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ABSTRACT

Foundation models have recently been shown to be strong data compressors. How-
ever, when accounting for their excessive parameter count, their compression ratios
are actually inferior to standard compression algorithms. Moreover, naively re-
ducing the number of parameters may not necessarily help as it leads to worse
predictions and thus weaker compression. In this paper, we conduct a large-scale
empirical study to investigate whether there is a sweet spot where competitive
compression ratios with pre-trained vanilla transformers are possible. To this end,
we train families of models on 165GB of raw byte sequences of either text, image,
or audio data (and all possible combinations of the three) and then compress 1GB
of out-of-distribution (OOD) data from each modality. We find that relatively small
models (i.e., millions of parameters) can outperform standard general-purpose
compression algorithms (gzip, LZMA2) and even domain-specific compressors
(PNG, JPEG 2000, FLAC) — even when factoring in parameter count. We achieve,
e.g., the lowest compression ratio of 0.49 on OOD audio data (vs. 0.54 for FLAC).
To study the impact of model- and dataset scale, we conduct extensive ablations
and hyperparameter sweeps, and we investigate the effect of unimodal versus
multimodal training. We find that even small models can be trained to perform
well on multiple modalities, but, in contrast to previously reported results with
large-scale foundation models, transfer to unseen modalities is generally weak.

1 INTRODUCTION

Strong predictive models can straightforwardly be turned into strong lossless compressors, e.g.,
via arithmetic coding (Pasco, 1977; Rissanen, 1976; Witten et al., 1987). Consequently, large pre-
trained foundation models, such as LLMs, achieve very high data compression on their training
distributions and beyond (Delétang et al., 2024). However, when factoring in these models’ parameter
count into the compression ratio, too large models actually perform worse. For this reason, large
foundation models with parameter counts on the order of billions cannot compete with standard
compression algorithms such as gzip (Deutsch, 1996) or LZMA2 (Pavlov, 2019). The goal of this
paper is thus to investigate whether pre-trained vanilla transformers can achieve compression ratios
that are competitive with standard algorithms across a range of data modalities. This places fairly
tight constraints on the maximal model size, leading us to investigate families of relatively small
transformers (with millions of parameters). Note that our aim is not to build a practical transformer-
based data compressor, as the computational footprint (running time, memory, FLOPs) of even small
models is far beyond standard compressors. Instead, studying compression via pre-trained models
provides insight into the models’ learned inductive biases, e.g., whether they are domain-general,
how they depend on the training data composition, and whether there is transfer between modalities.

Recently, Delétang et al. (2024) stated that “language modeling is compression”, pointing out that
log-loss minimization is equivalent to optimizing a lossless compression objective. To illustrate
this point, the authors used billion-parameter LLMs that were trained exclusively on text (Llama 2
from Touvron et al. (2023b) and Chinchilla from Hoffmann et al. (2022)) to compress 1GB of
image and audio data from ImageNet (Russakovsky et al., 2015) and LibriSpeech (Panayotov et al.,
2015), respectively. They found that these models compress better than gzip or LZMA2 and even
domain-specific compressors such as PNG (Boutell, 1997) and FLAC (Coalson, 2008), but only when
parameter counts are not being accounted for. To see if competitive performance is possible, they
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Figure 1: Overview of our training and evaluation data pipelines. We consider three data modalities:
text, images, and audio. From these modalities we create training data mixtures of 165GB that
are either unimodal or multimodal. After pre-training transformers on each of these datasets, we
evaluate their compression ratio (i.e., factoring in models’ parameter counts) on each of the three
modalities. If the corresponding modality has not been seen during training, we refer to the evaluation
as ‘out-of-modality’, otherwise it is ‘in-modality’. Importantly, our evaluation is always performed on
out-of-distribution data (different from any of the training data sources), even when it is in-modality.

also trained small-scale transformers (up to 3.2M parameters) on 1GB of Wikipedia (Hutter, 2006),
but found that these models were significantly worse at compressing images and audio data.

The obvious open question is whether small transformers pre-trained on large (multimodal) datasets
can achieve competitive compression ratios across different modalities and whether there is transfer
to unseen modalities, as observed in the large-scale model case. We therefore conduct an extensive
empirical study where we train families of decoder-only transformers on 165GB of either text, image,
or audio data and all combinations of the three. We then use these models (with frozen parameters,
i.e., offline training) to compress 1GB of out-of-distribution (OOD) data from all three modalities
(see Fig. 1). We also compare against transformers that are trained purely online, i.e., on the data
stream that is being compressed (Bellard, 2019; 2021), meaning that storage or communication
of the transformer weights for decompression is not required (unlike for our pre-trained models).
These online transformers currently achieve state-of-the-art results on the Large Text Compression
Benchmark (Mahoney, 2006). Overall we find that small pre-trained transformers achieve competitive
compression ratios, as our best models consistently outperform domain-general and domain-specific
standard compression algorithms and are on par with the online transformers from Bellard (2021).

Main Contributions We make the following key contributions:

• We conduct a large-scale empirical study (hyperparameter sweeps, ablations) on the com-
pression performance of small transformers trained on raw byte sequences of text, image,
and audio data (and all combinations), across various model- and dataset sizes.

