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Abstract

Dataset distillation synthesizes compact datasets that re-001
tain the training utility of much larger ones. While diffu-002
sion models are natural candidates for this task due to their003
generative capabilities, there are few methods that adopt004
them in dataset distillation compared to the matching-based005
approaches and label-relaxation approaches. A key rea-006
son is the fundamental mismatch between diffusion objec-007
tives and distillation goals: diffusion models are trained008
to reconstruct high-fidelity data, whereas distillation re-009
quires compressed, task-relevant representations. We ad-010
dress this gap by proposing a reinforcement learning (RL)-011
guided framework that steers diffusion models from re-012
construction toward compression. By formulating sam-013
pling as a decision process, we optimize the generative014
trajectory using rewards derived from student model per-015
formance. This enables the generation of synthetic sam-016
ples that maximize learning utility under strict compression017
budgets. Unlike prior static modifications of the diffusion018
process, our method dynamically adapts generation based019
on downstream outcomes. Experiments on standard bench-020
marks show that our RL-guided diffusion approach consis-021
tently improves both performance and efficiency, advancing022
the frontier of generative dataset distillation.023

1. Introduction024

Dataset distillation [3, 4, 6, 11, 16, 32, 36] emerges as a025
scalable alternative to coreset selection, with a critical shift026
in paradigm: instead of selecting a subset from the original027
dataset, it aims to synthesize a small number of synthetic028
samples that can train models to comparable performance.029
This synthesis-oriented nature makes generative models,030
particularly diffusion models [4, 21], natural candidates for031
distillation backbones. Given their ability to model com-032
plex data distributions and generate diverse samples, dif-033
fusion models appear well-suited to construct informative,034
compact datasets. As visualized in Figure 1, this shift in ob-035

Z

Reconstruction-Oriented Distillation

Z

Compression-Oriented Distillation (Ours)

Figure 1. Illustration of reconstruction-oriented vs.
compression-oriented distillation. Top: Existing diffusion-
based distillation reconstructs high-fidelity samples by directly
mapping a latent code z to individual data points, optimizing for
pixel-level realism. Bottom: Our proposed Compression-Oriented
Distillation introduces reward-guided sampling, enabling z
to dynamically steer generation toward task-informative and
compact representations, thereby capturing dense supervision
with fewer samples.

jective—from faithfully reconstructing individual samples 036
to selectively synthesizing task-informative ones—calls for 037
a fundamental rethinking of how diffusion models are em- 038
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ployed in this context.039

However, despite the popularity of dataset distilla-040
tion [17, 24] and the great success of diffusion mod-041
els [15, 21], their integration remains rare. We identify a key042
reason behind this gap: a fundamental mismatch in objec-043
tives. Diffusion models are trained to reconstruct individual044
data samples with high fidelity by reversing a noise corrup-045
tion process. In contrast, dataset distillation is inherently046
a compression task, aiming to concentrate task-relevant in-047
formation into a minimal number of synthetic instances. As048
a result, the stronger a diffusion model becomes at recon-049
structing original data, the less effective it is for generating050
compressed data optimized for downstream learning.051

Existing dataset distillation methods primarily fall into052
two families: (i) matching-based approaches that directly053
optimize synthetic samples to approximate gradients or054
training trajectories [3, 7, 8, 18]; and (ii) label-relaxation ap-055
proaches such as SRe2L [34], which guide learning through056
softened targets. While both have achieved considerable057
progress, they suffer from scalability and generalization058
bottlenecks—either due to reliance on differentiable super-059
vision or overly rigid label semantics. These limitations060
further motivate a flexible, model-driven distillation frame-061
work, one that can generate rather than optimize, and adapt062
based on downstream training outcomes.063

To this end, we introduce Compression-Oriented Dis-064
tillation (COD), a novel framework that reformulates dif-065
fusion sampling as a reinforcement learning (RL) [2, 10,066
12, 19, 37] problem aimed at utility-aware data compres-067
sion. Instead of statically following the reverse denoising068
process, we learn a policy that dynamically controls the069
generative trajectory to favor samples that are compact yet070
highly effective for downstream training. By directly op-071
timizing this policy with task-driven reward signals, our072
method moves beyond heuristic guidance and enables prin-073
cipled generation of high-utility synthetic data under strict074
budget constraints.075

We instantiate this framework COD using Group Rel-076
ative Policy Optimization (GRPO) [12], a lightweight yet077
stable policy optimization method that avoids explicit value078
estimation. To guide sample generation, we design a reward079
function that combines two complementary components:080
(1) an entropy-based signal (REnt) that promotes informa-081
tive samples by maximizing predictive uncertainty [20], and082
(2) a diversity-aware penalty (RDiv) that discourages redun-083
dancy by comparing with a memory bank of previously gen-084
erated outputs. This reward-driven feedback loop steers the085
diffusion model beyond pixel-level fidelity, enabling it to086
explore and exploit regions of the data space that are opti-087
mized for learning efficiency [2]. Compared to prior meth-088
ods like Minimax Diffusion that statically reshape sampling089
behavior, our approach offers dynamic, goal-aware control090
over generative processes.091

In summary, this paper presents the first comprehensive 092
study of reinforcement learning for controlling diffusion- 093
based dataset distillation. By reinterpreting generative 094
modeling as a compression-driven decision process, we 095
bridge the gap between reconstruction-centric generation 096
and training-centric distillation, setting the stage for a new 097
class of adaptive, goal-aware synthetic data pipelines. Our 098
contributions are summarized as follows: 099
• We identify a fundamental mismatch between diffusion 100

models and dataset distillation: diffusion prioritizes re- 101
construction, while distillation demands compression. 102
This insight explains the limited integration of the two 103
paradigms. 104

• We propose Compression-Oriented Distillation (COD), a 105
novel dataset distillation framework that formulates diffu- 106
sion sampling as a reinforcement learning process guided 107
by downstream utility. 108

