
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPRESSION VIA PRE-TRAINED TRANSFORMERS: A
STUDY ON BYTE-LEVEL MULTIMODAL DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models have recently been shown to be strong data compressors. How-
ever, when accounting for their excessive parameter count, their compression ratios
are actually inferior to standard compression algorithms. Moreover, naively re-
ducing the number of parameters may not necessarily help as it leads to worse
predictions and thus weaker compression. In this paper, we conduct a large-scale
empirical study to investigate whether there is a sweet spot where competitive
compression ratios with pre-trained vanilla transformers are possible. To this end,
we train families of models on 165GB of raw byte sequences of either text, image,
or audio data (and all possible combinations of the three) and then compress 1GB
of out-of-distribution (OOD) data from each modality. We find that relatively small
models (i.e., millions of parameters) can outperform standard general-purpose
compression algorithms (gzip, LZMA2) and even domain-specific compressors
(PNG, JPEG 2000, FLAC) — even when factoring in parameter count. We achieve,
e.g., the lowest compression ratio of 0.49 on OOD audio data (vs. 0.54 for FLAC).
To study the impact of model- and dataset scale, we conduct extensive ablations
and hyperparameter sweeps, and we investigate the effect of unimodal versus
multimodal training. We find that even small models can be trained to perform
well on multiple modalities, but, in contrast to previously reported results with
large-scale foundation models, transfer to unseen modalities is generally weak.

1 INTRODUCTION

Strong predictive models can straightforwardly be turned into strong lossless compressors, e.g.,
via arithmetic coding (Pasco, 1977; Rissanen, 1976; Witten et al., 1987). Consequently, large pre-
trained foundation models, such as LLMs, achieve very high data compression on their training
distributions and beyond (Delétang et al., 2024). However, when factoring in these models’ parameter
count into the compression ratio, too large models actually perform worse. For this reason, large
foundation models with parameter counts on the order of billions cannot compete with standard
compression algorithms such as gzip (Deutsch, 1996) or LZMA2 (Pavlov, 2019). The goal of this
paper is thus to investigate whether pre-trained vanilla transformers can achieve compression ratios
that are competitive with standard algorithms across a range of data modalities. This places fairly
tight constraints on the maximal model size, leading us to investigate families of relatively small
transformers (with millions of parameters). Note that our aim is not to build a practical transformer-
based data compressor, as the computational footprint (running time, memory, FLOPs) of even small
models is far beyond standard compressors. Instead, studying compression via pre-trained models
provides insight into the models’ learned inductive biases, e.g., whether they are domain-general,
how they depend on the training data composition, and whether there is transfer between modalities.

Recently, Delétang et al. (2024) stated that “language modeling is compression”, pointing out that
log-loss minimization is equivalent to optimizing a lossless compression objective. To illustrate
this point, the authors used billion-parameter LLMs that were trained exclusively on text (Llama 2
from Touvron et al. (2023b) and Chinchilla from Hoffmann et al. (2022)) to compress 1GB of
image and audio data from ImageNet (Russakovsky et al., 2015) and LibriSpeech (Panayotov et al.,
2015), respectively. They found that these models compress better than gzip or LZMA2 and even
domain-specific compressors such as PNG (Boutell, 1997) and FLAC (Coalson, 2008), but only when
parameter counts are not being accounted for. To see if competitive performance is possible, they

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

🗎 🖻 🕩

🕩🖻🗎

Figure 1: Overview of our training and evaluation data pipelines. We consider three data modalities:
text, images, and audio. From these modalities we create training data mixtures of 165GB that
are either unimodal or multimodal. After pre-training transformers on each of these datasets, we
evaluate their compression ratio (i.e., factoring in models’ parameter counts) on each of the three
modalities. If the corresponding modality has not been seen during training, we refer to the evaluation
as ‘out-of-modality’, otherwise it is ‘in-modality’. Importantly, our evaluation is always performed on
out-of-distribution data (different from any of the training data sources), even when it is in-modality.

also trained small-scale transformers (up to 3.2M parameters) on 1GB of Wikipedia (Hutter, 2006),
but found that these models were significantly worse at compressing images and audio data.

