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ABSTRACT

The excellent generative capabilities of text-to-image diffusion models suggest
they learn informative representations of image-text data. However, what knowl-
edge their representations capture is not fully understood, and they have not been
thoroughly explored on downstream tasks. We investigate diffusion models by
proposing a method for evaluating them as zero-shot classifiers. The key idea is
using a diffusion model’s ability to denoise a noised image given a text description
of a label as a proxy for that label’s likelihood. We apply our method to Imagen,
using it to probe fine-grained aspects of Imagen’s knowledge and comparing it
with CLIP’s zero-shot abilities. Imagen performs competitively with CLIP on a
wide range of zero-shot image classification datasets. Additionally, it achieves
state-of-the-art results on shape/texture bias tests and can successfully perform
attribute binding while CLIP cannot. Although generative pre-training is prevalent
in NLP, visual foundation models often use other methods such as contrastive
learning. Based on our findings, we argue that generative pre-training should be
explored as a compelling alternative for vision and vision-language problems. The
full paper is available on arxiv.

1 INTRODUCTION

Generative text-to-image models based on denoising diffusion probablistic models (Ho et al., 2020)
such as Imagen (Saharia et al., 2022a), Dalle-2 (Ramesh et al., 2022), and Stable Diffusion (Rom-
bach et al., 2022) have demonstrated excellent abilities in generating high-resolution images and
generalizing to diverse text prompts. Their strong performance suggests that they learn effective
representations of image-text data. However, their ability to transfer to downstream discriminative
tasks and how they compare to other pre-trained image models has not been explored thoroughly.

We investigate these questions by transferring the Imagen diffusion model to discriminative tasks.
Specifically, we propose a method for using text-to-image diffusion models as zero-shot image
classifiers. While Burgert et al. (2022) have explored using Stable Diffusion for zero-shot referring
segmentation and Bar et al. (2022) have explored using inpainting models for few-shot pixel-level
tasks, to our knowledge zero-shot classification with diffusion models has not been studied previously.

Our method essentially runs Imagen as a generative classifier (Ng & Jordan, 2001), using a re-
weighted version of Imagen’s variational lower bound to score images since diffusion models do not
produce exact likelihoods. First, our method makes a text prompt for each class (e.g. “a photo of a
cat.”). Then it scores input the image conditioned on each text prompt, measuring how helpful each
prompt is for denoising the image averaged over different noise levels. The class corresponding to
the prompt with the best score is predicted. This classification procedure requires denoising with
Imagen many times for every class (with different noise levels), so it is computationally expensive.
To make it usable in practice, we present improvements that increase the method’s sample efficiency
by up to 1000x, such as pruning away obviously-incorrect classes early.

We compare Imagen against CLIP1 (Radford et al., 2021), a widely used model for zero-shot
image-text tasks trained with contrastive learning. First, we demonstrate that Imagen has strong

1We use the largest public CLIP model
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zero-shot classification accuracies (competitive with CLIP) on several diverse vision datasets. Next,
we show that Imagen performs robustly and achieves SOTA results (>50% error reduction over
CLIP) on images with texture-shape conflicting cues (Geirhos et al., 2018) that have shown to
confound pre-trained convolutional supervised models. An important use of our classification method
is in quantitatively studying fine-grained aspects of what diffusion models know (as opposed to
qualitatively examining model generations). We showcase this by studying attribute binding in
Imagen, and find that, unlike CLIP, it can successfully bind attributes in some settings. Together, our
study of Imagen suggests that text-to-image diffusion models learn powerful representations that can
effectively be used for tasks beyond image generation.

2 ZERO-SHOT CLASSIFICATION USING IMAGEN

We seek to demonstrate the knowledge transfer capabilities of text-to-image diffusion models using
the setting of zero-shot classification.