• We are the first to show that small pre-trained transformers achieve better compression ratios
than general-purpose and domain-specific compressors on 1GB of out-of-distribution data
across different modalities, e.g., 0.49 on audio vs. 0.51 for Bellard (2021) & 0.54 for FLAC.

• We show that training on multiple modalities only slightly deteriorates the performance on
each individual modality but significantly boosts the compression ratios on multimodal data,
as long as all the evaluation modalities are part of the training data mixture.

• We demonstrate that small pre-trained transformers fail to beat standard compressors on
unseen data modalities (i.e., modalities they were not trained on), meaning that there is only
weak transfer to novel modalities (which is not the case for LLMs (Delétang et al., 2024)).
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2 BACKGROUND

Compression and prediction are “two sides of the same coin” (MacKay, 2003). This fundamental dual-
ity stems directly from Shannon’s celebrated lossless source coding theorem (Shannon, 1948), which
states that there is a well-defined lower bound for encoding data from a probabilistic source. For any
data sequence x1:n := x1x2 . . . xn ∈ Xn of length n from a finite alphabet X sampled from a source
ρ : X ∗ 7→ (0, 1], a lossless compressor c : X ∗ 7→ {0, 1}∗ assigns a code c(x1:n), i.e., a sequence of
bits, from which the original sequence is recoverable without loss of information. The goal is to
minimize the expected length: Lρ := Ex∼ρ[ℓc(x)] by encoding rare sequences with more bits and
frequent sequences with fewer bits. Shannon’s source coding theorem states that the minimal expected
length is lower-bounded by the Shannon entropy of the source: Lρ ≥ H(ρ) := Ex∼ρ[− log2 ρ(x)].

If the source’s statistics are unknown, good compression becomes a statistical modeling problem,
i.e., good compression relies entirely on being able to predict well sequentially. For any predic-
tor π : X ∗ 7→ (0, 1] the expected coding length Lρ

π for data drawn from ρ is at least the cross entropy:

Lρ
π ≥ Ex∼ρ[− log2 π(x)] = Ex∼ρ

[
− log2

π(x)ρ(x)

ρ(x)

]
= H(ρ) +DKL(ρ||π) ≥ H(ρ),

which is also lower-bounded by the Shannon entropy of ρ. A mismatch between π and ρ thus leads
to an excess length given by their KL divergence, and minimal coding length (maximal compression)
implies π = ρ across the whole support of ρ. Accordingly, some AI researchers have argued that
compressing well is fundamentally connected to intelligence (e.g., Chaitin’s famous “Compression is
Comprehension” (Chaitin, 2006); Rathmanner & Hutter (2011); Grau-Moya et al. (2024)), and that
building universal compressors will accelerate AI development (cf. the Hutter prize (Hutter, 2006), an
ongoing competition to compress (1GB of) human knowledge). The duality between compression and
prediction has also led to the (algorithmic) information-theoretic formulation of universal prediction,
i.e., Solomonoff induction (Solomonoff, 1964a;b; Li & Vitányi, 2019), one of two key ingredients for
AIXI (Legg & Hutter, 2007; Hutter et al., 2024), the theory of artificial superintelligence.

Consequently, Delétang et al. (2024) argue that lossless compression performance lends itself
as a domain-general metric for assessing any predictor’s quality, including foundation models.
They further emphasize that foundation models trained by minimizing log-loss (a.k.a., next-token
prediction-error or cross entropy loss) are explicitly trained to minimize the expected coding length:

min
π

Lρ
π = min

π
Ex∼ρ[− log2 π(x)]︸ ︷︷ ︸

“log loss”

= min
π

Ex∼ρ

[∑
i

− log2 π(xi|x<i)

]
. (1)

Note that the problem of constructing the actual codes that achieve (near) minimal expected code
length given a predictor is largely solved in information theory, with gold-standard algorithms such
as Huffman coding (Huffman, 1952), arithmetic coding (Pasco, 1977; Rissanen, 1976; Witten et al.,
1987), or asymmetric numeral systems (Duda, 2009). The latter two compress strings online by
iteratively converting them into a single binary number with increasing precision (see Delétang et al.
(2024) for an illustration or Chapter 2 in Hutter et al. (2024)). Arithmetic coding is an example of an
online compression algorithm since it only requires a single pass through the data and compresses on
the fly (unlike offline compressors, such as Huffman coding, that require multiple passes through
the data). Both our models and Bellard (2021), which we compare against, use arithmetic coding
and compress online. However, the difference is that we pre-train our predictor, i.e., we perform
offline training on a dataset and then freeze its parameters (non-adaptive arithmetic coding), whereas
Bellard (2021) performs online adaptation of the model parameters on the data stream that is being
compressed (adaptive arithmetic coding). As a result, and unlike our compressors, Bellard (2021)
does not communicate the trained weights for decompression but only the model architecture and
training algorithm (i.e., the model parameters do not need to be factored into the compression ratio).