The obvious open question is whether small transformers pre-trained on large (multimodal) datasets
can achieve competitive compression ratios across different modalities and whether there is transfer
to unseen modalities, as observed in the large-scale model case. We therefore conduct an extensive
empirical study where we train families of decoder-only transformers on 165GB of either text, image,
or audio data and all combinations of the three. We then use these models (with frozen parameters,
i.e., offline training) to compress 1GB of out-of-distribution (OOD) data from all three modalities
(see Fig. 1). We also compare against transformers that are trained purely online, i.e., on the data
stream that is being compressed (Bellard, 2019; 2021), meaning that storage or communication
of the transformer weights for decompression is not required (unlike for our pre-trained models).
These online transformers currently achieve state-of-the-art results on the Large Text Compression
Benchmark (Mahoney, 2006). Overall we find that small pre-trained transformers achieve competitive
compression ratios, as our best models consistently outperform domain-general and domain-specific
standard compression algorithms and are on par with the online transformers from Bellard (2021).

Main Contributions We make the following key contributions:

• We conduct a large-scale empirical study (hyperparameter sweeps, ablations) on the com-
pression performance of small transformers trained on raw byte sequences of text, image,
and audio data (and all combinations), across various model- and dataset sizes.

• We are the first to show that small pre-trained transformers achieve better compression ratios
than general-purpose and domain-specific compressors on 1GB of out-of-distribution data
across different modalities, e.g., 0.49 on audio vs. 0.51 for Bellard (2021) & 0.54 for FLAC.

• We show that training on multiple modalities only slightly deteriorates the performance on
each individual modality but significantly boosts the compression ratios on multimodal data,
as long as all the evaluation modalities are part of the training data mixture.

• We demonstrate that small pre-trained transformers fail to beat standard compressors on
unseen data modalities (i.e., modalities they were not trained on), meaning that there is only
weak transfer to novel modalities (which is not the case for LLMs (Delétang et al., 2024)).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND

Compression and prediction are “two sides of the same coin” (MacKay, 2003). This fundamental dual-
ity stems directly from Shannon’s celebrated lossless source coding theorem (Shannon, 1948), which
states that there is a well-defined lower bound for encoding data from a probabilistic source. For any
data sequence x1:n := x1x2 . . . xn ∈ Xn of length n from a finite alphabet X sampled from a source
ρ : X ∗ 7→ (0, 1], a lossless compressor c : X ∗ 7→ {0, 1}∗ assigns a code c(x1:n), i.e., a sequence of
bits, from which the original sequence is recoverable without loss of information. The goal is to
minimize the expected length: Lρ := Ex∼ρ[ℓc(x)] by encoding rare sequences with more bits and
frequent sequences with fewer bits. Shannon’s source coding theorem states that the minimal expected
length is lower-bounded by the Shannon entropy of the source: Lρ ≥ H(ρ) := Ex∼ρ[− log2 ρ(x)].

If the source’s statistics are unknown, good compression becomes a statistical modeling problem,
i.e., good compression relies entirely on being able to predict well sequentially. For any predic-
tor π : X ∗ 7→ (0, 1] the expected coding length Lρ

π for data drawn from ρ is at least the cross entropy:

Lρ
π ≥ Ex∼ρ[− log2 π(x)] = Ex∼ρ

[
− log2

π(x)ρ(x)

ρ(x)

]
= H(ρ) +DKL(ρ||π) ≥ H(ρ),

which is also lower-bounded by the Shannon entropy of ρ. A mismatch between π and ρ thus leads
to an excess length given by their KL divergence, and minimal coding length (maximal compression)
implies π = ρ across the whole support of ρ. Accordingly, some AI researchers have argued that
compressing well is fundamentally connected to intelligence (e.g., Chaitin’s famous “Compression is
Comprehension” (Chaitin, 2006); Rathmanner & Hutter (2011); Grau-Moya et al. (2024)), and that
building universal compressors will accelerate AI development (cf. the Hutter prize (Hutter, 2006), an
ongoing competition to compress (1GB of) human knowledge). The duality between compression and
prediction has also led to the (algorithmic) information-theoretic formulation of universal prediction,
i.e., Solomonoff induction (Solomonoff, 1964a;b; Li & Vitányi, 2019), one of two key ingredients for
AIXI (Legg & Hutter, 2007; Hutter et al., 2024), the theory of artificial superintelligence.

