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ABSTRACT

In multimodal learning, the presence of missing modalities and limited labeled
data presents significant challenges for building robust models. We propose Rob-
ult, a novel framework designed to address these challenges by leveraging an
information-theoretic approach to preserve modality-specific features and syner-
gistic information across modalities. Our model introduces two key objectives: (1)
a latent reconstruction loss to retain unique modality-specific information, and (2)
a novel soft Positive-Unlabeled (PU) contrastive loss to efficiently utilize sparse
labeled data in semi-supervised settings. Robult seamlessly integrates into deep
learning architectures, enhancing performance across multiple downstream tasks
and ensuring robustness even when modalities are missing at inference time. Em-
pirical results across diverse datasets demonstrate that Robult surpasses existing
methods in handling both semi-supervised learning and missing modalities, while
its lightweight design enables scalability and easy integration with existing frame-
works.

1 INTRODUCTION

Motivation: In the Big Data era, the continuous volume of data from diverse sources and formats
necessitates robust multimodal processing while minimizing the need for extensive manual label-
ing. Multimodal learning is a method to process multiple data sources in parallel and outperforms
traditional machine learning on a single modality, e.g. Huang et al. (2021), demonstrating its po-
tential across various applications such as language-vision interaction Li et al. (2022); Talmor et al.
(2021), machine translation Yao & Wan (2020), communication Lazaridou et al. (2020), healthcare
Soenksen et al. (2022); Chen et al. (2021a), robotics Miralles et al. (2022), and finance Windsor &
Cao (2022). However, most existing methods such as Daunhawer et al. (2023); Peng et al. (2022);
Chuang et al. (2022); Ma et al. (2022); Trosten et al. (2021); Hadji et al. (2021) consider ideal sce-
narios where the data are fully labeled and all modalities are present. Our research addresses these
two real-world challenges for multimodal learning: (1) semi-supervised scenarios with missing la-
bels during training, and (2) occlusion or corruption scenarios where some modal data are missing
during inference.

The semi-supervised learning setting, arises from the practical challenges associated with labeling
raw data, particularly in domains where explicit labels are not readily available or are labor-intensive
to acquire. This problem is exacerbated with multimodal learning tasks where each modality needs
to be labeled individually, such as object segmentation of video and lidar data in autonomous driving
Zhang et al. (2022); Caesar et al. (2020), or medical segmentation of different imaging modalities
which requires diverse expert knowledge and often lacks a standardized labeling procedure Acosta
et al. (2022). While there have been modality-specific advancements in semi-supervised learning
using techniques like knowledge distillation Su et al. (2021) and pseudo-labeling Aberdam et al.
(2022), these methods are struggle to generalize to multi-modality scenarios, particularly when some
modalities

Along with missing training labels, a prevalent challenge in multimodal model deployment (i.e.
in inference time) is the corruption or missing of some modal data. For example, an autonomous
car with a camera obscured by mud may rely solely on lidar data, or a medical diagnosis system
might only access one imaging modality in resource-limited hospitals. Research on this issue has
explored generative strategies, such as VAE variations Wu & Goodman (2018) to reconstruct missing
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modalities, and transfer learning to align latent spaces for cross-modal knowledge transfer Ma et al.
(2022); Lee & Van der Schaar (2021); Wang et al. (2020). Recent generative methods Feichtenhofer
et al. (2022); Woo et al. (2023) require specialized architectures and lack flexibility, while transfer
learning approaches, though more adaptable, often depend on intuition and complete labels during
training Chen et al. (2023). Existing methods using these approaches have not addressed the issue
of missing labels during training.

Thus, the joint consideration of semi-supervised training with missing modality inference presents
an unresolved challenge. Semi-supervised methods Lian et al. (2022); Zheng et al. (2022) often
assume the availability of all modalities, making their pipelines dysfunctional when inputs are in-
complete. Conversely, missing modality methods avoid the challenge of scarce labels in the training
data Woo et al. (2023). Nonetheless, a model deployed in real-world applications (e.g. autonomous
vehicles or medical centers) should leverage unlabeled data during training and exhibit robustness
to missing modalities during inference. We present a multimodal framework explicitly designed to
accomplish this through a novel soft Positive-Unlabeled (PU) contrastive loss and modality-specific
reconstruction losses. Our method, backed by information theoretic bounds, performs well on di-
verse datasets demonstrating that it can generalize across different modalities and tasks.

Our approach: Our model maintains its representation capacity under scarce training labels and
missing modalities by maximizing the mutual information between the model’s learned representa-
tions of the input and the target task output. Inspired by Partial Information Decomposition Williams
& Beer (2010), we note that the mutual information provided by an input X with M modalities
(X1, . . . , XM ) for a given task Y can be broken down into the following quantities:

MI(
{
X1, . . . , XM

}
;Y ) = R(

{
X1, . . . , XM

}
;Y ) +

M∑
i=1

U(Xi;Y ) + S(
{
X1, . . . , XM

}
;Y ),

(1)
in which R(.; .) quantifies redundancy - the task-related shared information of M input variables;
U i(.; .) represents the unique information of the ith modality; and S(.; .) denotes synergy informa-
tion, which is the knowledge generated by the interaction among M modalities.

From an information-theoretic perspective, existing knowledge distillation Chen et al. (2023) and
contrastive learning Radford et al. (2021) approaches implicitly reproduce S(.; .) and R(.; .) through
intuitive alignment processes in a latent space. In contrast, in this work we explicitly model these
values and introduce a mutual information maximization objective (Objective 2.1) as a loss term.
We establish a theoretical lower bound for this target quantity, which can be maximized using our
PU contrastive loss. This innovative loss uses a novel soft-positive pseudo-labeling scheme for
unlabeled data. By accounting for the uncertainty of pseudo-labels, our approach distinguishes
itself from existing semi-supervised methods.

Furthermore, we observe that latent-space alignment methods Chen et al. (2023); Radford et al.
(2021) diminish the distinct information given by each modality to the representation, U(.; .). We
hypothesize that this modality-specific information is beneficial to the overall performance when
label information is scarce and other modalities may be missing. Therefore, we frame the retention
of each modality’s unique information U i(.; .) as Objective 2.2 and achieve its upper bound through a
simple reconstruction procedure in the latent space. This procedure is universally applicable across
different data modalities, and indeed improves performance as demonstrated by our results and
ablations (Tables 1 and 3).

Together, Objectives 2.1 and 2.2 form a semi-supervised multimodal learning method that is ro-
bust to missing modalities. We refer to this proposed method as Robult, the Robust Multimodal
Pipeline, hereafter. The superior performance of Robult compared to existing methods in compre-
hensive empirical experiments (Section 3), as well as Robult’s theoretical underpinnings, under-
scores its promise toward various real-world settings. Our main contributions can be summarized as
follows:

• We jointly address two common real-world problems: semi-supervised training and miss-
ing modalities during evaluation. This generalized setting yields a distinct challenge for
existing works, yet Robult has proven effective through rigorous experimentation.

• We frame two objectives under an information-theoretic viewpoint and derive suitable loss
strategies to attain these goals.
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(a) Inference when some modalities are missing
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(b) Inference when all modalities are available

Figure 1: In the Robult Pipeline, for an input x1:M
j (1a) f i and gi, for i = 1 . . .M , extract latent and

unique-info features, hi
j and ui

j , and use a shared module, c, to predict outputs ỹij . (1b) f0 and g0

use all the modalities jointly to extract a fused latent vector and synergy, h0
j and sj , which is used in

c with final output ỹ1:Mj . During training the synergy module g0 also produces modality-specific zij ,
used in loss calculations to encourage the unimodal branches to approach multi-modal performance.

• We introduce a novel soft Positive-Unlabeled contrastive loss that efficiently utilizes limited
labeled information through selective weighting of potential positives.

2 METHODOLOGY

Method Overview: To jointly address the lack of labels during training and the absence of modali-
ties during evaluation, we introduce a versatile pipeline named Robult (Figure 1). Robult consists of
M modality-specific branches and a fusion branch indexed with zero. This system enables each uni-
modal branch to learn and replicate the synergistic information from the fusion branch with minimal
supervision, thereby closing the performance gap between the scenario where only one modality is
available and the scenario where all modalities are present.

All branches are executed during training, and three loss functions update the learned modules. The
synergy-based soft positive unlabeled loss, LPU , maximizes knowledge extraction from the few
labeled samples in a batch (Subsection 2.1). The reconstruction loss, Lrec forces each branch to
extract unique modality-specific information (Subsection 2.2). The task-specific supervised loss,
Lsup is used on the labeled samples across all modules to learn label information (Subsection 2.3).
During testing, if all modalities are present, Robult uses the fusion branch, shown in Fig. 1b. Oth-
erwise, if one or some modalities are missing (Fig. 1a), Robult uses the branches corresponding to
available modalities, then performs decision-level fusion (e.g. simple averaging) (discussed more in
Appendix C.1, Table 6).

Notation: In this study, we consider the scenario where samples in the training dataset contain all
modalities, but an arbitrary number of the training samples are unlabeled (Figure 2). Thus, our
training setup covers various labeled:unlabeled ratios, ranging from a supervised setting (all data
is labeled) to an unsupervised setting (no data is labeled). Let a training dataset with n samples
be X = {x1, . . . , xn}, where the jth data point, xj =

(
x1
j , . . . , x

M
j

)
, contains M modalities.

Assuming the first k samples of X are labeled, the corresponding label set Y = {y1, . . . , yk} consists
of k samples, where k < n.

Let f i, gi, and c indicate learned modules where i corresponds to the ith modality. Their inputs,
hi
j , ui

j , and zij , indicate each modality’s latent, unique-information, and synergy-based represen-
tations respectively, with sj being the joint synergy across all modalities. For brevity, we use in-
dex 0 to denote the latent variables generated using all the modalities jointly x1:M

j , i.e. h0
j is the

joint latent representation of all the modalities of the jth data point generated by the fusion net-
work f0(x1

j , x
2
j , . . . x

M
j ). Throughout our theoretical analysis, we primarily use the notation Xi (or

Hi, U i, Zi) to represent the random variables associated with the ith modality input, and S for the
synergy random variable from all modalities.

