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ABSTRACT

Deep neural networks have been increasingly used in safety-critical applications
such as medical diagnosis and autonomous driving. However, many studies suggest
that they are prone to being poorly calibrated and have a propensity for overcon-
fidence, which may have disastrous consequences. In this paper, unlike standard
training such as stochastic gradient descent, we show that the recently proposed
sharpness-aware minimization (SAM) counteracts this tendency towards overconfi-
dence. The theoretical analysis suggests that SAM allows us to learn models that
are already well-calibrated by implicitly maximizing the entropy of the predictive
distribution. Inspired by this finding, we further propose a variant of SAM, coined
as CSAM, to ameliorate model calibration. Extensive experiments on various
datasets, including ImageNet-1K, demonstrate the benefits of SAM in reducing cal-
ibration error. Meanwhile, CSAM performs even better than SAM and consistently
achieves lower calibration error than other approaches.

1 INTRODUCTION

While the relation between generalization and flatness is still in dispute (Dinh et al.,[2017;Ramasinghe
et al.| 2023} |Andriushchenko et al.| 2023 Wen et al.| 2024), it is empirically appreciated that under
some constraints, the flatter solutions tend to generalize better (Hinton & van Camp, |1993}; [Keskar
et al.} 2017;|Chaudhari et al., 2019; |Kaddour et al., 2022). From this point of view, many approaches
have been proposed to bias solutions toward flat regions of the loss landscape explicitly or implicitly
(Huang et al., 2017a; Izmailov et al.,|2018};|Chaudhari et al.,|2019; Zhang et al.| 2019; Wang et al.,
2021bj |Bisla et al., [2022), amongst which SAM (Foret et al.,2021) has garnered increasing attention
due to its surprising effectiveness on popular tasks such as image classification (Chen et al.| [2022]),
language generation (Bahri et al.,[2022)), and even physical computation (Xu et al., [2024])).

Different from standard training like stochastic gradient descent (SGD), SAM minimizes a perturbed
loss, and each iteration is composed of two consecutive steps,
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where 8; € R represents the learnable parameters of the neural network at ¢-th iteration, 7 is the
learning rate, p is the perturbation radius, and Lg, (-) denotes the empirical loss on a mini-batch
Q,; of the training set S. This scheme constantly penalizes the gradient norm (Zhao et al., [2022a;
Wen et al.| [2022} |(Compagnoni et al.| 2023)) and significantly promotes generalization. On the other
hand, model calibration refers to how reliable the model predictions are. Ideally, when the model is
confident about its predictions, the predictions are supposed to be as accurate as possible. This is
particularly important for real-world applications such as autonomous driving (Chib & Singh, [2023))
and medical diagnosis (Jiang et al.,[2012)). As an example, consider a self-driving car that uses deep
neural networks to detect whether an obstruction is a pedestrian or not. For an ill-calibrated model,
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Figure 1: Confidence and reliability histograms for a PyramidNet (Han et al., 2017) trained on
CIFAR-100 (Krizhevsky et al.,[2009) with different optimizers. For clarity, the term confidence here
refers to the predicted probability, namely, the maximum output of the softmax layer.

when its confidence is low, it may just pass through and will not trigger emergency braking, which
could cause undesired consequences. In contrast, for a well-calibrated model, it is not certain whether
the obstruction is a pedestrian or not when its confidence is low. As a result, a more cautious decision
would be made by the car to avoid an accident.

It is known that modern neural networks such as ResNets [2016) and DenseNets (Huang]
2017b) often suffer from the miscalibration problem, and this issue appears to be more serious
when the network starts to overfit the training data (Nguyen et al, 2015} [Guo et all, 2017} [Zhu

2023). Since SAM is more effective in preventing overfitting (Foret et al., 2021), one could
anticipate that neural networks optimized by SAM may be better calibrated than by base optimizers

such as SGD and AdamW (Loshchilov & Hutter 2019). This is illustrated in Figure [I| where a
large PyramidNet (Han et al.,[2017) is respectively trained on CIFAR-100 (Krizhevsky et al.,[2009)
with SGD and SAM. One can easily observe that the average confidence of SAM closely matches
its accuracy, while the average confidence of SGD is substantially higher than its accuracy. This is
further confirmed with a reliability diagram (Niculescu-Mizil & Caruanal [2005)), where we plot the
accuracy as a function of the confidence. The diagram indicates that SAM is better calibrated than
SGD, as the accuracy almost overlaps with the confidence along the diagonal line.

While previous studies (Zheng et al.}[2021; M&llenhoft & Khanl,2023)) have reported this phenomenon,
the question of how SAM alleviates the miscalibration problem has not been formally investigated,
and we attempt to fill this gap in this paper. In brief, our contributions are as follows:

* We provide theoretical justification for the calibration benefits of SAM, which essentially
performs an implicit regularization on the negative entropy of the predictive distribution.
This is similar to focal loss (Mukhoti et al,[2020), but SAM calibrates models much better
without compromising accuracy.

* We investigate how SAM performs on model calibration under distribution shift and find that
SAM allows models to remain well-calibrated under different types of corruption. Moreover,
the trick of ensembling is also useful for SAM, and compared to SGD, the improvement is
more pronounced on out-of-distribution data.

* We develop a variant of SAM, termed CSAM, that attempts to improve model calibration
further. By extensive experiments with a variety of network architectures and datasets, we
observe that CSAM consistently performs better than SAM and surpasses other approaches
that are focused on improving calibration.

The remainder of the paper is organized as follows. We first review the related work in Section [2]and

then introduce some backgrounds in Section[3] After presenting the theoretical analysis of SAM and
the derivation of CSAM in Sectiond] we further provide the experimental results in Section [3]

2 RELATED WORK

In this section, we present the most relevant works on SAM and the miscalibration of deep neural
networks.
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Sharpness-aware minimization. Because SAM is particularly effective in improving the general-
ization performance of realistic neural networks (Foret et al.,[2021;|Chen et al., [2022; Bahri et al.,
2022), it has received a lot of attention in recent years, and there is a surge of research along this
direction. For example, to reduce the computational overhead incurred by the additional backpropa-
gation, some works choose to apply SAM and standard training alternatively (Liu et al.l 2022b; Zhao
et al., [2022b} Jiang et al., 2023 [Tan et al., |2024a), while some other works focus on perturbing a
fraction of parameters (Du et al.} 2022} |Mi et al., |2022) or examples (N1 et al., |2022). Concurrently,
some researchers also attempt to further enhance the generalization performance of SAM (Zhang
et al.} 2022 L1 & Giannakis) 2023} |Yue et al., [2023; Zhou et al., 2023)). For example, Kwon et al.
(2021)) propose ASAM to consolidate the correlation between sharpness and generalization, which
might break up due to model reparameterization (Dinh et al.,|2017). And Kim et al.|(2022) further
propose FisherSAM to enforce that the optimization occurs on the statistical manifold induced by the
Fisher information matrix.

On the theoretical aspect,|Wen et al.[(2022); Bartlett et al.| (2023)) prove that the largest eigenvalue
of the Hessian decreases along the trajectory of SAM, a result which is quite similar to that of
Compagnoni et al.| (2023)) though derived from the perspective of the stochastic differential equation.
Andriushchenko & Flammarion| (2022) propose to study the unnormalized SAM and demonstrate the
implicit bias on simple diagonal neural networks. Based on uniform stability (Bousquet & Elisseeff,
2002} Hardt et al.,|2016)), Tan et al.|(2024b) prove that SAM generalizes better than SGD on strongly
convex problems, and propose a renormalization trick to mitigate the instability issue near the saddle
points (Compagnoni et al., [2023; [Kim et al., 2023)).