Consequently, Delétang et al. (2024) argue that lossless compression performance lends itself
as a domain-general metric for assessing any predictor’s quality, including foundation models.
They further emphasize that foundation models trained by minimizing log-loss (a.k.a., next-token
prediction-error or cross entropy loss) are explicitly trained to minimize the expected coding length:

min
π

Lρ
π = min

π
Ex∼ρ[− log2 π(x)]︸ ︷︷ ︸

“log loss”

= min
π

Ex∼ρ

[∑
i

− log2 π(xi|x<i)

]
. (1)

Note that the problem of constructing the actual codes that achieve (near) minimal expected code
length given a predictor is largely solved in information theory, with gold-standard algorithms such
as Huffman coding (Huffman, 1952), arithmetic coding (Pasco, 1977; Rissanen, 1976; Witten et al.,
1987), or asymmetric numeral systems (Duda, 2009). The latter two compress strings online by
iteratively converting them into a single binary number with increasing precision (see Delétang et al.
(2024) for an illustration or Chapter 2 in Hutter et al. (2024)). Arithmetic coding is an example of an
online compression algorithm since it only requires a single pass through the data and compresses on
the fly (unlike offline compressors, such as Huffman coding, that require multiple passes through
the data). Both our models and Bellard (2021), which we compare against, use arithmetic coding
and compress online. However, the difference is that we pre-train our predictor, i.e., we perform
offline training on a dataset and then freeze its parameters (non-adaptive arithmetic coding), whereas
Bellard (2021) performs online adaptation of the model parameters on the data stream that is being
compressed (adaptive arithmetic coding). As a result, and unlike our compressors, Bellard (2021)
does not communicate the trained weights for decompression but only the model architecture and
training algorithm (i.e., the model parameters do not need to be factored into the compression ratio).

3 RELATED WORK

Compression Without Transformers Using neural networks as predictors for lossless compression
has been extensively studied, both in conjunction with arithmetic coding (Lehtokangas et al., 1993;
Schmidhuber & Heil, 1994; 1996; Mahoney, 2000; Mikolov, 2012; Knoll, 2014; van den Oord &

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Schrauwen, 2014; Cox, 2016; Schiopu et al., 2018; Goyal et al., 2019; Liu et al., 2019; Mentzer
et al., 2019; 2020; Schiopu & Munteanu, 2020; Rhee et al., 2022) and with asymmetric numeral
systems (Hoogeboom et al., 2019; Kingma et al., 2019; Townsend et al., 2019; Barzen et al., 2022).
Neural networks have also successfully been employed in lossy compression, e.g., by overfitting
tiny networks to individual data points and transmitting the model weights rather than the original
data (Dupont et al., 2021; 2022; Chen et al., 2021; Ladune et al., 2023; Kim et al., 2023).

Online Transformers Most of the above approaches use a separate training set to pre-train models
that are then used to compress a test set. Alternatively, the model can also be trained from scratch on
the data stream that is being compressed (Bellard, 2019; 2021; Goyal et al., 2020; Mao et al., 2022).
The main advantage of these adaptive online compressors is that they are (quasi) parameterless (since
they are initialized from scratch when compressing a new data stream), meaning that the model size
does not explicitly affect the compression ratio, even for large models (though it implicitly affects the
training performance, e.g., large models train more slowly meaning that larger chunks of the initial
data stream are only weakly compressed). The transformer-based adaptive online compressor of
Bellard (2021) is currently state-of-the-art on the Large Text Compression Benchmark (Mahoney,
2006), and our evaluation (in Section 5) shows that our best models are on par across all modalities.