Instead of operating directly on a data point xj , we first project raw inputs into m latent vectors,
one for each modality, i.e. f i(xi

j) = hi
j for i = 1, . . . ,M . The benefits of working with the latent

feature vectors are twofold: (1) it ensures that Robult can be generalized to modalities with different
preferred projection methods, (2) various fusion strategies can be adopted to efficiently attain fused
representations as fusing raw data presents more challenges.
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Semi-supervision: To address the setting of label scarcity, we aim to leverage the similarity of
the synergy, i.e. the fused representation H0, to the unimodal representations, Hi, in order for the
model to learn from unlabeled data samples in a batch. However, the Hi’s and H0 cannot be directly
compared as they were projected into different latent spaces by their respective f i(.)’s. Thus we
employ the synergy module g0(.) first on the joint representation of all the modalities, g0(H0) = S,
and then on each modality’s representation g0(Hi) = Zi for i = 1, . . . ,M (Fig.1). Finally, we
apply a novel achievable contrastive loss, termed Soft Positive-Unlabeled (PU) Contrastive Loss, on
the S and Zi terms as detailed in Section 2.1.

Theoretically, this PU contrastive loss corresponds to a mutual information maximization problem
between the desired fused representation S and the learned unimodal representation projected into
that same latent space Zi’s. Thus Objective 2.1 of our method is expressed as follow:
Objective 2.1. Aligning S and Zi by maximizing the mutual information MI(S,Zi) (i = 1,M).

Missing modalities: Next we consider the setting where labels may be scarce during training in ad-
dition to potentially missing modalities during testing. Common approaches to dealing with missing
modalities are transfer learning via knowledge distillation or contrastive loss Poklukar et al. (2022b);
Garcia et al. (2021); Stroud et al. (2020). These methods often rely on the synergy/alignment be-
tween modalities to retrieve labels during inference when one modality is missing. However, when
training labels are sparse, the alignment between modalities and labels is weaker and these methods
fail. We observe that attempting to only align modalities during training diminishes the unique in-
formation provided by each modality, thus the model is losing information that could help inform it
of the label during inference. Therefore, in the circumstance where labels are missing during train-
ing and modalities are missing during testing, a model would benefit by maintaining the synergy
while also explicitly preserving each modality’s unique information. This claim is later supported
by experimental results and ablations (Section 3 - Table 1).

To address the challenge of vanishing modality-specific information from multimodal alignment
during training, we emphasize a disentanglement strategy that preserves unique information while
still facilitating the synergy learning process of Objective 2.1. Robult integrates a set of modules
gi(Hi), where i = 1, . . . ,M , to produce unique representations U i for each modality. We aim to
preserve the unique information for each modality via the learning of U i with Objective 2.2, detailed
in Section 2.2 and stated as follows:
Objective 2.2. Learning U i by minimizing the conditional entropy H(Hi|Zi, U i) (i = 1,M).

2.1 MAXIMIZING MUTUAL INFORMATION WITH SOFT POSITIVE-UNLABELED
CONTRASTIVE LEARNING

To mitigate the effect of missing modalities, we should foster alignment between the synergy latent
variable S and the unimodal variable Zi, denoted by Objective 2.1, by maximizing their mutual in-
formation. However, direct calculation of this quantity is not feasible without knowledge of the joint
distribution pS,Zi or the marginal distributions pS and pZi . Therefore, we derive its achievable lower
bound and strive to maximize this quantity instead. Define F as a variable that indicates whether a
pair (sj , zij) is drawn from the joint distribution pS,Zi (where F = 1 indicates dependence) or from
the product of the marginal distributions pS⊗pZi (where F = 0 signifies independence). The result
can be stated as follows.
Result. A lower bound of MI(S,Zi):

MI(S,Zi) ≥ −EpS,Zi log v(S,Z
i) = −Ep(S,Zi|F=1) log v(S,Z

i) (2)

where v(S,Zi) is a non-parametric approximation of p(F = 1|S,Zi). Given a couplet (sj , zij) in a
batch of B samples, where sj is the joint synergy across all modalities and zij is the modality-specific
representation for sample j and modality i, v(sj , zij) is given by:

v(sj , z
i
j) =

ϕ(sj , z
i
j)∑B

k ϕ(sj , zik)
; where ϕ(sj , z

i
j) = exp(< sj ; z

i
j > /τ).

Detailed derivation of Result 2 is covered in Appendix A.2. In this result, the lower bound still
depends on the expectation operator EpS,Zi , a key source of deviation in existing studies. Com-
monly, two approaches are used for sampling from the joint distribution pS,Zi : (1) Instance-level
sampling, considering pairs (sj , z

i
j) from different samples j of the same batch Radford et al.
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Figure 2: Illustration for training/testing
datasets under investigation. The train-
ing dataset contains full-modality sam-
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0.9 0.87 0.91 0.930.46 0.32

Labelled PositiveUnlabelled True Positive

Unlabelled False Positive
Weighting levels 
in Soft-PU Loss

𝜙!" 𝜙!# … 𝜙!$𝜙!! …

Figure 3: Soft-PU Loss mechanism. Unlabeled positive
pairs are identified using soft labels from Robult’s classi-
fier. These pairs are re-weighted based on their proximity
and the mean proximity of true labeled positive pairs to
mitigate false positives.

(2021); (2) Label-level sampling, involving label information and sampling pairs with the same
labels: (sj , z

i
k)|yj = yk Chen et al. (2021b). While performing contrastive learning the former

approach is likely to introduce undesired false negative couplets, the latter direction requires fully
labeled training data, making either solution less than ideal.

To bridge this label-related gap, we deploy a novel soft Positive-Unlabelled (PU) constrastive loss,
together with an adaptive weighting strategy. Let L be a variable used to determine if a pair <
sj , z

i
k > is labeled (L = 1) or not (L = 0) (where L = 1 if the label information of both samples i

and k is known, and L = 0 otherwise), the lower bound in Result 2 can be rewritten as:

−EPS,Zi log v(S,Z
i) =− EP (S,Zi|F=1) log v(S,Z

i)

=− EP (S,Zi|F=1,L=1) log v(S,Z
i) ∗ p(L = 1)

− EP (S,Zi|F=1,L=0) log v(S,Z
i) ∗ p(L = 0).

(3)

From this step, we formulate the two terms of Eq.3 as two separate lost terms, Llb for the labeled
data and Lulb for the unlabeled data. Let BF=1,L=1 be the index set of the inputs in a batch that
have the same true class as anchor element j and are labeled, i.e. k ∈ BF=1,L=1 ⇐⇒ (sj , z

i
k) ∼

p(S,Zi|F = 1, L = 1).

The first term of Eq. 3 can be straightforwardly modeled as a NT-Xent-like contrastive loss Chen
et al. (2020):

Llb = − 1

M

M∑
i=1

Li
lb; where Li

lb = − 1

||BF=1,L=1||
∑

k∈BF=1,L=1

log v(sj , z
i
k). (4)

Regarding the second term, there is no direct solution for sampling from p(S,Zi|F = 1, L = 0). To
address this, we propose utilizing the output of the Robult classifier as soft label information, which
is then regularized by a set of adaptive weights generated within each mini-batch. In the initial
training stages, the Robult classifier may exhibit instability, which can lead to unreliable outcomes.
This instability is particularly problematic as it can impede the effective filtering of false positives
during the sampling process, as illustrated in Figure 3. To mitigate this and enhance the performance
of the final loss function, we adjust the contribution of soft-labeled pairs, thereby distinguishing our
approach from traditional pseudo-labeling methods Aberdam et al. (2022).

For each anchor sample sj within a given mini-batch, there are inevitably some labeled positive part-
ners, or at least unimodal representations zij in unsupervised scenarios. The average proximity of
these labeled partners to sj provides a reference for determining what proximity should be consid-
ered ”positive” for this anchor. The proximity of unlabeled positive partners, as determined by the
Robult classifier, should ideally be close to this reference mean. We implement a strategy where the
contribution of a couplet to the loss is increased if its proximity closely matches that of the reference
couplets and reduced otherwise. This method helps to effectively lower the influence of potential
false positives, as demonstrated in Figure 3. The weighting of these couplets is calculated using the
RBF kernel, allowing for precise adjustment based on proximity.

wi
jk = RBF (ϕi

j , ϕ(sj , z
i
k)); where ϕi

j = mean
{
ϕ(sj , z

i
k̃
)|k̃ ∼ p(k̃|j, F = 1, L = 1)

}
. (5)
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Let BF=1,L=0 be the index set of the inputs in a batch that have the same true class as anchor
element j and are not labeled, i.e. k ∈ BF=1,L=0 ⇐⇒ (sj , z

i
k) ∼ p(S,Zi|F = 1, L = 0). The

unlabled loss term and complete soft Positive-Unlabeled (PU) loss are given by:

Lulb = − 1

M

M∑
i=1

Li
ulb; where Li

ulb = − 1

||BF=1,L=0||
∑

k∈BF=1,L=0

wi
jk log v(sj , z

i
k). (6)

LPU = Lulb + Llb (7)

2.2 MINIMIZING CONDITIONAL ENTROPY WITH LATENT RECONSTRUCTION ERROR

This section outlines the procedure to achieve Objective 2.2, effectively preserving unique informa-
tion U i. Let pUi,Zi denote the joint distribution of U i and Zi, where (ui

j , z
i
j) ∼ pUi,Zi is generated

from the corresponding instance hi
j . Subsequently, we derive H(Hi|Zi, U i) as follows:

H(Hi|Zi, U i) = −EUi,Zi∼pUi,Zi

[
EHi∼p(Hi|Ui,Zi)

[
log p

(
Hi | U i, Zi

)]]
(8)

Quantifying p(Hi | U i, Zi) in Eq. 8 is not straightforward, we approximate it by introducing a
distribution q(Hi | U i, Zi):

H(Hi|Zi, U i) = −EUi,Zi∼pUi,Zi

[
EHi∼p(Hi|Ui,Zi)

[
log q

(
Hi | U i, Zi

) p (Hi | U i, Zi
)

q (Hi | U i, Zi)

]]
= −EUi,Zi∼pUi,Zi

[
EHi∼p(Hi|Ui,Zi)

[
log q

(
Hi | U i, Zi

)]
+ dKL(p||q)

]
≤ −EUi,Zi∼pUi,Zi

[
EHi∼p(Hi|Ui,Zi)

[
log q

(
Hi | U i, Zi

)]]
.

