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ABSTRACT

Existing methods for learning with noisy labels can be generally divided into two cate-
gories: (1) sample selection and label correction based on the memorization effect of neu-
ral networks; (2) loss correction with the transition matrix. So far, the two categories of
methods have been studied independently because they are designed according to different
philosophies, i.e., the memorization effect is a property of the neural networks indepen-
dent of label noise while the transition matrix is exploited to model the distribution of label
noise. In this paper, we take a first step in unifying these two paradigms by showing that
modelling the distribution of label noise with the transition matrix can also help sample
selection and label correction, which leads to better robustness against different types of
noise. More specifically, we first train a network with the loss corrected by the transition
matrix and then use the confidence of the estimated clean class posterior from the network
to select and re-label instances. Our proposed method demonstrates strong robustness on
multiple benchmark datasets under various types of noise.

1 INTRODUCTION

While deep learning has achieved remarkable success in various tasks, it often heavily relies on large-scale
human-annotated data. Due to the expensiveness of accurately annotating large datasets, alternative and in-
expensive annotating methods have been widely used, e.g., querying search engines with a keyword (Fergus
et al., 2010; Schroff et al., 2010), harvesting social media images (Mahajan et al., 2018), etc. However, as a
trade-off, these alternative methods have sacrificed the accuracy of annotations for the scale of the dataset.
As it has been shown that deep neural networks can easily memorize noisy labels which lead to degenerated
classification performance (Zhang et al., 2017), how to robustly learn with noisy labels has attracted a lot of
attention in recent years (Li et al., 2019; Nguyen et al., 2019; Liu & Guo, 2020).

To make neural networks robust to label noise, one stream of methods focuses on designing heuristics for
sample selection and label correction to reduce the side-effect of noisy labels. Most of these heuristics are
designed based on the memorization effect of deep neural networks (Arpit et al., 2017), i.e., they would
memorize easy instances first, and gradually adapt to hard instances with the increasing amount of training.
Inspired by this, many methods use the classification loss on noisy data as the measure of the cleanliness
of examples (Jiang et al., 2018; Han et al., 2018; Nguyen et al., 2019; Li et al., 2019; Bai et al., 2021),
i.e., an example is likely to be clean if it has a small loss on noisy data. While these methods have shown
promising results being combining with different techniques such as warm-up (Xu et al., 2019), co-training
(Han et al., 2018), and mixup (Li et al., 2019), they are not guaranteed to be statistically consistent and often
need extensive hyperparameter tuning on clean data. Moreover, to achieve high classification accuracy on
clean data, some methods need different regularization terms for different types of label noise (Li et al.,
2019; Nguyen et al., 2019).
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Figure 1: Circles denote instances with clean positive labels, and triangles denote instances with clean
negative labels. Different signs represent different noisy labels. Black lines denote decision boundaries. The
example which is far away from the black line is more confident. The confident examples are in the blue
dashed box. (a) A binary training dataset contains asymmetric label noise. (b) An illustration of confident
examples selected by current sample selection methods based on the small loss on noisy data. The instances
(circles) in the class with a smaller noise rate are easier to learn based on the memorization effect. As a result,
those instances are more confident and far away from the decision boundary. (c) An illustration of confident
examples selected by our method, which are more robust to label noise. By exploiting the transition matrix,
the estimated clean class posteriors can be employed to select and relabel confident examples.

Another stream of methods aims to design classifier-consistent algorithms, where classifiers learned by
exploiting noisy data will asymptotically converge to the optimal classifiers defined on the clean domain
(Natarajan et al., 2013; Liu & Tao, 2016; Patrini et al., 2017). To build such algorithms, the noise transition
matrix T (x) has been exploited. Specifically, the transition matrix captures the probability of a clean label
flips into a noisy label, i.e., Tij(x) = P (Ỹ = j|Y = i,X = x), whereX , Ỹ and Y are the random variables
of instances/features, noisy labels and clean labels, respectively. Suppose the transition matrix is independent
of the instance when conditioning on the clean label, i.e., P (Ȳ = j|Y = i,X = x) = P (Ȳ = j|Y = i),
it can be learned under mild conditions (Goldberger & Ben-Reuven, 2017; Scott, 2015; Xia et al., 2019; Li
et al., 2021). However, they are not able to achieve satisfactory classification performance compared with
the methods leveraging semi-supervised learning techniques (Li et al., 2019; Nguyen et al., 2019).