Miscalibration of deep neural networks. In machine learning, calibration has been extensively
studied (Platt et al.,|1999; |Gneiting et al.,|2007; [Futami & Fujisawa,[2024)). Since popular classification
losses like squared error and cross-entropy (CE) are proper scoring rules (Gneiting et al., |2007), they
are guaranteed to produce perfectly calibrated models at their global minimum. However, as first
disclosed by |Guo et al.| (2017), modern neural networks suffer from serious miscalibration due to
overfitting and overparameterization (Lakshminarayanan et al.,2017; Thulasidasan et al., 2019; [Wang
et al.,2021a;|Wang},2023). While Minderer et al.|(2021) argue that the most recent non-convolutional
models like MLP-Mixer (Tolstikhin et al., [2021)) and vision transformers (Dosovitskiy et al.| [2021)
are better calibrated, the issue of miscalibration is still prevalent in a wide spectrum of applications
like data distillation (Zhu et al., 2023)) and object detection (Kuzucu et al.,[2025).

A variety of approaches have been proposed to improve model calibration. In the training-time
calibration, for example, an intuitive idea is to penalize overconfidence, either explicitly via entropy-
based regularization (Pereyra et al.| 2017) and label smoothing (Miiller et al., [2019) or implicitly
using focal loss (FL) (Mukhoti et al.| 2020; Tao et al., 2023). However, as pointed out by previous
works Wang et al.| (2021a); |Singh| (2021)), the penalty of confident outputs may suppress the potential
improvement in the post-hoc calibration phase. On the other hand, post-hoc calibration addresses
the miscalibration problem by appending a post-processing step to the training phase and typically
requires a hold-out validation set for hyperparameter tuning. Popular post-hoc methods include
non-parametric calibration methods—histogram binning (Zadrozny & Elkan, |2001)) and isotonic
regression (Zadrozny & Elkan, [2002), and parametric methods like Bayesian binning (Naeini et al.,
2015)) and Platt scaling (Platt et al.| [1999). Out of them, Platt scaling-based approaches such as
temperature scaling (Guo et al.,|2017)) and Dirichlet calibration (Kull et al.,|2019)) are more frequently
used due to their low complexity and efficiency.

3 PRELIMINARIES

In this section, we first introduce one measure of model calibration that we use throughout, and
then briefly recap the difference between SAM and SGD. Without loss of generality, we consider
the multi-class classification problem where a categorical variable Y € {1,..., K} is predicted
when an input variable X is observed. And we further assume that the training set .S contains n
examples {z; = (x;,y;)}}, that are i.i.d. sampled from an unknown data distribution D. For a
deep neural network parameterized by @ € R9, we naturally obtain a predictor fg that maps the
features X to a categorical distribution over K labels, which we denote it by fg(X) that belongs to a

K — 1)-dimensional simplex A = {p € [0, 1]¥ py, = 1}. Then, § £ arg max py is
p y=1Py 1<y<K Fy
the predicted label.
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3.1 EXPECTED CALIBRATION ERROR

A model is well-calibrated if the confidence truthfully recovers the probability of correctness. That
is, if we gather all data points for which the model predicts p,, = 0.8, we expect that 80% of them
should take on the label y. Mathematically, we refer to a model as well-calibrated (Brocker, 2009)) if

P(Y =y|fo(X)=p)=py, YPEA.
In practice, however, we will focus on the top-label calibration (Guo et al.,[2017) that requires the
above equation to hold only for the most likely label, namely,
PY =4 =p)=29 D 1].
( yllrgr;/aSXpr p)=p Vpel01]

Expected calibration error (ECE) is the most commonly used metric to measure the degree of
miscalibration, which quantifies the expected difference between two sides of the above equation as

follows
E[ ]

In practice, due to finite examples, it works by firstly grouping all examples, say, {z; = (x;, i)},
into M bins By, ..., Bjs based on their top confidence scores. Next, we compute in each bin B; the
average confidence conf(B;) = 1/|B;|}_, ¢, max fo(x;) and the average accuracy acc(B;) =

1/|B;] sz e, llyj = argmax fg(z;)], where I[-] is the indicator function. Then, we can obtain an
estimator by averaging over the bins

p—PY =17 | ax Py =p)

M
ECE = Z 1B lacc(B;) — conf(B;)] .
n
i=1

3.2 SHARPNESS-AWARE MINIMIZATION

The intuitive idea of SAM (Foret et al., 2021) is to improve generalization by constantly minimizing
the solution sharpness during training. To this end, instead of minimizing the loss at the current point,
it minimizes the worst-case loss within its neighborhood. Mathematically, it is equivalent to solving
the following optimization problem,

min max Lg(0+ ¢€),

OER? [[e]l2<p
where € € R? is a perturbation vector whose norm is bounded by the perturbation radius p > 0. It
is not easy to solve this minimax problem explicitly. But, after a simple Taylor approximation, we
observe that

e* £ argmax Lg(0 + ¢€)
llell2<p

VLs(6)
~ argmax Lg(0) + ' VL5(0) = p——— .
Ielo<e sO) e VEsO) =0 IVLs(6)]]2
This suggests that, as opposed to SGD, we first need to do an extra gradient backpropagation to
estimate the perturbed vector €*. Therefore, SAM actually consists of two consecutive steps at each
iteration,

6, = 0, +p 200

VLo, (6:)]2

where ); denotes a random mini-batch of S. We note that the same (), is used for the ascent and
descent steps, and a smaller €, is preferred in practice for better generalization (Foret et al.| 2021}
Andriushchenko & Flammarion, 2022)).

0t+1 =60, - HVLQt (ét),

4 METHODOLOGY

In this section, we first show that SAM is bound to prevent deep neural networks from producing
overconfident predictions. As in previous studies (Guo et al.l [2017; Minderer et al., 2021; [Wang
et al.,|2021a), we focus on the most widely used cross-entropy (CE) loss in the classification problem,
which for an example z = (x, y) is defined as £g(z) = — log p,, in one-hot encoding. The analysis is
straightforward, and all proofs are deferred to Appendix [A]for clarity. Towards the end of this section,
we also develop a variant of SAM to improve its calibration performance.
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Figure 2: To verify whether the boundedness assumption of k,,;, (see Lemmas and holds for
realistic neural networks, we trained a ResNet-56 on CIFAR-10 using a constant p = 0.05. (a)
compares the value of k,,;, at the two endpoints 8 and 0 throughout the training process. (b) further
illustrates how K, evolves along the path from 6(¢ = 0) to 8(t = 1) at 50th, 150th, and 200th
epoch, respectively. (c) records how the true coefficient A and its lower bound \q (see Equation [2))
vary during training. Notice that similar results for the realistic ImageNet-1K dataset can be found in

Figure[S4}

4.1 THEORETICAL ANALYSIS

Let p, = [fo(2)], and p, = [f(2)], denote the confidence on the true label y conditioned on the

current weight 8 and the perturbed weight 0, respectively. When the mini-batch is 1, namely, every
step we sample one example only to estimate the true gradient, the following lemma suggests that p,
can be consistently smaller than p, during training.

Lemma 1 (1-SAM version). Assume that at each step, the gradient V g{(z) # 0 and there always
exists some p > 0 such that the smallest eigenvalue of the Hessian kpmin(V3Lg (2)) > —||Val(2)||/p
holds for all ' = (1 — )0 + 10, t € [0,1]. Then, given py, Py defined as above, we have
p, < e rIVetl/2p

Actually, the boundedness of x,,,;, at @ can be easily verified along the optimization trajectory (Zhou
et al., 2021} Section 6.2). However, it should be noted that the inequality does not necessarily hold
for all @’. But if we vary p accordingly at each step (p — 0 in the worst case), the validity of the
inequality can be assured because we are always ascending along the gradient direction. This lemma
shows that p,, the probability of the perturbed network assigned to the true label, exponentially
decays with the perturbation radius p and the gradient norm ||Vg/(z)||.