(9)

Thus, minimizing H(Hi|Zi, U i) can be relaxed to minimizing its ELBO-alike Kingma & Welling
(2013) upperbound with the newly defined distribution q

(
Hi | U i, Zi

)
. In this study, we model q

by incorporating a straightforward yet efficient reconstruction procedure in the shared latent space,
which involves the module ri(U i, Zi) = H̃i and a reconstruction loss. Given a couplet (ui

j , z
i
j) ∼

pUi,Zi generated from hi
j , module ri(.) attempt to recreate h̃i

j resemble hi
j by enforcing latent

reconstruction loss:

Lrec =
1

MB

M∑
i=1

B∑
j=1

1− < h̃i
j , h

i
j >

2, (10)

in which <;> denotes the L2-normalized dot product operation, B is the size of mini-batch, and M
is the number of modalities. By performing reconstruction in latent space, this procedure efficiently
alleviates the time and computational burden, while streamlining the process of reconstructing var-
ious raw modalities; thereby preserving the generality of Robult. We perform back-propagation
with Lrec exclusively on the M unimodal branches. This essentially concentrates the impact of this
criterion on retaining unique information U(Xi, Y ) through U i, distinct from fostering the shared
branch to learn synergy information - discussed in Section 2.1.

2.3 TRAINING STRATEGY

The objectives in Sections 2.1 and 2.2 are effectively attained through the discussed loss functions.
Given their distinct nature, learning them separately is advantageous. Consequently, we selectively
apply the effects of Lrec to guide the learning of gi(.), while LP -U guides f i(.), f0(.), and g0(.) for
i = 1, . . . ,M . To fully leverage label information to learn Robult’s task head c(.), we introduce an
additional supervised loss Lsup on labeled data, directing the learning process of the entire Robult
network. Depending on the task (regression or classification), we utilize well-established L1 or
cross-entropy Lce losses. A detailed procedure is available in Appendix - A.3.

3 EXPERIMENTAL RESULTS

3.1 DATASETS AND METRICS

Dataset: We conduct experiments on the following datasets. CMU-MOSI Zadeh et al. (2016) &
CMU-MOSEI Zadeh et al. (2018b): These two datasets consist of three modalities (textual, sound,
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and visual) all extracted from videos. They are associated with sentiment analysis and emotion
recognition tasks. All videos are labeled on a scale ranging from -3 (negative sentiment) to 3 (posi-
tive sentiment). MM-IMDb Arevalo et al. (2017): This dataset is designed for a genre classification
task with image and text modalities. The task involves multi-label classification since a movie might
have several genres. UPMC Food-101 Wang et al. (2015): This dataset is a classification dataset
consisting of 101 food categories. There are two modalities, text and images, collected from Google
Image Searches. Hateful Memes Kiela et al. (2020): This dataset aims at identifying hate speech
in memes via text and image modalities. Created by Meta AI, this dataset includes challenging
examples that are similar to hateful ones but are actually harmless.

Metrics: For sentiment analysis related to CMU-MOSI and CMU-MOSEI datasets, we adopt mean
absolute error (MAE), correlation (Cor), binary accuracy, and F1 score, following Poklukar et al.
(2022b); Tsai et al. (2018). Here, binary categories determine positive sentiment scores (> 0) or
negative ones (< 0). For the evaluation of the three remaining datasets, we adhere to the metrics
specified in Lee et al. (2023b). With the MM-IMDb dataset, the multi-label classification perfor-
mance is assessed using F1-Macro. The classification accuracy is employed for the UPMC Food-101
dataset. Lastly, for Hateful Memes, the evaluation is based on the AUROC metric.

3.2 BASELINES AND EXPERIMENTAL SETTINGS

Baselines: We incorporate several state-of-the-art approaches representing popular strategies into
our comparative evaluation. Specifically, GMC Poklukar et al. (2022b) serves as a contrastive
learning-based approach, ActionMAE Woo et al. (2023) represents a generation-based method, and
we include a Transformer-based approach proposed in Lee et al. (2023b), referred to as Prompt-
Trans for brevity. To ensure optimal reproducibility, we inherit the implementations of all baseline
methods from their original code bases. Additionally, we implement unimodal frameworks (Uni-
modal) for each modality, trained in a supervised manner with available labels, to serve as our
baseline comparison.

Implementation details: To ensure a fair comparison, we use similar encoder architectures for
processing raw data modalities whenever possible. The unimodal baselines are designed with the
same architectures as Robult, each with its own classifier. For Robult, positive samples for the soft
P-U loss are determined after discretizing labels if needed. Specifically, in the cases of CMU-MOSI
and CMU-MOSEI datasets, label information in the range of [−3, 3] is quantified into 7 discrete
categories (−3,−2, . . . , 3). Additionally, for the multi-label dataset MM-IMDb, two samples are
considered positive if they share all the same labels. Regarding Prompt-Trans, we only report its
results for three datasets involving two modalities (MM-IMDb dataset, UPMC Food-101 dataset,
and Hateful Memes dataset), as the extension to multiple modalities cannot be directly inferred
from the original work Lee et al. (2023b).

Experimental details: The primary focus of our performance reporting is on two extreme scenarios:
semi-supervised settings with only 5% labeled data and scenarios where only a single modality is
presented during evaluation. All reported results are averaged over 3 different random seeds. In the
semi-supervised setup, the newly created labeled portion is ensured to maintain the correct label ratio
as the original training sets. Additional experiments extending these two settings to more modalities
and a higher percent of labeled data are detailed in Appendix C.1 and C.2 respectively. Specific
details on implementation settings relating to each dataset are provided in Appendix - B.2.

3.3 MAIN QUANTITATIVE RESULTS

All results are shown in tables with the best outcomes in red and the second-best in blue.

Sentiment Analysis: The results for CMU-MOSI and CMU-MOSEI datasets are summarized in Ta-
ble 1. For both datasets, Robult significantly outperforms all the compared methods, suggesting its
effectiveness and consistency in semi-supervised and missing modality scenarios. Regarding CMU-
MOSI, due to its smaller scale compared to CMU-MOSEI, the labeled portions are also smaller.
This condition poses a challenge for existing baselines that heavily rely on label information. In
contrast, Robult effectively addresses this challenge, demonstrating the ability to extract meaningful
representations even with limited labeled data. On CMU-MOSEI, Robult consistently produces su-
perior representations, achieving the best performances across all recorded metrics. Notably, Robult
improves the correlation (Corr) between the predicted sentiment levels and ground truth by up to
19.8%, outperforming the second-best method, which is the unimodal for textual data.
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Table 1: Results on CMU-MOSI, CMU-MOSEI.

CMU-MOSI CMU-MOSEI

Metrics Unimodal GMC ActionMAE Robult Unimodal GMC ActionMAE Robult
Text Modality:

MAE (↓) 1.41 1.407 1.476 1.397 0.81 0.815 1.115 0.784
Corr (↑) 0.137 0.14 0.066 0.144 0.383 0.346 0.136 0.459
F1 (↑) 0.551 0.559 0.535 0.578 0.717 0.716 0.614 0.739
Acc (↑) 0.553 0.562 0.47 0.569 0.712 0.708 0.603 0.732
Audio Modality:

MAE (↓) 1.576 1.518 1.546 1.415 0.842 0.836 1.215 0.825
Corr (↑) 0.041 -0.065 0.046 0.085 0.111 0.193 0.101 0.221
F1 (↑) 0.512 0.457 0.508 0.539 0.618 0.642 0.634 0.679
Acc (↑) 0.496 0.46 0.467 0.535 0.599 0.63 0.543 0.65
Vision Modality:

MAE (↓) 1.451 1.497 1.511 1.425 0.891 0.839 1.127 0.826
Corr (↑) 0.044 -0.07 -0.03 0.086 0.163 0.2 0.104 0.201
F1 (↑) 0.585 0.446 0.511 0.593 0.637 0.621 0.594 0.647
Acc (↑) 0.425 0.449 0.514 0.522 0.624 0.62 0.561 0.632
Full Modality:

MAE (↓) 1.394 1.47 1.496 1.392 0.783 0.819 1.103 0.779
Corr (↑) 0.186 0.101 -0.092 0.247 0.364 0.328 0.337 0.504
F1 (↑) 0.597 0.497 0.553 0.657 0.73 0.693 0.694 0.744
Acc (↑) 0.594 0.498 0.477 0.63 0.729 0.688 0.643 0.741

Table 2: Results on MM-IMDb, UPMC
Food-101, Hateful Memes.

Unimodal Prompt-Trans GMC ActionMAE Robult
MM-IMDb - F1 Macro (↑):

Text 0.24 0.198 0.296 0.055 0.321
Image 0.207 0.148 0.291 0.039 0.298
Full 0.196 0.268 0.307 0.171 0.332

UPMC Food-101 - Accuracy (↑):
Text 0.321 0.151 0.395 0.196 0.435
Image 0.296 0.111 0.382 0.132 0.415
Full 0.138 0.432 0.41 0.358 0.446

Hateful Memes - AUROC (↑):
Text 0.584 0.511 0.617 0.528 0.623
Image 0.524 0.475 0.528 0.508 0.596
Full 0.618 0.635 0.616 0.542 0.632

Figure 4: CD diagram showing the mean
rank of each method on three datasets.

Classification tasks: In Table 2, empirical results for three classification tasks show that Robult
consistently outperforms existing approaches and baselines in most cases, except for one scenario
on the Hateful Memes dataset with the full modality available, where Robult achieves comparable
performance with Prompt-Trans Lee et al. (2023b). Notably, the Hateful Memes dataset includes
samples with “benign confounders”, negatively impacting performance when models rely solely on
single modalities Kiela et al. (2020). Leveraging the soft Positive-Unlabelled loss, Robult effectively
addresses and mitigates performance gaps with either single modality inputs or the full ones. In
addition, we calculate F1 macro scores for all methods on these three datasets in the unimodal and
multimodal cases. We further visualize a Critical Difference Diagram Demšar (2006) in Figure
4. This diagram visually represents the performance among different machine learning algorithms
across various datasets by displaying the mean performance ranks, with lower being better, and
connecting statistically indistinguishable groups (within 95% confidence level) with a thin horizontal
bar, as per the Friedman hypothesis test. From the diagram, Robult exhibits a clear improvement gap
compared to other state-of-the-art methods in average ranks, while ActionMAE and Prompt-Trans
show no statistically significant difference in their performance.