3 RELATED WORK

Compression Without Transformers Using neural networks as predictors for lossless compression
has been extensively studied, both in conjunction with arithmetic coding (Lehtokangas et al., 1993;
Schmidhuber & Heil, 1994; 1996; Mahoney, 2000; Mikolov, 2012; Knoll, 2014; van den Oord &
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Schrauwen, 2014; Cox, 2016; Schiopu et al., 2018; Goyal et al., 2019; Liu et al., 2019; Mentzer
et al., 2019; 2020; Schiopu & Munteanu, 2020; Rhee et al., 2022) and with asymmetric numeral
systems (Hoogeboom et al., 2019; Kingma et al., 2019; Townsend et al., 2019; Barzen et al., 2022).
Neural networks have also successfully been employed in lossy compression, e.g., by overfitting
tiny networks to individual data points and transmitting the model weights rather than the original
data (Dupont et al., 2021; 2022; Chen et al., 2021; Ladune et al., 2023; Kim et al., 2023).

Online Transformers Most of the above approaches use a separate training set to pre-train models
that are then used to compress a test set. Alternatively, the model can also be trained from scratch on
the data stream that is being compressed (Bellard, 2019; 2021; Goyal et al., 2020; Mao et al., 2022).
The main advantage of these adaptive online compressors is that they are (quasi) parameterless (since
they are initialized from scratch when compressing a new data stream), meaning that the model size
does not explicitly affect the compression ratio, even for large models (though it implicitly affects the
training performance, e.g., large models train more slowly meaning that larger chunks of the initial
data stream are only weakly compressed). The transformer-based adaptive online compressor of
Bellard (2021) is currently state-of-the-art on the Large Text Compression Benchmark (Mahoney,
2006), and our evaluation (in Section 5) shows that our best models are on par across all modalities.

Pre-Trained Transformers Most closely related to our work is the line of research by Valmeekam
et al. (2023); Delétang et al. (2024); Huang et al. (2024); Li et al. (2024); Mittu et al. (2024), which
investigates lossless compression via arithmetic coding with pre-trained foundation models, i.e.,
the Llama models (Touvron et al., 2023a;b; Dubey et al., 2024) and Chinchilla (Hoffmann et al.,
2022). Delétang et al. (2024), in particular, also report good compression rates on unseen modalities
(LLMs trained only on text compress images and audio data well). However, these studies differ
from our work as they do not take the model size into account for the compression ratios, except
for Delétang et al. (2024), who report both “raw” and “adjusted” compression ratios and find that
LLMs are not competitive in terms of adjusted (i.e., the actual) compression ratios. To the best of our
knowledge, our paper is the first to systematically investigate the use of appropriately sized pre-trained
transformers for multimodal lossless compression in a regime where competitive performance w.r.t.
standard compression algorithms is possible. In this regime, our study is the most comprehensive in
that it also investigates multimodal training and cross-modal transfer of pre-trained transformers.

4 METHODS

We now describe our experimental setup (with additional details, e.g., sweeps, in Appendix A).

Baselines We compare to various standard compressors, both general-purpose, i.e., gzip (Deutsch,
1996) and LZMA2 (Pavlov, 2019), and domain-specific, i.e., FLAC (Coalson, 2008) for audio data
and PNG (Boutell, 1997) and lossless JPEG 2000 (Skodras et al., 2001) for images. Both gzip and
LZMA2 (which is used by the 7zip software) are based on Huffman coding (Huffman, 1952) and the
Lempel-Ziv-Welch algorithm (Welch, 1984). We use the default parameters for gzip, LZMA2, and
JPEG 2000, compression level 12 for FLAC, and instruct PNG to find the optimal encoder settings.
We also compare to the online transformer from Bellard (2021), with the default v3.3 parameters,
which is the current state-of-the-art on the Large Text Compression Benchmark (Mahoney, 2006).

Models We focus on decoder-only transformers (Vaswani et al., 2017) with SwiGLU activa-
tions (Shazeer, 2020) and post-layer normalization. Unless otherwise noted, we use 8 heads, an
embedding dimension of 64, a context size of 4096 (bytes), and sliding windows without overlap
or memory (full details in Appendix A.3). We always train and evaluate the models with the same
context size (i.e., 4096 by default). We train our models with the Adam optimizer (Kingma & Ba,
2015) for 2.5 million steps with a batch size of 32, which, for 165GB of data, roughly corresponds to
2 epochs. Due to the duality of compression and prediction, we minimize the standard (sequential)
log-loss (Eq. (1)) during training, which is a maximum-compression objective (see Section 2).

(No) Tokenization Tokenization is a commonly-used, domain-specific pre-compression step to
boost transformers’ performance by increasing their vocabulary size in order to fit more information
into their limited context window (Lester et al., 2024), i.e., increased information density at the cost
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of increased entropy. However, since our goal is to be domain-general, we do not use tokenization
and instead feed our models directly with byte streams (we still have to choose how to flatten images
and how to sample audio signals, which are minimal domain-specific preprocessing steps).

Evaluation To evaluate performance, we compute the compression ratio (lower is better):

compression ratio :=
size of compressed data + size of compressor

size of uncompressed data
, (2)

which accounts for the model size and is equivalent to the “adjusted compression rate”
of Delétang et al. (2024). We always evaluate on 1GB of out-of-distribution data, i.e.,
size of uncompressed data = 1GB. As Delétang et al. (2024), we compute the size of the com-
pressor by encoding the model weights with float16 (2 bytes per parameter) since this level of
quantization does not significantly affect performance (Tao et al., 2022) and is standard for model
inference. As a result, our model sizes range from 0.8MB to 40.3MB. Note that, similar to Delétang
et al. (2024), we do not compress the model parameters, since naive approaches (e.g., compressing
them with gzip) do not significantly decrease the model size (only by around 7%, which corresponds
to a decrease in compression ratio of only 0.002821 for our largest model). However, as a result, the
compression ratio we report is an upper bound, which could be improved by (losslessly) compressing
the parameters (though with limited room for improvement in our regime, even in the best case).