Remark 1. A similar result for the mini-batch SAM is also developed in Lemma 2] Notice that
varying p at every step is quite different from the practical setting, in which we often use a constant p
instead. Luckily, as Figure[2fa) suggests, the boundedness assumption of K, can be validated for
the constant p over mini-batch SAM. Surprisingly, we also find that Ky, linearly decreases along 6
to 0 (see Figure b) ), suggesting that the boundedness assumption can be simplified to requiring
Kmin (Vg (2)) > —||Vel(2)||/p only. This finding further reveals why a large value of p is not
preferred because the boundedness assumption can be easily violated in that case.

Remark 2. It should be highlighted that the gradient norm ||V gf(z)|| also plays a critical role in
determining p,. Lemma E] indicates that the SAM optimizer is more effective for larger gradient
norm, while simultaneously allowing us to choose a relatively large p. This finding is aligned with the
observation that SAM is particularly effective in training ViT models with AdamW, which eventually
improves more than 5% accuracy on ImageNet-1K using a large p (Chen et al.| | 2022).

Under Lemma we show that minimizing the perturbed loss ¢ (z) has the same effect as adding a
maximum-entropy regularizer to £g(z) as focal loss (FL) (Mukhoti et al.,[2020, Section 4).

Theorem 1 (1-SAM version). Let A = (1 — py)/(1 — py), the following inequality holds
ly(z) = lo(2) — AH(py) + H(Dy), ¢))
where H(p) = —plogp — (1 — p)log(1 — p) is the binary entropy function.
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According to Lemmal[I] we know that the coefficient A is larger than 1, which implies that minimizing
5 (z) implicitly puts more emphasis on maximizing H (p,) in contrast to minimizing H (p,). That
is, SAM forces p, to be smaller when it approaches 1 and to be larger when it is near 0. Moreover,
when replacing p, with ep“V"Z('Z)“/zf)y, we have

1—-py

A2 X = 1— erIVel@/2p,”

@

We note that the penalty on maximizing H(p,) is stronger at the terminal phase of training than at
the initial phase (see Figure [2{c)). Since model architecture is also a major determinant of model
calibration (Minderer et al.| [2021)), it suggests that SAM could calibrate better for model architectures
that are seriously overconfident.

In practice, as suggested by (Foret et al.| 2021; /Andriushchenko & Flammarion| [2022), we attempt to
minimize the so-called m-sharpness to achieve the largest performance increment. Different from
1-SAM, in every step we determine the ascent direction using the gradient averaged over a mini-batch
Q of m examples. As a result, the gradient corresponding to one example V/g(z) is not promised
to align well with the mini-batch gradient VLo (6) = 1/m Y"1~ | V¥g(z;). Therefore, the relation
Py. < Py, does not necessarily hold for all z; € 2. However, when both of them are taken into
account, we do have a result similar to Lemmal[I] as follows.

Lemma 2 (m-SAM version). Assume that at each step, the gradient VLq(0) # 0 and there
always exists some p > 0 such that the smallest eigenvalue of the Hessian kpin(V>Lo(6')) >

—|IVLa(6)||/p holds for all ' = (1 —t)0 + t6, t € [0,1]. Denote p, = ([T, pyi)l/m
py, = ([T, f)yi)l/m, respectively. Then, we have p, < e_”||L9(9)||/2py.

and

The proof is straightforward, and accordingly, we have the following result.
Theorem 2 (m-SAM version). Let py and p,, defined as above. Then, it follows that

Lo(0) > La(0) — AH(py) + H(Py), 3
where A = (1 — py)/(1 — py).

This theorem is similar to Theorem [T} albeit p,, is the geometric mean of the predicted probabilities.
But it is enough to make sure that m-SAM prevents models from producing overconfident predictions
as well.

4.2 IMPROVING SAM TOWARDS BETTER CALIBRATION

As shown in Figure[2|c), we notice that SAM primarily starts to penalize the predictive distribution at
the late stages of training where p,, is high. Therefore, we propose to suppress the contribution of the
over-confident examples so that their predictive probability p,, is virtually higher. That is, we can
redefine the per-example loss function for the outer loop of SAM as follows:

7 _logf) ’ lff) S 1 2a
fé(Z)Z{ : v <1/

_ 4
—(1+py) "logpy,, otherwise, @)

where 0 < v < 2 is a hyperparameter. It is trivial to recover the standard SAM when v = 0. Actually,
the following result suggests that the modified loss function ¢4 (z) enforces SAM to penalize the
predictive distribution of over-confident examples.

Theorem 3. Let Lemma |l| hold and X = (1 — py)/(1 — py), for all p, > 1/2, the following
inequality holds

l3(2) = lo(2) = AH(py) + (1 —7/2)H(B,), 5)
where H(p) = —plogp — (1 — p) log(1 — p) is the binary entropy function.

Slightly different from Theorem here it brings a coefficient before H (p,), which suggests that
the implicit penalty on H(p,) is stronger if (1 —~/2) > 0. Meanwhile, we also require that v < 2
so that the optimization process is always biased towards decreasing ¢(z) as in SAM. Note that
this argument is also valid for m-SAM as it increases the geometric mean as well. For notational
convenience, we will refer to this variant of SAM as Calibrated SAM (CSAM) in the sequel, and its
pseudocode is summarized in Algorithm[I](see Appendix [A].
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(a) CIFAR-10 (b) CIFAR-100 (c) ECE evolution (d) TCE evolution

Figure 3: (a)-(b) display the calibration performance of SAM and SGD (after various post-hoc
processing) on CIFAR-10/100 datasets. (c)-(d) report the variation of ECE and TCE (namely, ECE
after temperature scaling) during training.

5 EXPERIMENTS

In this section, we present the experimental results. We begin with the standard benchmarks showing
that SAM significantly calibrates better than SGD. We further demonstrate on datasets including
ImageNet-1K (Deng et al., 2009) that this calibration benefit is not limited to the in-distribution (ID)
data, but also translates to the out-of-distribution (OOD) data. At last, we compare the proposed
CSAM and SAM against a variety of baselines that attempt to reduce miscalibration. The results
suggest that SAM is competitive and even superior to these approaches in many cases. More
surprisingly, our proposed CSAM consistently outperforms SAM and achieves the lowest calibration
error out of all baselines without deteriorating the generalization performance.

5.1 SAM ATTAINS A LOWER CALIBRATION ERROR THAN SGD

As a starting point, we first evaluate how SAM differs from SGD on the classical benchmarks
for classification. The loss function defaults to be the standard cross-entropy (CE) loss, and we
train several neural networks, including ResNets (He et al.,|2016), Wide ResNets (Zagoruyko &
Komodakis, |2016)), and PyramidNets (Han et al.,|2017)) to classify CIFAR-10/100 (Krizhevsky et al.,
2009). As in common practice, we split the data into the train, validation, and test subsets so that the
same validation subset is used for hyperparameter tuning and post-hoc calibration. Without further
specification, the optimizer is SGD with momentum 0.9, and the learning rate is scheduled in a cosine
decay (Loshchilov & Hutter,[2017)). To conduct a fair comparison, we first make a grid search of
learning rate and weight decay coefficient on the model trained with SGD, and then apply them to
SAM. The perturbation radius p is 0.05 for CIFAR-10 and 0.2 for CIFAR-100 (see Appendix |B|for
more discussion on the effect of p on calibration).