3.4 ADDITIONAL QUALITATIVE ANALYSIS

In this section, we provide two key analyses: an evaluation of the quality of the learned representa-
tions and the main ablation study of Robult. For a more comprehensive analysis, please refer to the
additional experiments in Appendix C, which offer further insights into how architectural choices,
Soft-PU loss, and weighting schemes influence Robult’s performance.

Alignment and Uniformity: We assess the learned representations Zi and S after the trainining pro-
cess with soft P-U loss, via two qualities - Alignment and Uniformity Wang & Isola (2020). Figure
5 provides a comprehensive analysis of the learned representations generated by Robult using both
unimodal and multimodal inputs on the Hateful Memes testing set. On the left, the Frobenius-norm
distance histograms of positive pairs within the test dataset indicate that the representations gener-
ated with all the modalities have the smallest mean distances, and as the distances increase, their
corresponding density decreases. While not as compact as the representations with full modalities
input, positive pairs’ representations generated with unimodal input still exhibit low mean distances
and good histogram shapes. Furthermore, to analyze the uniformity characteristics of the learned
representations, we follow the process outlined in Wang & Isola (2020) and show the result on the
right of Figure 5. The learned representations are projected into R2 using t-SNE Van der Maaten
& Hinton (2008), and the output feature distributions are visualized using Gaussian kernel density
estimation (KDE) along with von Mises-Fisher (vMF) KDE for angles (arctan2(y;x)). As sug-
gested by these figures, Robult’s representations demonstrate uniform characteristics on the entire
test set as well as good clustering between classes. Specifically, representations of different classes
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Figure 5: Alignment and Uniformity analysis on representations of Hateful Memes test dataset,
generated by Robult.

reside on different segments of the unit circle and form separated clusters in Figure 9. The level of
separation for different classes with different input modalities correlates well with the actual quanti-
tative results, as shown in Table 2. Additional clustering comparison between different method can
be found in Appendix C.8

Table 3: Ablation analysis on CMU-MOSI and Hateful Memes datasets for Robult.

Metrics GMC Robult Robult (1) Robult (2) Robult (3) Robult (4)

CMU-MOSI - Text Modality:
MAE 1.407 1.397 1.589 1.511 1.443 1.429
Corr 0.14 0.144 0.047 0.101 0.051 0.123

F1 0.559 0.578 0.542 0.52 0.593 0.571
Acc 0.562 0.569 0.544 0.523 0.422 0.573

CMU-MOSI - Audio Modality:
MAE 1.518 1.415 1.586 1.561 1.494 1.495
Corr -0.065 0.085 0.023 0.005 0.046 0.085

F1 0.457 0.539 0.526 0.499 0.51 0.517
Acc 0.46 0.535 0.518 0.502 0.442 0.509

CMU-MOSI - Vision Modality:
MAE 1.497 1.425 1.663 1.711 1.445 1.504
Corr -0.07 0.086 0.025 -0.023 0.041 -0.066

F1 0.446 0.593 0.519 0.485 0.571 0.459
Acc 0.449 0.522 0.519 0.465 0.47 0.448

CMU-MOSI - Full Modality:
MAE 1.47 1.392 1.588 1.434 1.411 1.459
Corr 0.101 0.247 0.071 0.239 0.166 0.229

F1 0.497 0.657 0.524 0.567 0.549 0.6
Acc 0.498 0.63 0.523 0.566 0.552 0.601

Metrics GMC Robult Robult (1) Robult (2) Robult (3) Robult (4)

Hateful Memes - Text Modality:
AUROC 0.617 0.623 0.528 0.59 0.605 0.576

Acc 0.581 0.59 0.535 0.556 0.571 0.562

Hateful Memes - Image Modality:
AUROC 0.528 0.596 0.518 0.582 0.588 0.566

Acc 0.551 0.562 0.524 0.551 0.526 0.539

Hateful Memes - Full Modality:
AUROC 0.616 0.632 0.538 0.618 0.634 0.582

Acc 0.532 0.595 0.542 0.55 0.554 0.552

Ablation Studies: We evaluate the impact of each loss component on Robult’s performance using
CMU-MOSI and Hateful Memes datasets, which mirror the semi-supervised and missing modalities
conditions of our main experiments. This analysis involves testing variations of Robult with differ-
ent ablations. (1) Removal of Lsup - this setting utilizes available label information only in L(u)lb,
so Robult can only produce latent representations. An additional Logistic Regressor is trained with
these representations as its input, and this pipeline’s final scores are reported. (2) Removal of Lrec

- this setting discards Lrec, corresponding to our Objective 2.2. (3) Removal of Llb - this setting
makes the learning of Objective 2.1 rely only on Lulb. (4) Removal of Lulb - this setting associates
Objective 2.1 exclusively with Llb. Table 3 summarizes the results of this ablation experiment.
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Overall, any ablation negatively impacts the performance of Robult. In particular, the absence of
Lsup significantly worsens the performance, as there is no loss guiding the learning of Robult’s clas-
sifier, which is crucial for generating soft label information consumed by the soft Positive-Unlabeled
loss Lulb. Consequently, this ablation adversely affects two loss components, explaining the poorest
result among all variations. The removal of Lrec particularly harms the performance with unimodal
inputs, aligning with the motivation for Objective 2.2, as the unique information U i is no longer
preserved. In two remaining cases, both ablations diminish Robult’s overall performance, indicating
their equal contribution to achieving Objective 2.1.

4 RELATED WORKS

Semi-supervised Multimodal Learning: Several works acknowledge the challenge of fully la-
beled datasets in the multimodal literature and provide targeted solutions for specific applications
Lian et al. (2022); Zheng et al. (2022); Zhang et al. (2023); Liang et al. (2023). For instance, in
Aberdam et al. (2022), the authors tackle the semi-supervised scenario in scene text recognition
by enforcing consistency between weakly augmented pseudo-labels and strongly augmented views.
SMIN Lian et al. (2022) addresses conversational emotion recognition tasks through intra-modal
and cross-modal interactive modules inspired by auto-encoders. In Zheng et al. (2022), labeled
hash codes are learned using label signals, preserving the data structure of unlabeled ones, fol-
lowed by importance differentiation regression for final multimodal hashing. Authors in Zhang
et al. (2023) propose an area-similarity contrastive loss for medical image segmentation, leverag-
ing cross-modal information to enhance representations of unlabeled data. Liang et al. Liang et al.
(2023) derive two lower bounds of multimodal interaction from an information-theoretic perspec-
tive, applicable for pre-analysis of multimodal interaction effects. However, these efforts primarily
focus on semi-supervised scenarios in specific tasks and certain modalities (e.g., text-images), lim-
iting their applicability to general cases. A common technique in general semi-supervised learning
is loss reweighting based on pseudolabel uncertainty, similar to our P-U loss. These methods aim to
mitigate confirmation bias and are widely used in unsupervised domain adaptation Li et al. (2021);
Litrico et al. (2023), particularly in image processing applications Jin et al. (2022); Lee et al. (2023a).
However, such methods have not been applied to multimodal scenarios, where the complexity of loss
reweighting increases. This distinguishes our P-U loss method.

Missing modalities: Many multimodal fusion methods rely on a complete set of modalities, but
deployment settings often lack such ideal conditions, leading to adverse effects when using these
strategies Wang et al. (2020); Ma et al. (2022). To address this challenge, some approaches aim
to create models resilient to missing modalities Ma et al. (2021; 2022); Poklukar et al. (2022b);
Woo et al. (2023); Lee et al. (2023b). For instance, Wang et al. Wang et al. (2020) optimize train-
ing by considering incomplete data samples to generate unimodal teachers guiding a multimodal
student. Smil Ma et al. (2021) approximates latent features of modality-incomplete data using
Bayesian meta-learning. GMC Poklukar et al. (2022b) preserves geometric alignment in multi-
modal representations, enabling unimodal representations to substitute for absent representations of
other modalities. ActionMAE, inspired by the masked autoencoder idea Feichtenhofer et al. (2022);
Bachmann et al. (2022), learns to predict the latent representation of a missing modality by randomly
dropping its feature token and learning to reconstruct it. Despite success in certain scenarios, these
frameworks often rely on labeled signals, implicitly or explicitly, in the training dataset, limiting
their general applicability.

5 CONTRIBUTIONS & LIMITATIONS

Contributions: Our Robult pipeline effectively uses limited label data through a soft Positive-
Unlabelled (P-U) loss and latent reconstruction loss, enhancing modality interactions and preserv-
ing unimodal data integrity. It supports various modality types and quantities, scales linearly with
modalities, and functions independently of specific encoders/decoders. This flexibility facilitates
integration with existing deep learning frameworks, advancing multimodal learning in practical set-
tings. Limitations. Robult’s design presumes that the proximity of positive couplets follows a
Gaussian distribution, a method proven empirically but not theoretically. Future work should seek
theoretical validation for this assumption. Moreover, while focused on semi-supervised environ-
ments with complete modalities during training, the potential of labeled data in scenarios with miss-
ing modalities in training remains untapped. Exploring these cases could further improve Robult’s
effectiveness in complex real-world applications.
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REPRODUCABILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work, focusing on several key
areas:

• Code Availability: The complete codebase for this work, including models, training scripts,
and evaluation procedures, is uploaded as the Supplementary material. Upon acceptance,
this code will be open-sourced and made publicly available on GitHub.

• Dataset Preparation: Detailed instructions for dataset setup, including any preprocessing
steps and data splits used in our experiments, are provided in Section 3, Appendix B.2,
enabling other researchers to replicate our exact experimental conditions.