• We instantiate COD using Group Relative Policy Op- 109
timization (GRPO) with a reward function combining 110
entropy-based informativeness and diversity-aware regu- 111
larization, enabling principled and adaptive sample gen- 112
eration. 113

2. Preliminaries 114

2.1. Problem Formulation: Dataset Distillation 115

Given a large-scale dataset T = {(xi, yi)}Ni=1, where xi ∈ 116
Rd are data samples drawn i.i.d. from a natural distribution 117
D. We denote yi ∈ Y = {1, ..., C} to represent class labels. 118
Dataset distillation aims to construct a compact synthetic 119
dataset S = {(sj , ỹj)}Mj=1 with M ≪ N such that a model 120
trained solely on S performs comparably to one trained on 121
T [3, 32]: 122

S∗ = arg min
S⊂Rd×Y

E(x,y)∼D [ℓ(fθS(x), y)] , (1) 123

where θS denotes the model parameters obtained by training 124
on S, and ℓ(·) is a task-specific loss function (e.g., cross- 125
entropy). Most existing dataset distillation methods fall 126
into two broad categories: matching-based approaches and 127
label-relaxation approaches. 128

Matching-based approaches optimize synthetic data by 129
aligning gradients or training trajectories between real and 130
synthetic datasets [3, 6, 7, 36]. A common objective is gra- 131
dient matching [36]: 132

min
S

∑
(sj ,ỹj)∈S

∥∇θℓ(fθ(sj), ỹj)−∇θℓ(fθ(xi), yi)∥2 , (2) 133

where the gradient computed on synthetic samples is forced 134
to approximate that from real data. Trajectory-based vari- 135
ants extend this idea across multiple steps of optimization. 136
While effective, such methods often require differentiabil- 137
ity, second-order gradients, and suffer from limited scala- 138
bility on larger datasets. 139
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Label-relaxation approaches assign soft labels to syn-140
thetic samples to improve generalization [27, 29, 34]. In-141
stead of using hard one-hot labels yj , each synthetic sample142
is paired with a learnable probability vector ỹj ∈ ∆C−1:143

min
S

∑
(sj ,ỹj)∈S

ℓ(fθ(sj), ỹj), (3)144

where ỹj encodes label uncertainty or class similarity.145
While this approach improves performances significantly, it146
requires a pretained model to serve as the teacher model to147
generate soft labels. Xiao and He [33] reveals that remov-148
ing the soft labels will cause dramatic performance drop in149
Label-relaxation approaches.150

Both paradigms rely on direct supervision over synthetic151
instances. In contrast, our framework shifts the problem152
toward a reward-driven generative formulation, using rein-153
forcement learning to synthesize utility-optimized training154
data. Unlike coreset selection [1, 5, 13, 26, 31], dataset dis-155
tillation synthesizes new data instances rather than selecting156
from T . This makes generative models, in particular the dif-157
fusion models, a promising approach for dataset distillation.158

2.2. Diffusion Models for Generative Synthesis159

Diffusion models [15, 21, 30] generate data via a two-stage160
process: a forward noising process and a reverse denoising161
process. Let x0 ∼ D denote a real data sample; fθ denote162
the denoising network f parameterized with θ. The forward163
process gradually corrupts x0 with Gaussian noise, yielding164
a sequence {xt}Tt=0. The reverse process then aims to iter-165
atively reconstruct x0 from pure noise xT ∼ N (0, I), by166
learning a parameterized denoising network fθ.167

Given a discretized time schedule {ti}Ni=0, the sampling168
trajectory starts from x0 ∼ N (0, b(tmax)

2I) and proceeds169
via the following iterative update:170

xi+1 := κixi + ηifθ(xi | ti) + ζiϵ̃i, (4)171

where ϵ̃i ∼ N (0, I) is an optional sampling noise term172
(present only in SDE-based solvers), and κi, ηi, and ζi are173
time-dependent coefficients derived from the training-time174
noise schedule.175

This reverse process is fundamentally designed to re-176
construct a high-fidelity individual instance from Gaussian177
noise. The denoising network fθ is explicitly trained to re-178
verse the corruption applied in the forward process, which179
encourages the generation of samples that closely match the180
data distribution in pixel space or feature space. As a result,181
the learned generative trajectory is inherently biased toward182
reproducing realistic and data-faithful samples—making it183
highly suitable for reconstruction tasks, but potentially sub-184
optimal for generating compressed or task-optimized repre-185
sentations such as those needed in dataset distillation.186
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Impact of Diffusion Steps on Distillation Accuracy and FID

Figure 2. Impact of Diffusion Steps on Distillation Accuracy
and FID. We vary the number of sampling steps in the reverse dif-
fusion process and observe a trade-off between image fidelity and
distillation performance. As the number of steps increases, the
Fréchet Inception Distance (FID) consistently improves, indicat-
ing better reconstruction quality. However, the distillation accu-
racy declines, confirming that high-fidelity samples are not neces-
sarily more informative for downstream learning. This highlights
a fundamental mismatch between reconstruction and compression
objectives in diffusion-based distillation.