Training Datasets A key point of our investigation is to evaluate how well pre-trained transformers
can compress data from different modalities — both if the modality was or was not part of the training
data (Fig. 1 visualizes our data collection process). We create three different unimodal training
datasets with audio, images, and text data, and four multimodal training sets (Appendix A.1 describes
the datasets in full detail). This yields seven pre-training datasets in total, each consisting of 165GB
of data: (i) 165GB of audio; (ii) 165GB of images; (iii) 165GB of text; (iv) 82.5GB of audio and
82.5GB of images; (v) 82.5GB of audio and 82.5GB of text; (vi) 82.5GB of images and 82.5GB of
text; and (vii) 55GB audio, 55GB of images, and 55GB text. By training our models on all seven
training data mixtures, we can investigate in-modality and out-of-modality compression ratios. For
example, for a model trained on the text dataset, the in-modality compression ratio can be determined
by evaluating on text, while audio or image data provide out-of-modality compression ratios.

Out-of-Distribution Evaluation Datasets To mimic the setting for which standard compression
algorithms were developed (and thereby ensure a fair comparison), where the compressor is pro-
grammed with only minimal statistical assumptions about the data (with stronger assumptions for
domain-specific compressors), we evaluate on unseen, out-of-distribution (OOD) datasets for each
modality and not on in-distribution held-out datasets (as commonly done in machine learning). To do
so, we create a single OOD dataset of 1GB for each modality (full details in Appendix A.2).

5 RESULTS

In this section, we present our extensive experimental evaluation (additional results in Appendix B).
Unless otherwise noted, we report the best results over two hyperparameter sweeps (described in
Appendix A.3): (i) over the model- and dataset sizes, and (ii) over the model- and context sizes.

Small Transformers Can Be Domain-General Compressors Figure 2 shows the best compression
ratio attained on each of the seven out-of-distribution evaluation datasets when training a model
on each of the seven training data mixtures (we report the best-performing model from our two
sweeps for each training-evaluation pair). We observe that transformers can achieve state-of-the-
art in-modality compression ratios, regardless of the concrete composition of the training mixture,
outperforming standard compression algorithms (even domain-specific ones) in all cases where
all evaluation modalities are part of the training mixture. In these cases, transformers thus learn
the prototypical statistical patterns related to that modality during pre-training. Importantly, by
comparing models trained on unimodal vs. multimodal data, we observe that multimodal training
only slightly decreases the compression performance compared to the unimodal models on their
respective modalities (despite only having half or a third amount of data from that modality). This
means that it is possible to trade off a small amount of performance on each individual modality to
obtain a very strong domain-general compressor via multimodal training (the gray bar in Fig. 2).
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Figure 2: Small pre-trained transformers can be domain-general compressors (panels correspond
to evaluation data mixtures, bars to training data mixtures). On every out-of-distribution evaluation
data mixture, our method (i.e., the bars) outperforms standard compression algorithms (all horizontal
lines except for ‘Bellard’) and is on par with Bellard’s online adaptive transformers (the dark blue
line) — as long as the evaluation modality was included in the training data mixture. For unseen
modalities we observe very little cross-modal transfer (which is different from observations made
with foundation models Delétang et al. (2024)). Unimodal training leads to models that are good
for their respective modality, but multimodal training yields models that perform almost as well as
the unimodal models across all their training modalities (despite seeing a lot less data per modality
than the unimodal models), i.e., one can trade off a small amount of performance on each individual
modality in return for a strong domain-general compressor via multimodal training (gray bar).
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Figure 3: What you see is what you get. Each panel visualizes the compression ratios for one of our
modalities when training models on varying dataset mixtures and sizes. Although one can replace
a large proportion of a unimodal training dataset with a multimodal training mixture and not incur
a significant loss on the original modality, transformers (at our tested model sizes) do not exhibit
improved transfer from the out-of-modality data (i.e., the multimodal models are worse than the
unimodal ones, even when trained on much more data from that particular modality). The upshot
is that the multimodal training data does not hurt much (note the scale of the y-axis), but leads to
significantly improved multimodal compression performance as shown in Fig. 2.
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Figure 4: Simultaneously scaling training dataset and model size (for unimodal training- and
evaluation data). The colors indicate the model size, and the lines correspond to different dataset
sizes (20%, 40%, 60%, 80%, and 100%). We always train for 2 epochs, regardless of dataset size,
i.e., smaller datasets require fewer FLOPS. As expected, increasing the number of parameters and
the dataset size boosts compression (at the cost of increased training FLOPS). Note that our out-of-
distribution evaluation makes models more prone to overfitting, as seen, e.g., for our largest models
on images, making scaling more complex than traditionally observed LLM scaling laws.