• Hardware and Hyperparameters: A comprehensive description of the hyperparameters used
in our experiments, including optimization settings, the GPUs used, and other configuration
details, is provided in Appendix B.1, B.2.

• Architecture Transparency: Detailed descriptions of our model architectures are provided
in Appendix B.2, ensuring others can understand and reconstruct the models accurately.

• Evaluation Metrics: The exact definitions of all evaluation metrics used are provided in
Section 3 of the main paper.

By offering this comprehensive set of resources, we aim to facilitate the reproduction of our results
by the research community. We believe that this level of transparency is crucial for advancing the
field and supporting thorough validation and extension of our work.
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A ROBULT SUPPLEMENTARY DETAILS

A.1 MINIMIZING CONDITIONAL ENTROPY WITH LATENT RECONSTRUCTION ERROR

As explained in the primary text, our approach to achieve Objective 2.2 involves a reconstruction
procedure with two components: the reconstruction module ri(U i, Zi) = H̃i and the latent re-
construction loss Lrec. This procedure is illustrated in Figure 6. It is important to note that these
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Figure 6: Reconstruction procedure of Robult. This procedure only applied in training stage.

reconstruction modules ri(.) are used exclusively during the learning process to optimize individual
branches gi(.), incurring no additional overhead during the evaluation or deployment stages. As this
reconstruction is carried out in the latent space, the module ri(.) can be uniformly designed, irre-
spective of the characteristics of input modalities. In our Robult design, ri(.) is simply a two-layered
MLP with ReLU activation in the middle, applied across all five datasets.

A.2 MAXIMIZING MUTUAL INFORMATION WITH SOFT POSITIVE-UNLABELED
CONTRASTIVE LEARNING

In this section, we would derive the lower bound of mutual information between synergy latent S
and unimodal representation Zi as a Positive-Unlabelled learning objective, which relax the assump-
tion about full presence of labels in training dataset. This derivation explains Result 2 in the main
manuscript.

The ultimate goal is to maximize the following MI quantity:

MI(S,Zi) = dKL

(
pS,Zi ||pS ⊗ pZi

)
This essentially means that the KL divergence between the joint distribution pS,Zi and the product
of marginal distribution pS ⊗pZi should be maximized. As defined in the main manuscript, F is the
flag indicator denotes whether a couplet (s, zi) is sampled from the joint distribution pS,Zi (F = 1)
or from product of marginal distribution pS ⊗ pZi (F = 0):

p(S,Zi|F = 1) = pS,Zi ; p(S,Zi|F = 0) = pS ⊗ pZi ; (11)

Applying Bayes’ rule, the posterior for F = 1 is given by:

p(F = 1|S,Zi) =
p(S,Zi|F = 1)p(F = 1)

p(S,Zi)

=
p(S,Zi|F = 1)p(F = 1)

p(S,Zi|F = 1)p(F = 1) + p(S,Zi|F = 0)p(F = 0)

=
pS,Zi · p(F = 1)

pS,Zi · p(F = 1) + pS ⊗ pZi · p(F = 0)
.

(12)

Putting logarithm operation on both side of Equation 12:

logp(F = 1|S,Zi) = −log
(
1 + k

pS ⊗ pZi

pS,Zi

)
≤ −logk + log

pS,Zi

pS ⊗ pZi

,

(13)

in which

k =
p(F = 0)

p(F = 1)
. (14)
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Taking expectation w.r.t pS,Zi (or p(S,Zi|F = 1)), we can bound the mutual information as

MI(S,Zi) ≥ Ep(S,Zi|F=1)logp(F = 1|S,Zi) + logk (15)

Here, the true distribution p(F = 1|S,Zi) is unknown, so we approximate it with a well-established
non-parametric model v : S × Zi → [0, 1] Chen et al. (2021b; 2023):

MI(S,Zi) ≥ Ep(S,Zi|F=1)logv(S,Zi) + logk

where

v(sj , z
i
j) =

ϕ(sj , z
i
j)∑B

k ϕ(sj , zik)
;

ϕ(sj , z
i
j) = exp(< sj ; z

i
j > /τ).

(16)

In addition, let c be the number of underlying classes and assume the labels are uniformly distributed,
we have the probability that a couplet is sharing a label is p(fk = 1) = 1

c2 . Within mini-batch of
size B, consider the scenario in which the number of positive couplets Bp is greater than the number

of negative ones Bn (hence Bp >
(B2)
2 = B̃

2 ):

p(Bp) =

(
B̃

Bp

)
· 1

c2Bp

≤
(
B̃
B̃
2

)
· 1

cB̃

It should be noted that this possibility p(Bp) is upper-bounded by a small quantity given B > 1
and c ≥ 2 (smaller than 0.1 in case B = 8 and c = 2), and get smaller when B and c increase.
Intuitively, the possibility that the positive couplets outnumber the negative ones is negligible, hence,
it normally hold true that:

log k = log
p(F = 0)

p(F = 1)
≥ 0.

With this realization, Result 2 can be derived from Eq. 16 as follow:

I(S,Zi) ≥ Ep(S,Zi|F=1)logv(S,Zi) + logk

≥ Ep(S,Zi|F=1)logv(S,Zi)

= EpS,Zi logv(S,Zi).

(17)

A.3 TRAINING STRATEGY

We employ an end-to-end training pipeline that can process two objectives 2.2 and 2.1 indepen-
dently, as demonstrated by Algorithm 1. In general, we selectively perform gradient calculations on
different modules of Robult based on the specific losses. This selection process offers dual bene-
fits: (1) minimal processing overhead with a single forward pass, and (2) effective restriction of the
losses’ impact only on their target modules.

A.4 ROBULT’S COMPLEXITY ANALYSIS

Robult framework is built on two main types of modules: individual branch modules - gi(.) (i =
0,M), and reconstruction modules - ri(.) (i = 1, . . . ,M). For the projectors and the fusion module,
denoted as f i(.) (i = 0,M), we adopt designs from previous studies. In this section, we analyze the
complexity of our two proposed modules, which operate in latent spaces and have straightforward
designs.

A.4.1 INDIVIDUAL BRANCHES

Since all gi(.)’s are working with the same input latent space (all raw modalities are projected to the
same space), we unify the design of gi(.)’s to be identical across different modalities. Specifically,
gi(.) are constituted by multiple Fully Connected layers, with middle ReLU activations; the last
layer of gi(.) involve no activation, but a L2 normalization operation. Below are the table of hyper-
parameters involved in the analysis.
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Algorithm 1 Robult training strategy

Input:
▷ Training dataset Dtrain

▷ Robult framework RB
▷ Optimizer O
function ParametersToggle(f : flag variable)

if f = 0 then
Toggle all RB parameters to require gradient calculation

else if f = 1 then
Toggle all RB parameters to NOT require gradient calculation
Toggle all gi(.) parameters (i = 1, . . . ,M) to require gradient calculation

else if f = 2 then
Toggle all RB parameters to NOT require gradient calculation
Toggle all f i(.), gi(.) parameters (i = 0,M) to require gradient calculation

end if
end function
for Bi;Yi in Dtrain do
▷ single forward pass
Ỹi, Hi, Zi, Ui, S = RB(Bi)
▷ loss calculations
lcls = Lcls(Ỹi, Yi)
lrec = Lrec(Hi, Zi, Ui)
l(u)lb = L(u)lb(Zi, S)
▷ gradient calculations
Call ParametersToggle(f = 1); backward with lcls
Call ParametersToggle(f = 2); backward with llb and lulb
Call ParametersToggle(f = 0); backward with lsup
▷ single backward pass
Optimizer O update RB parameters with above gradient infomation

end for

Table 4: gi(.) related hyper-parameters

Notation Description

M number of modalities
L number of FC layers
di hidden dimension of ith layer’s output
d0 input dimension

Time Complexity. Assume a single operation can be performed in unit time (O(1)). We have the
calculation for number of operations in a forward pass as follows.

Within the ith FC layer:
di−1 ∗ di + di,

Over L layers:
L∑

i=1

di−1 ∗ di + di.

In our implementations, we choose the same dimensions for all hidden outputs (same d = di∀i =
1, L), and there are M + 1 modules gi(.). With this, the total number of operation is:

(M + 1)

L∑
i=1

di−1 ∗ di + di = (M + 1) ∗ L ∗ d ∗ (d+ 1) = O(M ∗ L ∗ d2)

By utilizing matrix product and GPU acceleration, d2 operations can in fact be performed in O(1)
time, make the whole time complexity for individual branches be O(M ∗L), which is linearly scaled
with M .
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Space Complexity. Regarding the space complexity, within ith layer, beside the need for storing
parameter matrix of size (di−1 + 1) × di, output after performing ReLU activation are also stored
to later perform back-propagation. Hence, the total number of stored parameters is:

(di−1 + 1) ∗ di + di = (di−1 + 2) ∗ di.
Following similar derivation with L layers and M+1 branches, replacing d = di∀i = 1, L, we have
the total space complexity is:

(M + 1) ∗ L ∗ (d+ 2) ∗ d = O(M ∗ L ∗ d2).

A.4.2 RECONSTRUCTION MODULES

For these reconstruction modules ri(.)’s, we also adopt a similar design patterns as that of individ-
ual branches gi(.). The only differences are the dimension of input for first FC layer (2d), which
corresponding to the concatenation of g0(.)’s and gi(.)’s outputs.

Time complexity. With that intuition, as we have M branches and L layers, the total number of
calculations is:

M ∗ [(2d+ 1) ∗ d+ (L− 1) ∗ (d+ 1) ∗ d] = M ∗
[
d2 + L ∗ (d+ 1) ∗ d

]
= O(M ∗ L ∗ d2)

Reducing d2 operations to O(1) time complexity, the same result as observed with gi(.)’s are ob-
served - O(M ∗ L).
Space complexity. The total number of stored parameters is:
M ∗ [(2d+ 2) ∗ d+ (L− 1) ∗ (d+ 2) ∗ d] = M ∗

[
(d2 + L ∗ (d+ 2) ∗ d

]
= O(M ∗ L ∗ d2).

In conclusion, all the proposed modules of Robult are linearly scaled (both in time and space), with
the number of modalities M .