Imagen as a Generative Classifier We begin with a dataset, *(x1, y1), . . . , (xn, yn)+ ⊆ Rd1×d2 ×
[yK ] of n images where each image belongs to one of K classes [yK ] := {y1, y2, · · · , yK}. Given an
image x, our goal is to predict the most likely class assignment

ỹ = argmax
yk

p(y = yk|x) = argmax
yk

p(x|y = yk) · p(y = yk) = argmax
yk

log p(x|y = yk).

where we assume a uniform prior p(yi = yk) = 1
k that can be dropped from the argmax.2 A

generative classifier (Ng & Jordan, 2001) uses a conditional generative model with parameters θ to
estimate the likelihood as pθ(x|y = yk).

Imagen is conditioned on text prompts rather than class labels. Thus we convert each label, yk, to text
using a mapping T with a dataset-specific template (e.g. yk → A photo of a yk). Furthermore,
diffusion models do not produce exact log-likelihoods (i.e. we cannot compute log pθ(x|y = yk)
directly). Our key idea for a solution is to use the diffusion model’s variational lower bound (VLB)
as a proxy. In particular, we use LDiffusion, the portion of the VLB corresponding to denoising images,
as Imagen is not trained with the other loss terms. See Appendix A for more detailed background on
diffusion models and their training. The predicted class is:

ỹ = argmax
yk

log pθ(x|y = yk) ≈ argmin
yk

LDiffusion(x, yk)

= argmin
yk∈[yK ]

Eε,t
[
wt‖x− x̃θ

(
xt, cφ(T(yk)), t

)
‖22
]

(1)

Estimating the Expectation: We approximate the expectation in Equation (1) using a Monte-Carlo
estimatation. At each step, we sample a t ∼ U([0, 1]) and then xt according to the forward diffusion
process (Equation (2)): xt ∼ q(xt|x0). Next, we denoise this noisy image using Imagen (i.e. we use
Imagen to predict x from xt), obtaining x̂ = x̃θ

(
xt, cφ(T(yk)), t

)
. We predict the class with the

lowest average weighted squared error wt‖x− x̂‖22 across steps.

The choice of weighting function, wt, is crucial to the overall performance of the classification
algorithm. Here, we chose wt := exp(−7t) which we found to work well across many datasets and
use it in our experiments. Furthermore, the algorithm presented here is computationally expensive
becauseLDiffusion has a fairly high variance. We propose efficiency techniques that reduce the compute
cost of computing argmin over classes in Appendix B.

3 EMPIRICAL ANALYSIS AND RESULTS

Here we evaluate Imagen as a zero-shot classifier on a variety of tasks. We compare with CLIP
(Radford et al., 2021), which is widely used as a zero-shot classifier. Our main aim is to study the
strengths and weaknesses of image-text representation learning via generative training as in Imagen
and contrastive training as used for CLIP. See Appendix C for details on the experimental setup.

2We can’t use a learned prior in the zero-shot setting.
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Dataset Imagen CLIP

CIFAR10 96.6 94.7
CIFAR100 84.3 68.6

STL10 99.6 99.6
MNIST 79.2 74.3

DTD 37.3 36.0
Patch Camelyon 60.3 58.0

SVHN 62.7 21.50
EuroSAT 60.3 58.04

Imagenet 62.7 63.4 / 75.1
Stanford Cars 81.0 62.8 / 75.8
Caltech101 68.9 70.2 / 84.1
Oxford Pets 66.5 76.0 / 89.9

Food 101 68.4 83.9 / 93.3

Table 1: Percentage accuracies for zero-shot
image classification. For CLIP where two
numbers are reported, the accuracy corre-
spond to two settings: downsizing the images
to 64x64 and then resizing the images up to
224x224, and resizing directly to 224x224.

Task Imagen CLIP

Shape 85 91
Color 96 94

Shape|Color 66/73 52/53
Shape|Size 48/51 51/50

Shape|Position 51/52 48/51
Color|Size 54/54 51/48

Color|Position 49/49 50/49
Size|Position 50/54 50/48

Shape,Color 100 54
Shape,Size 99 52

Shape,Position 74 50
Color,Size 86 48

Color,Position 72 49
Size,Position 69 51

Table 2: Percent accuracy for models on
zero-shot synthetic-data tasks investigating
attribute binding. Bold results are significant
(p < 0.01) according to a two-sided binomial
test. For non-pair binding tasks, we show both
directions (e.g. Shape|Color and Color|Shape
before/after the slash. CLIP is unable to bind
attributes, while Imagen sometimes can.

