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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across a wide range of natural language processing and reasoning tasks. However,
their performance in the foundational domain of arithmetic remains unsatisfactory.
When dealing with arithmetic tasks, LLMs often memorize specific examples
rather than learning the underlying computational logic, limiting their ability to
generalize to new problems. In this paper, we propose a Composable Arithmetic
Execution Framework (CAEF) that enables LLMs to learn to execute step-by-step
computations by emulating Turing Machines, thereby achieving a true mastery
of computational logic. Moreover, the proposed framework is highly scalable,
allowing composing learned operators to significantly reduce the difficulty of
learning complex operators. In our evaluation, CAEF achieves nearly 100%
accuracy across seven common mathematical operations on the LLaMA 3.1-8B
model, effectively supporting computations involving operands with up to 100
digits, a level where GPT-4o falls short noticeably in some settings.

1 INTRODUCTION

Large Language Models (LLMs) have made significant strides in recent years, showcasing
extraordinary capabilities across a range of natural language processing (NLP) tasks (Dubey et al.,
2024; Jiang et al., 2024; Chowdhery et al., 2023), and in some cases, even surpassing human
performance in specific benchmarks (Achiam et al., 2023). However, despite these advancements,
LLMs still face significant challenges in performing arithmetic. Current research indicates that when
presented with arithmetic problems, LLMs often rely on memorizing specific expressions and their
corresponding outcomes rather than grasping the fundamental logic of arithmetic operations (Wu
et al., 2023b). This inherent limitation poses a substantial barrier to their effective application in
fields that demand essential computational skills.

To enhance the performance of LLMs in solving arithmetic problems, two primary approaches
have been developed. The first approach positions the LLM as an agent that relies on an
external calculator to perform computations (Hao et al., 2024; Ruan et al., 2023). In this setting,
the LLM’s role is limited to providing the operands and invoking the appropriate operations.
Although this method effectively simplifies the challenge of arithmetic for LLMs, it misses the
opportunity for the models to learn computational logic, preventing LLMs from comprehending the
underlying principles of arithmetic. Given that arithmetic serves as the foundation of mathematics,
the lack of arithmetic ability may significantly impede the LLM’s capability to grasp more
complex mathematical concepts. The second approach focuses on stimulating the LLM’s intrinsic
capabilities, employing prompt engineering or fine-tuning techniques to enable the model to master
arithmetic computations and solve problems through reasoning (Kojima et al., 2022; Huang et al.,
2022; Yu et al., 2023). This approach typically involves the LLMs generating intermediate steps
before reaching a final result.

Although the second approach is promising, it faces two significant challenges. The first challenge
is that, under simple supervised fine-tuning, LLMs tend to memorize examples from the training set
(Hu et al., 2024). As the length of the operands increases, the sample space expands exponentially,
making it impractical for the LLM to memorize all possible examples. To fundamentally overcome
this limitation, LLMs should primarily learn and execute computational logic, mirroring how
humans systematically master arithmetic, rather than relying on memorization.
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Figure 1: An illustrative CAEF flowchart demonstrates the execution of the Multiplication operation
for 89 × 2. The aligner converts the original arithmetic expression into a Turing Machine-like
representation that the Multiplication executor can process. Acting as an executor composer, the
Multiplication executor calls upon two basic executors, i.e., Less than and Addition, to perform the
actual computation. All the executors and the aligner are executed by the LLM.

The second challenge involves learning how to compose basic operators to build complex arithmetic
operators. These complex operators are typically execution procedures that contain conditional
statements (if -then-else) and iterative statements (loop), with the basic operators treated as
function calls within these procedures. By doing this, LLMs could gradually learn more complex
arithmetic operations by focusing on their execution logic and calling the existing operators as
necessary.

Mastering the execution of arithmetic is fundamentally equivalent to modeling computation. One
famous mathematical model of computation is the Turing machine, which is formally introduced by
Alan Turing (Turing et al., 1936). If the LLM learns to execute computational logic by simulating
executing a Turing machine based on its transition functions for each operator, it could solve
arithmetic problems through a multi-query approach. This approach involves the LLM iteratively
performing computations based on the current state and command, and then generating the next state
and command.

In this paper, we propose a Composable Arithmetic Execution Framework (CAEF) for LLMs to
solve arithmetic problems solely. Inspired by the Turing machine, CAEF aims to teach LLMs
the computational logic, enabling them to execute the logic for specific arithmetic operators and
compose arithmetic operators into more complex ones. CAEF has two key characteristics:

Executing arithmetic. As illustrated in Figure 1, CAEF employs a three-step procedure for each
arithmetic operator, supported by two independent components within the LLM: the executor and
the aligner. The executor, responsible for performing the actual computations, learns the underlying
computational logic by modeling the transition function of the corresponding arithmetic Turing
machine. This allows the LLM to iteratively generate intermediate results and ultimately produce
the final output. The aligner serves as an interface, converting raw arithmetic expressions (e.g.,
89 × 2 =) into a format that the executor can directly process. Once the executor completes its
execution, the aligner transforms the executor’s output back into the final result. In our framework,
both the executor and the aligner are implemented as separate LoRA adapters (Hu et al., 2021).

Composing operators. Complex operators can often be composed of basic or simpler ones,
hierarchically or recursively. In CAEF, we design an executor composer that is responsible for
the high-level execution procedures of complex operators and allows function calls to invoke other
pre-learned arithmetic operators. Since each operator is implemented as a LoRA adapter, function
calls in CAEF are executed by automatically switching LoRA adapters, following the LLM’s
generated command. Thus, CAEF could facilitate the handling of more intricate computations.

Using the proposed framework, we have implemented seven operators: +, −, ×, ÷, >, <, and
==, along with two auxiliary operators (refer to Appendix A.4). Each of these operators is based on
existing computational logic, such as the Turing machine or algorithms used in CPU design (e.g., the
subtraction operator is modeled similarly to how modern CPUs handle the subtraction operation.).
Our experiments show that CAEF achieves high accuracy across all seven operators when using the
LLaMA 3.1-8B model (Dubey et al., 2024). Compared to GPT-4o, the LLM equipped with CAEF
demonstrates minimal impact from changes in operand length, effectively supporting computations
involving operands with up to 100 digits. The main contributions of this paper are as follows:
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• We propose a framework CAEF enabling LLM learning to execute the computational logic
of operators by imitating the execution of Turing machine. Also, CAEF can naturally
support composing multiple learned operators for operators with complex logic.

• We implement executors and aligners for seven arithmetic operators based on the proposed
framework. The executor is responsible for performing the step-by-step computations
iteratively, while the aligner serves as an interface, facilitating the bidirectional conversion
between the internal representation of the executor and the original representation.

• The extensive evaluation shows that CAEF outperforms the existing LLMs with seven
classic arithmetic tasks. The proposed CAEF enables the LLM to achieve almost 100%
accuracy when operands are up to 100 digits.

2 APPROACH: FRAMEWORK DESIGN

2.1 PROBLEM STATEMENT

Computational logic is fundamental to arithmetic. To truly master arithmetic, the LLM should
learn and execute the underlying computational logic of arithmetic operations rather than merely
memorizing examples of arithmetic expressions. For scalability, the LLM should be capable of
constructing new operators by combining existing operators. For example, after learning Addition
operation, the LLM could construct Multiplication by learning the computational logic of repeated
addition could achieve multiplication.

Therefore, we need a framework that enables LLM to model arithmetic operators by learning
to execute their underlying computational logic. In the field of automata, the Turing machine
provides a suitable framework for describing this logic. Following the examples (e.g., Turing
machines introduced in Sipser (1996)), we could build a Turing machine for common arithmetic
operations, which can be a reference to create adequate datasets of execution steps for LLM training.
Furthermore, the Turing machine inherently supports the combination of multiple Turing machines,
making it ideal for constructing complex operations from existing ones. By emulating Turing
machines, LLM can be designed to integrate multiple models, enabling it to execute more intricate
arithmetic tasks.

2.2 LLM EXECUTES AS TURNING MACHINE

A Turing machine can be formally defined as a septuple T = (Q,Σ,Γ, b, q0, F, δ), where Q is a
finite set of states, Σ ⊆ Γ is a finite alphabet for input, Γ is a finite tape alphabet, b ∈ Γ is the
blank symbol, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states, and δ is the transition
function. When a Turing machine is in a non-halting state, the next action is determined by both
the current symbol on the tape and the machine’s current state. In each action, the machine updates
the symbol on the tape, transitions to a new state, and moves the tape head either left or right. This
process repeats iteratively until the machine reaches a halting state, at which point the computation
is complete, and the result is saved on the tape.