A.4.3 COMPUTATIONAL TIME QUANTITATIVE RESULT

Table 5: Computational times of different methods on different datasets.

Robult GMC ActionMAE

CMU-MOSI:
1.08 GFLOPS 1.05 GFLOPS 1.13 GFLOPS
507.44 MMACs 492 MMACs 526.36 MMACs
1.46 M 1.16 M 11.55 M

CMU-MOSEI:
1.09 GFLOPS 1.06 GFLOPS 1.15 GFLOPS
508.7 MMACs 493.26 MMACs 526.36 MMACs
1.41 M 1.17 M 11.56 M

Hateful Memes:
32.81 MFLOPs 26.56 MFLOPS 61.37 MFLOPS
16.39 MMACs 13.27 MMACs 30.48 MMACs
888.32 K 674.05 K 1.04 M

To further substantiate our results, we measured FLOPs and MACs for several datasets we utilized,
comparing them with our current baselines (Table 5). For a fair comparison, we kept all unimodal
projectors the same. The results suggest that our method introduces slight overheads compared
to GMC, but remains faster than ActionMAE, while significantly outperforming both methods in
downstream performance.

B IMPLEMENTATION DETAILS

B.1 ENVIRONMENT SETTINGS

All implementations and experiments are conducted on a single machine equipped with the fol-
lowing hardware configuration: a 6-core Intel Xeon CPU paired with 2 NVIDIA A100 GPUs for
accelerated training.

Our codebase predominantly utilizes the PyTorch 2.0 framework, including the Pytorch-AutoGrad,
for deep learning model design and calculations. Additionally, we leverage utilities from Scikit-
learn, Pandas, and Matplotlib to support various functionalities in our experiments. The original
codebase for Robult will be made publicly available upon publication.
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B.2 REPRODUCTION AND ADAPTATION

In both Robult and the Unimodal baselines, we modify the architecture of the projectors f i(.) (i =
0,M) while keeping gi(.) (i = 0,M) as simple as possible. For all testing datasets, the unimodal
branches gi(.) consist of a simple Fully Connected layer followed by L2 normalization. In contrast,
g0(.) has a higher representation capacity with two Fully Connected layers and ReLU activation. In
the case of GMC Poklukar et al. (2022b) and ActionMAE Woo et al. (2023), the same architecture
of the projectors is adopted as Robult to ensure a fair comparison, with the remaining designs being
directly inherited from the original codebases. For Prompt-Trans Lee et al. (2023b), we keep all
the architecture designs intact and only change the datasets’ settings to semi-supervised and missing
modalities scenarios. Additional information about the baselines should be best referenced from
their original works.

CMU-MOSI and CMU-MOSEI datasets. We follow the settings in Poklukar et al. (2022b), which
involve temporally-aligned versions of these datasets generated with Zadeh et al. (2018a), with ad-
ditional adaptions for semi-supervised and missing modalities scenarios. Specifically, multimodal
Transformer Tsai et al. (2019) is adopt as the joint-modality encoder f0(.) for our model and all
state-of-the-art baselines; single-layer GRUs are adopted as unimodal projectors f i(.). The latent
space dimension is set as 60, and all methods are trained in 40 epochs with Adam optimizer Kingma
& Ba (2014) at the learning rate of 10−3.

MM-IMDb, UPMC Food-101 and Hateful Memes datasets. For the classification tasks associ-
ated with the MM-IMDb, UPMC Food-101, and Hateful Memes datasets, we initially generate text
and visual embeddings offline using a pretrained ViLT framework Kim et al. (2021). Subsequently,
all models are trained using these embeddings instead of raw data. This specific procedure is in-
tentionally conducted to ensure fair evaluation, as Prompt-Trans Lee et al. (2023b) functioning also
involves the same frozen ViLT framework in their training process. We also follow Prompt-Trans
Lee et al. (2023b) for the preprocessing procedures of raw texts and images. For all methods, the
offline embedding space’s dimension is fixed at 784 and further condensed into a 128-dimensional
hidden latent space. Additionally, with this setting, we choose the projectors f i(.) (i = 0,M) as
simple Fully Connected layers.

C ADDITIONAL EMPIRICAL RESULTS AND ANALYSIS

In this sections, we present additional empirical results and analysis to study the behavior of Robult
and baselines in different extended settings.

C.1 EXTENDED MODALITIES MISSING SCENARIOS

In Table 6, we present the comprehensive performance of different frameworks when provided ac-
cess to all combinations of input modalities on CMU-MOSI and CMU-MOSEI datasets. This table
extends the information presented in Table 1 in the main text. In this experiment, to report the perfor-
mances of Unimodal baselines and Robult when provided with two modalities, we simply take the
mean of the outputs generated by providing these frameworks with single modalities. It is important
to note that we do not draw conclusions on the best strategy for merging unimodal results. De-
spite this, using this simple strategy, Robult consistently produces the best results in most scenarios,
highlighting its performance consistency across different missing modality scenarios.

C.2 EXTENDED SEMI-SUPERVISED SCENARIOS

This experiment is designed to observe the behavior of models when exposed to varying amounts
of labeled information. In addition to the 5% labeled ratio setting covered in the main text, we
additionally evaluate all methods with 50% labeled ratio and ideal supervised settings:

• Semi-supervised learning with 50% labelled data. Table 7 summarizes the results of
the 50% labeled setting with CMU-MOSI and Hateful Memes datasets. As indicated, all
methods effectively leverage the increased label signal, resulting in improved performance.
However, it’s noteworthy that Robult demonstrates its superiority by outperforming other
methods on both datasets across various metrics.

• Supervised learning. With this scenario, we evaluate all methods in an ideal case where
fully labelled training dataset is available. Similar to the previous setting, all method further
enhance their performance given more labeled data. Robult suggest the consistency by out-
performing other baselines in most recorded metrics.

20



Table 6: Full performance of different frameworks on CMU-MOSI and CMU-MOSEI Dataset.

CMU-MOSI CMU-MOSEI

Metrics Unimodal GMC ActionMAE Robult Unimodal GMC ActionMAE Robult

Text Modality:
MAE 1.41 1.407 1.476 1.397 0.81 0.815 1.115 0.784
Corr 0.137 0.14 0.066 0.144 0.383 0.346 0.136 0.459
F1 0.551 0.559 0.535 0.578 0.717 0.716 0.614 0.739
Acc 0.553 0.562 0.47 0.569 0.712 0.708 0.603 0.732
Audio Modality:

MAE 1.576 1.518 1.546 1.415 0.842 0.836 1.215 0.825
Corr 0.041 -0.065 0.046 0.085 0.111 0.193 0.101 0.221
F1 0.512 0.457 0.508 0.539 0.618 0.642 0.634 0.679
Acc 0.496 0.46 0.467 0.535 0.599 0.63 0.543 0.65
Vision Modality:

MAE 1.451 1.497 1.511 1.425 0.891 0.839 1.127 0.826
Corr 0.044 -0.07 -0.03 0.086 0.163 0.2 0.104 0.201
F1 0.585 0.446 0.511 0.593 0.637 0.621 0.594 0.647
Acc 0.425 0.449 0.514 0.522 0.624 0.62 0.561 0.632
Text+Audio Modalities:

MAE 1.485 1.442 1.521 1.401 0.765 0.813 1.007 0.762
Corr 0.131 0.05 0.089 0.141 0.418 0.352 0.202 0.439
F1 0.528 0.491 0.507 0.563 0.729 0.728 0.624 0.733
Acc 0.512 0.493 0.508 0.546 0.713 0.671 0.62 0.717
Text+Vision Modalities:

MAE 1.486 1.465 1.489 1.415 0.861 0.822 1.003 0.788
Corr 0.144 0.044 0.086 0.146 0.325 0.325 0.198 0.399
F1 0.514 0.487 0.501 0.58 0.718 0.722 0.623 0.718
Acc 0.492 0.491 0.506 0.534 0.688 0.687 0.619 0.704
Audio+Vision Modalities:

MAE 1.432 1.499 1.534 1.426 0.824 0.824 1.173 0.812
Corr 0.014 -0.075 -0.035 0.091 0.214 0.233 0.147 0.244
F1 0.492 0.445 0.55 0.581 0.748 0.663 0.637 0.663
Acc 0.486 0.448 0.453 0.527 0.638 0.633 0.623 0.64
Full Modalities:

MAE 1.394 1.47 1.496 1.392 0.783 0.819 1.103 0.779
Corr 0.186 0.101 -0.092 0.247 0.364 0.328 0.337 0.504
F1 0.597 0.497 0.553 0.657 0.73 0.693 0.694 0.744
Acc 0.594 0.498 0.477 0.63 0.729 0.688 0.643 0.741
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Figure 7: Models’ performances when being exposed to different label ratios.
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Table 7: Semi-supervised learning with 50% labelled data on CMU-MOSI and Hateful Memes
datasets.

Modality Metrics Framework

Unimodal Prompt-Trans GMC ActionMAE Robult
Text MAE 1.157 - 1.286 1.161 1.137

Corr 0.502 - 0.384 0.503 0.516
F1 0.712 - 0.642 0.701 0.721
Acc 0.712 - 0.644 0.709 0.722

Audio MAE 1.443 - 1.44 1.603 1.363
Corr 0.185 - 0.171 0.16 0.225
F1 0.563 - 0.556 0.566 0.569
Acc 0.559 - 0.548 0.521 0.571

Video MAE 1.514 - 1.458 1.406 1.429
Corr 0.123 - 0.187 0.132 0.15
F1 0.541 - 0.566 0.551 0.57
Acc 0.49 - 0.56 0.535 0.561

Full MAE 1.508 - 1.148 1.096 1.092
Corr 0.254 - 0.536 0.536 0.63
F1 0.566 - 0.709 0.728 0.761

C
M

U
-M

O
SI

Acc 0.545 - 0.71 0.705 0.762
Text AUROC 0.636 0.51 0.641 0.603 0.657

Accuracy 0.583 0.508 0.592 0.556 0.589

Image AUROC 0.625 0.528 0.624 0.592 0.621
Accuracy 0.566 0.526 0.568 0.53 0.568

Full AUROC 0.636 0.672 0.67 0.661 0.673

H
at

ef
ul

M
em

es

Accuracy 0.57 0.594 0.596 0.573 0.604

Table 8: Supervised learning results on CMU-MOSI and Hateful Memes datasets.

