.6 0.7 1.2 0.8 0.7 0.8 1.1 +0.9 t1.1 +0.7 1.0 +0.9 0.8 0.8 0.8
DiT 56.2 73.3 7821628 76.9 80.1|625 752 77.8|32.3 46.5 53.4|34.7 49.3 583 |34.7 50.1 589
+1.3 +0.9 +0.3 +0.8 +0.5 +1.1 +0.9 +0.9 +0.6 +0.8 +0.8 +0.3 +0.5 +0.2 +0.8 +0.4 +0.5 +1.3
Minimax 58.2 76.6 81.1|63.2 78.2 813|649 78.1 81.3|33.5 50.7 57.1|39.2 56.3 64.5|37.6 57.1 65.7
+0.9 +0.2 +0.3 +1.0 +0.7 +0.9 +0.6 +0.6 +0.7 +1.4 +1.8 +1.9 +1.3 +1.0 +0.2 +0.9 +0.6 +0.4
COD (Ours) 59.2 748 788 |64.3 785 81.0|63.8 78.7 81.6|36.0 51.3 55.2 |41.6 58.2 65.6|44.0 59.2 65.4
’ +0.9 +0.5 +1.6 +0.3 +0.8 +1.0 +1.2 +0.7 +1.3 +0.9 +1.0 +1.5 +1.3 +0.8 +0.6 +1.8 +1.0 +0.9
Full 94.3 943 9431946 946 946|953 953 953|859 859 859|872 872 87.2|89.0 89.0 89.0
+0.5 +0.5 +0.5 +0.5 +0.5 +0. +0.6 +0.6 +0.6 +0.4 +0.4 +0.4 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6

sults are demonstrated in Table 1. COD achieves con-
sistent improvements over prior diffusion-based methods
(DM [35], DiT [21]) and optimization-based methods (IDC-
1 [16]), especially under low-data regimes such as IPC=10.
Compared to the strongest baseline, Minimax, our method
exhibits competitive performance across nearly all settings.
However, the performance gap between COD and Minimax
remains small. This is expected, as both approaches share
a similar underlying philosophy: Minimax explicitly modi-
fies the denoising network during training to favor discrim-
inative gradients, while COD fine-tunes the sampling tra-
jectory via reinforcement learning. Despite differing in im-
plementation (training vs. inference), both methods achieve
comparable expressivity in guiding generation away from
pixel-level fidelity and toward task-relevant content.

We report top-1 accuracy on ImageNet-1K with IPC =
10 and 50 in Table 2. COD achieves the highest accuracy at
IPC = 50, surpassing both optimization-based (SRe2L [34],
G-VBSM [27], RDED [29]) and generative (DiT [21], Min-
imax [11]) methods. The consistent improvement demon-
strates the effectiveness of our reward-driven policy in scal-
ing to large-scale distillation.

Trade-off Between Accuracy and Fidelity. We inves-
tigate how the number of reverse diffusion steps affects
the trade-off between sample fidelity and distillation per-
formance. As shown in Figure 2, increasing steps leads
to lower Fréchet Inception Distance (FID), indicating im-
proved visual quality. However, distillation accuracy peaks

at 75 steps and declines thereafter. This confirms a key in-
sight: higher-fidelity samples are not necessarily more in-
formative for training, and optimizing for visual realism can
hurt task-specific compression.

Reward Dynamics Analysis. To understand how our re-
ward function evolves during training, we track the total re-
ward and its two components (Ren, Rgiv) across policy up-
dates. As shown in Figure 4, the total reward increases con-
sistently, indicating effective policy learning. The informa-
tiveness term Ry rises rapidly in early stages and then satu-
rates, reflecting that informative sample selection is quickly
optimized. In contrast, the diversity term Ry, grows more
gradually, highlighting a shift in focus from informativeness
to diversity as training progresses. This dynamic illustrates
the complementary nature of the reward design, encourag-
ing both discriminative and varied sample generation over
time.

Additional Results in Supplementary. Due to space
constraints, we include several extended experiments in
the supplementary material. These include (1) cross-
architecture evaluation on ImageNet-1K, which demon-
strates the robustness of our method across different back-
bone networks; (2) an ablation study isolating the effects of
the entropy-based reward (R.,) and the diversity-based re-
ward (Rgiy), showing that both components contribute pos-
itively to performance, though their combination yields di-
minishing returns due to partial redundancy; and (3) visual-
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Table 2. Top-1 accuracy (%) on ImageNet-1K under different distillation methods with IPC = 10 and 50. COD achieves the highest
accuracy when IPC=50, outperforming optimization-based (SRe’L, G-VBSM, RDED) and generative (DiT, Minimax) baselines. This
demonstrates the effectiveness of reward-driven sampling in scaling dataset distillation to challenging large-scale benchmarks.