Currently, these two streams of methods are studied independently according to different philosophies. Sam-
ple selection and label correction methods exploited the memorization effect which is a property of the neural
network, while loss correction methods focused on the transition between the noisy and clean class distribu-
tions. A natural question that arises here is that if one stream of methods can help to improve the other one.
The answer is Yes. Intuitively, the first stream of methods employs the classification loss on noisy labels as
a measure of the cleanliness. However, this measure is entangled with the noisiness of training data. For
example, in Figure 1(a), we illustrate a training dataset that contains asymmetric label noise. Specifically,
the noise rate is 0.2 for the clean positive class (circle) and 0.4 for the clean negative class (triangle). Under
such circumstances, existing small-loss based methods could select more instances in the class with a lower
noise rate as confident examples, which is proved in Section 2. Additionally, the labels of these examples
may contain noise and can not be fully trusted. These phenomenons are shown in Figure 1(b), i.e., confident
examples selected with the small loss can be class imbalanced and inaccurate if the noise is asymmetric.

To solve these issues, we train a model with the loss corrected by the transition matrix and use the confidence
of the estimated clean class posterior as the selection measure instead of the classification loss with noisy
labels. With this calibrated measure, we could select some high-confident examples and then relabel them
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according to their estimated clean class posteriors. In such a way, the selection measure is disentangled with
the noisiness of training data, i.e., examples will be selected solely based on the confidence of the estimated
clean class posteriors while the noise is handled by the transition matrix. As shown in Figure 1(c), with the
help of the transition matrix, the quality of selected examples can be improved.

The major contribution of this paper includes that 1) we have analysed the property of the sample selection
methods based on the small loss on noisy data from a theoretical point of view, which shows that the selected
examples could be class imbalanced and inaccurate; 2) We have proposed a calibrated sample selection and
label correction method by exploiting the transition matrix; 3) Empirical results on both synthetic and real-
world noisy datasets show that our method significantly improves the quality of selected confident examples
and classification performance.

The rest of this paper is organized as follows. In Section 2, we introduce the current sample selection
methods and analyze the limitation. In Section 3, we introduce our calibrated sample selection and label
correction method. Experimental results on both synthetic and real-world datasets are provided in Section
4. Finally, we conclude the paper in Section 5.

2 SAMPLE SELECTION WITHOUT THE TRANSITION MATRIX

Let D be the distribution of random variables (X,Y ) ∈ X × Y, where the feature space X ⊆ Rd, the label
space Y = {1, 2, . . . , C} and C is the number of classes. Instead of drawing samples from the underlying
distributionD, in the problem of learning with noisy labels, we only have samples {(xi, ỹi)}ni=1 drawn from
the noisy distribution D̃, i.e., the distribution of the noisy random pair (X, Ỹ ) ∈ X × Y .

Confident Examples and Sample Selection. Let Pθ̂(Ỹ |X) denote the estimated noisy class posteriors
parameterized by θ̂ learned from noisy training data. Typically, the objective of existing methods based on
small-loss sample selection is formulated as follows (Jiang et al., 2018; Han et al., 2018):

L(θ̂) =
1

n

n∑
i=1

vi`(Pθ̂(Ỹ |xi), ỹi) =
1

n

n∑
i=1

−vi log(Pθ̂(Ỹ = ỹi|xi)), (1)

where ` is the cross-entropy loss and vi ∈ [0, 1] is the per-instance weight. The idea is that if the given label
ỹi from a training data pair (xi, ỹi) is likely to be clean, then vi should be equal or close to 1, so that it
contributes more than those data pairs whose labels are likely to be incorrect.