Modality Metrics Framework

Unimodal Prompt-Trans GMC ActionMAE Robult
Text MAE 1.126 - 1.233 1.108 1.066

Corr 0.513 - 0.443 0.498 0.574
F1 0.716 - 0.665 0.739 0.756
Acc 0.717 - 0.667 0.749 0.753

Audio MAE 1.421 - 1.414 1.569 1.392
Corr 0.217 - 0.188 0.143 0.241
F1 0.574 - 0.571 0.569 0.574
Acc 0.553 - 0.567 0.523 0.561

Video MAE 1.422 - 1.441 1.532 1.419
Corr 0.138 - 0.205 0.119 0.156
F1 0.535 - 0.552 0.534 0.513
Acc 0.512 - 0.542 0.421 0.512

Full MAE 1.191 - 1.093 1.055 1.011
Corr 0.463 - 0.612 0.607 0.663
F1 0.726 - 0.735 0.757 0.764

C
M

U
-M

O
SI

Acc 0.696 - 0.736 0.763 0.765
Text AUROC 0.641 0.527 0.67 0.654 0.67

Accuracy 0.585 0.522 0.607 0.515 0.63
Image AUROC 0.639 0.541 0.64 0.653 0.665

Accuracy 0.595 0.517 0.591 0.515 0.622
Full AUROC 0.649 0.683 0.633 0.666 0.675

H
at

ef
ul

M
em

es

Accuracy 0.585 0.634 0.596 0.536 0.634

To clearly illustrate the performance improvement of Robult and the baselines in each scenario, we
provide visualizations of Pearson correlation for CMU-MOSI and AUROC for Hateful Memes in
Figure 7. Among all methods, Robult demonstrates the best stability and consistency in perfor-
mance, regardless of input modalities or label ratios.

C.3 EXTENDED COMPARISON WITH RECENT FRAMEWORKS

Baselines. We adopt two recent approaches utilizing Constrastive Loss Xu et al. (2024) and recon-
truction strategy Wang et al. (2023) for more comprehensive comparision of Robult with exisiting
State-of-the-art frameworks. Their original codebases are slightly adjusted for semi-supervised set-
tings, and the dimensions of the latent space are aligned with Robult’s (60) to minimize bias in the
comparison.

Settings and Result. We evaluate the models’ performance using a 5% semi-supervised task with
the CMU-MOSI and CMU-MOSEI datasets, testing all possible combinations of modalities input.
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Table 9: Additional comparison on CMU-MOSI and CMU-MOSEI Datasets.

MOSI Dataset MOSEI Dataset
Modality Metrics DiCMoR SEM Robult DiCMoR SEM Robult

Text MAE 1.444 1.632 1.397 0.819 0.894 0.784
Corr 0.085 0.095 0.144 0.276 0.252 0.459
F1 0.536 0.506 0.578 0.572 0.599 0.739
Acc 0.511 0.53 0.569 0.657 0.63 0.732

Audio MAE 1.504 1.739 1.415 0.829 1.037 0.825
Corr 0.006 0.043 0.085 0.201 0.138 0.221
F1 0.484 0.441 0.539 0.537 0.545 0.679
Acc 0.49 0.463 0.535 0.642 0.536 0.65

Vision MAE 1.454 1.87 1.425 0.83 0.992 0.826
Corr 0.019 0.017 0.086 0.163 0.133 0.201
F1 0.526 0.449 0.593 0.552 0.523 0.647
Acc 0.524 0.475 0.522 0.635 0.524 0.632

Text + Audio MAE 1.481 1.728 1.401 0.828 0.919 0.762
Corr 0.013 0.125 0.141 0.173 0.248 0.439
F1 0.494 0.443 0.563 0.563 0.611 0.733
Acc 0.495 0.465 0.546 0.639 0.602 0.717

Text + Vision MAE 1.473 1.758 1.415 0.832 0.92 0.788
Corr 0.012 0.077 0.146 0.158 0.25 0.399
F1 0.514 0.452 0.58 0.579 0.612 0.718
Acc 0.514 0.476 0.534 0.638 0.592 0.704

Audio + Vision MAE 1.478 1.794 1.426 0.836 0.923 0.812
Corr 0.023 0.035 0.091 0.138 0.143 0.244
F1 0.484 0.429 0.581 0.581 0.535 0.663
Acc 0.491 0.451 0.527 0.626 0.552 0.64

Full MAE 1.468 1.797 1.392 0.839 0.902 0.779
Corr 0.035 0.041 0.247 0.149 0.249 0.504
F1 0.488 0.432 0.657 0.587 0.625 0.744
Acc 0.495 0.453 0.63 0.614 0.667 0.741

Table 9 summarizes the results of this study. As shown, Robult consistently outperforms the two
frameworks in most scenarios. This experiment further highlights Robult’s robustness in semi-
supervised settings and when modalities are missing.

C.4 EXTENDED ABLATION STUDIES ON ROBULT DESIGN

Setting. In this analysis, our goal is to understand the contributions of our applied strategies to
overall Robult’s performance. Specifically, we adopt several ablation studies:

• Removal of Unimodal branches gi(.)(i = 1 . . .M): The output of the shared branch
g0(.) is directly fed into the classifier to yield the final result. The remaining framework is
trained normally with the soft PU loss and downstream task loss.

• Soft-PU Loss Ablation - Removal of weighting scheme: Uniform weight is adopted
instead of our proposed dynamic weighting scheme.

• Soft-PU Loss Ablation - Removal of pseudo labeling: All unlabeled samples are consid-
ered negatives, resemble normal constrastive learning scheme.

Result. The results, presented in Table 10, indicate an overall performance decrease across all
modalities on two tested datasets. Specifically, with removal of unimodal branches, in the case of a
small dataset with few labeled samples (CMU-MOSI), this ablation causes some weaker modalities
to fail in generating beneficial representations during learning. Similar patterns are captures with
ablations of Soft P-U loss. The results indicate a consistent decrease in performance across both
variations and two test datasets. This analysis empirically supports the effectiveness of our soft PU
loss.

C.5 EXTENDED ABLATION STUDY REGARDING CHOICE OF RBF KERNEL

In this analysis, our goal is to understand the role of our weighting scheme in the Soft P-U Loss. We
compare two distinct weighting mechanisms to evaluate how closely a positive candidate matches
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Table 10: Additional Ablation Study with Robult on two datasets CMU-MOSI and Hateful Memes.

Modality Metrics Framework

Robult
Robult w/o
weighting
scheme

Robult w/o
unique
branches

Robult w/o
pseudo
labelling

MOSI Dataset:
Text MAE 1.397 1.418 1.514 1.412

Corr 0.144 0.125 0.131 0.16
F1 0.578 0.551 0.53 0.553
Acc 0.569 0.548 0.443 0.551

Audio MAE 1.415 1.479 1.576 1.492
Corr 0.085 -0.042 -0.096 -0.001
F1 0.539 0.514 0.513 0.528
Acc 0.535 0.456 0.514 0.455

Vision MAE 1.425 1.434 1.509 1.443
Corr 0.086 0.087 0.034 0.077
F1 0.593 0.593 0.526 0.593
Acc 0.522 0.422 0.528 0.422

Full MAE 1.392 1.388 1.487 1.359
Corr 0.247 0.192 0.207 0.214
F1 0.657 0.566 0.567 0.595
Acc 0.63 0.569 0.496 0.591

Hateful Memes:
Text AUROC 0.623 0.556 0.586 0.555

Accuracy 0.59 0.541 0.577 0.556

Image AUROC 0.596 0.597 0.547 0.597
Accuracy 0.562 0.511 0.533 0.51

Full AUROC 0.632 0.571 0.601 0.602
Accuracy 0.595 0.345 0.544 0.51

the true positive pair, and then contrast these mechanisms against our initial choice of the RBF
Kernel.

Setting. The two new weighting mechanisms are designed based on normalized distances, with the
difference lying in the choice of distance measures δ(; ) (here Euclidean and Manhattan distances).
Specifically, within a mini-batch B, given the reference proximity ϕref and the proximity ϕi of the
positive candidate that need to be weighted, we calculated the weight as follow:

wi = 1− d̃i;

d̃i =
δ(ϕi, ϕref )

maxB δ(ϕj , ϕref )
.

Result. We refer to the variant using a Manhattan distance-based strategy as Robult - L1, and
the one utilizing Euclidean measures as Robult - L2. These two variants are evaluated against the
original RBF-based model in a 5% semi-supervised task with the CMU-MOSI and CMU-MOSEI
datasets. The comprehensive results are presented in Table 11. Generally, we observe minor dif-
ferences in performance among the weighting schemes. While the RBF approach yields the most
consistent results across various input combinations for these datasets, we do not declare it the defini-
tive best weighting method. We believe further research is needed to identify the most appropriate
strategy for the dataset of interest.

C.6 MUTUAL INFORMATION MAXIMIZATION ANALYSIS

As stated in our main text, the necessity to model the objective of learning unimodal representa-
tions to maximize mutual information with a lower bound arises because mutual information can-
not be precisely calculated. This is due to the changing values of the variables over time and the
discrete nature of the datasets. To verify the effectiveness of our proposed method, we adopt the
histogram-based method in Peng et al. (2005) to approximate MI between two variables after the
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Table 11: Additional ablation study on CMU-MOSI and CMU-MOSEI Datasets.