As illustrated in Figure [3(a)-(b), the ECE of SGD (red bar) is always much higher than the ECE
of SAM (purple bar). This is more pronounced for ResNet-56 on CIFAR-10/100, where the ECE
of SGD is approximately six times larger than the ECE of SAM. More surprisingly, we further
observe that the uncalibrated ECE of SAM is generally smaller than the calibrated ECE of SGD by
calibration methods such as temperature scaling (Guo et al.,[2017) and isotonic regression (Zadrozny
& Elkan| [2002)). This indicates that SAM by itself tends to generate accurate and reliable predictions.
Furthermore, as shown in Figure [3(c)-(d), the superiority of SAM is persistent across the full training
process. And the reduction of ECE is more pronounced than TCE since SAM has already suppressed
the over-confident outputs during training, and temperature scaling is thus not as effective as in SGD.

5.2 MODEL CALIBRATION UNDER DISTRIBUTION SHIFT

It is important for safety-critical applications that the model not only produces reliable predictions
for the in-distribution data but also is robust enough when there exists a distribution shift between
the training data and the test data. For this purpose, we first train ResNet-18 on CIFAR-10 using
vanilla SGD and SAM, and then evaluate its performance on other datasets, including SVHN (Netzer
et al.| 2011)), CIFAR-10/100-C (Hendrycks & Dietterich, |2019). To enhance model uncertainty, we
further encapsulate them with MC-Dropout (Gal & Ghahramani, [2016) and Ensemble (Ovadia et al.,
2019)). Table E] shows that model ensembling and MC-Dropout both can reduce ECE for SGD, SAM,
and CSAM, but their gap is still significant—ECE of SGD approximately remains two times larger
than ECE of SAM. This is different from their behavior on test accuracy, for example, SGD almost
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Table 1: Model performance on OOD data. The base model is ResNet-18 trained on CIFAR-10. The
size of MC-Dropout and Ensemble is 5.

ID Metrics OOD AUROC 1

Test Acc ECE | SVHN CIFAR10-C CIFAR100-C

Vanilla 89.18+£0.26 5.76+0.43 83.94+0.96 62.26+4.46 83.26+0.71

SGD MC-Dropout  89.13+0.18  4.394+0.27 84.11+0.69 57.09+281 82.11+0.82
Ensemble 90.88 +0.11 1.84+0.22 86.41+0.36 63.39+4.72 85.81 +0.17

Vanilla 90.01 £0.23 3.244+0.39 86.38+0.39 63.324+4.77  84.83 +0.83

SAM MC-Dropout  89.49+0.33 2.214+041 83.02+0.35 56.11+£250  80.96 +0.55
Ensemble 91.16 £0.14  1.094+0.22  88.05+0.21 64.03 +4.95 86.84 +£0.75

Vanilla 89.95+0.16 2.554+0.24 85.98+0.42 63.494+4.74  84.87 +0.86

CSAM MC-Dropout  89.57 +0.21 1.52+0.21  82.82+0.31 56.05 +2.48  80.70 & 0.55
Ensemble 91.22+0.17 0.86+0.17 88.21+0.12 64.17+4.91 86.92+0.70

Table 2: Results on the ImageNet-1K dataset. Slightly different from the custom setting, we reserve
20% of the ImageNet-1K validation set as a new validation set for early stopping and temperature
scaling, and the remaining images therefore constitute a test set. Both metrics (TCE is short for ECE
calibrated by temperature scaling, and AdaECE is adaptive ECE) are evaluated on the test set.

ID Metrics OOD Metrics

Test Acct ECE| TCE] AdaECE| AUROC 1 Test Acc (1/2/3) ECE (1/2/3) |
SGD 76.97 3.39 1.80 3.31 94.01 36.89 3581 2499 797 423 17.29
ResNet-50 SAM 77.32 1.52 1.54 1.44 94.35 3745 3635 27.85 491 374 692
CSAM 77.95 1.18 1.09 1.19 94.67 38.29 37.11 28.69 328 3.02 547
AdamW 65.03 9.11 2.63 9.11 88.63 33.53 3287 2648 1473 1228 19.57
ViT-S/32 SAM 69.21 3.04 1.18 3.05 91.01 3795 36.09 3336 335 627 789
CSAM 70.01 2.88 0.92 2.78 91.54 38.88 3694 3416 3.01 576 541
AdamW 71.35 9.72 3.66 9.72 90.61 37.40 3554 2426 14.14 1227 18.63
ViT-S/16 SAM 75.42 1.76 1.66 1.73 93.27 4336 39.15 2893 292 358 5.02
CSAM 75.91 1.58 1.34 1.54 93.66 44.01 39.82 29.57 281 324 475

generalizes as well as SAM with Ensemble. On the other hand, it should be highlighted that SAM
generalizes much better than SGD on OOD data. And Ensemble also works well under this scenario.
An unexpected finding is that MC-Dropout hurts both optimizers’ performance on OOD data and is
more evident for SAM. One possible explanation is that the fusion of Dropout and SAM adversely
increases model uncertainty, which, as a result, impedes generalization.

Next, we train models on the clean ImageNet-1K dataset and then assess the calibration performance
of SAM on the ImageNet-C (Hendrycks & Dietterichl [2019) dataset, which consists of images
that have been modified with several synthetic corruptions at five different severities. Following
Minderer et al.| (2021)), we reserve 20% of the ImageNet-1K validation set for early stopping and
temperature scaling. Moreover, we also exclude the corresponding corrupted images in ImageNet-C
that are created from ImageNet-1K at the evaluation phase. We train one ResNet and two vision
transformers (ViTs) (Dosovitskiy et al., 2021)) on ImageNet-1K for 100 epochs and 300 epochs. The
base optimizers are SGD and AdamW, and a cosine learning rate scheduler is used in all runs. As in
previous studies (Foret et al., 2021; |Chen et al.| 2022), the perturbation radius p for ResNet and ViT
is 0.05 and 0.2.

As shown in Table |2} SAM and CSAM consistently improve the test accuracy on ImageNet-1K
validation set, though being more pronounced for ViTs (~ 4%). Meanwhile, ViTs are generally
less calibrated than ResNet, which is somewhat inconsistent with the findings of (Minderer et al.|
2021). One explanation might be that their comparison is based on the pretrained neural networks
rather than training them from scratch. But when models are trained by SAM, both of them achieve
a much lower calibration error, and their gap becomes negligible. For ImageNet-C, we consider
three kinds of corruption: 1-motion blur, 2—defocus blur, and 3—impulse noise. For each kind of
corruption, we further average the accuracy and ECE across the five different severities. Consistent
with previous findings, Table 2] also indicates that SAM generalizes better than SGD and that ViTs
trained by AdamW also tend to be less calibrated on ImageNet-C. Interestingly, however, we observe
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Table 3: Performance comparison between different methods on CIFAR-10. The results are averaged
over 3 random seeds, with standard deviation displayed as well.