To find the weight vi for each instance, based on the memorization effect, one popular criterion is using the
classification loss on noisy data:

vi = 1(`i ≤ λ) = 1(`(Pθ̂(Ỹ |xi), ỹi) ≤ λ), (2)

where 1 is the indicator function, `i is the loss for instance xi and λ is the loss threshold. Specifically, if a
data pair (xi, ỹi) has a loss smaller than the threshold λ, then it is treated as a “clean” data, and will be se-
lected in training (v∗i = 1) as a confident example. Otherwise, it will not be selected (v∗i = 0). For example,
Jiang et al. (2018) used a mentor network to select confident examples. Han et al. (2018) maintained two
networks that select small-loss instances, where the loss threshold is continuously increased during training
so that more instances are dropped when the number of epochs gets large. Except for selecting small-loss in-
stances, some methods reweighted examples so that mislabeled samples contribute less to the loss, e.g., Ren
et al. (2018) reweighted instances according to their gradient directions. Arazo et al. (2019); Li et al. (2019)
calculated per-instance weights by modelling the classification loss distribution with a mixture model.
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Bias of Using Small-loss Criterion. Existing methods based on the small loss on noisy data mainly rely
on the memorization effect of the deep neural network to select samples. We show that confident examples
selected with the small loss on noisy data can be class imbalanced and inaccurate when the clean data is
balanced while the noise is asymmetric. This is because, based on the memorization effect, empirically,
the instances from a class with a small noise rate tend to be learned “faster” and have smaller losses than
examples from a class with a relatively large noise rate. Thus, instances from the class with a small noise
rate or low complexity will be too frequently selected and examples from the class with a relatively large
noise rate will not be learned well.

We further show that, theoretically, even an optimal hypothesis f∗ which perfectly learns the noisy class
posterior distribution can be obtained, the small-loss selection criteria still have the bias issue mentioned
above. Let loss function ` be the widely used cross-entropy loss. Intuitively, the examples with smaller
losses are those which have higher confidence on noisy class posteriors (Mohri et al., 2018). Furthermore,
the examples from a class with a lower noise rate averagely have higher confidence than examples from
other classes. Therefore, the examples in the class with a lower noise rate are more likely to be selected as
confident examples than other classes, i.e., the selected examples could be class-imbalanced. Moreover, the
selected confident examples should not be treated as “clean” data, because the noisy labels can be different
from Bayes labels on the clean class-posterior distribution1. As a result, the classification accuracy can
be degenerated if a model is directly trained with those selected examples. We analyze these problems in
Theorem 1 and Theorem 2. To clearly illustrate the relationship between noise type and selection bias, we
focus on the binary classification. However, the results can also be extended to a multi-class classification
problem, as it can be reduced to several binary classification problems by using the one-vs-rest strategy
(Anzai, 2012). We leave all proofs in Appendix A.

Theorem 1. Let x1, x2 be two examples such that arg maxi∈{0,1} P (Y = i|x1) = arg maxj∈{0,1} P (Ỹ =

j|x1) = 1, arg maxi∈{0,1} P (Y = i|x2) = arg maxj∈{0,1} P (Ỹ = j|x2) = 0, and P (Y = 0|x2) =

P (Y = 1|x1). If P (Ỹ = 1|Y = 0) − P (Ỹ = 0|Y = 1) > 0, then mini∈{0,1} `(f
∗(x2), i) >

mini∈{0,1} `(f
∗(x1), i).

Specifically, the above theorem shows that given two examples having the same confidence on clean class
posterior distribution and asymmetric noise, the instance x1 from the class with a lower noise rate P (Ỹ =

0|Y = 1) could have a smaller loss than the instance x2 from the other class with higher noise rate P (Ỹ =
1|Y = 0). Therefore, the examples in the class with lower noise rate are more likely to be selected as
confident examples than the other class which could cause the class-imbalanced issue.

Theorem 2. When P (Ỹ = 1|Y = 0) − P (Ỹ = 0|Y = 1) > 0, if an example x1 such that 0.5 < P (Y =

0|x1) < (1−2P (Ỹ=0|Y=1))

(1−2P (Ỹ=1|Y=0))
P (Y = 1|x1), then P (Ỹ = 1|x1) > 0.5.