MOSI Dataset MOSEI Dataset
Modality Metrics Robult - L1 Robult - L2 Robult Robult - L1 Robult - L2 Robult

Text MAE 1.486 1.456 1.397 0.793 0.792 0.784
Corr 0.1 0.184 0.144 0.421 0.456 0.459
F1 0.571 0.573 0.578 0.733 0.741 0.739
Acc 0.545 0.576 0.569 0.729 0.735 0.732

Audio MAE 1.475 1.51 1.415 0.825 0.853 0.825
Corr 0.049 0.083 0.085 0.199 0.165 0.221
F1 0.544 0.477 0.539 0.674 0.597 0.679
Acc 0.52 0.478 0.535 0.635 0.593 0.65

Vision MAE 1.475 1.478 1.425 0.917 0.931 0.826
Corr 0.028 0.045 0.086 0.133 0.18 0.201
F1 0.593 0.582 0.593 0.567 0.602 0.647
Acc 0.492 0.522 0.522 0.572 0.603 0.632

Text + Audio MAE 1.477 1.395 1.401 0.764 0.759 0.762
Corr 0.089 0.166 0.141 0.439 0.454 0.439
F1 0.57 0.558 0.563 0.74 0.74 0.733
Acc 0.531 0.561 0.546 0.722 0.731 0.717

Text + Vision MAE 1.47 1.389 1.415 0.781 0.772 0.788
Corr 0.128 0.236 0.146 0.391 0.429 0.399
F1 0.59 0.553 0.58 0.705 0.718 0.718
Acc 0.52 0.556 0.534 0.7 0.714 0.704

Audio + Vision MAE 1.465 1.475 1.426 0.834 0.843 0.812
Corr 0.04 0.054 0.091 0.187 0.216 0.244
F1 0.577 0.533 0.581 0.635 0.622 0.663
Acc 0.472 0.491 0.527 0.622 0.618 0.64

Full MAE 1.403 1.366 1.392 0.812 0.778 0.779
Corr 0.223 0.235 0.247 0.45 0.438 0.504
F1 0.554 0.585 0.657 0.703 0.728 0.744
Acc 0.547 0.583 0.63 0.708 0.732 0.741

Table 12: Mutual Information between fused and unimodal representations on the CMU-MOSI
dataset.

Modality Mutual Information
with fused representation

Robult Robult w/o
Soft P-U Loss

Text 0.309 0.054
Audio 0.285 0.077
Vision 0.274 0.083
Fused 2.037 1.707

training process with and without our soft PU loss (Table 12). The result suggest two important
points:

• With our soft PU loss, the mutual information of all unimodal representations with the
fused representation increase significantly.

• The entropy of the fused representation also increases with the use of our loss, suggesting
that the fused representation also get enriched after training with the soft PU loss.

C.7 SOFT LABEL QUALITY ANALYSIS

We acknowledge that the quality of pseudo-labels is crucial for effective model training. This is why
we incorporate our weighting scheme into the Positive-Unlabeled (PU) contrastive loss, considering
the stochastic and unstable nature of pseudo-labels. This approach helps to reduce the impact of
noisy pseudo-labels on the training process.

To demonstrate the effect of both pseudo-labels and our weighting strategy, we visualize the con-
fusion matrix of pseudo-labels with and without the weighting scheme, compared to ground truth
labels (Figure 8). This figure is plotted at epoch 20 of our training process using the CMU-MOSI
dataset. The confusion matrix shows a strong correlation between pseudo-labels and ground truth
labels, and the weighting scheme (removing all samples with weights below the 25% percentile
within the batch) effectively filters out some false positives identified by the pseudo labels.
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Figure 8: Confusion matrix of Pseudo Labels versus groundtruth label at epoch 20 on CMU-MOSI
dataset.

C.8 CLUSTERABILITY ANALYSIS

Class 0
Class 1

Text Input Image Input Full Input

(a) Robult

Class 0
Class 1

Text Input Image Input Full Input

(b) GMC

Class 0
Class 1

Text Input Image Input Full Input

(c) ActionMAE

Figure 9: Representation clusters generated by different methods on Hateful Memes dataset.

Complementing the Alignment Uniformity analysis presented in the main manuscript, we provide
a comparison of the clusterability characteristic of the learned representations in Figure 9. This ex-
periment is conducted with Robult, compared to GMC and ActionMAE on Hateful Memes dataset.
This qualitative analysis demonstrates that Robult’s representations are better clustered even in sce-
narios where different modalities are missing. In contrast, the other methods do not exhibit this level
of clustering effectiveness.

C.9 TRANSFERABILITY ANALYSIS

With this experiment, we investigate the tranferability characteristic of Robult, as well as existing
state-of-the-art frameworks and baselines.

Experiment settings. Inspired by common pre-training procedures, where a model is initially
trained on a large dataset for a source task and then fine-tuned for a target task, we designed an
experiment to evaluate the zero-shot performance of all models on CMU-MOSI after being trained
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Table 13: Transferability result on CMU-MOSI dataset.

MOSI Dataset

Metrics Unimodal GMC ActionMAE Robult

Text Modality:
MAE 1.448 1.454 1.456 1.446
Corr 0.132 0.119 0.106 0.132
F1 0.559 0.551 0.624 0.53
Acc 0.527 0.48 0.481 0.531
Audio Modality:
MAE 1.514 1.456 1.517 1.504
Corr -0.196 0.085 0.084 -0.126
F1 0.5 0.592 0.57 0.486
Acc 0.512 0.429 0.423 0.486

Vision Modality:
MAE 1.473 1.86 1.547 1.38
Corr 0.076 -0.087 0.017 0.058
F1 0.71 0.593 0.561 0.732
Acc 0.546 0.422 0.432 0.577
Text+Audio Modalities:
MAE 1.405 1.441 1.378 1.438
Corr 0.013 0.164 0.101 0.044
F1 0.504 0.569 0.591 0.516
Acc 0.456 0.467 0.49 0.509
Text+Vision Modalities:
MAE 1.45 1.629 1.403 1.383
Corr 0.119 0.106 0.107 0.137
F1 0.621 0.593 0.606 0.615
Acc 0.536 0.422 0.568 0.575
Audio+Vision Modalities:
MAE 1.434 1.57 1.528 1.428
Corr -0.181 -0.005 0.08 -0.088
F1 0.496 0.533 0.551 0.554
Acc 0.459 0.422 0.441 0.487
Full Modalities:
MAE 1.456 1.684 1.472 1.399
Corr 0.088 0.072 0.066 0.202
F1 0.549 0.573 0.55 0.588
Acc 0.551 0.425 0.551 0.585

with the CMU-MOSEI dataset. This setting aligns with common practices, as CMU-MOSEI is
larger in scale, covering a wider range of sentiment levels and emotions compared to CMU-MOSI
Zadeh et al. (2018b). To conduct the experiment, we first pretrain all methods with CMU-MOSEI us-
ing 5% labeled data, simultaneously evaluating them in a semi-supervised scenario. Since zero-shot
evaluation requires no fine-tuning stage, all model architectures must remain intact after pretrain-
ing. However, there are discrepancies in the dimensions of the input data between CMU-MOSI and
CMU-MOSEI. Specifically, the audio input of CMU-MOSI has a latent dimension of 5, while that
of CMU-MOSEI is 74. Additionally, the video input of CMU-MOSI and CMU-MOSEI is 20 and
35, respectively. To address this issue, we generate a compact version of CMU-MOSEI by employ-
ing T-SNE on the original data, aligning the dimensions with those in the CMU-MOSI datasets.
After pretraining, we directly run evaluations on the normal test set of CMU-MOSI, given different
combinations of input modalities to evaluate modalities missing performance.

Results. Table 13 provides a summary of the results from this experiment. Generally, all methods
experience a reduction in performance in certain cases when transferred to a different dataset. How-
ever, among all approaches, Robult consistently achieves the best performance, as indicated by the
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recorded metrics. In addition, it is noteworthy that Robult is the only approach capable of producing
meaningful results with input from full modalities in this zero-shot transfer setting.

C.10 INCORPORATION WITH EXISTING APPROACHES

This analysis investigates the ability of Robust in incorporating with other approaches to enhance
their desired characteristics in learned representations.

Experiment settings. We select GMC as a baseline approach for conducting this experiment. GMC
aims to preserve the geometrical alignment of representations from different modalities through a
geometrical contrastive loss Poklukar et al. (2022b). To observe the impact of incorporating Robult
with GMC to preserve this characteristic, we simply adopt their geometrical contrastive loss with
our existing L(u)lb:

Li
lb = − 1

||BF=1,L=1||
∑

(j,k)∼
p(F=1,L=1)

log v(sj , z
i
k) + log v(sj , sk) + log v(zij , z

i
k);

Llb = − 1

M

M∑
i=1

Li
lb.

and

Li
ulb = − 1

||BF=1,L=0||
∑

(j,k)∼
p(F=1,L=0)

wi
jk

[
log v(sj , z

i
k) + log v(sj , sk) + log v(zij , z

i
k)
]
;

Lulb = − 1

M

M∑
i=1

Li
ulb.

(18)

To evaluate the geometrical alignment of the learned representations, we employ Delaunay Com-
ponent Analysis (DCA) Poklukar et al. (2022a), a technique similar to that used in GMC. DCA
involves comparing geometric and topological properties of an evaluation set of representations (E)
with a reference set (R), which acts as an approximation of the true underlying manifold. Following
the evaluation strategy outlined in Poklukar et al. (2022b), we consider three metrics provided by
DCA that reflect the geometric alignment between R (representations of full modalities input) and
E (representations of single modality inputs): network quality q ∈ [0, 1], precision P , and recall R.
We report the harmonic mean defined as 3/(1/P + 1/R+ 1/q) when all P,R, q > 0 and 0 other-
wise. For a detailed description of DCA and its settings, please refer to the original work Poklukar
et al. (2022a;b).

Results. We provide the alignment metrics for the representations generated with CMU-MOSI and
Hateful Memes datasets, considering only 50% labeled data in their respective training sets (Table
14). The statistics indicate that Robult effectively enhances the performance of GMC in its effort to
preserve geometrical alignment under the constraint of limited label information. We anticipate that
this behavior can potentially be extended to other methods under limited available label information,
although additional investigations are needed to verify this.

Table 14: DCA Scores of models, evaluating geometrical alignment of full-modalities representa-
tions with unimodal representations.

Dataset R E Metrics Unimodal GMC Robult + GMC
MOSI Dataset Full Text MAE 0.473 0.529 0.535

Full Audio Corr 0 0.375 0.393
Full Vision F1 0 0.478 0.335

Hateful Memes Full Text AUROC 0.349 0.489 0.518
Full Image AUROC 0 0.456 0.509
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