3. Method 187

3.1. The Reverse Process Performs Denoising, Not 188
Compression 189

The reverse diffusion process is inherently designed as a 190
denoising mechanism [15], not a compression pipeline. At 191
each time step, the denoising network fθ estimates either 192
the original clean sample x0 or the noise ϵ added during the 193
forward process, conditioned on a noisy input xt. This iter- 194
ative reconstruction from Gaussian noise is shown in Equa- 195
tion 4, where the objective is to minimize reconstruction 196
error between predicted and true clean samples. 197

This training formulation encourages the model to re- 198
produce high-fidelity instances that resemble the original 199
dataset distribution. However, in dataset distillation, the ob- 200
jective shifts: instead of reproducing all modes of the data, 201
we seek to selectively generate samples that are maximally 202
informative for training under tight data budgets. As shown 203
in Figure 2, while the Fréchet Inception Distance (FID) im- 204
proves with more steps the classification performance of 205
distilled datasets degrades. This confirms that better recon- 206
struction does not equate to better compression, and high- 207
fidelity images are not necessarily information-dense for 208
learning. 209

To address this mismatch, we aim to systematically bias 210
the reverse process away from denoising and toward com- 211
pression. The most direct solution appears to be modifying 212
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the reverse process itself, which replaces the reconstruction-213
oriented dynamics with a utility-driven sampling process214
that prioritizes the generation of high-information-content215
samples.216

However, this direction faces several fundamental limi-217
tations. First, shifting the diffusion objective toward com-218
pression would require defining or learning a new target dis-219
tribution S that represents the ideal distilled dataset distri-220
bution. We denote by S the empirical distribution formed221
by all synthetic datasets produced by existing dataset dis-222
tillation methods. Each method Ai generates a synthetic223
dataset Si = Ai(T ), where T is the original training set.224
The distribution S can thus be conceptualized as:225

S = PA∼M [A(T )] , (5)226

whereM is the space of known distillation algorithms (e.g.,227
DM, MTT, SRe2L, IGD).228

Attempting to train a diffusion model to approximate229
S poses three major challenges. First, S is implicitly230
defined and lacks a closed-form representation—sampling231
from it requires exhaustively running and storing outputs232
from many distillation pipelines. Second, synthetic datasets233
from different methods are structurally inconsistent, often234
varying in label granularity, resolution, or supervision for-235
mat, making them hard to unify under a coherent distribu-236
tion. Third, even if S were learnable, any generative model237
trained to replicate it would be fundamentally limited by the238
diversity and quality of the existing methods. That is, the239
best it can do is imitate prior solutions, but never surpass240
them.241

This motivates us to abandon the idea of statically fitting242
a proxy to S and instead adopt a reward-driven sampling243
mechanism that actively explores beyond it.244

3.2. Reinforcement Learning for Compression-245
Oriented Diffusion Sampling246

To explore beyond the empirical limits of S, we propose247
to steer the generative trajectory using reinforcement learn-248
ing (RL). Rather than statically mimicking prior synthetic249
datasets, our goal is to actively discover high-utility sam-250
ples by assigning rewards to diffusion outcomes based on251
their downstream training performance. This framing natu-252
rally casts the sampling procedure as a sequential decision253
process, where the reverse steps of the diffusion model form254
a Markov chain governed by a policy πϕ.255

The idea of prioritizing high-information-content sam-256
ples is inspired by the success of dataset pruning, which257
shows that even within natural datasets, only a subset of ex-258
amples contributes meaningfully to generalization. This ob-259
servation implies that data samples are inherently unequal260
in the perspective of information.261

Concretely, at each reverse timestep t, the policy πϕ(at |262
xt) selects an action at—such as modifying the noise pre-263

diction or controlling the denoising step size—based on 264
the current sample state xt. The final output x0 is evalu- 265
ated via a reward function R(x0) that reflects its utility for 266
distillation. This reward can be instantiated using down- 267
stream classification accuracy, teacher-student agreement, 268
or information-theoretic proxies such as entropy or mutual 269
information. The policy is then optimized to maximize ex- 270
pected reward: 271

max
ϕ

,Ex0∼πϕ [R(x0)] . (6) 272

This formulation transforms the role of the diffusion 273
model from a passive denoiser into an active sampler that 274
learns to navigate toward information-rich regions of the 275
data space. Unlike traditional guidance strategies, which 276
rely on heuristics or task-agnostic priors (e.g., classifier gra- 277
dients or class embeddings), our RL-based controller can be 278
trained end-to-end to align sample generation directly with 279
dataset distillation objectives. 280

In doing so, we depart from the conventional recon- 281
struction pipeline and reframe dataset distillation as a 282
compression-driven search problem over the generative tra- 283
jectory space. This dynamic mechanism allows us not only 284
to circumvent the ill-posed nature of S but also to transcend 285
the limitations of existing synthetic datasets by continu- 286
ously refining the sampling policy in response to feedback 287
from training performance. 288

3.3. Instantiating RL-Based Sampling with GRPO 289
and Entropy Rewards 290

To realize the RL formulation described above, we adopt 291
Group Relative Policy Optimization (GRPO) as our policy 292
learning algorithm. While standard reinforcement learning 293
methods such as PPO [25] offer stable policy improvement, 294
they rely heavily on value function estimation and surro- 295
gate clipping objectives, which are costly and unstable in 296
our context. Diffusion-based sampling is inherently high- 297
dimensional and slow, and accurate value estimation across 298
diverse generative trajectories is impractical. 299

GRPO circumvents these issues by discarding value es- 300
timation altogether. Instead of modeling long-term returns, 301
GRPO computes relative advantages within a group of sam- 302
pled actions. Specifically, for each reverse step state xt, 303

we sample a group of candidate actions {a(i)t }Gi=1, generate 304

corresponding samples {x(i)
0 }, and compute their rewards 305

{ri = R(x
(i)
0 )}. We then normalize the rewards using z- 306

score normalization to obtain relative advantages: 307

r̄i =
ri −mean(r)

std(r)
, (7) 308

where r = {r1, . . . , rG} is the reward vector within the 309
group. The policy πϕ is updated to increase the probability 310
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of actions with higher r̄i, encouraging exploration of trajec-311
tories that outperform their peers without needing explicit312
value estimation.313