LLM is the generative model for text-based language, so how to transfer all information from a
Turing machine to the LLM effectively is challenging. A tailored representation system is necessary
for LLMs to accurately learn computational logic. To facilitate this transfer, the system must
incorporate states analogous to those of the Turing machine, such as the machine state and tape
state, to indicate the current status of the computation, in other words, the step in the execution
process. Additionally, the system should include commands that specify the actions to be executed
based on the current state to ensure correct transitions to the next state. Thus, CAEF provides a
text-based representation < si, ci > that effectively represents the state si and the command ci for
each step i in the computational logic. Then, the state transition function f (e.g. LLM or LLM
fine-tuned with LoRA adapters) could use this representation at stepi as the input to generate the
next representation at stepi+1 as following:

si+1, ci+1 = f(si, ci) (1)

By formulating the representation of both input and output for Equation 1, the LLM is enabled to
perform computations in a manner similar to that of a Turing Machine by executing step-by-step
transitions.
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Figure 2: Diagram of the CAEF framework. The CAEF representation includes two required
components: state and command, corresponding to areas and in the figure. The state
part records the current status, operands, and registers that store intermediate variables and results,
etc. The command consists of a set of actions, such as write operations and call operations. Upon
receiving the state and command, the LLM generates the next state and the corresponding command,
with each step corresponding to a transition in the state diagram on the left.

2.3 REPRESENTATION DESIGN

In this paper, we design a structured representation for arithmetic problems to enable the LLM to
accurately execute computational logic. As illustrated in Figure 2, representation of the arithmetic
problem includes: 1) a status indicating the current step of the computation, and 2) a ”tape” that
records all operands and essential information, such as the number of digits processed, any carryover
during addition, and other intermediate results. To facilitate the LLM’s learning of the execution
process, the representation in CAEF explicitly includes the commands c required for execution.
These commands involve the call to the next state s and other detailed actions, such as carrying over
or moving the pointer. All the above elements are represented in text, which is friendly to LLM to
deal with. Then, to make LLM execute based on the representation, CAEF structures the input as
< si, ci > for current stepi, while the output is < si+1, ci+1 > for the next stepi+1.

Besides modeling the representation, representation translation is another critical part of CAEF. In
general, the original input of an arithmetic problem does not include the initial state or the first
command to execute. Moreover, upon completing the computation, the raw output remains in the
representation format. Thus, CAEF incorporates an aligner to manage the bidirectional translation
between the original input/output and the representation. The aligner can also be implemented by
fine-tuning a specific LoRA adapter. Notice that one key feature of the aligner should learn the
ability to convert the left-to-right (L2R) representation of numbers into a right-to-left (R2L) format,
as R2L is evaluated more effectively for LLM to operate the operands (Lee et al., 2023).

3 APPROACH: IMPLEMENTATION

Building on the conceptual design of CAEF, we present the detailed implementation of Equation 1,
highlighting two key derived components: basic executors and executor composers with examples.

3.1 FINE-TUNING PROCESS AND IMPLEMENTATION DESIGN

CAEF offers a framework to enhance the arithmetic capabilities of LLMs. To implement Equation 1
for a specific arithmetic task, CAEF involves the following steps: 1) step 1: design a state machine
and implement the representation < si, ci > for the arithmetic task, and 2) step 2: sample pairs of
input and output to create a dataset, which is then used to fine-tune the LLM for one-step execution.

Step 1. Designing a state machine can draw from existing Turing machines or other relevant state
machines for the task. To implement state si and commands ci in the representation, we transform
the structured representation into plain text following two main guidelines: 1) numbers are formatted
in R2L order, separated by |, and 2) each command is expressed in the format {[CMD] action}.
For example, for the addition task 45 + 67 = where the current step involves adding the tens digits

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

q0 

 వవޅ

5 4 7 6 

qH 

q0 

q1 

1 

2 

3 

1 2 2 3 

[carry] Write 0 

[head 1]: Right 

[head 2]: Right 

[status]: q1 

operand 1 status operand 2 

carry output 

q1 

 వవޅ 0

5 4 7 6 

[carry] Write 1 

[head 1]: Right 

[head 2]: Right 

[output]: Write 2 

operand 1 status operand 2 

carry output 

[output]: Right 

[status]: q1 

q1 

 వవޅ 1 2

5 4 7 6 

[carry] Write 1 

[head 1]: Right 

[head 2]: Right 

[output]: Write 1 

operand 1 status operand 2 

carry output 

[output]: Right 

[status]: q1 

q1 

 వవޅ 1 2 1

5 4 7 6 

[output]: Write 1 

operand 1 status operand 2 

carry output 

[status]: qH 

qH 

 వవޅ 1 1 2 1

5 4 7 6 

No command 

operand 1 status operand 2 

carry output 

Figure 3: Execution process of 45+67. The state diagram on the left abstracts the addition process.
In step 2⃝, a one-digit addition is performed, followed by updating the carry and output. The right
side shows the actual sequence of state and command execution in the CAEF framework.

with a carry of 1 from the units place, the representation < si, ci > may include several pointers:
two HEADs pointing to the digits, a carry C for the carry value, and OUTPUT to record the results.
All these pointers are moved using the RIGHT command. The representation is written as follows:

where q1 indicates the current status, and all pointers are presented in uppercase, enclosed in
brackets with the pointed value on their right.

Step 2. To fine-tune the LLM, the dataset, including input and output representation pairs
used for learning one-step execution. Continuing with the example, we create the representation
< si+1, ci+1 > for the output of the one-step execution based on the above < si, ci >:

where qH is the halting status. The details of the dataset refer to Section 4.1.

One efficient way for LLM to learn for one-step execution is LoRA fine-tuning. Since we target to
learn +, −, ×, ÷, >, <, and == arithmetic operators, implementing multiple LLM instances leads
to significant memory overhead. To mitigate this, we use a single base LLM model with multiple
LoRA adapters that serve as learned executable arithmetic operators. Switching LoRA adapters
based on function calls generated by the LLM can efficiently perform various operations, optimizing
memory usage while maintaining flexibility in handling different arithmetic computations.

To implement a specific computational task, CAEF introduces two types of executors (i.e., basic
executor and the executor composer) to learn to execute under the proposed representation. The
basic executor is designed to handle tasks with well-defined computational logic, while the executor
composer acts as a higher-level controller that orchestrates the process by calling other basic
executors. In the following, we introduce the two types of executors through illustrative examples.

3.2 BASIC EXECUTORS

We use addition to illustrate the design of a basic executor. A natural way to implement addition is to
imitate the accumulator, performing the addition of two corresponding digits from the operands once
at a time, along with the value stored in the carry register. This process calculates the result for the
current digit and simultaneously updates the carry register for the next higher digit’s computation.

Thus, the state and the command for addition are constructed as follows. The state should include
the following components: 1) the two operands, 2) two pointers indicating the current digits being
processed, 3) the carry register, and 4) the output generated so far. The command part should at
least include: 1) the actions to write the carry and output, 2) the actions to move the pointers, and
3) state transition actions to control the start, transitions, and halting of the addition. Based on this
instruction, CAEF constructs the state machine based on the text-based represented < si, ci >.
Figure 3 illustrates the computation process of CAEF for addition. The details of computations
and dataset are listed in Appendix A.3 and Section 4.1, respectively. In this paper, we use similar
procedures to design the operators for >, < and ==.
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Figure 4: Execution process of 89 × 2. The state diagram on the left abstracts the multiplication
process, where in state q1, the less-than executor is performed. If true, the execution moves to state
q2; otherwise, it transitions to state q5 and halts. Steps 3⃝ and 4⃝ execute the accumulation of the
counter and output, respectively. The right side shows the actual execution in the CAEF framework.

3.3 EXECUTOR COMPOSERS

Executor composer designs to orchestrate the basic executors into intricate computational logic.
Instead of performing computations directly, the executor composer ”calls” other basic executors in
a specific sequence to accomplish more complex tasks.

Multiplication is a typical example of the executor composer, which can be implemented by calling
the + and < basic executors. CAEF uses two accumulators (+ involved) to implement a × b. The
first accumulator increments by 1 with each loop iteration, while the second adds a during each
iteration. This process continues until the first accumulator reaches b (< involved), and then the
value in the second accumulator represents the final result. LLM is fine-tuned to execute control
flow and loops, by calling the < executor and, based on its result, either halts or continues the loop.
Figure 4 illustrates the computation process for 89×2 using our implementation. Since the executor
composer decouples the computational logic into several executors, the fine-tuning process could be
done separately for each executor, showing the ability of executor composition.