Theorem 2 shows that the largest clean and noisy class posteriors of an instance may not be identical if the
noise is asymmetric. Under such circumstances, the training examples could have different Bayes labels
on the clean and noisy class posteriors, respectively. As a result, the confident examples selected by using
the small-loss criterion could be inaccurate, because the examples have been treated as “clean” data directly
(Jiang et al., 2018; Han et al., 2018).

1The Bayes label is the label with the largest class posterior. For example, the Bayes label on the clean class-posterior
distribution Y ∗ of an instance x is defined as Y ∗ = argmaxi∈{0,1} P (Y = i|x) (Mohri et al., 2018)
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3 SAMPLE SELECTION AND LABEL CORRECTION WITH THE TRANSITION MATRIX

In this section, we propose our method named T-SSLC (sample selection and label correction with the
transition matrix), a calibrated sample selection and label correction method by exploiting the transition
matrix for learning with noisy labels.

3.1 MOTIVATION

To the best of our knowledge, most of existing label-noise learning methods select confident examples based
on noisy class posteriors Eq. (2) (Han et al., 2018; Nguyen et al., 2019; Li et al., 2019). As aforementioned,
the selected confident examples can be class imbalanced and have a low clean ratio when the training set
contains asymmetric noise. As a result, the classification accuracy will be degenerated by using the select
confident examples. Additionally, loss correction methods focused on the statistical property of label noise,
and it has been shown that the transition matrix can be accurately estimated with anchor points (Patrini
et al., 2017) or other similar assumptions (Li et al., 2021). However, they often can not achieve satisfactory
classification accuracy on test data without using semi-supervised techniques such as co-training (Han et al.,
2018) and mixup (Zhang et al., 2018). To this end, we propose a method that uses the advantage of the loss
correction methods to help the sample selection. In such a way, confident examples are selected based on
the estimated clean class posteriors.

Specifically, we first train a network with the loss corrected by the transition matrix to mitigate the effect
of different types of label noise. Then we use the confidence of the estimated clean class-posterior to select
examples. In this way, the selection measure is disentangled with the label noise, and only those examples
with confident clean class posterior will be selected with corrected labels. Next, we describe each part of
our proposed method.

3.2 METHODOLOGY

Loss Correction. Our method selects confident examples based on the estimated clean class posterior
which can be obtained by exploiting the noisy posterior and the transition matrix. Let Pθ(Ỹ |X) be the noisy
class posterior parameterized by θ, and Pφ(Y |X) be the clean class posterior parameterized by φ. We first
learn φ with the loss corrected by the transition matrix T :

L(φ) =
1

n

n∑
i=1

`(TPφ(Y |X = xi), ỹi). (3)

where ` is the cross-entropy loss and the transition matrix T can be estimated beforehand (Patrini et al.,
2017; Xia et al., 2019; Yao et al., 2020) or jointly learned with the network (Goldberger & Ben-Reuven,
2017; Li et al., 2021).

Sample Selection and Label Correction. After training, the estimated clean class posterior of an in-
stance xi can be calculated by Pφ̂(Y |X = xi). Then, to select instances, instead of using the classification
loss `(Pθ̂(Ỹ |X = xi), ỹi) on the noisy class-posterior, we use H(Pφ̂(Y |X = xi)) as the selection measure
where H(·) denote a function for measuring the confidence on the clean class posterior, i.e., we select an
instance if we are confident that the estimated clean class posterior of the instance is correct. The problem
remains how to design an appropriate measure of confidence. For classification problems, it is obvious that
easy examples are ones whose correct output can be predicted easily (they lie far from the decision boundary
or they are close to anchor points). To this end, we use the entropy of the estimated clean class posterior as
the confidence measure and our selection criterion can be formulated as follows:
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vi = 1(H(Pφ̂(Y |X = xi)) ≤ β),∀i ∈ [1, n]. (4)

where H(·) is the entropy function and β is the selection threshold. Intuitively, an instance whose estimated
clean class posterior has entropy smaller than the threshold β will be selected (vi = 1). Otherwise, it will
not be selected (vi = 0).