Test Acc T ECE | ClasswiseECE | AdaECE | TCE | AUROC 1

CE 95.83 £0.21 236+0.11 0.52 £0.01 204 £0.11 1.06+£0.19 98.68 +0.04
Focal Loss (FL) 9591 +0.02 1.16 £0.13 0.38+ 0.01 142£0.09 1.01 £0.28 99.04 £0.01
DualFocal 9573 £0.10 1.74 £ 0.09 0.48 £ 0.02 1.64 £0.07 1.00£0.09 99.26 +0.02

AdaFocal 95.78 £0.06 091 +0.14 0.35 + 0.01 0.65£0.04 0.97+£0.08 99.10=+0.04
Mixup 96.34 £0.10 2.21+1.11 0.45 £0.21 1.63£1.04 133+0.25 99.12+0.02
MIT-L 96.56 £0.16 1.05 £ 0.02 0.31 £ 0.01 1.05£0.05 0.57=+0.11 99.12+0.03
MMCE 9594 £0.02 247 £0.04 0.54 £0.02 242 £0.04 1.15+£0.18 98.65+0.05

BatchEnsemble 9592 +0.11 1.91 £ 0.06 0.45 + 0.01 1.85£0.03 0.41+0.01 98.96+0.01
Rank1-BNN 9550 £0.14 1.92+0.29 0.45 £ 0.06 1.94£029 0.51+£0.03 98.81+0.12

VI 9433 £0.10 3.14+0.12 0.69 £0.03 3.06+0.15 0.76 £0.08 98.28 £ 0.07
MIMO 95.96 £0.06 0.88 £+ 0.06 0.33 £0.01 0.73 £0.08 0.74£0.20 99.16 +0.01
ACLS 9591 £0.08 2.48 +0.07 0.55 + 0.01 245£0.07 1.09£0.08 98.62+0.01
BalCAL 96.23 £0.09 1.89 £ 0.07 0.42 £0.01 193 £0.01 0.79£0.05 98.77 £0.44
bSAM 96.45 £0.03 1.82£0.10 0.43 £0.02 1.78 £0.10 0.70 £0.23 98.95 £ 0.06

SAM 9691 £0.14 0.86 £0.13 0.26 £ 0.02 0.84 £0.14 0.52+0.09 99.30 +0.02
CSAM 96.97 + 0.05  0.50 = 0.03 0.23 £+ 0.01 0.48 +0.03 0.47 £0.05 99.53 + 0.02

that while ViT-S/16-SAM generalizes and calibrates worse than ResNet-50-SAM, it performs much
better than the latter. This might arise from the different implicit biases of SGD and AdamW.

5.3 CSAM EVEN CALIBRATES BETTER THAN SAM

In this section, we attempt to compare CSAM and SAM against other popular baselines, including:
focal loss (Mukhoti et al.l 2020) that implicitly penalizes the gradient norms of confident examples
and its two variants—DualFocal (Tao et al.| 2023) and AdaFocal (Ghosh et al.| [2022), mixup (Zhang]|
2018)) that implicitly performs label smoothing (Carratino et al.,[2022) to avoid the overconfidence
issue, MMCE (Kumar et al.l |2018)) that acts as a continuous and differentiable calibration error
regulariser, MIT-L (Wang et al., [2023) that involves mixup inference in training, BatchEnsemble
(Wen et al., 2020), ACLS (Park et al., 2023)), BalCAL (N1 et al., 2025)), and several probabilistic
approaches—Rank1-BNN (Dusenberry et al., [2020), VI (Ovadia et al., 2019), MIMO (Havasi et al.,
2021)), and bSAM (Mollenhotf & Khanl 2023)). The backbone is WideResNet-20-10 (Zagoruyko &
Komodakis| 2016), and we generally follow the recommended setting to reproduce the results of each
baseline. The perturbation radius p of SAM and CSAM is 0.2 for CIFAR-10/100, and we vary the
hyper-parameter v of CSAM in {0.5, 1.0, 2.0}.

From Tables [3|and we can observe that while focal loss generally hurts generalization, it does
reduce the calibration error. This observation also applies to the probabilistic approaches, such as
Rank1-BNN and MIMO. As a comparison, SAM significantly reduces the calibration error and
is competitive, even superior to other baselines in many cases. Note that the Bayesian variant,
bSAM, does not perform better than SAM. The reason might be that it additionally introduces
several hyperparameters, making it more difficult to tune and apply. In contrast, the proposed CSAM
further decreases the calibration error while simultaneously achieving a competitive generalization
performance to SAM. And when compared to other baselines, CSAM always achieves the lowest
error, showing its versatility in generalization and calibration. While our current study is limited to
the cross-entropy loss, preliminary studies (see Table [ST3)) indicate that SAM/CSAM can be further
integrated with other training losses. More results, such as sensitivity analysis of the hyperparameters
and comparison to other variants of SAM, can be found in Appendices[B]and[C|

6 CONCLUSION

Besides its well-known generalization benefits, we showed that SAM also excels at calibrating deep
neural networks. We proved that SAM achieves this goal by imposing an implicit regularization on
the negative entropy of the predictive distribution during training (see Equation|[I)), which is similar
to focal loss (Mukhoti et al.,|2020). We further proposed a variant of SAM to improve calibration and
validated its superiority across a number of networks and datasets.
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Algorithm 1 CSAM Optimizer

Input: Training set S = {z; = (;,y;)}",, objective function Lg(8), initial weight 8, € R,
learning rate ) > 0, perturbation radius p > 0, training iterations 7', regularization coefficient
~ > 0, and base optimizer A (e.g. SGD)

Output: 61

1: fort=0,1,--- ;T —1do

2:  Sample a mini-batch Q; = {2%,--- | 2¢ };

3:  Compute cross-entropy loss Lg, (0) = = > ueq, lo(zi)s

4:  Compute perturbed weight 0, =6, + p- ”z?éim;

5. Compute perturbed loss Lg, (8;) = L doseq (5(z;) per Equation (@);
6:  Compute gradient §, = Vg Lq, (8;) lg—p, of the loss over the same €2;
7:  Update weight with base optimizer A, e.g. 0,11 = 60; — 1g,;

8: end for
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Figure S4: To verify whether the boundedness assumption of r,,;, (see Lemmas |1 and |2} holds
for realistic neural networks, we further trained a ViT on the realistic ImageNet-1K dataset. (a)
compares the value of k,,,;,, at the two endpoints 8 and 6 throughout the training process. (b) further
illustrates how K, evolves along the path from 6(¢ = 0) to (¢t = 1) at 50th, 200th, and 300th
epoch, respectively. (c) records how the true coefficient A and its lower bound \q (see Equation [2))
vary during training.

A THEORETICAL PROOFS

In this section, we first present the pseudocode of CSAM (Algorithm [I)) and then the missing proofs
in Section[d] We also validate the boundedness assumption on the ImageNet-1K dataset, as shown in

Figure[S4]
Proof of Lemma According to the Taylor theorem, there always exists some 6’ such that
—logpy, = l5(2) = Lo(2) + (6 — 0)'Vig(2) + %(é —0)TV%/(2)(6 — 0).
Since 8 = 0 + pVlg(2)/| VLo (2)||2 and Kpmin(V2Le: (2)) > —||VLe(2)||2/p, it follows that
?

~logBy = (g(2) = Lo(2) + plIVo()l2 + Z-rmin (V4o (2)) > ~logp, + 5[V Lo(2)]2:

thus concluding the proof.

Proof of Theorem[} It follows from Lemmal[|that p, < p,. Recall that

X ~ N 1-
ly(z) = —logpy = lo(z) +log % > Lg(2) + Pylog % + (1= py)log — gy
>/ 1obyy p
> lo(2) — I-p (py) + H(Dy),
Yy

thus concluding the proof.
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Proof of Lemma2] There always exists some 8" € R such that

m 1/m m
- 1 -
~log (1_[1 pyi,) = ;bgpw
= La(8)
~ T 1 /- T ~
— Lo(6) + (0 - 0) VLa(6)+ 5 (9 - o) V2Lo(0) (9 - 0) .
A similar argument as Lemma | concludes the proof.

Proof of Theorem@ The proof is straightforward. According to the definition of p, and p,, it
yields that

~ _ B B 1-—
La(B) = ~ 1o B, = La(8) +1ox * > La(6) + Bylox T + (1~ ;) lox ;"
Yy Yy Yy

- f)1 ~
7JH(py) + H(py)a

> Lo (0k) — —p
Yy

thus completing the proof.