Besides multiplication, we also design subtraction (considering only non-negative results) and
division (floor division) executor composers using similar methodologies. Specifically, we draw
inspiration from how subtraction is handled in CPUs to construct the subtraction executor composer
and the detailed implementation can be found in Appendix A.4.

4 EVALUATION
4.1 SETTING

Models. We utilize the LLaMA 3.1-8B pretrained model (non-instruct version) as the base model.
During LoRA fine-tuning, all linear modules in the decoder layer are involved in training, with the
hyperparameters fixed at r = 8, α = 16, and a learning rate of 5 × 10−5. The fine-tuning process
is conducted in two stages. In the first stage, we introduce an exhaustive explanation in the prompt,
detailing the computation goal of an executor, the required input/output format, and providing an
example. This explanation is followed by the actual sample, as illustrated in Appendix A.1. In
the second stage, we remove the long explanation from the prompt and present only the sample,
expecting the model to predict the next state and the subsequent commands directly. We use batch
sizes of 8 and 16 for the first and second stages, respectively. All experiments are conducted on a
server equipped with six H800 GPUs. The code and the models are available1.

1The implementation code is accessible at https://github.com/HNDRXwjrmY/CAEF, and the
checkpoints are available at https://huggingface.co/HNDRXwjrmY/CAEF_llama3.1_8b
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Table 1: Overall evaluation results across seven operators. ”LLaMA 3.1 (L)” refers to the LLaMA
fine-tuned with LoRA, while ”LLaMA 3.1 (I)” refers to the LLaMA 3.1-8B-Instruct model.

Operator Model 5-digits 10-digits 50-digits 100-digits 1∼10-digits

Addition

CAEF 100.0 99.6 99.9 98.6 -
LLaMA 3.1 (L) 92.1-7.9 64.8-34.8 0.0-99.9 0.0-98.6 -
LLaMA 3.1 (I) 93.5-6.5 35.0-64.6 0.0-99.9 0.0-98.6 -

GPT-4o 98.4-1.6 94.0-5.6 65.0-34.9 43.0-55.6 -

Subtraction

CAEF 98.7 99.5 98.8 98.0 -
LLaMA 3.1 (L) 82.8-15.9 61.0-38.5 0.0-98.8 0.0-98.0 -
LLaMA 3.1 (I) 92.6-6.1 60.3-39.2 0.0-98.8 0.0-98.0 -

GPT-4o 98.6-0.1 95.9-3.6 84.0-14.8 71.6-26.4 -

Greater than

CAEF 99.2 99.0 99.2 97.2 -
LLaMA 3.1 (L) 93.0-6.2 90.0-9.0 46.3-52.9 10.0-87.2 -
LLaMA 3.1 (I) 99.3+0.1 97.7-1.3 72.1-27.1 70.0-27.2 -

GPT-4o 99.8+0.6 99.6+0.6 99.0-0.2 93.2-4.0 -

Less than

CAEF 99.7 99.3 99.6 98.0 -
LLaMA 3.1 (L) 96.2-3.5 93.6-5.7 84.0-15.6 45.0-53.0 -
LLaMA 3.1 (I) 93.9-5.8 86.3-13.0 74.6-25.0 67.4-30.6 -

GPT-4o 99.9+0.2 100.0+0.7 99.3-0.3 89.2-8.8 -

Equal

CAEF 99.4 99.6 99.1 98.4 -
LLaMA 3.1 (L) 57.5-41.9 66.2-33.4 59.2-39.9 54.0-44.4 -
LLaMA 3.1 (I) 100.0+0.6 98.8-0.8 99.6+0.5 99.6+1.2 -

GPT-4o 100.0+0.6 100.0+0.4 100.0+0.9 100.0+1.6 -

Multiplication

CAEF - - - - 99.3
LLaMA 3.1 (L) - - - - 61.8-37.5

LLaMA 3.1 (I) - - - - 61.4-37.9

GPT-4o - - - - 97.7-1.6

Division

CAEF - - - - 99.3
LLaMA 3.1 (L) - - - - 98.4-0.9

LLaMA 3.1 (I) - - - - 96.5-2.8

GPT-4o - - - - 99.1-0.2

Baseline. We compare our approach against three baselines on +, −, ×, ÷, ==, >, and < operators.
The first is a LLM fine-tuned with LoRA on LLaMA 3.1-8B (non-instruct version). Additionally,
we include two unmodified LLMs, GPT-4o and LLaMA 3.1-8B Instruct, both of which directly
generate the computational results based on the arithmetic expressions through a single model query.
The prompts used for these models are in Appendix A.5.

Dataset. In CAEF, an operator requires an executor and an aligner, each supported by a specific
LoRA adapter. To generate training datasets for these adapters, we implement a Turing machine
prototype for each operator. For the executor, we generate random arithmetic expressions and run
the Turing machine from its initial state until it halts, recording states and commands before and
after each transition. This produces a sequence of states and commands, from which we sampled
to train the executor. By generating multiple sequences through random initialization, an adequate
training dataset for the executor can be created. It is notable that for arithmetic expressions with
long operands, the sequences tend to be lengthy. Simple random sampling may lead to a dataset
dominated by intermediate steps, potentially omitting samples from the first and final transitions.
To address this, we ensure that the first and last steps are always included. Similarly, for the
aligner, we generate two alignment processes: one aligning the original arithmetic expression with
the executor’s initial state and first command, while another aligning the executor’s halt state with
the final result of the original arithmetic expression.

For the test sets, we generate a dataset consisting of pure arithmetic expressions using predefined
templates (refer to in Appendix A.2). Specifically, for +, −, ==, >, and < operations, we create test
sets with two operands of equal length, consisting of 5, 10, 50, and 100 digits. For multiplication and
division, to avoid excessively large values, we adjusted the data range based on the characteristics of
these two operators. In multiplication of the form a× b = c, we restricted a to be a random number
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Table 2: Accuracy of the executor and aligner across seven operators. The executor’s accuracy refers
to the probability of completing the entire computation correctly from the initial state to the final
step, with each step being accurate. The aligner’s accuracy is divided into two parts: the conversion
from the original input to the executor’s representation, denoted as aligner (I), and the conversion
from the executor’s final representation to the output, denoted as aligner (O).

Operator Component 5-digits 10-digits 50-digits 100-digits 1∼10-digits

Addition
executor 100.0 100.0 99.9 99.6 -

aligner (I) 100.0 99.7 100.0 99.6 -
aligner (O) 100.0 99.9 100.0 99.4 -

Subtraction
executor 100.0 100.0 99.6 99.2 -

aligner (I) 98.8 99.7 99.5 99.6 -
aligner (O) 99.9 99.7 99.7 99.2 -

Greater than
executor 100.0 100.0 99.8 99.6 -

aligner (I) 99.2 99.1 99.4 98.6 -
aligner (O) 100.0 99.9 100.0 99.2 -

Less than
executor 100.0 100.0 100.0 100.0 -

aligner (I) 99.8 99.3 99.7 98.4 -
aligner (O) 99.9 100.0 99.8 99.6 -

Equal
executor 100.0 100.0 99.8 99.4 -

aligner (I) 99.4 99.6 99.6 98.8 -
aligner (O) 100.0 100.0 99.8 99.8 -

Multiplication
executor - - - - 99.5

aligner (I) - - - - 99.8
aligner (O) - - - - 100.0

Division
executor - - - - 99.4

aligner (I) - - - - 100.0
aligner (O) - - - - 99.9

with 1-10 digits, and b to fall within the value range [1, 15]. In division of the form a ÷ b = c, we
constrained c to be within [1, 15] and b to be a random number with 1-10 digits.

Metrics. We employ accuracy as the evaluation metric. Each arithmetic problem is computed once,
and the result is compared with the ground truth using the Exact Match criterion.

4.2 MAIN RESULTS

Table 1 presents the evaluation results of our method and baseline models across the seven operators.
Compared to the baselines, the proposed approach performs stably on all operators with high
accuracy. Specifically for tasks with long numbers, such as 100-digit addition, LLM with CAEF
effectively learns the computational logic to execute the addition process.