Pre-Trained Transformers Most closely related to our work is the line of research by Valmeekam
et al. (2023); Delétang et al. (2024); Huang et al. (2024); Li et al. (2024); Mittu et al. (2024), which
investigates lossless compression via arithmetic coding with pre-trained foundation models, i.e.,
the Llama models (Touvron et al., 2023a;b; Dubey et al., 2024) and Chinchilla (Hoffmann et al.,
2022). Delétang et al. (2024), in particular, also report good compression rates on unseen modalities
(LLMs trained only on text compress images and audio data well). However, these studies differ
from our work as they do not take the model size into account for the compression ratios, except
for Delétang et al. (2024), who report both “raw” and “adjusted” compression ratios and find that
LLMs are not competitive in terms of adjusted (i.e., the actual) compression ratios. To the best of our
knowledge, our paper is the first to systematically investigate the use of appropriately sized pre-trained
transformers for multimodal lossless compression in a regime where competitive performance w.r.t.
standard compression algorithms is possible. In this regime, our study is the most comprehensive in
that it also investigates multimodal training and cross-modal transfer of pre-trained transformers.

4 METHODS

We now describe our experimental setup (with additional details, e.g., sweeps, in Appendix A).

Baselines We compare to various standard compressors, both general-purpose, i.e., gzip (Deutsch,
1996) and LZMA2 (Pavlov, 2019), and domain-specific, i.e., FLAC (Coalson, 2008) for audio data
and PNG (Boutell, 1997) and lossless JPEG 2000 (Skodras et al., 2001) for images. Both gzip and
LZMA2 (which is used by the 7zip software) are based on Huffman coding (Huffman, 1952) and the
Lempel-Ziv-Welch algorithm (Welch, 1984). We use the default parameters for gzip, LZMA2, and
JPEG 2000, compression level 12 for FLAC, and instruct PNG to find the optimal encoder settings.
We also compare to the online transformer from Bellard (2021), with the default v3.3 parameters,
which is the current state-of-the-art on the Large Text Compression Benchmark (Mahoney, 2006).

Models We focus on decoder-only transformers (Vaswani et al., 2017) with SwiGLU activa-
tions (Shazeer, 2020) and post-layer normalization. Unless otherwise noted, we use 8 heads, an
embedding dimension of 64, a context size of 4096 (bytes), and sliding windows without overlap
or memory (full details in Appendix A.3). We always train and evaluate the models with the same
context size (i.e., 4096 by default). We train our models with the Adam optimizer (Kingma & Ba,
2015) for 2.5 million steps with a batch size of 32, which, for 165GB of data, roughly corresponds to
2 epochs. Due to the duality of compression and prediction, we minimize the standard (sequential)
log-loss (Eq. (1)) during training, which is a maximum-compression objective (see Section 2).

(No) Tokenization Tokenization is a commonly-used, domain-specific pre-compression step to
boost transformers’ performance by increasing their vocabulary size in order to fit more information
into their limited context window (Lester et al., 2024), i.e., increased information density at the cost

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of increased entropy. However, since our goal is to be domain-general, we do not use tokenization
and instead feed our models directly with byte streams (we still have to choose how to flatten images
and how to sample audio signals, which are minimal domain-specific preprocessing steps).

Evaluation To evaluate performance, we compute the compression ratio (lower is better):

compression ratio :=
size of compressed data + size of compressor

size of uncompressed data
, (2)

which accounts for the model size and is equivalent to the “adjusted compression rate”
of Delétang et al. (2024). We always evaluate on 1GB of out-of-distribution data, i.e.,
size of uncompressed data = 1GB. As Delétang et al. (2024), we compute the size of the com-
pressor by encoding the model weights with float16 (2 bytes per parameter) since this level of
quantization does not significantly affect performance (Tao et al., 2022) and is standard for model
inference. As a result, our model sizes range from 0.8MB to 40.3MB. Note that, similar to Delétang
et al. (2024), we do not compress the model parameters, since naive approaches (e.g., compressing
them with gzip) do not significantly decrease the model size (only by around 7%, which corresponds
to a decrease in compression ratio of only 0.002821 for our largest model). However, as a result, the
compression ratio we report is an upper bound, which could be improved by (losslessly) compressing
the parameters (though with limited room for improvement in our regime, even in the best case).