Dataset ‘ IPC ‘ SRe?L G-VBSM RDED DiT Minimax COD(Ours)
10 21.3 314 42.0 39.6 44.3 45.0
ImageNet_]K 0.6 0.5 0.1 0.4 £0.5 +0.3
50 46.8 51.8 56.5 52.9 58.6 594

0.2 0.4

0.1 0.6 0.3 0.4

izations of generated samples that qualitatively reflect the
trade-off between fidelity and informativeness. All code
and implementation details are also provided in the supple-
ment for reproducibility.

4.3. Discussion

This work takes a first step toward bridging generative mod-
eling and dataset distillation by introducing a reward-driven
formulation over the diffusion sampling process. While
prior approaches often rely on handcrafted objectives or di-
rect optimization of synthetic data, our method shows that
reinforcement learning can provide a principled mechanism
for exploring informative regions of the sample space.

Visualization. The qualitative comparison in Figure 3
further illustrates the core shift enabled by our frame-
work—from reconstruction to compression. While the DiT
backbone tends to replicate the dominant visual modes
of the original dataset, COD deliberately deviates from
pixel-level fidelity and instead synthesizes samples that em-
phasize class-discriminative structures, pose variation, and
decision-boundary cues. Notably, COD images often ap-
pear less realistic or less similar to their original counter-
parts; however, this deviation is not a defect but a direct
consequence of optimizing for learning utility rather than
appearance. This trend mirrors our quantitative findings in
Figure 2, where higher visual fidelity (lower FID) correlates
with worse distillation accuracy.

Limitations. However, our framework also presents sev-
eral limitations. First, incorporating reinforcement learn-
ing—though conceptually appealing—introduces training
instability.  Although GRPO offers a lightweight and
gradient-regularized alternative to value-based methods, it
still requires careful tuning of sampling frequency, reward
scaling, and update schedules to achieve consistent conver-
gence. Second, while our policy successfully shifts the gen-
erative behavior from reconstruction toward compression, it
does so by modifying the sampling trajectory rather than the
underlying diffusion model itself. The denoising backbone
remains trained to match the natural data distribution, and
therefore retains an inherent bias toward data fidelity. As a
result, the full potential of compression-oriented generation

is still constrained by the original training objective of the
generative model.

These limitations point to promising future directions,
such as integrating downstream utility signals into the train-
ing of the generative model itself, or developing more sta-
ble and expressive learning frameworks beyond policy op-
timization to further improve the quality and utility of dis-
tilled samples.

Future Work. More broadly, we view Compression-
Oriented Distillation as a paradigm shift for the dataset dis-
tillation community. Rather than treating generative models
as static decoders of the original dataset, we advocate for
a dynamic, policy-guided generation process in which syn-
thetic data is optimized for task-specific utility. Our frame-
work—based on reinforcement learning and built upon a
transformer-based diffusion backbone—demonstrates that
modern generative architectures can be harnessed not just
for realism, but for strategic, goal-aware data construction.

We believe this direction opens up a rich avenue for
future research: leveraging increasingly powerful genera-
tive models, especially diffusion and transformer-based ar-
chitectures, not merely as sample generators, but as ac-
tive agents in data compression, selection, and synthesis.
As foundation models continue to scale in capacity and
generality, coupling them with task-aware decision-making
mechanisms may fundamentally redefine how we construct
and optimize training datasets across domains.

5. Conclusion

We introduced Compression-Oriented Distillation (COD),
a reinforcement learning framework that guides diffusion
models to generate informative and compact synthetic data
for dataset distillation. By shifting the objective from re-
construction to compression, our method departs from static
denoising and instead learns a dynamic sampling policy op-
timized for downstream utility. Through entropy-driven and
diversity-driven rewards, our approach enables principled
control over generative trajectories without modifying the
diffusion training objective. This work bridges generative
modeling and data distillation, paving the way for future
research that further integrates task-aware objectives with
advanced generative architectures.
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A. More Related Work

Trajectory Matching Approaches Dataset distillation was
first cast as a bi-level optimisation that matches gradients
between real and synthetic data to preserve learning sig-
nals while using orders-of-magnitude fewer images [32].
Subsequent trajectory matching methods align full opti-
misation paths rather than single-step gradients, captur-
ing richer learning dynamics and markedly boosting cross-
architecture transferability [3]. However, early variants
were memory-intensive and limited to small datasets. Re-
cent work addresses these bottlenecks compress back-prop
storage to enable ImageNet-1K distillation with constant
memory while Du et al. introduce sequential matching that
partitions long trajectories into manageable blocks [9]. To-
gether, these advances push trajectory matching to large-
scale settings, narrowing the test-accuracy gap to within a
few points of full-data training.

