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Abstract

White matter hyperintensities (WMH) are associated with an increased risk of stroke,
cognitive decline, and dementia. A robust, yet accurate detection of WMH can help with
the prevention of more lesions from forming. The task is still challenging as the lesions are
often small and irregular. Hence, we propose a robust deep learning-based method for the
automatic segmentation of WMH only using fluid-attenuated inversion recovery (FLAIR)
scans and MRI-specific data augmentation and compare it with state-of-the-art methods.
The methods are tested on public and private data, and we show that our model is more
robust to domain shift and achieves higher segmentation accuracy than the alternatives.
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1. Introduction

White matter hyperintensities (WMH) of presumed vascular origin are common findings on
brain magnetic resonance imaging (MRI), typically assessed in fluid-attenuated inversion
recovery (FLAIR) sequences (Pantoni, 2010). These are associated with vascular risk factors
and predict an increased risk of stroke, dementia, depression, cognitive impairment, and
mobility, both in cross-sectional and longitudinal studies (Wardlaw et al., 2015). Hence,
segmentation and detection of WMH are crucial in the analysis of the brain.

Automatic segmentation of WMH attempts to replace the time-consuming, expensive
process of manual annotation. Still, the task is challenging because WMH are often small
and irregular, making the classes highly imbalanced. Besides, data availability and vari-
ability make the problem more complex due to dealing with sensitive data and differences
in pathologies, anatomies, MRI scanners, and acquisition protocols.

In this study, we use 3D U-Net models (Isensee et al., 2020) and train them on FLAIR
images for WMH segmentation using the common image data augmentation techniques used
in (Isensee et al., 2020) and MRI-specific data augmentation proposed by Mehdipour Ghazi
and Nielsen (2022). We compare the segmentation accuracy of these two methods with the
state-of-the-art method (Li et al., 2018) known as the winner of the MICCAI 2017 WMH
Segmentation Challenge (Kuijf et al., 2019), which benefits from both T1-weighted and
FLAIR MRI scans for WMH segmentation. The obtained results show that the proposed
method identifies WMH in two different datasets significantly better than the alternatives.
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2. Methods

2.1. Study Data

The MICCAI 2017 WMH Segmentation Challenge training (n = 60) and testing (n = 110)
datasets were used for training and testing purposes, respectively. The used datasets contain
FLAIR images from five different scanners, two of which were excluded from the training
set and assigned for testing. They were manually annotated as background, WMH, and
other (non-WMH) pathologies. we used FLAIR images Additionally, we used an external
test set of 22 FLAIR images from an in-house dataset acquired from the US and India.

Since the WMH load has a major impact on the model performance (Gaubert et al.,
2023), we divided our test sets into low-load and high-load subsets concerning the volume of
WMH and other abnormalities (OA). We refer to images with a load of other abnormalities
greater than 1mL as WMH+OA and images without significant other abnormalities as
WMH. Either group can be further divided into a “high WMH load” set if the WMH
volume is greater than or equal to 10mL, or into a “low WMH load” set otherwise. The
threshold values are obtained based on visual inspection.

2.2. Evaluation Metrics

Given the ground truth annotations and predicted segmentations, we evaluate the model
performances using the overlap-based metric of Dice similarity coefficient (DSC) (Dice,
1945) and the distance-based metric of volume symmetry (VS) (Taha and Hanbury, 2015).

2.3. Deep Learning Models

We compare three different deep learning-based models for WMH segmentation. We use the
state-of-the-art method of (Li et al., 2018), known as the winner of the MICCAI 2017 WMH
Segmentation Challenge, which uses an ensemble of 2D U-Nets (Ronneberger et al., 2015).
Moreover, the nnUNet (Isensee et al., 2020) is used as a segmentation framework using
U-Nets with deep supervision, standard image data augmentation, and auto-configuration
of network parameters. Finally, we train 3D U-Nets with MRI-specific data augmentation
proposed by Mehdipour Ghazi and Nielsen (2022).