Training Datasets A key point of our investigation is to evaluate how well pre-trained transformers
can compress data from different modalities — both if the modality was or was not part of the training
data (Fig. 1 visualizes our data collection process). We create three different unimodal training
datasets with audio, images, and text data, and four multimodal training sets (Appendix A.1 describes
the datasets in full detail). This yields seven pre-training datasets in total, each consisting of 165GB
of data: (i) 165GB of audio; (ii) 165GB of images; (iii) 165GB of text; (iv) 82.5GB of audio and
82.5GB of images; (v) 82.5GB of audio and 82.5GB of text; (vi) 82.5GB of images and 82.5GB of
text; and (vii) 55GB audio, 55GB of images, and 55GB text. By training our models on all seven
training data mixtures, we can investigate in-modality and out-of-modality compression ratios. For
example, for a model trained on the text dataset, the in-modality compression ratio can be determined
by evaluating on text, while audio or image data provide out-of-modality compression ratios.

Out-of-Distribution Evaluation Datasets To mimic the setting for which standard compression
algorithms were developed (and thereby ensure a fair comparison), where the compressor is pro-
grammed with only minimal statistical assumptions about the data (with stronger assumptions for
domain-specific compressors), we evaluate on unseen, out-of-distribution (OOD) datasets for each
modality and not on in-distribution held-out datasets (as commonly done in machine learning). To do
so, we create a single OOD dataset of 1GB for each modality (full details in Appendix A.2).

5 RESULTS

In this section, we present our extensive experimental evaluation (additional results in Appendix B).
Unless otherwise noted, we report the best results over two hyperparameter sweeps (described in
Appendix A.3): (i) over the model- and dataset sizes, and (ii) over the model- and context sizes.

Small Transformers Can Be Domain-General Compressors Figure 2 shows the best compression
ratio attained on each of the seven out-of-distribution evaluation datasets when training a model
on each of the seven training data mixtures (we report the best-performing model from our two
sweeps for each training-evaluation pair). We observe that transformers can achieve state-of-the-
art in-modality compression ratios, regardless of the concrete composition of the training mixture,
outperforming standard compression algorithms (even domain-specific ones) in all cases where
all evaluation modalities are part of the training mixture. In these cases, transformers thus learn
the prototypical statistical patterns related to that modality during pre-training. Importantly, by
comparing models trained on unimodal vs. multimodal data, we observe that multimodal training
only slightly decreases the compression performance compared to the unimodal models on their
respective modalities (despite only having half or a third amount of data from that modality). This
means that it is possible to trade off a small amount of performance on each individual modality to
obtain a very strong domain-general compressor via multimodal training (the gray bar in Fig. 2).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