What You See Is What You Get While Fig. 2 shows that substituting half or two thirds of the
training set with data from other modalities only leads to a small performance loss compared to the
unimodally trained models, it is unclear whether simply training on a smaller amount of unimodal
data (i.e., decreasing the unimodal training dataset size to, e.g., 82.5GB and not substituting 82.5GB
with data from another modality) would give the same performance, or whether there is some transfer
between modalities (as suggested by Mirchandani et al. (2023)) that compensates for the smaller
amount of data per individual modality. To investigate this, we run an ablation where we subdivide
each of our seven training sets into 5 different sizes: 20%, 40%, 60%, 80%, and 100% of the
respective dataset (uniformly subsampled). We train a series of models (sweeping over their number
of layers; see Appendix A.3) on each dataset mixture and each dataset size, and then evaluate as
before. Figure 3 shows that, for our models and datasets, there is little transfer between modalities.
For all cases of audio, text, and (less clearly) images, it is better to train on a smaller unimodal dataset
to get the best unimodal performance, as opposed to training on a much larger multimodal dataset.
For example, training on a pure text dataset of 33GB (20% of 165GB) outperforms training on a
dataset consisting of 82.5GB (i.e., more than twice as much) text and of 82.5GB images/audio.

Scaling Analysis Since there is a non-trivial relationship between model size and dataset size, we
perform a scaling analysis on both of these factors (details in Appendix A.3). Figure 4 shows trends
akin to the scaling laws observed for LLMs (Kaplan et al., 2020), which state that better prediction
(in our case compression) is only possible by scaling both models and datasets, in a particular way.
Note that, different to traditional scaling laws for models trained on internet-scale datasets, the
distribution shift in our evaluation makes it easier for the model to overfit to the training distribution.
However, as the number of parameters and the training flops of our small models increase, the
adjusted compression ratio improves, eventually beating standard compression algorithms. We do
observe gradual overfitting on the image dataset for our models trained only on images. However,
this phenomenon can be mitigated by including other modalities in the training mixture (see Fig. A1).

Model Size vs. Context Size The previous two experiments investigated the impact of training
dataset size and model size, which revealed a complex, “scaling law”-like, relationship between the
two factors and the overall training budget in FLOPS. In this experiment, we investigate the impact
of the length of the context window. Since the context window length has a large impact on the
overall FLOPS footprint (attention scales quadratically with the input sequence length), we also vary
the size of our models to explore whether there is a sweet spot in terms of training compute budget
allocation (details in Appendix A.3). Fig. 5 shows that the optimal trade-off strongly depends on the
data modality. The top performing models for text have a context window less than or equal to 2048
bytes, indicating that short term dependencies are more important than long ones in this case. For
images, the best compromise overall is to choose a larger context window of 8192, which means
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Figure 5: Relationship between context- and model size. Given a certain training compute budget
(in FLOPS), one can either increase the context size (measured in bytes) or the model size, leading to
a non-trivial trade-off. Our results show that this trade-off is highly modality-dependent (also note
the different scales on the y-axis, meaning that the magnitude of the effect varies significantly with
modality). For text, shorter context sizes and larger models are beneficial (indicating the importance
of short-term dependencies for our data and model scale). For images, larger context is generally
beneficial, which makes sense, given that a single image consists of 512 · 512 · 3 = 786432 bytes,
which far exceeds our models’ contexts, i.e., models with larger context can process larger fractions
of an image. Finally, for audio data the relationship is complex with intermediate context length and
larger models performing better (though the reverse is true for short context length).
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Figure 6: Compression ratio vs. evaluation dataset size. According to Eq. (2), the numerator of
the compression ratio consists of the size of the compressed data and the size of the compressor.
For standard compressors (e.g., gzip), the size of the compressor (a few thousand lines of code) is
negligible given sufficient evaluation data (i.e., the compression ratio is unaffected by the evaluation
dataset size). However, for neural compressors trained offline (i.e., where the size of the compressor
is dominated by the model parameters), the compression ratio improves with increasing data since the
model size has decreasing influence. Moreover, if the model is equal to or larger than the evaluation
dataset size (e.g., 500M parameters and 1GB of data), one cannot achieve a compression ratio < 1.

decreasing the model size. For audio data, the trade-off is even more complex. Overall these results
highlight the difficulty of tuning architectures to achieve best performance across many modalities.

Evaluation Dataset Size Figure 6 visualizes the relationship between the compression ratio and
the evaluation dataset size for all three modalities and our best-performing model (as determined on
the standard 1GB of OOD data in Table A1). For offline (i.e., pre-) trained neural compressors, the
model parameters have to be factored into the compression ratio, which means that their compression
performance will improve with increasing evaluation data (as long as the model generalizes well
to the additional data). In contrast, the size of standard compressors is negligible compared to the
amount of evaluation data, which means that their compression ratios are largely unaffected by the
evaluation dataset size. Note that FLAC cannot losslessly compress more than ∼ 4.2GB of data.
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Figure 7: Impact of the sliding win-
dow overlap (for unimodal training and
evaluation). Overlapping context win-
dows only marginally improve the per-
formance (most significantly for images)
in our experiments but come at a huge
cost in terms of computational efficiency.