With the proposed criterion, we divide the training data into a labeled set and an unlabeled set. However,
since the network is trained with the corrected loss, confident prediction of an instance does not necessarily
mean that the label of the instance is clean. Thus, we re-label those selected instances as follows:

ŷi = arg max
c

Pφ̂(Y = c|X = xi). (5)

3.3 IMPLEMENTATION

Empirically, the clean class-posterior distribution Pφ(Y |X) can be modeled by a mapping (e.g., neural
network) gφ : X → ∆C−1, where ∆C−1 denotes a probability simplex. Given the transition matrix, the
model parameter φ can be directly estimated from noisy data as follows:

φ̂ = arg min
φ

1

n

n∑
i=1

`(T gφ(xi), ỹi). (6)

However, the transition matrix T can be unknown and needed to be estimated. In experiments, we assume
the transition matrix T is not given, and the state-of-the-art method VolMinNet (Li et al., 2021) is used to
estimate T . The reasons we use this method are that 1) it is general and can identify the transition matrix
under the mildest assumption by far; 2) it is a computationally efficient method that allows us to learn the
transition matrix and the noisy class posterior simultaneously. After having the estimated transition matrix
T̂ and model parameter φ̂, we could re-label the training data to get a confident labeled set Sl as follows:

Sl = {(xi, ŷi)|H(gφ̂(xi)) ≤ β ,xi ∈ S}. (7)

In Section 5, we show that our method significantly improves the quality of selected examples, and therefore,
the classification accuracy of existing label-noise learning methods based on sample selection can also be
improved by employing our method.

4 RELATED WORKS

In this section, we review existing methods in label-noise learning. We divided existing methods for label-
noise learning into two categories: heuristic algorithms and statistically consistent algorithms.

Methods in the first category focus on employing heuristics to reduce the side-effect of noisy labels. For
example, many methods use a specially designed strategy to select reliable samples (Yu et al., 2019; Han
et al., 2018; Malach & Shalev-Shwartz, 2017; Ren et al., 2018; Jiang et al., 2018; Bai et al., 2021) or correct
labels (Ma et al., 2018; Kremer et al., 2018; Tanaka et al., 2018; Reed et al., 2015). Although those methods
empirically work well, there is not any theoretical guarantee on the consistency of the learned classifier. It
is also worth mentioning that label correction used by these methods are based on estimated noisy class
posteriors, which is also entangled with the label noise and can be biased under asymmetric noise. Recently,
some methods exploiting semi-supervised learning techniques have been proposed to solve the label-noise
learning problem like SELF (Nguyen et al., 2019) and DivideMix (Li et al., 2019). These methods are
aggregations of multiple techniques such as augmentations, sample selection and multiple networks. Noise
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Figure 2: Sample selection on MNIST, CIFAR-10 and CIFAR-100 with different settings of label noise.
When the noise rate is small (sym-0.2 and pair-0.2) or symmetric (sym-0.2 and sym-0.5), both methods can
effectively select clean labels. With the help of the transition matrix, the proposed method (blue) shows
better robustness against asymmetric label noise and high noise rate (pair-0.45 and sym-0.5) compared with
existing small-loss sample selection method (orange).

robustness is significantly improved with these methods. Additionally, these methods are sensitive to the
choice of hyperparameters.

Statistically consistent algorithms are primarily developed based on a loss correction procedure (Liu & Tao,
2016; Patrini et al., 2017; Zhang & Sabuncu, 2018). For these methods, the noise transition matrix plays a
key role in building consistent classifiers. For example, Patrini et al. (2017) leveraged a two-stage training
procedure of first estimating the noise transition matrix and then use it to modify the loss to ensure risk con-
sistency. These works rely on anchor points or instances belonging to a specific class with probability one
or approximately one. When there are no anchor points, all the aforementioned methods cannot guarantee
the statistical consistency. Another approach is to jointly learn the noise transition matrix and classifier. For
instance, on top of the softmax layer of the classification network (Goldberger & Ben-Reuven, 2017), a con-
strained linear layer or a nonlinear softmax layer is added to model the noise transition matrix (Sukhbaatar
et al., 2015). Zhang et al. (2021) propose a end-to-end method for estimating the transition matrix and
learning a classifier. Specifically, a total variation regularization term is used to prevent the overconfidence
problem of the neural network. Li et al. (2021) propose another end-to-end method based on sufficiently
scattered assumption, which by far the mildest assumption under which the transition matrix is identifiable.