To further explore the actual performance of the executor and aligner during the computation
process, we separately evaluate their accuracy on the same dataset. As the results shown in Table 2,
we observe that even though the executor must generate numerous intermediate steps in an iterative
manner, while the aligner only performs two conversion steps, the executor still outperforms the
aligner overall. The executor achieves over 99% accuracy in all experimental settings, indicating
that it has effectively learned the arithmetic logic. When provided with the correct initial state and
command, it functions correctly in the vast majority of cases. On the other hand, the aligner shows
lower accuracy when converting the original input compared to converting the executor’s output in
most cases, suggesting that the bottleneck in the overall computation process lies in the reversal
of operands, rather than in the computation itself. Due to the page limit, more detailed analysis
are presented in Appendix A.6, the analysis of computational complexity in CAEF is detailed in
A.7, and an extended experiment exploring the merging of the aligner and executor for individual
operators is presented in A.8.
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5 RELATED WORK

LLMs in Mathematical Contexts. Prior research has focused on enhancing LLM performance in
mathematical tasks, often relying on external tools for calculations and primarily addressing math
word problems rather than pure arithmetic. A common external tool is a calculator, as exemplified
by Schick et al. (2024), which introduces a self-supervised method where the model learns when to
call external tools via API access. Similar strategies can be found in Gou et al. (2023) and He-Yueya
et al. (2023), and it was employed in even earlier work (Andor et al., 2019). Another tool is a
programming language interpreter, such as Python, where the model generates code and an external
interpreter executes it to obtain the result. A representative example is Lu et al. (2024), which treats
the LLM as a planner that generates code and submits it to an external Python executor to handle
math problems in tabular contexts. Wang et al. (2023) employs supervised fine-tuning to improve
code-based problem-solving, while Zhou et al. (2023) proposes a zero-shot prompting method to
enable code-driven self-verification, thereby improving mathematical performance.

LLMs in Arithmetic Scenarios. Another series of work focuses solely on arithmetic, which we
consider directly related to our research. The common characteristic of these studies is their effort to
teach LLMs computational logic and improve calculation accuracy through step-by-step processes.
Among these works, Nye et al. (2021) is an early and far-reaching study, predating the popular
Chain-of-Thought (CoT) approach. It introduces a similar idea in the arithmetic domain, where the
language model outputs intermediate steps to a buffer called a ”scratchpad,” significantly improving
performance in integer addition. Hu et al. (2024) observes that transformers tend to approach
arithmetic problems using ”case-based reasoning” and proposes a Rule-Following Fine-Tuning
technique that guides the model to execute calculations step by step. Zhou et al. (2024) combines
four techniques (i.e., FIRE position encodings, Randomized position encodings, Reversed format
(R2L format), and Index hints) to develop a new model that achieves a 2.5× improvement in length
generalization for two-integer addition.

6 LIMITATIONS

Prone to errors with repeated digit patterns. Both the executor and the aligner tend to generate
incorrect steps when encountering patterns of repeated digits, such as sequences like ”999...” where
a single digit repeats, or ”456456...” where multiple digits repeat. These errors typically manifest
as extra or missing repetitions of the pattern. While this issue might be mitigated by intentionally
generating more such expressions to increase the representation of similar samples in the training
set, we believe the root cause lies in limitations inherent to generative LLMs.

Efficiency Issue. In our method, completing a single computation requires generating the full
sequence of intermediate steps, which essentially means repeatedly calling the model.generate()
function. For computations involving hundreds of steps, this process can be extremely
time-consuming. One potential solution lies in optimizing the use of the KV cache. In our approach,
the input to the LLM at two consecutive steps is highly similar. However, since different parts of
the input shift position, the KV cache from the previous step cannot be effectively reused. The
KV cache functions like a ROM. If we could transform it into a RAM-like structure that supports
simple editing operations, such as swapping adjacent tokens while maintaining the correct tokens
and positional embeddings, this could significantly improve computational efficiency.

Implementation of the Turing machine prototype. When generating the training set for the
executor, CAEF wants to ensure the correctness of the samples and enable the executor to learn
key computational steps, such as carrying over or exiting loops. A practical approach is to construct
a Turing machine prototype corresponding to the target operator and record its execution process.
While there are many existing Turing machine designs, the implementation process may take some
human-involved effort. A future work could design a generation process to translate existing Turing
machines into CAEF required Turing machine prototypes.

Inability to Solve Math Word Problems. Currently, our method requires manual selection of the
active LoRA adapter, rather than enabling the model to autonomously determine the appropriate
adapter. This limitation hinders the direct application of our approach to solving math word
problems. However, our method can be regarded as a modular component. Several studies have
explored integrating Mixture of Experts (MoE) and LoRA techniques to facilitate the automatic
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selection and switching of active LoRA adapters based on the input (Wu et al., 2023a; Zadouri et al.,
2023; Huang et al., 2023; Xu et al., 2024). These studies are orthogonal to our approach, and we
posit that combining these techniques with our method could enable effective application to math
word problems. For example, leveraging the CAEF plug-in, a large language model (LLM) could
dynamically switch to CAEF to handle arithmetic computations as part of the reasoning process in
solving such problems.

7 CONCLUSION

This paper proposes a framework that enables LLMs to learn to execute step-by-step arithmetic
computational logic by imitating the behavior of a Turing machine. This approach significantly
enhances LLMs’ computational capability without relying on any external tools. Moreover, the
framework is highly scalable, allowing the construction of complex executors by composing learned
basic executors, reducing the difficulty of learning the complex logic. We hope that our work
provides a new perspective for enabling LLMs to learn rule-based computation.
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Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations
of language models through counterfactual tasks. arXiv preprint arXiv:2307.02477, 2023b.

Jingwei Xu, Junyu Lai, and Yunpeng Huang. Meteora: Multiple-tasks embedded lora for large
language models. arXiv preprint arXiv:2405.13053, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.
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A APPENDIX

A.1 EXAMPLE OF SAMPLES IN TRAINING SET OF EXECUTOR AND ALIGNER

A.1.1 ADDITION

Addition executor:

Input:
The following is a state paired with a command to be executed of a Turing Machine that
performs addition.

The state includes the current operator, the current state of the machine, the current tape
contents, and the current head positions.
- There are three states in the machine: q0, q1, and qH. The machine starts in state q0 and
halts when it reaches state qH. q1 is the state where the machine does the addition and
calculates the carry out.
- The head positions are represented by [HEAD1] and [HEAD2], which indicate the
positions of the heads on the two operands.
- The carry out is represented by [C].
- The output position is represented by [OUTPUT].

The command includes a series of actions to be executed by the machine and they are
separated by commas.
- [OUTPUT] <number>: Write the number to the output position.
- [OUTPUT] <direction>: Move the output head to the direction.
- [C] <number>: Write the number to the carry out register.
- [HEAD1] <direction>: Move the head on the first operand to the direction.
- [HEAD2] <direction>: Move the head on the second operand to the direction.
- <state>: Move the machine to the state.

The machine performs addition by reading the digits from the two operands and writing the
sum to the output tape.

Based the current state and the command, predict the next state of the machine and next
command to be executed.

ADD, q0, [HEAD1] |5|4[HEAD2] |7|6 [C] [OUTPUT]
CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Output:
ADD, q1, [HEAD1]|5|4 [HEAD2]|7|6 [C]0 [OUTPUT]
CMD: [C] 1, [OUTPUT] 2, [OUTPUT] RIGHT, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Addition aligner:

Input:
The following is an input to a Turing Machine or an output of a Turing Machine.
The task is doing an adaptation:
- If it is an input, adapt the original input to the format that the Turing Machine can
understand.
- If it is an output, adapt the original output to the format that represents the final result.

Input example:
“‘
- input:
1504+2379=
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- output:
ADD, q0, [HEAD1] |4|0|5|1[HEAD2] |9|7|3|2 [C] [OUTPUT]
CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1
“‘
Output example:
“‘
- input:
ADD, qH, |7|6|3|4[HEAD1] |4|3|2|1[HEAD2] [C]0 |1|0|6|5
No command to execute. Halt state.
- output:
4367+1234=5601
“‘
There are two lines that represent the Turing Machine:
- The first line is the current state of the machine.
- The second line is the command to be executed.
And this format is fit to both input and output as the examples shown above.

For the current state (the first line):
- There are at least 2 states in the machine: q0 and qH. The machine starts in state q0 and
halts when it reaches state qH.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.
- [C] represents the carry out register and [OUTPUT] represents the output position. And
these two are empty at the beginning.

The command (the second line) includes a series of actions to be executed by the machine
and they are separated by commas.
- [HEAD] <direction>: Move the head to the direction.
- [C] <number>: Write the number to the carry out register.
- <state>: Move the machine to the state.

Note that the number is represented in reverse order in machine, which is beneficial to the
machine to perform the subtraction operation.
Based on the input, determine it is an input or an output, and adapt it to the format
correspondingly.

45+67=

Output:
ADD, q0, [HEAD1] |5|4[HEAD2] |7|6 [C] [OUTPUT]
CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

A.1.2 SUBTRACTION

Subtraction executor:

Input:
The following is a input to be executed of a Turing Machine that performs subtraction.

To solve a subtraction problem by the machine, the machine is required to provide the initial
state and command for other basic machines, including addition, reflection and left mask.