REnt(x0) = H(fθ(x0)) = −
C∑

c=1

pc log pc, (8)314

where pc denotes the softmax probability assigned to class315
c by the model pretrained on original dataset. High entropy316
indicates model uncertainty and implies that the sample x0317
lies near the decision boundary—thus being more informa-318
tive for training. Unlike label-matching losses, entropy re-319
wards are task-agnostic, differentiable, and directly aligned320
with the goal of generating useful training signals.321

While entropy-based rewards encourage the generation322
of uncertain and potentially informative samples, optimiz-323
ing solely for entropy may lead to mode collapse—the re-324
peated synthesis of ambiguous yet similar examples. To325
mitigate this, we introduce a diversity reward that explic-326
itly penalizes redundancy among generated samples.327

We maintain a memory bank B that stores the embed-328
dings or output logits of previously generated synthetic329
samples. The details to implement the memory bank is330
clearly stated in the experiment section. For each new can-331
didate x0, we compute its similarity to the most similar en-332
try in the bank and apply a penalty accordingly. The final333
reward function becomes:334

R(x0) = REnt(x0) +RDiv(x0), where (9)335

RDiv(x0) = −λ ·max
x′∈B

sim(x0, x
′). (10)336

where sim(x0, x
′) measures the similarity between x0 and337

a stored sample x′ using cosine similarity. REnt(x0) is de-338
fined in Equation 8.The hyperparameter λ > 0 controls the339
trade-off between uncertainty and novelty.340

This diversity-aware reward encourages the sampling341
policy to explore broader, less redundant regions of the gen-342
erative space—promoting sample diversity without sacri-343
ficing informativeness. Empirically, we find that combin-344
ing entropy and diversity signals leads to synthetic datasets345
that are both challenging and complementary, resulting in346
stronger downstream performance.347

Altogether, our instantiation combines (1) a policy op-348
timization algorithm (GRPO), (2) an information-theoretic349
reward signal (entropy), and (3) a diversity-aware constraint350
(memory bank filtering). These design choices strike a bal-351
ance between sample informativeness and diversity—two352
pillars of effective dataset distillation.353

4. Experiments354

4.1. Experimental Setup355

Datasets and baselines. We evaluate our method on three356
benchmark datasets with increasing resolution and com-357

Algorithm 1 Compression-Oriented Diffusion for Dataset
Distillation
Require: Pretrained diffusion model fθ, pretrained evalu-

ation network hpt, policy πφ, memory bank B, group
size G, reward weight λ

1: for each RL iteration do
2: Sample G initial noise vectors {x(i)

T }Gi=1 ∼ N (0, I)

3: for each x
(i)
T do

4: Sample actions {a(i)t } from πφ(at | x(i)
t ) at each

timestep
5: Generate sample x

(i)
0 via controlled reverse diffu-

sion trajectory
6: Compute entropy reward:

REnt(x
(i)
0 ) = −

C∑
c=1

pc log pc where p = hpt(x
(i)
0 )

7: Compute diversity penalty:

RDiv(x
(i)
0 ) = −λ ·max

x′∈B
sim(x

(i)
0 , x′)

8: Total reward: R(i) = REnt(x
(i)
0 ) +RDiv(x

(i)
0 )

9: end for
10: Normalize rewards: R̄(i) = R(i)−mean(R)

std(R)

11: Update policy πφ using GRPO with R̄(i)

12: Update memory bank: B ← B ∪ {x(i)
0 }Gi=1

13: end for

plexity: ImageNet-1K (224×224) and two wellknown sub- 358
sets of ImageNet [23]: ImageNette, ImageWoof. For large- 359
scale evaluation, we follow common practice and report 360
top-1 classification accuracy under varying image-per-class 361
(IPC) settings (e.g., 10, 50, 100). We compare with repre- 362
sentative baselines including pixel-level methods (DM [35], 363
IDC-1 [16]), generative methods (DiT [21]), and fine- 364
tuned diffusion (Minimax [11]). Random and Full serve 365
as lower and upper bounds respectively. We also compare 366
with label-relaxation methods including Sre2L [34] and G- 367
VBSM [27]. 368

Evaluation protocol. Following prior work, we train 369
standard ConvNet or ResNet architectures on the synthetic 370
datasets for 50 to 200 epochs, depending on resolution, us- 371
ing SGD or Adam optimizers. We adopt consistent training 372
schedules across baselines for fair comparison. Unless oth- 373
erwise stated, evaluation is performed on the same test sets 374
as the original datasets. For ImageNet-1K, pretrained clas- 375
sifiers are also used for reward calculation but not for final 376
evaluation. While SRe2L [34] adopts an evaluation proto- 377
col using soft labels to have better performance, we only 378
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Figure 3. Visualization of random original images, images generated by baseline diffusion model (DiT) and our proposed method (COD).
For each column, the generated images are based on the same random seed. Compared to DiT, COD intentionally departs from pixel-level
faithfulness and produces samples that are less visually similar to the originals. This shift is consistent with our core view that high-fidelity
reconstruction is misaligned with the objective of dataset distillation.

adopt this protocol for ImageNet-1K experiments; all sub-379
set results are reported under standard hard-label evaluation380
for comparability.381

Diffusion backbone. We adopt latent DiT [21] as our dif-382
fusion backbone, using a pretrained VAE encoder-decoder383
to map between image and latent space. All experiments384
use DDIM [28] sampling with 50 steps. The policy net-385
work πφ operates over the noise prediction module of the386
reverse process and is trained using GRPO. For reward com-387
putation, we use a pretrained ImageNet-1K classifier fpt to388
evaluate entropy.389

Memory Bank Implementation. To support the390
diversity-aware reward Rdiv, we maintain a dynamic391
memory bank that stores previously generated synthetic392
samples. At the beginning of policy training, the memory393
bank is cold-started by populating it with a fixed number394
of synthetic samples generated unconditionally from the395
pretrained diffusion model. The total number of stored396
samples is set equal to the target dataset size to avoid397
memory growth.398