3. Experiments and Results

We trained the 3D models (nnU-Net and the proposed) using a combination of cross-entropy
loss and Dice loss and optimized them based on the SGD method with Nesterov momentum
of µ = 0.99 and an initial learning rate of α = 0.01. The training data were randomly split
into training and validation sets in a 5-fold cross-validation fashion, where in each fold 80%
assigned for training (48 samples) and 20% (12 samples) for validation.

Table 1: Test segmentation accuracy (mean±SD) of different models. The best results are in boldface.

MICCAI data In-house data
DSC VS DSC VS

Challenge winner (Li et al., 2018) .64 ± .17 .76 ± .17 .42 ± .21 .71 ± .28
3D nnUNet (Isensee et al., 2020) .73 ± .13 .91 ± .09 .41 ± .27 .63 ± .29
Our proposed .80 ± .10 .92 ± .09 .49 ± .23 .72 ± .28
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Figure 1: The obtained DSC distribution of different models on WMH segmentation of the MICCAI
challenge test set with/without other abnormalities and w.r.t. the WMH load.

Figure 2: Two samples of the in-house data with high WMH load: a scan with WMH on the left (WMH
15.7mL), and a scan with WMH and other abnormalities on the right (WMH 19.7mL, tumor 15mL).

The obtained segmentation results are shown in Tables 1 and 2. As can be seen, by only
using FLAIR images, the proposed model achieves the best WMH segmentation accuracy
in both test sets compared to the alternatives. We also observe that the WMH load of
other abnormalities has less impact on the accuracy of the MICCAI test set (see Fig. 1).
We achieve a total DSC of 0.80 on the MICCAI test set, which is 16% better than the
challenge winner. The total DSC on the in-house test set is 0.49, which is 7% better than
the challenge winner. More specifically, as shown in Table 2 and Fig. 2, we obtain DSCs of
0.87 (+9%) and 0.78 (+8%), on subjects with high and low WMH load, respectively. Still,
when other abnormalities are present, the accuracy drops to 0.81 (+6%) and 0.72 (+19%).

4. Conclusion

We proposed a robust deep learning-based method for WMH segmentation using FLAIR
images. The robustness was tested using two different datasets with scans from different
devices and acquisition parameters unseen to the trained models and compared the results
with two state-of-the-art methods. We showed that FLAIR sequences are enough to achieve
a higher WMH segmentation accuracy than the state-of-the-art, even for out-of-distribution
data. However, the models cannot generalize well to the data with a low WMH load.

Table 2: Segmentation accuracy (mean±SD) of different models and loads. The best results are in boldface.

WMH+OA WMH

High WMH load Low WMH load High WMH load Low WMH load

Methods (MICCAI test set) DSC VS DSC VS DSC VS DSC VS

Challenge winner (Li et al., 2018) .75 ± .12 .84 ± .13 .63 ± .10 .76 ± .14 .78 ± .06 .88 ± .08 .50 ± .15 .65 ± .15
3D nnUNet (Isensee et al., 2020) .77 ± .13 .89 ± .15 .72 ± .07 .89 ± .08 .82 ± .06 .94 ± .05 .65 ± .12 .89 ± .10

Our proposed .81 ± .14 .89 ± .16 .75 ± .05 .88 ± .09 .87 ± .04 .95 ± .04 .74 ± .09 .90 ± .09

Methods (In-house test set)

Challenge winner (Li et al., 2018) .53 ± .18 .68 ± .10 .27 ± .18 .56 ± .34 .70 ± .09 .89 ± .04 .46 ± .12 .86 ± .10

3D nnUNet (Isensee et al., 2020) .69 ± .09 .89 ± .06 .17 ± .15 .44 ± .28 .77 ± .05 .92 ± .06 .50 ± .17 .69 ± .23

Our proposed .72 ± .04 .89 ± .09 .31 ± .18 .61 ± .33 .78 ± .01 .96 ± .02 .55 ± .16 .72 ± .24
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