For example, for 47819 - 12345 = 35474, the machine will perform the following steps:
- step 1: call reflection, 99999 - 12345 = 87654
- step 2: call addition, 47819 + 87654 = 135473
- step 3: call addition, 135473 + 1 = 135474

14
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- step 4: call left mask, left mask(135474) = 35474

The input may includes four lines or the original subtraction problem.
When it is original problem, generate the initial subtraction state, command and prepare the
initial state and the first command of the first called machine.
When it includes four lines, it means the previous state, command and the result of the
called machine. In detail:
- The first line is the current state of the machine.
- The second line is the command to be executed.
- The third line and the fourth line are halt state of another machine which is called by the
subtraction machine at previous step.

For the current state (the first line):
- There are five states in the machine: q0, q1, q2, q3 and qH. The machine starts in state q0
and halts when it reaches state qH.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the machine
and they are separated by commas.
- [CALL] <operation>: Call another machine to perform the operation.
- <state>: Move the machine to the state.

When the commands include [CALL], another extra two lines are needed to specify the
initial state and the first command of the machine to be called.
As for initial state, it should include the operation, q0 state, operands and the head positions.
As for the first command:
- [OUTPUT] <number>: Write the number to the output position.
- [OUTPUT] <direction>: Move the output head to the direction.
- [HEAD1] <direction>: Move the head on the first operand to the direction.
- [HEAD2] <direction>: Move the head on the second operand to the direction.
- <state>: Move the machine to the state.

The machine performs subtraction by reading the digits from the two operands and calling
other machines to complete the subtraction operation.

Based on the current input, predict the output which includes next state, next command and
the initial state and the first command of the machine to be called.

SUB, q0, [HEAD1]|7|4 [HEAD2]|2|1
CMD q1

Output:
SUB, q1, [HEAD1]|7|4 [HEAD2]|2|1
CMD [CALL] REFLECTION, q2
REFLECTION, q0, [HEAD1] |9|9[HEAD2] |2|1 [OUTPUT]
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Subtraction aligner:

Input:
The following is an input to a Turing Machine or an output of a Turing Machine.

The task is doing an adaptation:
- If it is an input, adapt the original input to the format that the Turing Machine can
understand.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

- If it is an output, adapt the original output to the format that represents the final result.

Input example:
“‘
- input:
4531-1504=
- output:
SUB, q0, [HEAD1]|1|3|5|4 [HEAD2]|4|0|5|1
CMD q1
“‘

Output example:
“‘
- input:
SUB, qH, [HEAD1]|1|3|5|4 [HEAD2]|4|0|5|1 |7|2|0|3
No command to execute. Halt state.
- output:
4531-1504=3027
“‘

There are two lines that represent the Turing Machine:
- The first line is the current state of the machine.
- The second line is the command to be executed.
And this format is fit to both input and output as the examples shown above.

For the current state (the first line):
- There are at least 2 states in the machine: q0 and qH. The machine starts in state q0 and
halts when it reaches state qH.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the machine
and they are separated by commas.
- [HEAD] <direction>: Move the head to the direction.
- [OUTPUT] <number>: Write the number to the output position.
- <state>: Move the machine to the state.

Note that the number is represented in reverse order in machine, which is beneficial to the
machine to perform the subtraction operation.

Based on the input, determine it is an input or an output, and adapt it to the format
correspondingly.

46-28=

Output:
SUB, q0, [HEAD1]|6|4 [HEAD2]|8|2
CMD q1

A.1.3 MULTIPLICATION

Multiplication executor:

Input:
The following is a input to be executed of a Turing Machine that performs multiplication.
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To solve a multiplication problem by the machine, the machine is required to provide
the initial state and command for other basic machines, including addition and less than
machines.

For example, for 4513 * 3 = 13539, the machine will perform the following algorithm:
- step 1: cnt = 1, sum = 4513(oprand1)
- step 2: call less than, determine whether cnt <3(oprand2), if yes, go to step 3, otherwise,
go to step 5
- step 3: call addition, sum = sum + 4513(oprand1)
- step 4: call addition, cnt = cnt + 1, go to step 2
- step 5: current machine halts

The input includes at least two lines and may have two more lines.
- The first line is the current state of the machine.
- The second line is the command to be executed.
When there are two more lines:
- The third line and the fourth line are halt state of another machine which is called by the
multiplication machine at previous step.

For the current state (the first line):
- There are five states in the machine: q0, q1, q2, q3 and qH. The machine starts in state q0
and halts when it reaches state qH. q1, q2 and q3 are used to perform the loop structure.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the
machine and they are separated by commas.
- [OUTPUT] <number>: Write the number to the output position.
- [COUNT] <number>: Write the number to the count register.
- [CALL] <operation>: Call another machine to perform the operation.
- <state>: Move the machine to the state.

When the commands include [CALL], another extra two lines are needed to specify
the initial state and the first command of the machine to be called.
As for initial state, it should include the operation, q0 state, operands and the head positions.
As for the first command:
- [OUTPUT] <number>: Write the number to the output position.
- [OUTPUT] <direction>: Move the output head to the direction.
- [HEAD1] <direction>: Move the head on the first operand to the direction.
- [HEAD2] <direction>: Move the head on the second operand to the direction.
- <state>: Move the machine to the state.

The machine performs multiplication by reading the digits from the two operands and
calling other machines to complete the multiplication operation.

Based on the current input, predict the output which includes next state, next command and
the initial state and the first command of the machine to be called.

MUL, q3, [HEAD1]|3|8|6 [HEAD2]|8|6 [COUNT]|5|4 [OUTPUT]|8|1|4|1|3
CMD [CALL] ADD, q1
ADD, qH, |5|4[HEAD1] |1[HEAD2] [C]0 |6|4
No command to execute. Halt state.

Output:
MUL, q1, [HEAD1]|3|8|6 [HEAD2]|8|6 [COUNT]|6|4 [OUTPUT]|8|1|4|1|3
CMD [CALL] LESS THAN, q2
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LESS THAN, q0, [HEAD1]|6|4[HEAD2] |8|6 [OUTPUT]
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] False, q1

Multiplication aligner:

Input:
The following is an input to a Turing Machine or an output of a Turing Machine.

The task is doing an adaptation:
- If it is an input, adapt the original input to the format that the Turing Machine can
understand.
- If it is an output, adapt the original output to the format that represents the final result.

Input example:
“‘
- input:
44814*5=
- output:
MUL, q0, [HEAD1]|4|1|8|4|4 [HEAD2]|5 [COUNT] [OUTPUT]
CMD [COUNT] 1, [OUTPUT]|4|1|8|4|4, q1
“‘

Output example:
“‘
- input:
MUL, qH, [HEAD1]|4|1|8|4|4 [HEAD2]|5 [COUNT]|5 |0|7|0|4|2|2
No command to execute. Halt state.
- output:
44814*5=224070
“‘

There are two lines that represent the Turing Machine:
- The first line is the current state of the machine.
- The second line is the command to be executed.
And this format is fit to both input and output as the examples shown above.

For the current state (the first line):
- There are at least 2 states in the machine: q0 and qH. The machine starts in state q0 and
halts when it reaches state qH.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the
machine and they are separated by commas.
- [HEAD] <direction>: Move the head to the direction.
- [OUTPUT] <number>: Write the number to the output position.
- [COUNT] <number>: Write the number to the count register.
- <state>: Move the machine to the state.

Based on the input, determine it is an input or an output, and adapt it to the format
correspondingly.

652202674*9560505=

Output:
MUL, q0, [HEAD1]|4|7|6|2|0|2|2|5|6 [HEAD2]|5|0|5|0|6|5|9 [COUNT] [OUTPUT]
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CMD [COUNT] 0, [OUTPUT] 0, q1

A.1.4 DIVISION

Division executor:

Input:
The following is a input to be executed of a Turing Machine that performs division.

To solve a division problem by the machine, the machine is required to provide the
initial state and command for other basic machines, including addition and greater than
machines.

For example, for 4513 // 1504 = 3, the machine will perform the following algorithm:
- step 1: output = 0, cnt = 1504(oprand2)
- step 2: call greater than, determine whether cnt >4513(oprand1), if yes, go to step 5,
otherwise, go to step 3
- step 3: call addition, output = output + 1
- step 4: call addition, cnt = cnt + 1504, go to step 2
- step 5: current machine halts, output is the result

The input includes at least two lines and may have two more lines.
- The first line is the current state of the machine.
- The second line is the command to be executed.
When there are two more lines:
- The third line and the fourth line are halt state of another machine which is called by the
division machine at previous step.