Sliding Window In all experiments so far we used a
sliding window without overlap to process the evaluation
byte streams, i.e., we completely fill a whole context win-
dow, process it, and then slide it forward by the size of
the context window to process the next chunk of data.
This means that bytes early in the context window are
not conditioned on a lot of data (in theory, conditioning
on more data should help with prediction and thus com-
pression, which may well be exploitable by transformers’
in-context learning abilities (Brown et al., 2020; Genewein
et al., 2023; Ge et al., 2024)). However, sliding the con-
text window with more overlap requires more forward
passes to process the same amount of data, which signif-
icantly increases the computational cost with increasing
overlap. With no overlap processing 4096 bytes with a
context window of 4096 takes a single forward pass. In the
most extreme case of maximal overlap it would take 4095
forward passes, where the context window is moved by
a single byte each time (though each prediction could be
conditioned on the full 4095 preceding bytes). In our final
experiment, we investigate the effect of different overlaps
between context windows. Figure 7 shows that for our
data and model sizes, increasing the overlap window (for
a context length of 4096) has relatively little effect. The
strongest effect is observed for image data, which makes
sense given that 4096 bytes only corresponds to a small fraction of an image and there are obvious
long-range dependencies between channels of the same image. Beyond an overlap of 2048 we do not
see much benefit of further increasing the overlap window in our experiments.

6 DISCUSSION

The main goal of our work is to investigate whether pre-trained transformers can be competitive with
standard compressors, even when taking their parameter size into account. In contrast to previous
work, this places our models into a relatively small regime, where it is unclear whether models
will learn well from large datasets at all and have non-trivial out-of-distribution and cross-modality
transfer. This could partly be countered by training larger models and then subsequently compressing
the model parameters themselves. We chose not to do this in our case since naive lossless compression
of model parameters leads to a 10% reduction at best (see Table A3), and even best-case scenarios
would only lead to marginal improvements in compression ratio given the size of our largest models.
For very large (e.g., foundation) models, compressing weights to achieve competitive compression
ratios may be interesting, though it will be necessary to use lossy weight compression techniques (Tao
et al., 2022), which lead to non-trivial trade-offs between high (lossy) compression and maintaining
strong predictor performance, i.e., the two summands in the numerator of Eq. (2). Exploring these
trade-offs is an interesting direction for future research but beyond the scope of our work. Another
way to allow for larger models would be to simply evaluate on a larger test set. We deliberately
chose to use 1GB of test data as a regime where standard compression algorithms are hard to beat.
Additionally, evaluations on larger test data, and in settings where model parameters are not taken into
account have previously conducted (Delétang et al., 2024; Valmeekam et al., 2023; Li et al., 2024)
(where significant amounts of cross-domain transfer have also been found, unlike in our experiments).

Note that, similar to Xue et al. (2022), we do not use a tokenizer, which has two reasons. First,
tokenizers are typically pre-trained per modality, and we want to rule out bad cross-modality transfer
resulting from a bad tokenizer. Second, tokenization acts as a pre-trained “pre-compression” step
(Delétang et al. (2024) make a similar comment). This pre-compression increases information density
in the context window at the cost of increasing entropy, which can make the prediction problem
harder: Lester et al. (2024) even show that when using a strong neural-based pre-compressor (together
with arithmetic coding) to train LLMs, training performance can collapse catastrophically.
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Limitations All our claims regarding the universality of our compressors (or the lack thereof)
are limited to the model size regime and the particular modalities and datasets we studied. We
cannot rule out that there are cases where even in-modality transfer is weak (e.g., when using another
out-of-disribution image evaluation dataset with very different statistics), or that there may be cases
of non-trivial cross-modal transfer (which we have not observed). We did not investigate transfer
learning approaches to improve the out-of-modality performance of our neural compressors, but we
consider this an interesting avenue for future work. Similarly, our claims regarding outperforming
standard compression algorithms are limited to our experiments. We cannot rule out that there
are datasets (such as spreadsheet data, or code, which, technically, are both text) where no pre-
trained transformer outperforms, e.g., LZMA2 (in fact, we think its plausible that such datasets can
be constructed synthetically). Moreover, we can also not rule out that other, more sophisticated
architectures (e.g., Perceivers (Jaegle et al., 2021)), would outperform our models, and we consider
investigating the optimal neural model architecture for lossless compression an interesting direction
for future research. Finally, note that the goal of our study is not to build a practical transformer-based
universal compressor to compete with standard compressors in terms of computational footprint. As
Table A2 shows, our models are orders of magnitude slower for encoding data (and have significantly
larger memory- and FLOPS-demands), and they are about three times slower than Bellard’s online
adaptive transformer. This is only the forward-pass cost, which can be done for a whole context
window at once (without overlap). If our models were used do decode, which has to be performed
token-by-token to obtain the correct conditioning, our running time demands would be even worse,
making our models clearly uncompetitive in that sense.