3.1 IMAGE CLASSIFICATION

We first evaluate the performance of Imagen on 13 datasets from Radford et al. (2021) as reported in
Table 1. We use the prompt templates and class labels used by Radford et al. (2021), which renames
some classes that confuse models (e.g. “crane→ “crane bird”” in Imagenet) (OpenAI, 2021b). We
use the first prompt from the list, except for Imagenet, where we use “A bad photo of a label ” since
this is a good prompt for both Imagen and CLIP (OpenAI, 2021a).

Since we use the low-resolution Imagen model, we obtain results using CLIP under two settings
for a fair comparison. In the first setting, we resize all the images to 64 × 64 which serves as the
base low-resolution dataset. Imagen uses this dataset directly. CLIP requires 224× 224 resolution
inputs, so we bicubic-upsample the images to this size. In the second setting, we directly resize to
224 × 224 resolution without first going to 64x64, to obtain the best results possible using CLIP
where it can take advantage of its higher input resolution compared to Imagen. The first eight datasets
are all originally of resolution 64× 64 or less. On these, Imagen outperforms CLIP on classification
accuracy under the same evaluation setting (i.e. the models are conditioned on the same text prompts,
etc). Imagen significantly outperforms CLIP on e.g. SVHN, which requires recognizing text in an
image, reinforcing the qualitative observation that Imagen is good at generating images containing
text (Saharia et al., 2022b). The next five datasets use higher-resolution images. For some of these,
taking advantage of CLIP’s higher input resolution substantially improves results. It may be possible
to get similar benefits from Imagen by incorporating scores from its superresolution models, which
we leave for future work to explore.

3.2 ROBUSTNESS

We next study the robustness of text-to-image diffusion models like Imagen by evaluating it on the
cue conflict dataset from Geirhos et al. (2018). The dataset consists of Imagenet images altered to
have a shape-texture conflict. While (for example) changing an image of a cat so it has a texture
similar to elephant skin doesn’t confuse humans, it could cause a model to classify the image as an
elephant. We use the same setting for classification here as in Appendix C.1. Imagen achieves 82.88
% accuracy compared to 51.56% by CLIP and 79% top-5 accuracy by a supervised trained ResNet50.
We provide more details in Appendix C.2.
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3.3 EVALUATING ATTRIBUTE BINDING ON SYNTHETIC DATA

We next test attribute binding in Imagen and CLIP on synthetic datasets. Attribute binding is a key
piece of compositional reasoning: to understand novel combinations of concepts, one must bind the
concepts together and treat them as a whole. While other work has examined attribute binding in
text-to-image models by qualitatively examining model generations (Nichol et al., 2021; Yu et al.,
2022), our Imagen classifier offers a way of studying the question quantitatively.

Dataset Construction: We use a setup similar to Lewis et al. (2022), where images are generated
based on the CLEVR (Johnson et al., 2017) dataset. CLEVR images contain various object (cubes,
cylinders, and spheres) with various attributes (different sizes, colors, and materials). We use a
modified version of the CLEVR rendering script that generates images containing two objects of
different shapes. From these images, we construct four binary classification tasks as shown below:

Recognition tasks determine if the model can identify basic image features by scoring
an attribute in the image against one not present. e.g.: A sphere. vs. A cylinder.
Single-object binding tasks test if the model binds a given attribute to the correct
object. e.g.: A yellow sphere. vs. A gray sphere.
Pair binding tasks are easier binding tasks where information about both objects is
provided. e.g.: A small sphere and a large cube. vs. A large sphere and a small cube.
Spatial tasks test if the model is capable of binding objects and their positions in the
image. e.g.: On the left is a yellow sphere. vs. On the right is a yellow sphere.