During training, each newly generated sample is com-399
pared against existing entries in the memory bank. If a400
sample is found to be highly similar to any stored instance401
(based on cosine similarity in a pretrained feature space),402
it is discarded from reward calculation and excluded from403
memory bank updates. Otherwise, the sample is appended404
to the memory bank, and the most similar existing item is405
removed to maintain a fixed memory size. This design en-406
sures continual refresh of diverse representations without407
allowing the memory bank to grow, enabling efficient and408
scalable diversity estimation.409

0 500 1000 1500 2000 2500 3000 3500 4000

Steps

0.005

0.01

0.015

0.02

0.025

0.03

Reward

Reward
R

ent

R
div

Figure 4. Reward components over training steps. The to-
tal reward (blue) increases steadily throughout training, driven by
the entropy-based component Rent (red) and the diversity-based
penalty Rdiv (yellow). Notably, Rent saturates early, while Rdiv

continues to rise, indicating a shift in policy focus from informa-
tiveness to sample diversity as training progresses.

Training details. All experiments are conducted on a sin- 410
gle NVIDIA RTX 4090 GPU. Each GRPO update uses 411
group size G = 4, and the memory bank retains up to 512 412
embeddings per class. We adopt cosine annealing for the 413
policy learning rate and freeze the pretrained diffusion and 414
classifier networks throughout the process. Further details 415
(e.g., entropy temperature, policy depth) are detailed in Ap- 416
pendix A. 417

4.2. Experimental Results 418

Main Results on ImageNet. We report the top-1 classi- 419
fication accuracy on Nette and Woof subsets under varying 420
architectures (ConvNet-6, ResNetAP-10, ResNet-18) [14] 421
and image-per-class (IPC) budgets (10, 50, 100). The re- 422
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Table 1. Comparison of distillation performance across multiple methods, architectures, and datasets. We report top-1 classification
accuracy (%) on Nette and Woof subsets of the ImageNet-1K dataset under varying architectures (ConvNet-6, ResNetAP-10, ResNet-18)
and image-per-class (IPC) budgets (10, 50, 100). COD (Ours) consistently achieves competitive or superior performance across settings,
particularly under low IPC (e.g., 10), demonstrating its advantage in generating informative and compressed synthetic datasets. Full
denotes training on the complete original dataset and serves as an upper bound.

Subset Nette Woof
Architecture ConvNet-6 ResNetAP-10 ResNet-18 ConvNet-6 ResNetAP-10 ResNet-18

IPC 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

Random 46.0
±0.5

71.8
±1.2

79.9
±0.8

54.2
±1.2

77.3
±1.0

81.1
±0.6

55.8
±1.0

75.8
±1.1

82.0
±0.4

24.3
±1.1

41.3
±0.6

52.2
±0.4

29.4
±0.8

47.2
±1.3

59.2
±0.9

27.7
±0.9

47.9
±1.8

61.5
±1.3

DM 49.8
±1.1

70.3
±0.8

78.5
±0.8

60.2
±0.7

76.7
±1.0

80.9
±0.7

60.9
±0.7

75.0
±1.0

81.5
±0.4

26.9
±1.2

43.8
±1.1

50.1
±0.9

29.8
±1.0

47.1
±1.1

56.4
±0.8

30.2
±0.6

46.2
±0.6

60.2
±1.0

IDC-1 48.2
±1.2

72.4
±0.7

80.6
±1.1

60.4
±0.6

77.4
±0.7

81.5
±1.2

61.0
±0.8

77.8
±0.7

81.7
±0.8

33.3
±1.1

42.6
±0.9

51.0
±1.1

38.5
±0.7

48.3
±1.0

56.1
±0.9

36.7
±0.8

48.3
±0.8

57.7
±0.8

DiT 56.2
±1.3

73.3
±0.9

78.2
±0.3

62.8
±0.8

76.9
±0.5

80.1
±1.1

62.5
±0.9

75.2
±0.9

77.8
±0.6

32.3
±0.8

46.5
±0.8

53.4
±0.3

34.7
±0.5

49.3
±0.2

58.3
±0.8

34.7
±0.4

50.1
±0.5

58.9
±1.3

Minimax 58.2
±0.9

76.6
±0.2

81.1
±0.3

63.2
±1.0

78.2
±0.7

81.3
±0.9

64.9
±0.6

78.1
±0.6

81.3
±0.7

33.5
±1.4

50.7
±1.8

57.1
±1.9

39.2
±1.3

56.3
±1.0

64.5
±0.2

37.6
±0.9

57.1
±0.6

65.7
±0.4

COD (Ours) 59.2
±0.9

74.8
±0.5

78.8
±1.6

64.3
±0.3

78.5
±0.8

81.0
±1.0

63.8
±1.2

78.7
±0.7

81.6
±1.3

36.0
±0.9

51.3
±1.0

55.2
±1.5

41.6
±1.3

58.2
±0.8

65.6
±0.6

44.0
±1.8

59.2
±1.0

65.4
±0.9

Full 94.3
±0.5

94.3
±0.5

94.3
±0.5

94.6
±0.5

94.6
±0.5

94.6
±0.5

95.3
±0.6

95.3
±0.6

95.3
±0.6

85.9
±0.4

85.9
±0.4

85.9
±0.4

87.2
±0.6

87.2
±0.6

87.2
±0.6

89.0
±0.6

89.0
±0.6

89.0
±0.6

sults are demonstrated in Table 1. COD achieves con-423
sistent improvements over prior diffusion-based methods424
(DM [35], DiT [21]) and optimization-based methods (IDC-425
1 [16]), especially under low-data regimes such as IPC=10.426
Compared to the strongest baseline, Minimax, our method427
exhibits competitive performance across nearly all settings.428
However, the performance gap between COD and Minimax429
remains small. This is expected, as both approaches share430
a similar underlying philosophy: Minimax explicitly modi-431
fies the denoising network during training to favor discrim-432
inative gradients, while COD fine-tunes the sampling tra-433
jectory via reinforcement learning. Despite differing in im-434
plementation (training vs. inference), both methods achieve435
comparable expressivity in guiding generation away from436
pixel-level fidelity and toward task-relevant content.437