7 CONCLUSION

In this paper we have shown that it is possible to use pre-trained vanilla transformers as competitive
“zero-shot” compressors on out-of-distribution evaluation data, where competitive means achieving
better compression ratios than both domain-general and domain-specific standard compression
algorithms. We found this to be true for text, images, and audio data, and for all possible combinations
of the three — but only as long as the corresponding modalities have been seen during training. We
further found that, despite their relatively small size, our models have the capacity to train on multiple
modalities, and then compress these well, without losing much performance compared to a purely
unimodal model. On the other hand, we found that even multimodal training does not lead to the
emergence of a universal compression ability that would yield strong compression performance on
unseen modalities. This is in contrast to observations made by Delétang et al. (2024) on LLMs and
indicates that there is a qualitative difference between small and (very) large models, even when the
small models are trained on large amounts of data. Overall our results suggest that small transformers
can be pre-trained to recognize and exploit statistical regularities on par and even better than hand-
crafted standard compressors and current state-of-the-art adaptive online neural compressors, but we
do not observe the emergence of a general compression ability with our model sizes.
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A EXPERIMENTAL DETAILS

A.1 TRAINING DATA SOURCES

We source all of our data from the following open-source TensorFlow datasets (Pot et al., 2019):

Text Since most of TensorFlow’s text datasets are quite small, we concatenate the following five
datasets into a single collection of 165GB: (i) Wikipedia (Wikimedia, 2023), the filtered UTF-8
encoded text from an XML dump from 2023-06-01, containing all languages but predominantly
English and western languages (113.9GB); (ii) PG-19 (Rae et al., 2020), books from the Project
Gutenberg, also encoded in UTF-8 (9.4GB); (iii) Big Patent (Sharma et al., 2019), a dataset of patents
in English (30.2GB); (iv) Scientific Papers (Cohan et al., 2018), from arXiv and PubMed, containing
the raw text including the LaTeX code (8.1GB); and (v) Natural Instructions (Mishra et al., 2022;
Wang et al., 2022), tasks formulated in English covering different domains and lanugages (4.1GB).

Image We collect a subset of 165GB of the ImageNet dataset (Russakovsky et al., 2015), uniformly
sampled across the 1000 classes, which contains 14 197 122 annotated images (of varying resolutions)
from the WordNet hierarchy. We decode the images into RGB arrays (three uint8 channels), flatten
them, and concatenate them into a byte stream of flattened images. As a consequence, we ignore
image boundaries when sampling from this data source (i.e., sequences are not guaranteed to start or
end at the start or end of an image).

Audio We create a subset of 165GB from the Common Voice dataset (Ardila et al., 2020), a
multilingual dataset of voice recordings. We downsample the dataset from 48 kHz to 16 kHz and
encode the waveform as int16, i.e., with two bytes per sample. As for images, we concatenate all
individual audio samples into a single byte stream. Accordingly, there is no guarantee that a sequence
sampled from our dataset starts or ends at the beginning of a recording.

A.2 OUT-OF-DISTRIBUTION EVALUATION DATA SOURCES

We source all of our data from the following open-source TensorFlow datasets (Pot et al., 2019):

Text We consider a 1GB subset of the Reddit dataset (Völske et al., 2017), which contains 3.8
million Reddit posts encoded in UTF-8.

Images We create a 1GB subset of the CelebA HQ dataset (Liu et al., 2015) with a resolution of
512× 512. We process the images in the same way as for our image training set, i.e., flattening and
concatenation, and we subsample uniformly across classes of CelebA.

Audio We use 1GB from the LibriSpeech (Panayotov et al., 2015) dataset, which contains roughly
1000 hours of English speech data derived from audiobooks that have been segmented and aligned in
the LibriVox project. The data is already in 16kHz (with a sample size of 2 bytes), and we simply
concatenate samples into a single byte stream.

Multimodal Evaluations For our evaluations on multimodal data, we use the unimodal evaluations
on 1GB of data as described above and average the results accordingly (both for our models but also
all standard compression algorithms, and Bellard’s online adaptive transformer), either over two or
three evaluations depending on the evaluation mixture composition.

A.3 SWEEPS

Model Size vs. Dataset Size The experiment to investigate the impact of training dataset- and model
size, with results shown in Fig. 4, used the following model parameters. Dataset sizes were 20%,
40%, 60%, 80%, and 100% of the full 165GB for each training set mixture (uni- and multimodal).
All models used a context size of 4096, 8 attention heads per layer, a widening factor of 4 and the
number of layers was either 2, 4, 6, 8, or 10. Models were trained with a batch size of 32. The
learning rate was 1× 10−4, and a sinusoid positional encoding was used.
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Table A1: Best compression ratios for each compressor. This table shows the same results as Fig. 2
but as precise numerical values to facilitate detailed comparison.

Out-of-Distribution Compression Ratio
Evaluation Modality Ours Bellard gzip LZMA2 FLAC PNG JPEG 2000
Audio 0.487 0.509 0.813 0.699 0.538 - -
Image 0.285 0.281 0.698 0.545 - 0.426 0.390
Text 0.217 0.204 0.394 0.286 - - -
Audio + Image 0.393 0.395 0.756 0.622 - - -
Audio + Text 0.362 0.357 0.604 0.493 - - -
Image + Text 0.270 0.243 0.546 0.415 - - -
Audio + Image + Text 0.349 0.331 0.635 0.510 - - -