Recognition Results: Results are shown in Table 2. Both Imagen and CLIP are able to accurately
identify shapes and colors that occur in the image. Imagen is slightly worse at shape identification;
we find most of these are due to it mixing up “cylinder” and “cube” when the objects are small.

Binding Results: CLIP performs no better than random chance for the attribute binding tasks,
showing it is unable to map attributes to objects on this data. In contrast, Imagen performs excellently
at the pair tasks, and better than chance on two of the three single tasks. Part of Imagen’s advantage
might be in its text encoder, the pre-trained T5 (Raffel et al., 2020) model. Saharia et al. (2022b) find
that instead using CLIP’s text encoder for Imagen decreased its performance on generations involving
specific colors or spatial positions. Similarly, Ramesh et al. (2022) find that DALLE-2, which uses
a CLIP text encoder, is worse at attribute binding than GLIDE, which uses representations from a
jointly-trained transformer processing the text. However, a perhaps more significant advantage of
Imagen over CLIP is its use of cross attention to allow interaction between textual and visual features.

One mistake we observed frequently in Color|Shape is Imagen preferring the color of the larger
object in the image; e.g. scoring “A gray sphere” over “A yellow sphere”. We hypothesize that it is
helpful for denoising at high noise levels when the text conditioning provides the color for a large
region of the image, even when the color is associated with the wrong shape. In the pair task, the full
color information for both objects is always provided, which avoids this issue.

Spatial Positioning Results: Previous work has qualitatively found that large image generation
models sometimes struggle with spatial positioning (Yu et al., 2022). We find this to be mostly true
for Imagen, which performs poorly at associating objects with their position. CLIP performs even
worse, performing no better than random chance. We found it prefers the caption with “right” in it
over “left” 85% of the time, with it mostly ignoring the rest of the description.

4 CONCLUSION

While previous fine-grained analysis of diffusion models usually studies generated images qualita-
tively, our framework provides a new way of quantitatively studying them through evaluation on
controlled classification tasks. We find Imagen is an effective and robust image classifier and is
capable of performing attribute binding (while CLIP can’t).

We hope our findings will inspire future work in using diffusion models for tasks other than generation.
One direction is fine-tuning diffusion models on downstream tasks, e.g. evaluating Imagen as a
classifier after further supervised training on the dataset. Our main comparison against CLIP is not
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direct in that the model architectures and parameter counts are different. As models become larger, a
key question is how do the scaling laws (Hestness et al., 2017; Kaplan et al., 2020) of contrastive vs
generative pre-training compare, which we leave for future work.

Ultimately, our method does not produce a very practical classifier, as it requires substantial compute
when scoring many classes. Instead, we see the main value of this work is in revealing more about
the abilities of large pre-trained diffusion models: our results suggest that generative pre-training may
be a useful alternative to contrastive pre-training for text-image self-supervised learning.

REFERENCES

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei A Efros. Visual prompting
via image inpainting. arXiv preprint arXiv:2209.00647, 2022.

Ryan Burgert, Kanchana Ranasinghe, Xiang Li, and Michael S Ryoo. Peekaboo: Text to Image
Diffusion Models are Zero-Shot Segmentors. arXiv preprint arXiv:2211.13224, 2022.

Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation of forecasters. Journal
of the Royal Statistical Society: Series D (The Statistician), 32(1-2):12–22, 1983.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. ImageNet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jonathan Ho and Tim Salimans. Classifier-free Diffusion Guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022b.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2901–2910, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma and Max Welling. Auto-encoding Variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Martha Lewis, Qinan Yu, Jack Merullo, and Ellie Pavlick. Does clip bind concepts? probing
compositionality in large image models. arXiv preprint arXiv:2212.10537, 2022.

Andrew Ng and Michael Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. Advances in neural information processing systems, 14, 2001.