For the current state (the first line):
- There are five states in the machine: q0, q1, q2, q3 and qH. The machine starts in state q0
and halts when it reaches state qH. q1, q2 and q3 are used to perform the loop structure.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the
machine and they are separated by commas.
- [OUTPUT] <number>: Write the number to the output position.
- [COUNT] <number>: Write the number to the count register.
- [CALL] <operation>: Call another machine to perform the operation.
- <state>: Move the machine to the state.

When the commands include [CALL], another extra two lines are needed to specify
the initial state and the first command of the machine to be called.
As for initial state, it should include the operation, q0 state, operands and the head positions.
As for the first command:
- [OUTPUT] <number>: Write the number to the output position.
- [OUTPUT] <direction>: Move the output head to the direction.
- [HEAD1] <direction>: Move the head on the first operand to the direction.
- [HEAD2] <direction>: Move the head on the second operand to the direction.
- <state>: Move the machine to the state.

The machine performs division by reading the digits from the two operands and calling
other machines to complete the division operation.

Based on the current input, predict the output which includes next state, next command and
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the initial state and the first command of the machine to be called.

DIV, q1, [HEAD1]|0|5|6 [HEAD2]|8|3|2 [COUNT]|6|7|4 [OUTPUT]|1
CMD [CALL] GREATER THAN, q2
GREATER THAN, qH, |6|7|4[HEAD1] |0|5|6[HEAD2] False
No command to execute. Halt state.

Output:
DIV, q2, [HEAD1]|0|5|6 [HEAD2]|8|3|2 [COUNT]|6|7|4 [OUTPUT]|1
CMD [CALL] ADD, q3
ADD, q0, [HEAD1] |1[HEAD2] |1 [C] [OUTPUT]
CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Division aligner:

Input:
The following is an input to a Turing Machine or an output of a Turing Machine.

The task is doing an adaptation:
- If it is an input, adapt the original input to the format that the Turing Machine can
understand.
- If it is an output, adapt the original output to the format that represents the final result.

Input example:
“‘
- input:
4531//1504=
- output:
DIV, q0, [HEAD1]|3|1|5|4 [HEAD2]|4|0|5|1 [COUNT] [OUTPUT]
CMD [COUNT]|4|0|5|1, [OUTPUT] 0, q1
“‘

Output example:
“‘
- input:
DIV, qH, [HEAD1]|3|1|5|4 [HEAD2]|4|0|5|1 [COUNT]|6|1|0|6 |3
No command to execute. Halt state.
- output:
4531//1504=3
“‘

There are two lines that represent the Turing Machine:
- The first line is the current state of the machine.
- The second line is the command to be executed.
And this format is fit to both input and output as the examples shown above.

For the current state (the first line):
- There are at least 2 states in the machine: q0 and qH. The machine starts in state q0 and
halts when it reaches state qH.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the
machine and they are separated by commas.
- [HEAD] <direction>: Move the head to the direction.
- [OUTPUT] <number>: Write the number to the output position.
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- [COUNT] <number>: Write the number to the count register.
- <state>: Move the machine to the state.

Based on the input, determine it is an input or an output, and adapt it to the format
correspondingly.

8634010848//613431149=

Output:
DIV, q0, [HEAD1]|8|4|8|0|1|0|4|3|6|8 [HEAD2]|9|4|1|1|3|4|3|1|6 [COUNT] [OUTPUT]
CMD [COUNT]|9|4|1|1|3|4|3|1|6, [OUTPUT] 0, q1

A.1.5 GREATER THAN

Greater than executor:

Input:
The following is a state paired with a command to be executed of a Turing Machine that
determines whether the first operand is greater than the second operand.

The state includes the current operator, the current state of the machine, the current
tape contents, and the current head positions.
- There are three states in the machine: q0, q1, and qH. The machine starts in state q0 and
halts when it reaches state qH. q1 is the state where the machine does the comparison.
- The head positions are represented by [HEAD1] and [HEAD2], which indicate the
positions of the heads on the two operands.
- The output position is represented by [OUTPUT].

The command includes a series of actions to be executed by the machine and they
are separated by commas.
- [OUTPUT] <number>: Write the number to the output position.
- [OUTPUT] <direction>: Move the output head to the direction.
- [HEAD1] <direction>: Move the head on the first operand to the direction.
- [HEAD2] <direction>: Move the head on the second operand to the direction.
- <state>: Move the machine to the state.

The machine performs comparison by reading the digits from the two operands and
writing the result to the output tape.

Based on the current state and the command, predict the next state of the machine
and next command to be executed.

GREATER THAN, q1, |1|7|6|7|0[HEAD1]|5|1|3|1 |5|6|4|1|7[HEAD2]|8|1|4|7|4|8|8|3|2|7
[OUTPUT]False
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] False, q1

Output:
GREATER THAN, q1, |1|7|6|7|0|5[HEAD1]|1|3|1 |5|6|4|1|7|8[HEAD2]|1|4|7|4|8|8|3|2|7
[OUTPUT]False
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Greater than aligner:
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Input:
The following is an input to a Turing Machine or an output of a Turing Machine.

The task is doing an adaptation:
- If it is an input, adapt the original input to the format that the Turing Machine can
understand.
- If it is an output, adapt the original output to the format that represents the final result.

Input example:
“‘
- input:
45131>15040=
- output:
GREATER THAN, q0, [HEAD1] |1|3|1|5|4[HEAD2] |0|4|0|5|1 [OUTPUT]
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] False, q1
“‘

Output example:
“‘
- input:
GREATER THAN, qH, |1|3|1|5|4[HEAD1] |0|4|0|5|1[HEAD2] True
No command to execute. Halt state.
- output:
45131>15040=True
“‘

There are two lines that represent the Turing Machine:
- The first line is the current state of the machine.
- The second line is the command to be executed.
And this format is fit to both input and output as the examples shown above.

For the current state (the first line):
- There are at least 2 states in the machine: q0 and qH. The machine starts in state q0 and
halts when it reaches state qH.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the
machine and they are separated by commas.
- [HEAD] <direction>: Move the head to the direction.
- [OUTPUT] <direction>: Move the output head to the direction.
- [OUTPUT] <result>: Write the result to the output position.
- <state>: Move the machine to the state.

Based on the input, determine it is an input or an output, and adapt it to the format
correspondingly.

46989>82541=

Output:
GREATER THAN, q0, [HEAD1] |9|8|9|6|4[HEAD2] |1|4|5|2|8 [OUTPUT]
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] False, q1

A.1.6 LESS THAN

Less than executor:
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Input:
The following is a state paired with a command to be executed of a Turing Machine that
determines whether the first operand is less than the second operand.

The state includes the current operator, the current state of the machine, the current
tape contents, and the current head positions.
- There are three states in the machine: q0, q1, and qH. The machine starts in state q0 and
halts when it reaches state qH. q1 is the state where the machine does the comparison.
- The head positions are represented by [HEAD1] and [HEAD2], which indicate the
positions of the heads on the two operands.
- The output position is represented by [OUTPUT].

The command includes a series of actions to be executed by the machine and they
are separated by commas.
- [OUTPUT] <number>: Write the number to the output position.
- [OUTPUT] <direction>: Move the output head to the direction.
- [HEAD1] <direction>: Move the head on the first operand to the direction.
- [HEAD2] <direction>: Move the head on the second operand to the direction.
- <state>: Move the machine to the state.

The machine performs comparison by reading the digits from the two operands and
writing the result to the output tape.

Based on the current state and the command, predict the next state of the machine
and next command to be executed.

LESS THAN, q1, |4|1|0[HEAD1]|2 |0|6|1[HEAD2]|2|7|6 [OUTPUT]True
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Output:
LESS THAN, q1, |4|1|0|2[HEAD1] |0|6|1|2[HEAD2]|7|6 [OUTPUT]True
CMD [OUTPUT] True, [OUTPUT], qH

Less than aligner:

Input:
The following is an input to a Turing Machine or an output of a Turing Machine.

The task is doing an adaptation:
- If it is an input, adapt the original input to the format that the Turing Machine can
understand.
- If it is an output, adapt the original output to the format that represents the final result.

Input example:
“‘
- input:
47182<83911=
- output:
LESS THAN, q0, [HEAD1] |2|8|1|7|4[HEAD2] |1|1|9|3|8 [OUTPUT]
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] False, q1
“‘

Output example:
“‘
- input:
LESS THAN, qH, |2|8|1|7|4[HEAD1] |1|1|9|3|8[HEAD2] True
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No command to execute. Halt state.
- output:
47182<83911=True
“‘

There are two lines that represent the Turing Machine:
- The first line is the current state of the machine.
- The second line is the command to be executed.
And this format is fit to both input and output as the examples shown above.