Proof of Theorem[3 Recall that

l5(z) = —(1+py) " logp, > —(1 — vp,) log by
= gé(z) +7f’y log f’y

1— - - _
> lg(2) — p”H( J) + H(py) + 7Dy log b,

1—
>/ 1 =Py P 75 5 4+ D D
2 bo(2) = 1= b H(py) + H(py) + 5Py logpy + 5 (1 — Py)log(1 — by)
Yy
_ 1 —py Y ~
= 40(2’) 1-p H(py) + (1 - §)H(Py)’
Yy

thus concluding the proof.

B EFFECTS OF PERTURBATION RADIUS p AND COEFFICIENT 7y

The perturbation radius p is an important factor in determining the generalization performance
(Foret et al., [2021)), but its effect on model calibration remains unknown. To answer this question,
we conduct another set of experiments while varying the perturbation radius p from 0.02 to 0.2,
an interval in which the optimal value of p is often found. Figure [S5]shows that the entropy of
the predictive distribution H (p,) continues to increase for both models and datasets as expected.
However, we also observe that for both models the test accuracy on CIFAR-10 first increases and then
decreases with the perturbation radius p, though the test accuracy on CIFAR-100 keeps increasing in
this interval. This implies that larger values of p do not assure a better generalization. On the other
hand, the ECE on CIFAR-10 first decreases and then increases with the perturbation radius. Moreover,
the ECE of ResNet-56 is higher than that of ResNet-20 in the descending regime, which is aligned
with the previous finding that increasing capacity by width or depth may hurt model calibration
(Guo et al.l 2017). Meanwhile, when the perturbation radius exceeds the changing point, the ECE of
ResNet-20 undergoes a sudden rise and becomes higher than that of ResNet-56, a phenomenon that
is more pronounced for CIFAR-10 in this interval. One explanation for this observation might be
that models with low capacity are more amenable to the implicit regularization imposed by SAM.
The key point is that the perturbation radius p should be relatively small to simultaneously achieve a
lower ECE and a higher test accuracy than SGD.

And below we present how the additional hyperparameter v of CSAM affects the final generalization
and calibration. The base network is ResNet-56 trained on CIFAR-10, and the perturbation radius
pis 0.05. We sweep ~y over {0,0.5,1.0,1.5,2.0,2.5,3.0} and when v = 0, CSAM degenerates to
the standard SAM. As shown in Figure we can observe that when v = 0.5, CSAM improves
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Figure S5: Variation of different metrics for models trained under monotonically increasing pertur-
bation radius p. Note that p, indicates the predicted probability associated with the true label in
one-hot encoding, and H (p, ) is the corresponding entropy.

both the generalization and calibration. And the lowest value of ECE is attained when v = 1, but
the test accuracy slightly decreases. In contrast, increasing v up to 2 significantly deteriorates the
performance. Therefore, a relatively smaller value of v is preferred.

Note that the perturbation radius p has an important impact on A that controls the weight of the
entropy term —H (p,,). To investigate the interaction between p and the hyper-parameter -y, we trained
a number of ResNet-56 models on CIFAR-10/100 using different choices of p and ~. Namely, p
from {0.05, 0.1} and v from {0.0, 0.5, 1.0, 1.5, 2.0}. Note that when v = 0.0, CSAM reduces to the
standard SAM optimizer. From Table[S4] we observe that CSAM can always generalize and calibrate
better than SAM, when p and ~y are carefully tuned. Moreover, when training with a small value of p,
it is suggested to combine with a relatively large value of ~y, and vice versa. This is because when p
is large, the penalty coefficient A in Theorem|[I]is also very large. Using a large  in this case will
over-penalize the examples, which, as a result, adversely affects the generalization and calibration.

Regularization coefficient y
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Figure S6: Effects of CSAM hyperparameter ~y on test accuracy and ECE.

C MORE EXPERIMENTAL RESULTS ON CSAM

In this section, we include several networks like ResNets (He et al., 2016), Wide ResNets (Zagoruyko
& Komodakis, 2016), and PyramidNets (Han et al |2017) to classify CIFAR-10/100. Further-
more, the classical ResNet-18 for ImageNet-1K is further adapted to classify Tiny-ImageNet. The
initial learning rate and the weight decay coefficient are swept over {0.01, 0.05, 0.1} and {1.0e-
4, 5.0e-4, 1.0e-3}, respectively. By default, we use a mini-batch size of 128. The optimizer
is SGD with momentum 0.9, and the learning rate is scheduled in a cosine decay (Loshchilov
& Hutter, 2017). Note that all experiments are run on a GPU cluster with 2 cards, and it re-
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Table S4: A number of ResNet-56 were trained on CIFAR-10/100 datasets with varying p and .

v=0.0 v=0.5 v=1.0 v=15 v=20
Test Ace P = 0.05 94.67+0.06 94.61 £0.09 94.62+0.14 94.67+0.14 94.74 £ 0.06
CIFAR-10 p=01 9474+£0.05 9471 £0.07 94.90+0.17 94.66£0.09 94.79 £ 0.05
ECE p=0.05 177+0.04 146 £0.14  1.09+0.07 0.66+0.06 0.65+ 0.14
p=01 082+012 054+011 0.69+0.14 134+033 2.04+£0.17
Test Acc P = 0.05 73.52+042 7348 £031 73.55+0.18 73.57+046 73.67+0.18
CIFAR-100 p=01 7394+0.09 7416£0.17 73.96+0.22 7412+0.09 73.86+ 0.39
ECE p=0.05 883+0.15 7.52+0.14 624 +0.28 4.86+037  3.67 =0.12
p=01 617+0.18 434+045 326+£040 1.84+0.14 1421045

quire approximately 1500 GPU hours in total. As shown from Table [S6| to Table [SI0] CSAM
consistently performs better than SAM, and it surpasses other baselines as well. The code to
reproduce these results is available at https://drive.google.com/drive/folders/
106up8Q7sdgekErGPmet ITuMfEhsPZo—-Hc?usp=sharing. While other variants of SAM
potentially altered the loss landscape, their effects on calibration are supposed to be similar to SAM.
This could be seen from Tables[ST1]and[S12] which summarize the results on CIFAR-10/100. Both
SAM variants, including ASAM (Kwon et al.| [2021)) and VASSO (Li & Giannakis| |2023)), can reduce
the calibration error, though ASAM generalizes much worse than SAM.

To further demonstrate the efficacy of SAM on calibration, we also compare the result against several
calibration-oriented training losses such as Label Smoothing (LS) and its variants, e.g., MBLS (Liu
et al.,[2022a) and ACLS (Park et al., [2023)). Besides them, popular approaches such as CPC (Cheng
& Vasconcelos| 2022)), MDCA (Hebbalaguppe et al.,[2022), and CRL (Moon et al., 2020)) are also
included. As shown in Table[ST3| both Label Smoothing and its variants can reduce the ECE. But,
unfortunately, they also hurt the generalization performance. In contrast, SAM and CSAM not only
reduce the ECE but also significantly improve the test accuracy. Moreover, we evaluate these methods
on ImageNet-1K as well. The base model is ViT-S-32 and all runs are trained only once due to
limited time. Table suggests that SAM/CSAM perform much better than other methods, both in
generalization accuracy and calibration ECE, in ID and OOD settings.

We are also interested in whether CSAM results in a flatter minima. For this purpose, a number of
ResNet-56 models are trained on CIFAR-100 with different optimizers. Table indicates that
CSAM can reach a flatter minima without compromising the calibration performance. Moreover, we
also examine it with Focal Loss and Label Smoothing, both of which can significantly reduce the
ECE value. It is interesting to find that they both converge to a flatter minima as well. This indicates
a positive correlation between calibration and sharpness.