5

https://arxiv.org/pdf/2211.13224.pdf
https://arxiv.org/pdf/2211.13224.pdf
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/2207.12598
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2204.03458
https://proceedings.neurips.cc/paper/2021/hash/b578f2a52a0229873fefc2a4b06377fa-Abstract.html
https://arxiv.org/abs/1312.6114


Published at the Workshop on Understanding Foundation Models at ICLR 2023

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. In International Conference on Machine Learning, 2021.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion Models for Adversarial Purification. arXiv preprint arXiv:2205.07460, 2022.

OpenAI. Prompt Engineering for Imagenet. Github, 2021a.

OpenAI. Prompts for Datasets. Github, 2021b.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022
Conference Proceedings, pp. 1–10, 2022a.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. arXiv preprint
arXiv:2205.11487, 2022b.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2022.

6

https://arxiv.org/abs/2205.07460
https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
https://github.com/openai/CLIP/blob/main/data/prompts.md
http://proceedings.mlr.press/v139/radford21a
http://proceedings.mlr.press/v139/radford21a
https://cdn.openai.com/papers/dall-e-2.pdf
https://cdn.openai.com/papers/dall-e-2.pdf
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2111.02114
https://arxiv.org/abs/2111.02114
http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper/2020/hash/92c3b916311a5517d9290576e3ea37ad-Abstract.html
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2206.10789


Published at the Workshop on Understanding Foundation Models at ICLR 2023

A PRELIMINARIES

We begin by recalling background knowledge on diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020; Song & Ermon, 2020) and recent advances on text-to-image diffusion
models.

Diffusion Models: Diffusion models are latent variable generative models defined by a for-
ward and reverse Markov chain. Given an unknown data distribution, q(x0), over observa-
tions, x0 ∈ Rd, the forward process corrupts the data into a sequence of noisy latent variables,
x1:T := {x1,x2, · · · ,xT }, by gradually adding Gaussian noise with a fixed schedule defined as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1) (2)

where q(xt|xt−1) := Normal(xt;
√
1− βtxt−1, βtI).

The reverse Markov process gradually denoises the latent variables to the data distribution with
learned Gaussian transitions starting from Normal(xT ; 0, I) i.e.

pθ(x0:T ) := p(xT ) ·
T−1∏
t=0

pθ(xt−1|xt)

pθ(xt−1|xt) := Normal
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
. The aim of the denoising process is for the

distribution for the forward process {xt}Tt=0 to match that of the reverse process {x̃t}Tt=0 i.e. the
generative model pθ(x0) closely matches the data distribution q(x0). Specifically, these models can
be trained by optimizing the variational lower bound of the marginal likelihood (Kingma et al., 2021;
Ho et al., 2020):

− log pθ(x0) ≤ −VLB(x) := LPrior + LRecon + LDiffusion

LPrior and LRecon are the prior and reconstruction loss that can be estimated using standard techniques
in the literature (Kingma & Welling, 2013). The diffusion loss, LDiffusion, is:

LDiffusion :=

T∑
t=1

Eq(xt|x0)DKL

[
q(xt−1|xt,x0)||pθ(xt−1|xt)

]
Following Kingma et al. (2021), the (re-weighted) diffusion loss can be written in simplified form as:

LDiffusion = Ex0,ε,t

[
wt‖x0 − x̃θ(xt, t)‖22

]
(3)

with x0 ∼ q(x0), ε ∼ Normal(0, I), and t ∼ U([0, T ]). Here, wt is a weight assigned to the
timestep, and x̃θ(xt, t) is the model’s prediction of the observation x0 from the noised observation
xt.