We report top-1 accuracy on ImageNet-1K with IPC =438
10 and 50 in Table 2. COD achieves the highest accuracy at439
IPC = 50, surpassing both optimization-based (SRe²L [34],440
G-VBSM [27], RDED [29]) and generative (DiT [21], Min-441
imax [11]) methods. The consistent improvement demon-442
strates the effectiveness of our reward-driven policy in scal-443
ing to large-scale distillation.444

Trade-off Between Accuracy and Fidelity. We inves-445
tigate how the number of reverse diffusion steps affects446
the trade-off between sample fidelity and distillation per-447
formance. As shown in Figure 2, increasing steps leads448
to lower Fréchet Inception Distance (FID), indicating im-449
proved visual quality. However, distillation accuracy peaks450

at 75 steps and declines thereafter. This confirms a key in- 451
sight: higher-fidelity samples are not necessarily more in- 452
formative for training, and optimizing for visual realism can 453
hurt task-specific compression. 454

Reward Dynamics Analysis. To understand how our re- 455
ward function evolves during training, we track the total re- 456
ward and its two components (Rent, Rdiv) across policy up- 457
dates. As shown in Figure 4, the total reward increases con- 458
sistently, indicating effective policy learning. The informa- 459
tiveness term Rent rises rapidly in early stages and then satu- 460
rates, reflecting that informative sample selection is quickly 461
optimized. In contrast, the diversity term Rdiv grows more 462
gradually, highlighting a shift in focus from informativeness 463
to diversity as training progresses. This dynamic illustrates 464
the complementary nature of the reward design, encourag- 465
ing both discriminative and varied sample generation over 466
time. 467

Additional Results in Supplementary. Due to space 468
constraints, we include several extended experiments in 469
the supplementary material. These include (1) cross- 470
architecture evaluation on ImageNet-1K, which demon- 471
strates the robustness of our method across different back- 472
bone networks; (2) an ablation study isolating the effects of 473
the entropy-based reward (Rent) and the diversity-based re- 474
ward (Rdiv), showing that both components contribute pos- 475
itively to performance, though their combination yields di- 476
minishing returns due to partial redundancy; and (3) visual- 477
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Table 2. Top-1 accuracy (%) on ImageNet-1K under different distillation methods with IPC = 10 and 50. COD achieves the highest
accuracy when IPC=50, outperforming optimization-based (SRe2L, G-VBSM, RDED) and generative (DiT, Minimax) baselines. This
demonstrates the effectiveness of reward-driven sampling in scaling dataset distillation to challenging large-scale benchmarks.

Dataset IPC SRe2L G-VBSM RDED DiT Minimax COD(Ours)

ImageNet-1K
10 21.3

±0.6

31.4
±0.5

42.0
±0.1

39.6
±0.4

44.3
±0.5

45.0
±0.3

50 46.8
±0.2

51.8
±0.4

56.5
±0.1

52.9
±0.6

58.6
±0.3

59.4
±0.4

izations of generated samples that qualitatively reflect the478
trade-off between fidelity and informativeness. All code479
and implementation details are also provided in the supple-480
ment for reproducibility.481

4.3. Discussion482

This work takes a first step toward bridging generative mod-483
eling and dataset distillation by introducing a reward-driven484
formulation over the diffusion sampling process. While485
prior approaches often rely on handcrafted objectives or di-486
rect optimization of synthetic data, our method shows that487
reinforcement learning can provide a principled mechanism488
for exploring informative regions of the sample space.489

Visualization. The qualitative comparison in Figure 3490
further illustrates the core shift enabled by our frame-491
work—from reconstruction to compression. While the DiT492
backbone tends to replicate the dominant visual modes493
of the original dataset, COD deliberately deviates from494
pixel-level fidelity and instead synthesizes samples that em-495
phasize class-discriminative structures, pose variation, and496
decision-boundary cues. Notably, COD images often ap-497
pear less realistic or less similar to their original counter-498
parts; however, this deviation is not a defect but a direct499
consequence of optimizing for learning utility rather than500
appearance. This trend mirrors our quantitative findings in501
Figure 2, where higher visual fidelity (lower FID) correlates502
with worse distillation accuracy.503

Limitations. However, our framework also presents sev-504
eral limitations. First, incorporating reinforcement learn-505
ing—though conceptually appealing—introduces training506
instability. Although GRPO offers a lightweight and507
gradient-regularized alternative to value-based methods, it508
still requires careful tuning of sampling frequency, reward509
scaling, and update schedules to achieve consistent conver-510
gence. Second, while our policy successfully shifts the gen-511
erative behavior from reconstruction toward compression, it512
does so by modifying the sampling trajectory rather than the513
underlying diffusion model itself. The denoising backbone514
remains trained to match the natural data distribution, and515
therefore retains an inherent bias toward data fidelity. As a516
result, the full potential of compression-oriented generation517

is still constrained by the original training objective of the 518
generative model. 519

These limitations point to promising future directions, 520
such as integrating downstream utility signals into the train- 521
ing of the generative model itself, or developing more sta- 522
ble and expressive learning frameworks beyond policy op- 523
timization to further improve the quality and utility of dis- 524
tilled samples. 525

Future Work. More broadly, we view Compression- 526
Oriented Distillation as a paradigm shift for the dataset dis- 527
tillation community. Rather than treating generative models 528
as static decoders of the original dataset, we advocate for 529
a dynamic, policy-guided generation process in which syn- 530
thetic data is optimized for task-specific utility. Our frame- 531
work—based on reinforcement learning and built upon a 532
transformer-based diffusion backbone—demonstrates that 533
modern generative architectures can be harnessed not just 534
for realism, but for strategic, goal-aware data construction. 535