For the current state (the first line):
- There are at least 2 states in the machine: q0 and qH. The machine starts in state q0 and
halts when it reaches state qH.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the
machine and they are separated by commas.
- [HEAD] <direction>: Move the head to the direction.
- [OUTPUT] <direction>: Move the output head to the direction.
- [OUTPUT] <result>: Write the result to the output position.
- <state>: Move the machine to the state.

Based on the input, determine it is an input or an output, and adapt it to the format
correspondingly.

LESS THAN, qH, |1|5|9|4|4|6[HEAD1]|6|2|1|3|5|8|0|9|8 |3|7|2|6|4|2[HEAD2] False
No command to execute. Halt state.

Output:
890853126644951<246273=False

A.1.7 EQUAL

Equal executor:

Input:
The following is a state paired with a command to be executed of a Turing Machine that
performs equality comparison.

The state includes the current operator, the current state of the machine, the current
tape contents, and the current head positions.
- There are three states in the machine: q0, q1, and qH. The machine starts in state q0
and halts when it reaches state qH. q1 is the state where the machine does the equality
comparison.
- The head positions are represented by [HEAD1] and [HEAD2], which indicate the
positions of the heads on the two operands.
- The output position is represented by [OUTPUT].

The command includes a series of actions to be executed by the machine and they
are separated by commas.
- [OUTPUT] <number>: Write the number to the output position.
- [OUTPUT] <direction>: Move the output head to the direction.
- [HEAD1] <direction>: Move the head on the first operand to the direction.
- [HEAD2] <direction>: Move the head on the second operand to the direction.
- <state>: Move the machine to the state.
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The machine performs equality comparison by reading the digits from the two operands and
writing the result to the output tape.

Based on the current state and the command, predict the next state of the machine
and next command to be executed.

EQUAL, q1, |0|5[HEAD1]|9 |0|5[HEAD2]|9 [OUTPUT]True
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Output:
EQUAL, q1, |0|5|9[HEAD1] |0|5|9[HEAD2] [OUTPUT]True
CMD [OUTPUT], qH

Equal aligner:

Input:
The following is an input to a Turing Machine or an output of a Turing Machine.

The task is doing an adaptation:
- If it is an input, adapt the original input to the format that the Turing Machine can
understand.
- If it is an output, adapt the original output to the format that represents the final result.

Input example:
“‘
- input:
45263==45263=
- output:
EQUAL, q0, [HEAD1] |3|6|2|5|4[HEAD2] |3|6|2|5|4 [OUTPUT]
CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] True, q1
“‘

Output example:
“‘
- input:
EQUAL, qH, |3|6|2|5|4[HEAD1] |3|6|2|5|4[HEAD2] True
No command to execute. Halt state.
- output:
45263==45263=True
“‘

There are two lines that represent the Turing Machine:
- The first line is the current state of the machine.
- The second line is the command to be executed.
And this format is fit to both input and output as the examples shown above.

For the current state (the first line):
- There are at least 2 states in the machine: q0 and qH. The machine starts in state q0 and
halts when it reaches state qH.
- The head positions are represented by [HEAD1] and [HEAD2], which followed by two
operands.

The command (the second line) includes a series of actions to be executed by the
machine and they are separated by commas.
- [HEAD] <direction>: Move the head to the direction.
- [OUTPUT] <direction>: Move the output head to the direction.
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- [OUTPUT] <result>: Write the result to the output position.
- <state>: Move the machine to the state.

Note that the number is represented in reverse order in machine, which is beneficial
to the machine to perform the subtraction operation.

Based on the input, determine it is an input or an output, and adapt it to the format
correspondingly.

EQUAL, qH, |6|5|6|8|8|9|7|1|6|7|7|1|2[HEAD1] |6|5|6|8|8|9|7|1|6|7|7|1|2[HEAD2] True
No command to execute. Halt state.

Output:
2177617988656==2177617988656=True

A.2 ARITHMETIC EXPRESSION TEMPLATE

Templates in Table 3 are used for generate arithmetic expressions in our experiment.

Table 3: Templates used for generating arithmetic expressions in training set and test set.

Operator Template

Addition {op1}+{op2}=
Subtraction {op1}-{op2}=
Multiplication {op1}*{op2}=
Division {op1}//{op2}=
Greater {op1}>{op2}=
Less {op1}<{op2}=
Equal {op1}=={op2}=

A.3 FULL COMPUTATION PROCESS OF THE EXAMPLES

The followings are the full computation process of the examples in 3.2 and 3.3.

A.3.1 ADDITION

Step 1 (aligner):
45+67=

Step 2 (executor):
state0: ADD, q0, [HEAD1] |5|4[HEAD2] |7|6 [C] [OUTPUT]
command0: CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Step 3 (executor):
state1: ADD, q1, [HEAD1]|5|4 [HEAD2]|7|6 [C]0 [OUTPUT]
command1: CMD: [C] 1, [OUTPUT] 2, [OUTPUT] RIGHT, [HEAD1] RIGHT, [HEAD2]
RIGHT, q1

Step 4 (executor):
state2: ADD, q1, |5[HEAD1]|4 |7[HEAD2]|6 [C]1 |2[OUTPUT]
command2: CMD: [C] 1, [OUTPUT] 1, [OUTPUT] RIGHT, [HEAD1] RIGHT, [HEAD2]
RIGHT, q1
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Step 5 (executor):
state3: ADD, q1, |5|4[HEAD1] |7|6[HEAD2] [C]1 |2|1[OUTPUT]
command3: CMD: [OUTPUT] 1, [OUTPUT], [C], qH

Step 6 (executor):
state4: ADD, qH, |5|4[HEAD1] |7|6[HEAD2] [C]1 |2|1|1
command4: No command to execute. Halt state.

Step 7 (aligner):
45+67=112

A.3.2 MULTIPLICATION

Step 1 (aligner):
89*2=

Step 2 (executor):
state0: MUL, q0, [HEAD1]|9|8 [HEAD2]|2 [COUNT] [OUTPUT]
command0: CMD [COUNT] 0, [OUTPUT] 0, q1

Step 3-1, before call (executor):
state1: MUL, q1, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|0 [OUTPUT]|0
command1: CMD [CALL] LESS THAN, q2
callee state0: LESS THAN, q0, [HEAD1] |0[HEAD2] |2 [OUTPUT]
callee command0: CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] False, q1

Step 3-1, after call (executor):
state1: MUL, q1, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|0 [OUTPUT]|0
command1: CMD [CALL] LESS THAN, q2
callee stateH : LESS THAN, qH, |0[HEAD1] |2[HEAD2] True
callee commandH : No command to execute. Halt state.

Step 4-1, before call (executor):
state2: MUL, q2, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|0 [OUTPUT]|0
command2: CMD [CALL] ADD, q3
callee state0: ADD, q0, [HEAD1] |9|8[HEAD2] |0 [C] [OUTPUT]
callee command0: CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Step 4-1, after call (executor):
state2: MUL, q2, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|0 [OUTPUT]|0
command2: CMD [CALL] ADD, q3
callee stateH : ADD, qH, |9|8[HEAD1] |0[HEAD2] [C]0 |9|8
callee commandH : No command to execute. Halt state.

Step 5-1, before call (executor):
state3: MUL, q3, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|0 [OUTPUT]|9|8
command3: CMD [CALL] ADD, q1
callee state0: ADD, q0, [HEAD1] |0[HEAD2] |1 [C] [OUTPUT]
callee command0: CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Step 5-1, after call (executor):
state3: MUL, q3, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|0 [OUTPUT]|9|8
command3: CMD [CALL] ADD, q1
callee stateH : ADD, qH, |0[HEAD1] |1[HEAD2] [C]0 |1
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callee commandH : No command to execute. Halt state.

Step 6-1, before call (executor):
state4: MUL, q1, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|1 [OUTPUT]|9|8
command4: CMD [CALL] LESS THAN, q2
callee state0: LESS THAN, q0, [HEAD1] |1[HEAD2] |2 [OUTPUT]
callee command0: CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] False, q1

Step 6-2, after call (executor):
state4: MUL, q1, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|1 [OUTPUT]|9|8
command4: CMD [CALL] LESS THAN, q2
callee stateH : LESS THAN, qH, |1[HEAD1] |2[HEAD2] True
callee commandH : No command to execute. Halt state.

Step 7-1, before call (executor):
state5: MUL, q2, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|1 [OUTPUT]|9|8
command5: CMD [CALL] ADD, q3
callee state0: ADD, q0, [HEAD1] |9|8[HEAD2] |9|8 [C] [OUTPUT]
callee command0: CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Step 7-2, after call (executor):
state5: MUL, q2, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|1 [OUTPUT]|9|8
command5: CMD [CALL] ADD, q3
callee stateH : ADD, qH, |9|8[HEAD1] |9|8[HEAD2] [C]1 |8|7|1
callee commandH : No command to execute. Halt state.