Diffusion-Based Distillation Diffusion models provide
a powerful generative prior for synthesising realistic yet
compact datasets. Minimax Diffusion fine-tunes a DiT
backbone adversarially, balancing sample fidelity and dis-
criminative utility to outperform pixel-level baselines on
ImageNet subsets [11]. Influence-Guided Diffusion (IGD)
further removes heavy retraining by steering the sampling
trajectory with mutual-information rewards, producing di-
verse, class-informative images at scale [4]. Comple-
mentary to these tuning-heavy approaches, RDED com-
poses high-quality image patches without gradient updates,
achieving strong performance under extreme budgets of 10
images per class [29]. Collectively, these studies demon-
strate that diffusion priors can retain visual fidelity, diver-
sity and class coverage even when the synthetic dataset is
compressed by two orders of magnitude.

Reinforcement Learning for Diffusion Control View-
ing denoising as a sequential decision process opens
the door to policy-gradient fine-tuning. DDPO learns
to adjust reverse-time steps with task-level rewards, im-
proving alignment, aesthetics and even compressibility
of generated images [2]. DPOK augments this frame-
work with KL-regularised updates for greater stability
and sample quality [10]. Building on these ideas, our
Compression-Oriented Distillation uses utility-driven re-
wards—combining uncertainty and diversity—to bias diffu-
sion trajectories toward samples that maximise downstream
accuracy under strict image-per-class budgets, bridging
reconstruction-centric generation and training-centric distil-
lation.

B. Cross—Architecture
ImageNet-1K

Table 3 reports top-1 accuracy of our Compression-
Oriented Distillation (COD) against the recent RDED

Comparisons on

11

baseline on four unseen backbones of varying capac-
ity—ResNet101, MobileNet-V2, EfficientNet-B0 and Swin
Transformer—under two compression budgets.

Overall, COD delivers consistent gains at IPC50, ex-
ceeding RDED by an average of 3.7 percentage points
across architectures. Improvements are particularly pro-
nounced on ResNetl01 (+4.9) and Swin Transformer
(+4.0). At the stricter IPC10 setting, COD still outper-
forms RDED on two of four backbones and yields an aver-
age uplift of 4.3 points, driven largely by a sizeable margin
on EfficientNet-BO (+15.4). These results demonstrate that
reward-driven diffusion sampling scales effectively across
diverse network families while maintaining strong perfor-
mance under aggressive data budgets.

C. Ablation study

To validate the effectiveness of our reward function design,
we conduct comprehensive ablation studies on the Image-
Woof and ImageNette datasets using ResNetAP-10 archi-
tecture. The experiments systematically evaluate the contri-
bution of each reward component to the overall distillation
performance.

C.1. Reward Component Analysis

The ablation study examines three configurations: (1) base-
line without any reward components, (2) entropy reward
only (Rgn:), and (3) diversity reward only (Rpi+). The en-
tropy reward promotes samples with high predictive uncer-
tainty, while the diversity reward encourages exploration of
different regions in the data space.

C.2. Performance Impact

Results demonstrate that both reward components con-
tribute positively to distillation performance, with the diver-
sity reward showing particularly strong improvements on
the ImageWoof dataset. The entropy reward provides con-
sistent gains across both datasets, indicating its effective-
ness in generating informative samples. The combination
of both components yields optimal performance, validating
our multi-component reward design.

Table 5 presents the ablation study results, demonstrating
that both reward components are essential for optimal per-
formance. The diversity reward shows particularly strong
improvements on ImageWoof (+5.5% at 10-IPC), while
the entropy reward provides consistent gains across both
datasets. These results validate our reward function design
and highlight the importance of balancing informativeness
and diversity in dataset distillation.

D. Hyperparameters Setup

Our Compression-Oriented Distillation (COD) framework
employs a carefully tuned set of hyperparameters to balance
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Table 3. Top-1 accuracy (%) on ImageNet-1K with 10 and 50 images per class (IPC10 / IPC50). Numbers are mean =+ standard deviation

over three runs.

Method ResNet101 ‘ MobileNet-V2 ‘ EfficientNet-BO ‘ Swin Transformer
IPC10  IPC50 | IPCI0  IPC50 | IPCI0  IPC50 | IPCI0  IPC50

RDED  48.3+1.0 61.2+04 | 40.4+0.1 53.3£0.2 | 31.0£0.1 585404 | 42.3+£0.6 53.240.8

COD 50.840.3 66.1+£0.4 | 40.1+04 56.3£0.5 | 46.4+0.2 61.4+02 | 42.1£0.6 57.24+0.6

Table 4. Hyperparameters Setup for Compression-Oriented Distillation (COD). Key parameters include reward weights for entropy (Wgnt)
and diversity (Whss+), training configuration (batch size, epochs, learning rate, «, 3,), and GRPO clip (¢).