Table S5: Performance comparison between different methods on CIFAR-100. The results are
averaged over 3 random seeds, with standard deviation displayed as well.

Test Acc T ECE | ClasswiseECE | AdaECE | TCE | AUROC 1

CE 81.01+£0.11  3.95+0.28 0.21 £+ 0.01 386 £022 338+041 93.93+0.05

Focal Loss (FL) 80.55 £0.17 2.84 £0.36 0.19 £ 0.01 279 +£045 275+£036 94.43+0.01
DualFocal 80.74 £0.24 2.68 £0.51 0.18 £ 0.01 266 £051 224+£029 94.81+0.17
AdaFocal 80.70£0.11  2.58 £0.31 0.19 £ 0.01 261 £037 231£029 93.75+0.05

Mixup 82.09+£0.26 4.28+0.27 0.18 £ 0.02 424 +031 420+0.63 94.35£0.08
MIT-L 81.29+£0.18 3.26+0.18 0.18 £ 0.01 324 £0.19 3.09£049 9476 £0.12
MMCE 81.02+£0.05 4.02+0.29 0.18 £ 0.01 396 £022 3.69+038 93.83+0.07
BatchEnsemble  79.93 +0.11  6.86 + 0.21 0.21 £+ 0.01 6.77£027 249+0.17 94.15+0.02
Rank1-BNN 80.21 £0.06 3.59£0.01 0.19 £ 0.01 357+£008 242£0.11 94.29+0.06
VI 76.30 £0.06 10.29 +0.11 0.27 £ 0.03 10.29 £0.11 2.08 £0.35 92.62 +0.08
MIMO 80.75 £0.13 238 £0.06 0.17 £ 0.01 231 £0.04 2.04£0.01 9514+0.04
ACLS 80.49 £0.19 6.38 £0.29 0.19 £ 0.01 631 £033 290+047 93.16+0.14
BalCAL 8134 £0.02 5.69+£0.18 0.18 £ 0.01 5.66+024 2.64+£021 93.49+0.09
bSAM 80.59 £0.07 827+0.13 0.22 £+ 0.01 827+£0.14 259+0.17 94.01 £0.11
SAM 8293 +£0.15 2.11+£0.17 0.17 £ 0.01 2.17£021 1.89£0.11 94.15+0.06
CSAM 83.07 £0.19 1.93 £0.15 0.15 £+ 0.01 1.99 £0.05 154030 96.07 +0.03
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Finally, apart from the cross-entropy loss, we are also wondering whether the calibration benefit of

SAM is persistent across other training losses. As shown in Table

we can observe that when

integrated with Focal Loss (FL) and ACLS (Park et al., 2023)), SAM still calibrates better than the
baseline, whereas CSAM achieves the lowest ECE/TCE.

Table S6: Results (mean+std) of test accuracy (%) over 3 random runs. Text marked as bold indicates

the best result.
CE FL DualFocal AdaFocal Mixup MMCE MIT-L SAM CSAM
ResNet-56 94.01 £0.15 9399 +0.04 93.84+0.22 93.8740.08 9442+0.15 94.194+0.22 94.68 £0.08 94.92+0.24 95.00 £ 0.25
CIFAR-10 WRN-28-10 95.83+£021 95914002 9573+0.10 9578+0.06 96.64+0.10 95.94+0.02 96.56+0.16 96.91+0.14 96.87 + 0.05
PyramidNet-110  96.07 £0.23  96.03 £ 0.06 96.14 =0.04 96.00+0.11 96.77 =0.08 96.13 +0.08 96.78 £0.17 97.14+0.06 97.26 = 0.03
ResNet-56 72.06 £0.13 7196 +0.28 71.43+0.04 72.004+0.08 74.15+0.29 72.174+0.12 7428 +042 7471030 74.95+0.32
CIFAR-100 WRN-28-10 81.04+£0.11 80.55+0.17 80.74+0.24 80.70+0.11 82.09+0.26 81.02+0.05 81.29+0.18 8293+0.15 83.05+0.19
PyramidNet-110  81.21 £0.52 81.53 £0.12 81.76+0.07 81.814+0.38 8294+029 8136031 8241+0.02 84.08+0.29 84.16=+0.15
Tiny-ImageNet ~ResNet-18 51.96 £0.35 52.61 £0.59 53.02+0.86 50.36+£0.69 51.45+0.70 51.31+0.79 51.97+0.24 56.81+0.31 57.13 +0.96

Table S7: Results (mean=+std) of ECE (%) with M = 15 over 3 random runs. Text marked as bold

indicates the best result.

CE FL DualFocal AdaFocal Mixup MMCE MIT-L SAM CSAM
ResNet-56 389+0.16 181+0.12 250+0.03 0.89+0.12 387+0.09 3.61+0.17 183+0.18 0.64+0.09 0.58+0.07
CIFAR-10 WRN-28-10 2.36 £0.11 1.16 £0.13 474+£0.09 09140.14 466+ 1.11 2474004 1.05+0.02 0.86+0.13 0.50+0.03
PyramidNet-110 254 £0.19  1.17+0.15 4.64+0.05 096+0.12 223+0.84 249+0.12 122+0.14 0.74+0.08 0.32+0.06
ResNet-56 1329 £0.15 825+£0.23 4.93+0.06 1.71 £ 0.09 243 £0.32 1349 £0.19 5.11+138 1.66+0.16 0.84+0.15
CIFAR-100 WRN-28-10 3.95+0.28 2.844+0.36 12.66 £0.51 2.58+0.31 4.28 £0.27 4.02 +£0.29 326+0.18 2.1140.17 150+ 0.07
PyramidNet-110  9.52 £0.64 426 +0.39 1058 £0.55 1.95+0.11 325+1.19 924+038 3.03+0.38 191+0.14 1.69=+0.04
Tiny-ImageNet ~ResNet-18 7.65+221 435+0.64 1630+£0.53 11.71+0.66 10.81£0.66 9.34+2.10 4.09+0.17 3.46+0.15 275+ 047

Table S8: Results (mean=+std) of Classwise ECE (%) with M = 15 over 3
as bold indicates the best result.

random runs. Text marked

CE FL DualFocal  AdaFocal Mixup MMCE MIT-L SAM CSAM
ResNet-56 0.80 +£0.01 0.47+0.02 0.67+0.01 0.37+0.03 0.87+0.06 0784003 046+0.02 032+0.01 0.29+0.02
CIFAR-10 WRN-28-10 0.524+0.01 038+0.01 1.11+£0.02 035+000 1.05+0.23 054+0.02 031+001 026+0.02 0.23+0.01
PyramidNet-110  0.56 £0.03  0.36 £0.02 1.03+0.03 0.34+0.01 045+0.02 0.55+0.02 0314001 025+0.01 0.20+0.01
ResNet-56 0.32+0.01 0254000 021+0.01 0.19+£0.00 0.194+0.00 0334000 020=+0.01 0.16+0.00 0.16+ 0.00
CIFAR-100 ‘WRN-28-10 0.184+0.01 0.194+0.00 0.34+0.01 0.19+£0.00 0.18+0.01 0.18+0.01 0.18+£0.01 0.17£0.00 0.15=+0.01
PyramidNet-110  0.23 +£0.01 0.17 £0.00 0.30£0.01 0.1740.00 0.18 £0.03 023 +£0.01 0.16+0.00 0.1540.00 0.14 +0.01
Tiny-ImageNet ResNet-18 021+£001 0.19+0.00 0.24+0.01 0.23+£0.01 021+001 021+0.01 0.19+0.00 0.19+0.00 0.19+0.00
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Table S9: Results (mean=std) of Adaptive ECE (%) with M = 15 over 3 random runs. Text marked
as bold indicates the best result.