Conditional Diffusion Models and Classifier-Free Guidance: A conditional diffusion model
conditions the model on alternate modalities like class labels, text prompts, segmentation masks or
low-resolution images. Given a conditioning model, cφ(y), that maps the conditioning input y into
an encoded conditioning vector, a conditional diffusion model is trained using the following modified
diffusion loss from Equation (3):

LDiffusion = E(x0,y),ε,t

[
wt‖x0 − x̃θ(xt, cφ(y), t)‖22

]
Classifier-free guidance (Ho & Salimans, 2022) is a technique to train a single diffusion model on
both conditional and unconditional objectives by randomly dropping the conditioning vector, cφ(y),
during training with a certain probability. In this case, samples are generated using:

x̃′θ(xt, cφ) := (1 + λ) · x̃θ(xt, cφ)− λ · x̃′θ(xt)

where λ is the guidance weight, x̃θ(xt, cφ) is the conditional model, and x̃′θ(xt) is the unconditional
model. Classifier-free guidance has been shown to be critical in generating high fidelity samples
given a prompt (Saharia et al., 2022b; Ramesh et al., 2022; Ho et al., 2022b;a).
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Text-to-Image Diffusion Models: Imagen is a text-to-image diffusion model comprising of a
frozen T5 (Raffel et al., 2020) language encoder that encodes an input prompt into a sequence of
embeddings, a 64 × 64 image diffusion model, and two two cascaded super-resolution diffusion
models that generate 256 × 256 and 1024 × 1024 images. In the next section, we will use the
generative process of Imagen to convert it into a classifier to study its generalization ability in the
zero-shot classification setting.

B ZERO-SHOT CLASSIFICATION USING IMAGEN

Figure 1: Zero-Shot Classification using Imagen. We first calculate scores for each image and
label prompt across multiple time-steps to generate a scores matrix using Build Scores Matrix.
Classify From Scores then classifies by aggregating the scores for each class using a weighting
function over the time-steps and the image is assigned the class with the minimum aggregate score.

B.1 IMPROVING EFFICIENCY

Computing ỹ with naive Monte-Carlo estimation can be expensive because LDiffusion has fairly high
variance. Here, we propose techniques that reduce the compute cost of estimating the argmin over
classes. The key idea is to leverage the fact that we only need to compute the argmin and do not
require good estimates of the actual expectations.

Shared Noise: Differences between individual Monte-Carlo samples from LDiffusion can of course
be due to different t or forward diffusion samples from q(xt|xt−1), whereas we are only interested
in the effect of the text conditioning cφ(T(yk)). We find far fewer samples are necessary when we
use the same t and xt across different classes. In other words, after sampling a t ∼ U([0, 1]) and
xt ∼ q(xt|x0), we score all classes against this noised image instead of a single one. As a result, the
differences between these estimates are only due to the different text conditioning signals.

Candidate Class Pruning: Rather than using the same amount of compute to estimate the expec-
tation for each class, we can further improve efficiency by discarding implausible classes early and
dynamically allocating more compute to plausible ones. In particular, we maintain a set of candidate
classes for the image being classified. After collecting a new set of scores for each candidate class,
we discard classes that are unlikely to become the lowest-scoring (i.e. predicted) class with more
samples. Since we are collecting paired samples (with the same t and x̂i,t), we use a paired student’s
t-test to identify classes that can be pruned. Our scores, of course, do not exactly follow the standard
assumptions of a student’s t-test (e.g. they are not normally distributed), so we use a small p-value
(0.002 in our experiments) and ensure each class is scored a minimum number of times (20 in our
experiments) to minimize the chance of pruning away the correct class. The full procedure is shown
in Algorithm 1.

Comparison: Figure 2 compares the number of samples needed to accurately classify CIFAR-100
images for different methods. Using shared noise and pruning greatly improves efficiency, requiring
up to 500x less compute than naive scoring. Nevertheless, classifying with a diffusion model still
typically takes 10s of scores per class on average, making the diffusion classifier expensive to use for
datasets with many classes.