We believe this direction opens up a rich avenue for 536
future research: leveraging increasingly powerful genera- 537
tive models, especially diffusion and transformer-based ar- 538
chitectures, not merely as sample generators, but as ac- 539
tive agents in data compression, selection, and synthesis. 540
As foundation models continue to scale in capacity and 541
generality, coupling them with task-aware decision-making 542
mechanisms may fundamentally redefine how we construct 543
and optimize training datasets across domains. 544

5. Conclusion 545

We introduced Compression-Oriented Distillation (COD), 546
a reinforcement learning framework that guides diffusion 547
models to generate informative and compact synthetic data 548
for dataset distillation. By shifting the objective from re- 549
construction to compression, our method departs from static 550
denoising and instead learns a dynamic sampling policy op- 551
timized for downstream utility. Through entropy-driven and 552
diversity-driven rewards, our approach enables principled 553
control over generative trajectories without modifying the 554
diffusion training objective. This work bridges generative 555
modeling and data distillation, paving the way for future 556
research that further integrates task-aware objectives with 557
advanced generative architectures. 558
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A. More Related Work701

Trajectory Matching Approaches Dataset distillation was702
first cast as a bi-level optimisation that matches gradients703
between real and synthetic data to preserve learning sig-704
nals while using orders-of-magnitude fewer images [32].705
Subsequent trajectory matching methods align full opti-706
misation paths rather than single-step gradients, captur-707
ing richer learning dynamics and markedly boosting cross-708
architecture transferability [3]. However, early variants709
were memory-intensive and limited to small datasets. Re-710
cent work addresses these bottlenecks compress back-prop711
storage to enable ImageNet-1K distillation with constant712
memory while Du et al. introduce sequential matching that713
partitions long trajectories into manageable blocks [9]. To-714
gether, these advances push trajectory matching to large-715
scale settings, narrowing the test-accuracy gap to within a716
few points of full-data training.717

Diffusion-Based Distillation Diffusion models provide718
a powerful generative prior for synthesising realistic yet719
compact datasets. Minimax Diffusion fine-tunes a DiT720
backbone adversarially, balancing sample fidelity and dis-721
criminative utility to outperform pixel-level baselines on722
ImageNet subsets [11]. Influence-Guided Diffusion (IGD)723
further removes heavy retraining by steering the sampling724
trajectory with mutual-information rewards, producing di-725
verse, class-informative images at scale [4]. Comple-726
mentary to these tuning-heavy approaches, RDED com-727
poses high-quality image patches without gradient updates,728
achieving strong performance under extreme budgets of 10729
images per class [29]. Collectively, these studies demon-730
strate that diffusion priors can retain visual fidelity, diver-731
sity and class coverage even when the synthetic dataset is732
compressed by two orders of magnitude.733

Reinforcement Learning for Diffusion Control View-734
ing denoising as a sequential decision process opens735
the door to policy-gradient fine-tuning. DDPO learns736
to adjust reverse-time steps with task-level rewards, im-737
proving alignment, aesthetics and even compressibility738
of generated images [2]. DPOK augments this frame-739
work with KL-regularised updates for greater stability740
and sample quality [10]. Building on these ideas, our741
Compression-Oriented Distillation uses utility-driven re-742
wards—combining uncertainty and diversity—to bias diffu-743
sion trajectories toward samples that maximise downstream744
accuracy under strict image-per-class budgets, bridging745
reconstruction-centric generation and training-centric distil-746
lation.747

B. Cross–Architecture Comparisons on748

ImageNet-1K749

Table 3 reports top-1 accuracy of our Compression-750
Oriented Distillation (COD) against the recent RDED751

baseline on four unseen backbones of varying capac- 752
ity—ResNet101, MobileNet-V2, EfficientNet-B0 and Swin 753
Transformer—under two compression budgets. 754

Overall, COD delivers consistent gains at IPC50, ex- 755
ceeding RDED by an average of 3.7 percentage points 756
across architectures. Improvements are particularly pro- 757
nounced on ResNet101 (+4.9) and Swin Transformer 758
(+4.0). At the stricter IPC10 setting, COD still outper- 759
forms RDED on two of four backbones and yields an aver- 760
age uplift of 4.3 points, driven largely by a sizeable margin 761
on EfficientNet-B0 (+15.4). These results demonstrate that 762
reward-driven diffusion sampling scales effectively across 763
diverse network families while maintaining strong perfor- 764
mance under aggressive data budgets. 765

C. Ablation study 766

To validate the effectiveness of our reward function design, 767
we conduct comprehensive ablation studies on the Image- 768
Woof and ImageNette datasets using ResNetAP-10 archi- 769
tecture. The experiments systematically evaluate the contri- 770
bution of each reward component to the overall distillation 771
performance. 772

C.1. Reward Component Analysis 773

The ablation study examines three configurations: (1) base- 774
line without any reward components, (2) entropy reward 775
only (REnt), and (3) diversity reward only (RDiv). The en- 776
tropy reward promotes samples with high predictive uncer- 777
tainty, while the diversity reward encourages exploration of 778
different regions in the data space. 779

C.2. Performance Impact 780

Results demonstrate that both reward components con- 781
tribute positively to distillation performance, with the diver- 782
sity reward showing particularly strong improvements on 783
the ImageWoof dataset. The entropy reward provides con- 784
sistent gains across both datasets, indicating its effective- 785
ness in generating informative samples. The combination 786
of both components yields optimal performance, validating 787
our multi-component reward design. 788

Table 5 presents the ablation study results, demonstrating 789
that both reward components are essential for optimal per- 790
formance. The diversity reward shows particularly strong 791
improvements on ImageWoof (+5.5% at 10-IPC), while 792
the entropy reward provides consistent gains across both 793
datasets. These results validate our reward function design 794
and highlight the importance of balancing informativeness 795
and diversity in dataset distillation. 796

D. Hyperparameters Setup 797

Our Compression-Oriented Distillation (COD) framework 798
employs a carefully tuned set of hyperparameters to balance 799
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Table 3. Top-1 accuracy (%) on ImageNet-1K with 10 and 50 images per class (IPC10 / IPC50). Numbers are mean ± standard deviation
over three runs.