Step 8-1, before call (executor):
state6: MUL, q3, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|1 [OUTPUT]|8|7|1
command6: CMD [CALL] ADD, q1
callee state0: ADD, q0, [HEAD1] |1[HEAD2] |1 [C] [OUTPUT]
callee command0: CMD: [C] 0, [HEAD1] RIGHT, [HEAD2] RIGHT, q1

Step 8-2, after call (executor):
state6: MUL, q3, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|1 [OUTPUT]|8|7|1
command6: CMD [CALL] ADD, q1
callee stateH : ADD, qH, |1[HEAD1] |1[HEAD2] [C]0 |2
callee commandH : No command to execute. Halt state.

Step 9-1, before call (executor):
state7: MUL, q1, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|2 [OUTPUT]|8|7|1
command7: CMD [CALL] LESS THAN, q2
callee state0: LESS THAN, q0, [HEAD1] |2[HEAD2] |2 [OUTPUT]
callee command0: CMD [HEAD1] RIGHT, [HEAD2] RIGHT, [OUTPUT] False, q1

Step 9-2, after call (executor):
state7: MUL, q1, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|2 [OUTPUT]|8|7|1
command7: CMD [CALL] LESS THAN, q2
callee stateH : LESS THAN, qH, |2[HEAD1] |2[HEAD2] False
callee commandH : No command to execute. Halt state.

Step 10 (executor):
state8: MUL, qH, [HEAD1]|9|8 [HEAD2]|2 [COUNT]|2 |8|7|1
command8: No command to execute. Halt state.

Step 11 (aligner):
89*2=178

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

A.4 IMPLEMENTATION OF SUBTRACTION OPERATOR

We implement subtraction in the CAEF framework by drawing inspiration from how subtraction is
handled in CPUs. For subtraction in the form a − b = c, the process can be broken down into four
steps:

1. Compute Reflection(a, b): Generate a number a9, where all digits are 9 and it is the same
length as a. Perform a reflection operation, which is essentially subtraction, between a9
and b. Since all digits of a9 are 9, no borrowing occurs during this subtraction. Let the
result of this step be p.

2. Compute a+ p, and let the result be q.

3. Compute q + 1, and let the result be r.

4. Compute Left mask(r): Remove the leading 1 from the most significant digit of r. After
this step, the final result, c, is obtained.

For example, in the case of 4531− 1504 = 3027, the process is as follows:

Step 1 (Reflection):
Reflection(4531, 1504) = 9999− 1504 = 8495

Step 2 (Addition):
4531 + 8495 = 13026

Step 3 (Addition):
13026 + 1 = 13027

Step 4 (Left mask):
Left mask(13027) = 3027

In CAEF, steps 2 and 3 can be handled using the addition executor, which has already learned the
logic for addition, while the auxiliary operators needed for steps 1 and 4 are relatively simple to
implement. The subtraction executor composer only needs to learn how to sequentially invoke these
basic executors to perform subtraction.

A.5 PROMPTS USED IN BASELINE

Prompt used for LLaMA 3.1-8B pretrained model fine-tuned with LoRA:

For addition, subtraction, multiplication, division:
Please calculate the expression.
The expression is: {expr}.
The final answer should be presented in integer form!
Your output should be an integer.
The answer is: {response}

For greater than, less than, equal:
Please judge the expression is true or false.
The expression is: {expr}.
The final answer should be True or False!
Your output should be a word.
The answer is: {response}

Prompt used for LLaMA 3.1-8B-Instruct model:
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For addition, subtraction, multiplication, division:
Please calculate the expression. The expression is: {expr}.
The final answer should be presented in integer form.
In your output, the final answer should be on its own line at the end, starting with ’Answer: ’.

For greater than, less than, equal:
Please judge the expression is true or false. The expression is {expr}.
The final answer that you give should be true or false.

Prompt used for GPT-4o:

For addition, subtraction, multiplication, division:
Please calculate the expression. The expression is: {expr}.
The final answer should be presented in integer form.
In your output, the final answer should be on its own line at the end, starting with ’Answer: ’.

For greater than, less than, equal:
Please judge the expression is true or false. The expression is {expr}.
The final answer that you give should be true or false.

A.6 FURTHER EXPERIMENT RESULTS ANALYSIS

Using addition in the form of a + b = c as an example, we generate the executor’s training dataset
by dividing the expressions into equivalence classes based on the pair (len(a), len(b)), where 20
random arithmetic expressions are generated for each equivalence class. When the operand lengths
are sufficiently large, 20 samples are sparse across the entire equivalence class space. However, the
model still achieves high accuracy in tasks such as 100-digit addition, indicating that the LLM
effectively learns the logic of the Turing machine’s transition function during training, thereby
indirectly grasping the underlying logic of arithmetic computation.

However, this sampling strategy alone can lead to poorer performance when operand lengths are
relatively short, typically less than 10 digits, compared to longer operands. We believe this issue
arises because the longest samples in the training set generally exceed 100 digits, and from the
perspective of equivalence classes, the dataset becomes dominated by samples with operands of
several dozen digits. Intuitively, although both cases involve a difference of 10 digits, the difference
between 5 and 15 digits has a much larger impact than the difference between 90 and 100 digits,
especially in the way the LLM perceives these distinctions. Therefore, in practice, we slightly
increase the number of samples from equivalence classes with shorter operands. Additionally, for
operators such as ==, purely random sampling makes it difficult to obtain samples where the result
is True, so some additional intervention is necessary.

A.7 COMPUTATIONAL COMPLEXITY ANALYSIS

For the seven operators implemented using the CAEF framework, we assume the longer operand has
a length of d. Based on the computation mechanism of self-attention, the computational complexity
of a single model inference is O(d2).

For the addition, greater than, less than, and equal operators, the computation is performed digit
by digit, requiring at most d model queries for a complete computation. Additionally, the aligner
performs two representation conversions, resulting in a total of d+ 2 model queries. Therefore, the
overall computational complexity is O(d3).

For subtraction, the computational complexity of the auxiliary operators Reflection and Left mask
is also O(d3). Since subtraction involves one call each to Reflection and Left mask, along with two
calls to addition, the overall complexity remains O(d3).
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For multiplication, the situation is slightly more complex. For a calculation of the form a × b, we
assume len(a) = d1, len(b) = d2, and len(a×b) = d3. The number of iterations in the loop is b+1.
During each iteration, less than and two addition operations are performed, with the complexities
as follows:

• For less than, the longer operand has a length of d2, resulting in a total complexity of
O((b+ 1)d22) across all iterations.

• For the first addition, the longer operand has a length of d3, giving a total complexity of
O((b+ 1)d23) across all iterations.

• For the second addition, the longer operand again has a length of d2, resulting in a total
complexity of O((b+ 1)d22) across all iterations.

Thus, the overall complexity is the sum of these three parts, plus the two aligner conversions. The
final computational complexity for multiplication is O(bd22 + bd23).

For division, the situation is similar to multiplication. Assuming len(a) = d1, len(b) = d2, a÷b = c,
and len(c) = d3, the number of iterations in the loop is c + 1. The final computational complexity
for division is O(cd21 + cd23).

A.8 ATTEMPTS TO MERGE ALIGNER AND EXECUTOR

We attempt to combine the functionalities of the aligner and executor into one LoRA adapter. Table
4 shows the experimental results we obtained in the addition operator:

Table 4: Comparison of the results for merging the aligner and executor on the addition operator with
the original CAEF method. The left side of the slash shows the results after merging the executor
and aligner, while the right side presents the original results of CAEF.

Setting 5-digits 10-digits 50-digits 100-digits

executor & aligner 90.3/100.0 97.3/99.6 94.9/99.9 90.0/98.6
executor 100.0/100.0 99.9/100.0 99.6/99.9 97.4/99.6

aligner (I) 90.3/100.0 97.5/99.7 95.7/100.0 94.0/99.6
aligner (O) 100.0/100.0 99.9/99.9 99.5/100.0 98.0/99.4

From the results, we observe the following:

• The performance of the executor and aligner (O) shows a slight degradation compared to
the original modular approach in most of the experimental settings.

• The aligner (I), however, experiences a significant performance drop. As a result, merging
the aligner and executor leads to a substantial decline in the overall accuracy of addition.

Additionally, merging these two components introduces the challenge of determining the appropriate
ratio for training samples from both parts. Therefore, based on the experimental results, we believe
separating the executor and aligner remains the preferable approach.
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