8



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Algorithm 1 Diffusion model classification with pruning.
given: Example to classify x, diffusion model w/ params θ, weighting functionw, hyperparameters
min scores, max scores, cutoff pval.
//Map from classes to weighted diffusion model scores.
scores = {yi : [] for yi ∈ [yK ]}
n = 0
while |scores| > 1 and n < max scores:
n = n+ 1
t ∼ U([0, 1])
xt ∼ q(xt|x)
for yi ∈ scores:

add wt‖x− x̃θ
(
xt, cφ(T(yi)), t

)
‖22 to scores[yi]

ỹ = argminyi scores[yi].mean()
if n ≥ min scores:

for yi ∈ scores:
if paired ttest pval(
scores[ỹ], scores[yi]) < cutoff pval:

remove yi from scores.
return ỹ
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Figure 2: Comparison of efficiency improvements on CIFAR-100. Shared noise improves sample
efficiency by roughly 100x and pruning by an additional 8-10x.

C EMPIRICAL RESULTS

In this section, we will detail our analysis for the zero-shot classifier based on Imagen (§ Section 2)
for a variety of tasks. These include classification on various vision datasets to study generalization
capabilities on diverse domains, evaluations of robustness to conflicting cues between texture and
shape bias, obtaining calibrated scores, and studying attribute binding ability through targeted
evaluation on synthetic data.

We compare Imagen with CLIP (Radford et al., 2021), which is widely used as a zero-shot classifier.
Our main aim is to study the strengths and weaknesses of image-text representation learning via
generative training as in Imagen and contrastive training as used for CLIP.

Imagen details: We use the 2B parameter Imagen model for 64 × 64 resolution text-to-image
synthesis. It is trained using a batch size of 2048 and 2.5M training steps on a combination of internal
datasets, with around 460M image-text pairs, and the publicly available Laion dataset (Schuhmann
et al., 2021), with 400M image-text pairs. For simplicity, we only consider the low-resolution
64x64 model, although exploring the high-resolution ones would be interesting in the future. See
§ Appendix A for more details on Imagen.

CLIP details: CLIP encodes image features using a ViT-like transformer and uses a causal language
model to get the text features. After encoding the image and text features to a latent space with
identical dimensions, it evaluates a similarity score between these features. CLIP is pre-trained using
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contrastive learning. Here, we compare to the largest CLIP model (with a ViT-L/14@224px as the
image encoder). The model is smaller than Imagen (400M parameters), but is trained for longer
(12.8B images processed vs 5.B). While Imagen was trained primarily as a generative model, CLIP
was primarily engineered to be transferred effectively to downstream tasks.

Experiment details: For each experiment, we obtain scores using the efficient scoring method in
Algorithm 1. Nevertheless, due to the still-substantial compute cost, we use reduced-size datasets
(4096 examples) for our experiments. We preprocess each dataset by normalizing the images,
performing a central crop and then resizing the images to 64×64 resolution. We use min scores = 20,
max scores = 2000, and cutoff pval = 2×e−3. Since we use a fixed single prompt template to obtain
results for Imagen, we follow the same setting for CLIP to keep the results comparable. Therefore,
our reported results are often lower than in the CLIP paper, which uses prompt ensembling.

C.1 IMAGE CLASSIFICATION

Setup We first evaluate the performance of Imagen at zero-shot classification. For this purpose, we
consider 13 datasets from Radford et al. (2021) as reported in Table 1. We report the best accuracy
achieved by Imagen using two weighting functions, wt: (a) hand-engineered weights across noise
levels, wt := exp(−7t) and, (b) learned weights.

We use the prompt templates and class labels used by Radford et al. (2021), which renames some
classes that confuse models (e.g. “crane→ “crane bird”” in Imagenet) (OpenAI, 2021b). We use the
first prompt from the list, except for Imagenet, where we use “A bad photo of a label ” since this is a
good prompt for both Imagen and CLIP (OpenAI, 2021a).

Since we use the low-resolution Imagen model, we obtain results using CLIP under two settings for a
fair comparison. In the first setting, we resize all the datasets to 64 × 64 which serves as the base
low-resolution dataset. Imagen uses this dataset directly. For CLIP, we subsequently upsample the
images and resize them to 224× 224 resolution, followed by a central crop and normalization as used
in Radford et al. (2021). In the second setting, we directly resize all datasets to 224× 224 resolution,
followed by a central crop and normalization to obtain the best results possible using CLIP where it
can take advantage of its higher input resolution.