CE FL DualFocal AdaFocal Mixup MMCE MIT-L SAM CSAM
ResNet-56 3.71 £ 0.06 2.13+0.19 2.19+0.18 1.03 +£0.14 3.97 +£0.08 3.55+0.15 1.83£0.14 090+0.14 0.51+0.03
CIFAR-10 WRN-28-10 236 +£0.11 1.424+0.09 4.64 £0.07 0.65 £ 0.04 4.63+£1.04 242 +0.04 1.05£0.05 0.84+0.14 0.48 +0.04
PyramidNet-110 253 £0.19  1.78 £0.07 4.54+0.02 088+0.09 269+022 249+0.13 1.19£0.17 0.70+0.05 0.19 = 0.02
ResNet-56 1336 +0.12 8234026 491+0.06 1.82+£021 2484023 13484021 5094136 1.02+0.02 0.96+0.14
CIFAR-100 WRN-28-10 386+£022 2794045 12.66+051 261 +037 424+031 396+022 3244019 4.67+021 1.50+0.01
PyramidNet-110  9.29 + 0.54 4.06+049 1058 +0.55 1.76 £0.22 325+ 1.01 9.18 +£0.41 299+0.02 1.65+0.14 1.45+0.04
Tiny-ImageNet ResNet-18 7.55+£2.27 425+£056 1631+0.54 11.71£0.66 10.79+0.64 9.19 £2.12 333+0.14 4.07+0.19 2.65=+0.30

Table S10: Results (mean+std) of AUROC (%) over 3 random runs. Text marked as bold indicates
the best result.

CE FL DualFocal AdaFocal Mixup MMCE MIT-L SAM CSAM
ResNet-56 97.98 +£0.03 98.47+0.05 98.73+0.09 98.78 £0.03 98.59+0.03 98.04+0.02 98.72+0.03 99.07+0.07 99.19 + 0.02
CIFAR-10 WRN-28-10 98.68 +£0.04 99.04 £0.01 9926 +0.02 99.10+£0.04 99.12+0.02 98.65+0.05 99.12+0.03 99.30+0.02 99.40 -+ 0.01
PyramidNet-110  98.64 £0.04 98.96 £ 0.04 99.40 +0.04 99.16+0.04 99.00+0.03 98.66 £0.04 99.20 +0.02 99.41 £0.03 99.52 + 0.02
ResNet-56 91.06 £0.01 92324+0.09 92.69+0.09 93.4440.07 92.87+0.09 90.994+0.04 93.32+0.27 94.35+0.05 94.57 £0.07
CIFAR-100 WRN-28-10 9393 +£0.05 9443+0.01 94.81+£0.17 93.75+£0.05 9435+£0.08 9383 +0.07 9476+0.12 94.1540.06 96.06 = 0.03
PyramidNet-110  93.46 £ 0.22 9429 +0.01 95.16+0.03 95.034+0.09 94.62+0.04 93.4740.13 9521 £0.08 96.05+0.07 96.14 £ 0.05
Tiny-ImageNet ResNet-18 82.62+0.37 8331+£0.63 81.08+042 81.32+0.65 79.32+0.53 8257+0.06 8238+0.13 8563+031 85.69+0.15
Table S11: Calibration performance of different SAM variants on CIFAR-10.
Test Acc ECE ClasswiseECE ~ AdaECE TCE AUROC
SGD 9426 £0.06 3.52+0.12 0.78 £0.01 3.52+0.11 1.03+0.01 98.09+0.08
SAM 9450 £0.20 1.83 +0.08 0.44 +0.01 1.78 £0.03 0.70+£0.12 98.78 + 0.08
ASAM 9482 +0.11 2.03£0.11 0.48+0.01 201 £0.14 0.61+0.05 98.71 +£0.02
VASSO 9470 £0.10 1.75+0.04 0.42+0.01 1.69 £0.05 0.71+£0.09 98.87 +0.06
CSAM  94.58 £0.14 1.47 £0.17 0.41 £ 0.02 141+£019 0.72+020 98.87 + 0.06
Table S12: Calibration performance of different SAM variants on CIFAR-100.
Test Acc ECE ClasswiseECE ~ AdaECE TCE AUROC
SGD 72.00+£0.15 13.14£0.25 0.33+£0.01 13.13+£0.25 1.64+0.09 91.12+0.11
SAM 7487 £0.21 1.59+0.10 0.17 +0.01 1.39+0.16 1.38+0.11 94.40 £ 0.01
ASAM  74.11+0.11 648 +0.26 0.22+0.01 643+025 1314031 93.13£0.09
VASSO 7494 +053 155+025 0.17 £0.01 1.55+024 1434+023 94.31+0.07
CSAM  74.85+020 1.31+040 0.17 +0.01 1224023 136 £ 0.44 94.55 + 0.06
Table S13: Comparison against other calibration-oriented training losses.
SGD LS ACLS CRL CPC MBLS MDCA SAM CSAM
TestAcc 7230012 72.54+0.18 7249+005 7236+0.18 7245+047 7242+024 72.38+048 7463+024 7498 =0.16
ECE 13.03+£026 438+0.14 2324040 343+025 262+£054 233+£042 3.06+0.07 1874025 125+0.15

Table S14: Results on the ImageNet-1K dataset. Slightly different from the custom setting, we reserve
20% of the ImageNet-1K validation set as a new validation set for early stopping and temperature
scaling, and the remaining images therefore constitute a test set. Both metrics are evaluated on the
test set (1/2/3 indicate different types of corruption).

ID Metrics OOD Metrics
Test AccT ECE | Test Acc (1/2/3) T ECE (1/2/3) |
SGD 65.91 11.56 33.54 3021 34.18 2370 24.65 18.00
MBLS 67.19 2.21 3454 31.58 35.58 11.83 12.61 8.58
CPC 65.68 934 3234 31.01 3571 2046 23.19 15.04
ACLS 66.68 3.97 34.67 31.88 36.00 15.72 16.17 10.25
MDCA 65.23 8.38 33.11 2991 3371 2331 2428 17.15
SAM 69.48 2.47 38.25 3527 39.54 17.33 7.77 3.15
CSAM 69.78 179 38.58 3546 39.85 7.07 7.70 2.76
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Table S15: Performance of CSAM/SAM when combined with other training losses (e.g. FL and
ACLS).

ResNet-56 WRN-28-10
Test Acc 1 ECE | TCE | Test Acc T ECE | TCE |
FL 71.96 £0.28 8.25+0.23 3.27+£0.16 80.55+£0.17 2.84+0.36 2.75+0.36
FL+SAM 73.114+0.01 6.904+0.38 1.904+0.13 81.33+0.23 241+0.06 1.76+0.12
FL+CSAM 7351 +£0.10 3.94 +0.17 1.58+0.13 82.08 +0.08 1.88+0.11 1.42+0.16
ACLS 72.55+0.08 5.88+0.18 3.29+0.25 80.49+0.19 6.38+0.29 2.90+0.47

ACLS+SAM 74.53£0.09 1.37+0.056 1.27+0.18 83.04+£0.01 187+£0.10 1.80=£0.12
ACLS+CSAM  74.86 +£0.07 1.01+0.12 0.85+0.05 83.13+0.08 1.37+0.21 1.36+0.06

Table S16: Comparison of sharpness (measured by the largest eigenvalue k4, of the Hessian) of
different optimizers.

SGD Focal Loss Label Smoothing SAM CSAM

ECE 13.03£0.26 1.85 £ 0.09 231 £0.15 1.27 £ 0.25 1.08 £ 0.12
Emaz 031.89 £86.81 496.99 £22.02 583.74 £ 52.08 17799 £13.25 148.16 £ 10.09
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