Model Size vs. Context Size Fig. 5 in the main paper shows the relationship between context length
and model size. For this experiment we performed a large-scale sweep with the goal of covering a
good range of training FLOPS budget with models that make various trade-offs between model size
and context length (given the same model size, compute demand increases with increasing context
length). The main question was whether there is a qualitatively similar relationship across parameters,
and whether there is a clear sweet spot — see the main paper for results and discussion. For our
sweep we used the same model parameters as in the previous paragraph (the training data size was
always at 100%) and sweep over the following four context sizes (with training batch size in brackets):
[1024 (128), 2048 (64), 4096 (32), 8192 (16)]. For each context size we train five models (XS, S, M,
L, and XL) on all three unimodal datasets, respectively. Each model has a different combination of
embedding dimension and number of layers for each different context size. The XS models have
embedding dimensions [112, 96, 80, 64] and numbers of layers [11, 7, 5, 3] for the different context
sizes respectively (i.e., wider and deeper models for shorter contexts and more narrow and more
shallow models for long context size). The S models have embedding dimensions [192, 160, 112, 96]
and numbers of layers [10, 8, 6, 4]. The M models have embedding dimensions [224, 192, 144, 112]
and numbers of layers [12, 9, 7, 5]. The L models have embedding dimensions [272, 240, 176, 144]
and numbers of layers [13, 10, 8, 5]. The XL models have embedding dimensions [320, 304, 240, 160]
and numbers of layers [12, 9, 7, 6]. The main goal with these settings is to create families of models
that have roughly the same demand in terms of FLOPS (iso-FLOPS) but very different trade-offs in
terms of model- and context size.

A.4 COMPUTATIONAL RESOURCES

We trained every model on 16 NVIDIA A100 GPUs from our internal cluster. We trained 315 models
in total, yielding a computational footprint of 5040 A100s. We ran Bellard’s code on an NVIDIA
GeForce RTX 4090 GPU with a 24-core Intel i9-13900KF CPU @ 3Ghz.

B ADDITIONAL RESULTS

B.1 COMPRESSION RATIOS

Table A1 shows the optimal compression ratios that each of the compressors achieve on all of
the different evaluation modalities (note that all evaluations are on out-of-distribution data). The
same values as shown in Fig. 2 in the main paper and given here as precise numerical values for
completeness.

B.2 RUNNING TIMES

Table A2 shows the wall-clock running times in seconds for compressing 1GB of data from each
of the three modalities for our models, Bellard’s online adaptive transformer (Bellard, 2021), and
the standard compression algorithms used in our work. As the table clearly shows, our models and
Bellard’s model are orders of magnitudes slower (let alone the increased computational demand and
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Table A2: Running times to compress 1GB of data for all compressors used in our study. Note that
we use the best model per modality, which have different sizes and thus different running times.

Running Times [s]
Evaluation Modality Ours Bellard gzip LZMA2 FLAC PNG JPEG 2000
Audio 305 609 101 178 55 524 169 - -
Image 222 065 103 391 47 436 174 495 99
Text 452 355 100 657 102 881 184 - -

Table A3: Compression ratios for model parameters. We losslessly compress the trained model
parameters with standard compressors. For each modality we choose the best-performing model. As
is shown, the maximal compression is 11%, which would affect the overall compression ratio on the
corresponding evaluation data only very marginally.

Model Parameter
Compression Ratio

Evaluation Modality gzip LZMA2
Audio 0.93 0.90
Image 0.93 0.90
Text 0.92 0.89

GPU requirements). Note that running times for our models differ, because we pick the best model
per modality, which are models of different sizes.

B.3 COMPRESSING MODEL PARAMETERS

Throughout our paper we report compression rates that take uncompressed model parameters into
account. As discussed in the main paper, compression ratios could be improved by also compressing
model parameters. However, as Table A3 shows, naively compressing model parameters with a
lossless compressor does not lead to much compression, which would translate into very marginal
gains on the overall compression ratio. While it is possible to investigate more sophisticated compres-
sion schemes, in particular lossy compression of network weights (though this opens the problem
of having to solve a trade-off between increasing weight compression and maintaining compression
performance), this is beyond the scope of our paper. Accordingly, our compression rates can be
understood as (somewhat) conservative estimates that give (in our case fairly tight) upper bounds
on compression performance. The topic of compressing network weights to achieve competitive
compression ratios would be of greater significance in a regime where models are significantly larger
than ours (but the evaluation data stays roughly at the same size).

B.4 SCALING ANALYSIS FOR MULTIMODAL TRAINING

Fig. A1 shows the results of simultaneously scaling dataset- and model size across training. In
contrast to the similar Fig. 4 in the main paper, where models were trained on unimodal data, Fig. A1
shows models trained on multimodal data (i.e., the uniform mixture across all three modalities, with
55GB per modality). The multimodal training mixture acts as a regularizer, which can clearly be seen
by the lack of overfitting of the largest models on images. Compare this against the unimodal training
results in Fig. 4 where overfitting can be observed. In line with our other main results in Fig. 2 and
Fig. 3, the overall compression ratios are slightly worse for the models trained on multimodal data
compared to unimodal training.
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Figure A1: Similar to Fig. 4 in the main paper, but here the models are trained on a uniform mixture
over all three modalities (55GB per modality). The plot shows compression performance evaluated
on the unimodal datasets as training progresses for various model- and training set sizes (models are
different colors, each line is a different training set size of either 20%, 40%, 60%, 80%, and 100%).
We always train for 2 epochs, regardless of dataset size, i.e., smaller datasets require fewer FLOPS.
In contrast to Fig. 4, where models are trained on unimodal data, we observe no overfitting, e.g., on
images, even for the largest models tested. Note, however, that the compression ratios are slightly
worse than for unimodal training, which is in line with our other expriments that show small losses
when training on multimodal data.
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