‘ WEnt

Whiv ‘ batch size

epochs Ir o

B | e

args | 1.0 0.5 | 16

40  led 04 0602

Table 5. Ablation study of reward components on ImageWoof and
ImageNette datasets using ResNetAP-10. Rz, denotes the En-
tropy Reward and Rp;, denotes the Diversity Reward. Results
show mean =+ standard deviation over multiple runs.

ImageWoof ImageNette
10-IPC  50-IPC  10-IPC  50-IPC

349409 50.8+1.1 62.840.8 76.9+0.5
382411 54.640.7 6144107 771109
4044108 567109 623104 7734108

REnt RDiv

v -
- v

exploration and exploitation in the reinforcement learning
process. The configuration is designed to maximize the
informativeness and diversity of generated samples while
maintaining stable training dynamics.

D.1. Reward Function Configuration

The reward function in our GRPO-based framework com-
bines multiple components with empirically tuned weights.
The entropy reward weight Wi, = 1.0 encourages the
generation of samples that maximize predictive uncertainty,
thereby promoting informative samples that lie near deci-
sion boundaries. The diversity reward weight Wpi, =
0.5 penalizes redundancy by comparing generated samples
against a memory bank of previously synthesized outputs,
ensuring sample diversity without sacrificing informative-
ness.

D.2. Training Parameters

The training process is configured with a batch size of 16
and runs for 40 epochs to ensure sufficient exploration of
the generative space. We employ a learning rate of 1 x 10~4
with AdamW optimizer, which provides stable convergence
for the policy optimization process. The epsilon parameter
e = 0.2 controls the clipping range for the GRPO algorithm,
ensuring policy updates remain within reasonable bounds.
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E. Training Efficiency Analysis

The introduction of a reinforcement learning (RL) frame-
work in our work inevitably incurs additional computa-
tional overhead. To quantify this, we compared the train-
ing efficiency quantitatively of our proposed Compression-
Oriented Distillation (COD) to the state-of-the-art (SOTA)
baseline, Minimax [ 1], in producing distilled datasets, us-
ing a single NVIDIA RTX 4090 GPU. We discovered that
COD is significantly more efficient than Minimax. Specifi-
cally, COD converges in approximately 5.5 hours, whereas
Minimax requires over 7 hours—a notable efficiency gain
of around 30%. We attribute this significant advantage pri-
marily to the lightweight nature of the Group Relative Pol-
icy Optimization (GRPO) [12] algorithm we employ. While
the ultimate performance of COD is currently bottlenecked
by the reward function used to evaluate synthetic sample
compression, its substantial efficiency advantage, coupled
with the strong potential of RL in controlling generative
models, makes it a highly promising direction for dataset
distillation research.

F. Training algorithm selection

Our choice of Group Relative Policy Optimization (GRPO)
[12] over other widely-used policy optimization algorithms,
such as Proximal Policy Optimization (PPO) [25] or Direct
Preference Optimization (DPO) [22], was a deliberate deci-
sion based on the specific challenges inherent to the task of
dataset distillation.

Algorithms like PPO [25] typically necessitate an addi-
tional critic, or value model, to estimate state values. This
architecture presents two primary obstacles in the context
of our task. First, introducing this additional critic model
significantly increases the computational overhead (often
by 3-5x), as it requires separate training and inference.
Second, and more critically, this approach suffers from a
strong reward function dependency. The accuracy of the

CVPR
#4003

823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

843

844
845
846
847
848
849
850
851
852
853
854
855
856
857



CVPR
#4003

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

CVPR 2026 Submission #4003. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

critic model is highly dependent on a precisely defined re-
ward function—a significant challenge, as defining a reward
that accurately evaluates the compression effectiveness of
a synthetic sample is itself an inherently difficult and un-
solved research problem in dataset distillation. While DPO
[22] reformulates the objective to avoid a separate reward
model, it is designed for preference data, which does not
naturally align with our task of evaluating the utility of syn-
thetic images.

GRPO [12] circumvents these issues by eschewing a
critic model entirely. This critic-free nature allows us to di-
rectly use a relatively accurate reward metric—namely our
designed Rp,: and Rp;,—to optimize the policy, thereby
making the application of RL to dataset distillation compu-
tationally feasible and efficient.
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