5 EXPERIMENTS

Datasets. We verify the effectiveness of our approach on the manually corrupted version of two datasets,
i.e., CIFAR10, CIFAR100 (Krizhevsky et al., 2009), and one real-world noisy dataset, i.e., Clothing1M (Xiao
et al., 2015). CIFAR10 contains 50,000 training images and 10,000 test images. CIFAR10 and CIFAR100
both contain 50,000 training images and 10,000 test images but the former have 10 classes of images,
and later have 10 classes of images. The two dataset contain clean data, and different types of instance-
independent label noise are manually added to the training sets. Clothing1M has 1M images with real-world
noisy labels and 10k images with clean labels for testing. It also has an additional 50k clean training data
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and 14k clean validation data. Note that we only exploit the 1M data for the training and validate our model
on the 14k clean validation data. For all the synthetic noisy datasets, the experiments are repeated 5 times.

Noise Types. Following prior works (Nguyen et al., 2019; Li et al., 2021), we conduct experiments with
two commonly used types of noise: (1) symmetry flipping (Patrini et al., 2017) which randomly replaces a
percentage of labels in the training data with all possible labels; (2) pair flipping (Han et al., 2018) which is
a specific type of asymmetric noise, where labels are only replaced by similar classes. It is worth to mention
that the noise rate is calculated differently compared with the original paper of DivideMix (Li et al., 2019)
because the noise generative process is different. We use the same noise generative process proposed by Han
et al. (2018). As a result, for example, pair flipping with 45% noise (pair-45%) in our paper is equivalent to
asymmetric noise 50% (Asym-50%) in the paper of DivideMix (Li et al., 2019).

Network Structure and Optimization. For a fair comparison, we implement all methods with default pa-
rameters by PyTorch on Nvidia Geforce RTX 3090 GPUs. We use a PreResNet-18 network and PreResNet-
32 network for CIFAR10 and CIFAR100, respectively. We use SGD to train the classification network with
batch size 128, momentum 0.9, weight decay 10−3 and an initial learning rate 10−2, the learning rate is
divided by 10 after 40 epochs. The algorithm is run for 80 epochs for the sample selection and relabeling.
For clothing1M, we use a ResNet-50 pre-trained on ImageNet. For each epoch, we also ensure the noisy
labels for each class are balanced with undersampling.

Baselines. We compare the proposed method with the following methods: (i) Decoupling (Malach &
Shalev-Shwartz, 2017), which trains two networks on samples whose predictions from the two networks
are different. (ii) MentorNet (Jiang et al., 2018), Co-teaching (Han et al., 2018), which mainly handles
noisy labels by training on instances with small loss values. (iii) Forward (Patrini et al., 2017), Reweight
(Liu & Tao, 2016), and T-Revision (Xia et al., 2019). These approaches utilize a class-dependent transition
matrix T to correct the loss function. (iv) DivideMix (Li et al., 2019) aggregates multiple techniques such as
augmentations, multiple networks, and confident example selection. For all baselines, we follow the settings
from their original papers.

5.0.1 CLEAN RATIO COMPARISON

To illustrate that our proposed method is more effective in selecting clean examples, we compare the clean
ratio of the selected examples with the small-loss criteria. Specifically, we train a neural network for 80
epochs on CIFAR10 and CIFAR100 with different settings of label noise, at each epoch, we use our proposed
method and small-loss criteria to select 50% examples in the training dataset as confident examples and
compare their clean ratio, i.e., the number of selected clean labels divided by the size of the set.

We plot the clean ratio of the selected examples in Figure 2. The results validate that our method is disen-
tangled with the label noise. Specifically, for different noise rates and different types of noise, our method
has similar performance, i.e., clean ratios of the selected examples by using our method do not change a lot.
However, clean ratios of the selected examples by the small-loss based method dramatically decrease with
the increase of label noise.