au
di

o

au
di

o+
im

ag
e

au
di

o+
te

xt

au
di

o+
im

ag
e+

te
xt

im
ag

e+
te

xt

im
ag

e

te
xt

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Co

m
pr

es
sio

n
Ra

tio

Audio OOD Evaluation

au
di

o+
im

ag
e

im
ag

e

im
ag

e+
te

xt

au
di

o+
im

ag
e+

te
xt

au
di

o

au
di

o+
te

xt

te
xt

Image OOD Evaluation

te
xt

au
di

o+
te

xt

im
ag

e+
te

xt

au
di

o+
im

ag
e+

te
xt

im
ag

e

au
di

o+
im

ag
e

au
di

o

Text OOD Evaluation

au
di

o+
im

ag
e

au
di

o+
im

ag
e+

te
xt

im
ag

e

im
ag

e+
te

xt

au
di

o

au
di

o+
te

xt

te
xt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
m

pr
es

sio
n

Ra
tio

Audio+Image OOD Evaluation
au

di
o+

te
xt

au
di

o+
im

ag
e+

te
xt

im
ag

e+
te

xt

au
di

o+
im

ag
e

au
di

o

te
xt

im
ag

e

Audio+Text OOD Evaluation

au
di

o+
im

ag
e+

te
xt

im
ag

e+
te

xt

im
ag

e

au
di

o+
im

ag
e

au
di

o+
te

xt

te
xt

au
di

o

Image+Text OOD Evaluation

au
di

o+
im

ag
e+

te
xt

im
ag

e+
te

xt

au
di

o+
im

ag
e

au
di

o+
te

xt

im
ag

e

au
di

o

te
xt

Audio+Image+Text OOD Evaluation

Baseline Compressors
gzip
LZMA2
Bellard
FLAC (audio)
PNG (images)
JPEG 2000 (images)

Figure 2: Small pre-trained transformers can be domain-general compressors (panels correspond
to evaluation data mixtures, bars to training data mixtures). On every out-of-distribution evaluation
data mixture, our method (i.e., the bars) outperforms standard compression algorithms (all horizontal
lines except for ‘Bellard’) and is on par with Bellard’s online adaptive transformers (the dark blue
line) — as long as the evaluation modality was included in the training data mixture. For unseen
modalities we observe very little cross-modal transfer (which is different from observations made
with foundation models Delétang et al. (2024)). Unimodal training leads to models that are good
for their respective modality, but multimodal training yields models that perform almost as well as
the unimodal models across all their training modalities (despite seeing a lot less data per modality
than the unimodal models), i.e., one can trade off a small amount of performance on each individual
modality in return for a strong domain-general compressor via multimodal training (gray bar).

0 50 100 150
Audio GBs in Training Mixture

0.49

0.50

0.51

0.52

Co
m
pr
es
sio

n
Ra

tio

Audio OOD Evaluation

0 50 100 150
Image GBs in Training Mixture

0.305

0.310

0.315

0.320

0.325
Image OOD Evaluation

0 50 100 150
Text GBs in Training Mixture

0.27

0.28

0.29

Text OOD Evaluation

Training Mixture
audio image text audio+image audio+text image+text audio+image+text

Figure 3: What you see is what you get. Each panel visualizes the compression ratios for one of our
modalities when training models on varying dataset mixtures and sizes. Although one can replace
a large proportion of a unimodal training dataset with a multimodal training mixture and not incur
a significant loss on the original modality, transformers (at our tested model sizes) do not exhibit
improved transfer from the out-of-modality data (i.e., the multimodal models are worse than the
unimodal ones, even when trained on much more data from that particular modality). The upshot
is that the multimodal training data does not hurt much (note the scale of the y-axis), but leads to
significantly improved multimodal compression performance as shown in Fig. 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25
FLOPS 1e19

0.49

0.50

0.51

0.52

0.53

0.54

0.55

Co
m
pr
es
sio
n
Ra
tio

Audio OOD Evaluation

0.00 0.25 0.50 0.75 1.00 1.25
FLOPS 1e19

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Co
m
pr
es
sio
n
Ra
tio

Image OOD Evaluation

0.00 0.25 0.50 0.75 1.00 1.25
FLOPS 1e19

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Co
m
pr
es
sio
n
Ra
tio

Text OOD Evaluation
Model Size

412K
546K
679K
813K
947K

Figure 4: Simultaneously scaling training dataset and model size (for unimodal training- and
evaluation data). The colors indicate the model size, and the lines correspond to different dataset
sizes (20%, 40%, 60%, 80%, and 100%). We always train for 2 epochs, regardless of dataset size,
i.e., smaller datasets require fewer FLOPS. As expected, increasing the number of parameters and
the dataset size boosts compression (at the cost of increased training FLOPS). Note that our out-of-
distribution evaluation makes models more prone to overfitting, as seen, e.g., for our largest models
on images, making scaling more complex than traditionally observed LLM scaling laws.