Method ResNet101 MobileNet-V2 EfficientNet-B0 Swin Transformer

IPC10 IPC50 IPC10 IPC50 IPC10 IPC50 IPC10 IPC50

RDED 48.3±1.0 61.2±0.4 40.4±0.1 53.3±0.2 31.0±0.1 58.5±0.4 42.3±0.6 53.2±0.8
COD 50.8±0.3 66.1±0.4 40.1±0.4 56.3±0.5 46.4±0.2 61.4±0.2 42.1±0.6 57.2±0.6

Table 4. Hyperparameters Setup for Compression-Oriented Distillation (COD). Key parameters include reward weights for entropy (WEnt)
and diversity (WDiv), training configuration (batch size, epochs, learning rate, α, β,), and GRPO clip (ϵ).

WEnt WDiv batch size epochs lr α β ϵ

args 1.0 0.5 16 40 1e-4 0.4 0.6 0.2

Table 5. Ablation study of reward components on ImageWoof and
ImageNette datasets using ResNetAP-10. REnt denotes the En-
tropy Reward and RDiv denotes the Diversity Reward. Results
show mean ± standard deviation over multiple runs.

REnt RDiv
ImageWoof ImageNette

10-IPC 50-IPC 10-IPC 50-IPC

- - 34.9±0.9 50.8±1.1 62.8±0.8 76.9±0.5

✓ - 38.2±1.1 54.6±0.7 61.4±0.7 77.1±0.9

- ✓ 40.4±0.8 56.7±0.9 62.3±0.4 77.3±0.8

exploration and exploitation in the reinforcement learning800
process. The configuration is designed to maximize the801
informativeness and diversity of generated samples while802
maintaining stable training dynamics.803

D.1. Reward Function Configuration804

The reward function in our GRPO-based framework com-805
bines multiple components with empirically tuned weights.806
The entropy reward weight WEnt = 1.0 encourages the807
generation of samples that maximize predictive uncertainty,808
thereby promoting informative samples that lie near deci-809
sion boundaries. The diversity reward weight WDiv =810
0.5 penalizes redundancy by comparing generated samples811
against a memory bank of previously synthesized outputs,812
ensuring sample diversity without sacrificing informative-813
ness.814

D.2. Training Parameters815

The training process is configured with a batch size of 16816
and runs for 40 epochs to ensure sufficient exploration of817
the generative space. We employ a learning rate of 1×10−4818
with AdamW optimizer, which provides stable convergence819
for the policy optimization process. The epsilon parameter820
ϵ = 0.2 controls the clipping range for the GRPO algorithm,821
ensuring policy updates remain within reasonable bounds.822

E. Training Efficiency Analysis 823

The introduction of a reinforcement learning (RL) frame- 824
work in our work inevitably incurs additional computa- 825
tional overhead. To quantify this, we compared the train- 826
ing efficiency quantitatively of our proposed Compression- 827
Oriented Distillation (COD) to the state-of-the-art (SOTA) 828
baseline, Minimax [11], in producing distilled datasets, us- 829
ing a single NVIDIA RTX 4090 GPU. We discovered that 830
COD is significantly more efficient than Minimax. Specifi- 831
cally, COD converges in approximately 5.5 hours, whereas 832
Minimax requires over 7 hours—a notable efficiency gain 833
of around 30%. We attribute this significant advantage pri- 834
marily to the lightweight nature of the Group Relative Pol- 835
icy Optimization (GRPO) [12] algorithm we employ. While 836
the ultimate performance of COD is currently bottlenecked 837
by the reward function used to evaluate synthetic sample 838
compression, its substantial efficiency advantage, coupled 839
with the strong potential of RL in controlling generative 840
models, makes it a highly promising direction for dataset 841
distillation research. 842

F. Training algorithm selection 843

Our choice of Group Relative Policy Optimization (GRPO) 844
[12] over other widely-used policy optimization algorithms, 845
such as Proximal Policy Optimization (PPO) [25] or Direct 846
Preference Optimization (DPO) [22], was a deliberate deci- 847
sion based on the specific challenges inherent to the task of 848
dataset distillation. 849

Algorithms like PPO [25] typically necessitate an addi- 850
tional critic, or value model, to estimate state values. This 851
architecture presents two primary obstacles in the context 852
of our task. First, introducing this additional critic model 853
significantly increases the computational overhead (often 854
by 3–5×), as it requires separate training and inference. 855
Second, and more critically, this approach suffers from a 856
strong reward function dependency. The accuracy of the 857
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critic model is highly dependent on a precisely defined re-858
ward function—a significant challenge, as defining a reward859
that accurately evaluates the compression effectiveness of860
a synthetic sample is itself an inherently difficult and un-861
solved research problem in dataset distillation. While DPO862
[22] reformulates the objective to avoid a separate reward863
model, it is designed for preference data, which does not864
naturally align with our task of evaluating the utility of syn-865
thetic images.866

GRPO [12] circumvents these issues by eschewing a867
critic model entirely. This critic-free nature allows us to di-868
rectly use a relatively accurate reward metric—namely our869
designed REnt and RDiv—to optimize the policy, thereby870
making the application of RL to dataset distillation compu-871
tationally feasible and efficient.872
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