5.1 CLASSIFICATION ACCURACY EVALUATION

Classification Accuracy on Synthetic Noisy Datasets. To investigate how the sample selection of T-
SSLC will affect the classification accuracy in label-noise learning, we embed our sample selection method
T-SSLC into the state-of-the-art DividMix (Li et al., 2019) called T-SSLC-DM. We report average test accu-
racy over the last ten epochs of each model on the clean test set. Higher classification accuracy means that
the algorithm is more robust to the label noise. In Table 1, we compare classification accuracies of T-SSLC-
DM with dividmix other baseline methods on synthetic noisy datasets. T-SSLC-DM outperforms baseline
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CIFAR-10 CIFAR-100
Sym-20% Sym-50% Sym-20% Sym-50%

Decoupling 77.32± 0.35 54.07± 0.46 41.92± 0.49 22.63± 0.44
MentorNet 77.42± 0.00 61.03± 0.20 39.22± 0.47 26.48± 0.37

Co-teaching 80.65± 0.20 73.02± 0.23 42.79± 0.79 27.97± 0.20
Forward 88.21± 0.48 77.44± 6.89 56.12± 0.54 36.88± 2.32

T-Revision 90.33± 0.52 78.94± 2.58 64.33± 0.49 41.55± 0.95
DMI 87.54± 0.20 82.68± 0.21 62.65± 0.39 52.42± 0.64

VolMinNet 89.58±±0.26 83.37± 0.25 64.94± 0.40 53.89± 1.26
DivideMix 95.13± 0.081 94.59± 0.33 74.72± 0.25 70.74± 0.36

T-SSLC-DM 95.51± 0.11 94.97± 0.29 75.46± 0.31 72.92± 0.42
CIFAR-10 CIFAR-100

Pair-20% Pair-45% Pair-20% Pair-45%
Decoupling 77.12± 0.30 53.71± 0.99 40.12± 0.26 27.97± 0.12
MentorNet 77.42± 0.00 61.03± 0.20 39.22± 0.47 26.48± 0.37
Co-teaching 80.65± 0.20 73.02± 0.23 42.79± 0.79 27.97± 0.20

Forward 88.21± 0.48 77.44± 6.89 56.12± 0.54 36.88± 2.32
T-Revision 90.33± 0.52 78.94± 2.58 64.33± 0.49 41.55± 0.95

DMI 89.89± 0.45 73.15± 7.31 59.56± 0.73 38.17± 2.02
VolMinNet 90.37± 0.30 88.54± 0.21 68.45± 0.69 58.90± 0.89
DivideMix 95.72± 0.04 87.02± 0.41 75.54± 0.43 45.20± 0.16

T-SSLC-DM 95.80± 0.05 95.01± 0.01 76.68± 0.25 63.50± 0.19

Table 1: Classification accuracy (percentage) on CIFAR-10 and CIFAR-100.

Decoupling MentorNet Co-teaching Forward T-Revision
54.53 56.79 60.15 71.79 74.18
DMI VolMinNet DivideMix T-SSLC-DM
72.46 70.12 74.48 74.92

Table 2: Classification accuracy (percentage) on Clothing1M.

methods on almost all settings of noise. This result is natural after we have shown that T-SSLC leads to a
high clean ratio of selected examples. These results show the advantage of using the proposed T-SSLC.

Classification Accuracy on Clothing1M. Finally, we show the results on Clothing1M in Table 2. T-
SSLC-DM outperforms previous transition matrix based methods and heuristic methods on the Clothing1M
dataset. In addition, the performance on the Clothing1M dataset shows that the proposed method has certain
robustness against instance-dependent noise as well.

6 DISCUSSION AND CONCLUSION

In this paper, we have proposed a calibrated sample selection and label correction method. We show that
the confident examples selected with the small classification loss on noisy data could be class imbalanced
and inaccurate. To solve these issues, we first use the transition matrix to estimate the clean class-posterior
distribution, then the estimated clean class posterior for each instance is used for sample selection and
label correction. Empirical results on both synthetic and real-world noisy datasets show that our method
significantly improves the quality of selected confident examples and classification performance.
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REPRODUCIBILITY STATEMENT

We have clearly explained of any assumptions for theoretical results. We have included a complete proof
of claims in the appendix. The network structures and experiment settings are provided In Section 5. Our
source code will be released upon acceptance.
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