Results Results are shown in Table 1. The first eight datasets (up through EuroSAT) are all originally
of resolution 64 × 64 or less. On all these datasets, Imagen outperforms CLIP on classification
accuracy under the same evaluation setting i.e. the models are conditioned on the same text prompts,
etc. Imagen significantly outperforms CLIP on e.g. SVHN, which requires recognizing text in an
image, reinforcing the qualitative observations that Imagen is good at including texts in images during
generation (Saharia et al., 2022b).

The next five datasets use higher-resolution images. For some of these, taking advantage of CLIP’s
higher input resolution substantially improves results. It may be possible to get similar benefits from
Imagen by incorporating scores from its superresolution models, which we leave for future work to
explore.

We also notice that the boost from learned weightings is small, showing that our simple heuristic
weighting function generalizes well across datasets. We found using no weights (i.e. wt = 1) hurts
performance substantially (e.g., CIFAR100 accuracy drops to 45%), which is surprising because most
diffusion models, including Imagen, are trained with no weights in their VLBs.

Comparing models: Imagen and CLIP have different model sizes and are trained on different
datasets for different amounts of time, so the comparison is not direct. While ideally we would
train models of the same size on the same data, this would be very expensive and challenging in
practice; we instead used two strong existing pre-trained models. Our comparisons are geared towards
highlighting the strengths and weaknesses of Imagen.

C.2 ROBUSTNESS

In the main text we showed that Imagen is more robust in its classification performance compared to
CLIP and ResNet50 trained in a supervised fashion. One reason we believe for Imagen’s superior
performance is that the noising-denosing process of the diffusion model removes the texture bias
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Figure 3: Imagen’s performance based on restricted noise levels marginally effects classification
accuracy on cue conflict dataset.
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Figure 4: Model reliability diagram comparing confidence measures of Imagen on CIFAR-100.

commonly observed in supervised convolutional models, making it robust to presence of texture
based cues. These findings are in line with Nie et al. (2022), who achieve state-of-the-art adversarial
robustness through noising and then denoising adversarial examples with a diffusion model.

We hypothesized that the amount of noise added has an effect on removing texture bias. To test this,
we evaluated the shape-accuracy by restricting the noise levels to bins given by [t, t + 0.05] where
t ∈ {0, 0.05, 0.10, · · · , 0.90, 0.95}. We found that while the shape accuracy drops marginally when
restricting to specific noise levels, it is overall robust to chosen noise levels as shown in Figure 3.

C.3 CALIBRATION

It is desirable for classifiers, especially when used in the zero-shot setting with possibly out-of-domain
examples, to be well calibrated. In other words, if a classifier predicts a label ỹi with probability p,
the true label should be ỹi roughly 100 · p% of the time. However, the diffusion model classifier does
not directly produce probabilities for classes. While p(yi = yk|xi) should roughly be proportional
to the expectation in Equation (1) when exponentiated, in practice our estimates of the expectations
are very noisy and do not provide well-calibrated scores. One culprit is early pruning, which causes
many classes to have few sampled scores.

We propose a simple alternative that takes advantage of early pruning: we use the total number of
diffusion model calls used for the image as a calibration measure. The intuition is that a harder
example will require more scores to determine the argmin class with good statistical significance.
We show reliability diagrams (DeGroot & Fienberg, 1983) and report Expected Calibration Error
(Guo et al., 2017) (ECE) for the methods in Figure 4. Using a small held-out set of examples, we
apply temperature scaling (Guo et al., 2017) for the avg-weighted-score model and Platt scaling (Platt
et al., 1999) for the number-of-scores model to map model outputs to confidences. Number of scores
is fairly well-calibrated, showing it is possible to obtain reasonable confidences from diffusion model
classifiers despite them not providing a probability distribution over classes.
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