What You See Is What You Get While Fig. 2 shows that substituting half or two thirds of the
training set with data from other modalities only leads to a small performance loss compared to the
unimodally trained models, it is unclear whether simply training on a smaller amount of unimodal
data (i.e., decreasing the unimodal training dataset size to, e.g., 82.5GB and not substituting 82.5GB
with data from another modality) would give the same performance, or whether there is some transfer
between modalities (as suggested by Mirchandani et al. (2023)) that compensates for the smaller
amount of data per individual modality. To investigate this, we run an ablation where we subdivide
each of our seven training sets into 5 different sizes: 20%, 40%, 60%, 80%, and 100% of the
respective dataset (uniformly subsampled). We train a series of models (sweeping over their number
of layers; see Appendix A.3) on each dataset mixture and each dataset size, and then evaluate as
before. Figure 3 shows that, for our models and datasets, there is little transfer between modalities.
For all cases of audio, text, and (less clearly) images, it is better to train on a smaller unimodal dataset
to get the best unimodal performance, as opposed to training on a much larger multimodal dataset.
For example, training on a pure text dataset of 33GB (20% of 165GB) outperforms training on a
dataset consisting of 82.5GB (i.e., more than twice as much) text and of 82.5GB images/audio.

Scaling Analysis Since there is a non-trivial relationship between model size and dataset size, we
perform a scaling analysis on both of these factors (details in Appendix A.3). Figure 4 shows trends
akin to the scaling laws observed for LLMs (Kaplan et al., 2020), which state that better prediction
(in our case compression) is only possible by scaling both models and datasets, in a particular way.
Note that, different to traditional scaling laws for models trained on internet-scale datasets, the
distribution shift in our evaluation makes it easier for the model to overfit to the training distribution.
However, as the number of parameters and the training flops of our small models increase, the
adjusted compression ratio improves, eventually beating standard compression algorithms. We do
observe gradual overfitting on the image dataset for our models trained only on images. However,
this phenomenon can be mitigated by including other modalities in the training mixture (see Fig. A1).

Model Size vs. Context Size The previous two experiments investigated the impact of training
dataset size and model size, which revealed a complex, “scaling law”-like, relationship between the
two factors and the overall training budget in FLOPS. In this experiment, we investigate the impact
of the length of the context window. Since the context window length has a large impact on the
overall FLOPS footprint (attention scales quadratically with the input sequence length), we also vary
the size of our models to explore whether there is a sweet spot in terms of training compute budget
allocation (details in Appendix A.3). Fig. 5 shows that the optimal trade-off strongly depends on the
data modality. The top performing models for text have a context window less than or equal to 2048
bytes, indicating that short term dependencies are more important than long ones in this case. For
images, the best compromise overall is to choose a larger context window of 8192, which means

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 3 4 5
FLOPS 1e19

0.490

0.495

0.500

0.505

0.510

0.515

Co
m
pr
es
sio

n
Ra

tio

Audio OOD Evaluation
Model Size Guide

1M
5M
10M
20M

1 2 3 4 5
FLOPS 1e19

0.30

0.35

0.40

0.45

0.50

Co
m
pr
es
sio

n
Ra

tio

Image OOD Evaluation

1 2 3 4 5
FLOPS 1e19

0.22

0.24

0.26

0.28

0.30

Co
m
pr
es
sio

n
Ra

tio

Text OOD Evaluation
Context Size

1024
2048
4096
8192

Figure 5: Relationship between context- and model size. Given a certain training compute budget
(in FLOPS), one can either increase the context size (measured in bytes) or the model size, leading to
a non-trivial trade-off. Our results show that this trade-off is highly modality-dependent (also note
the different scales on the y-axis, meaning that the magnitude of the effect varies significantly with
modality). For text, shorter context sizes and larger models are beneficial (indicating the importance
of short-term dependencies for our data and model scale). For images, larger context is generally
beneficial, which makes sense, given that a single image consists of 512 · 512 · 3 = 786432 bytes,
which far exceeds our models’ contexts, i.e., models with larger context can process larger fractions
of an image. Finally, for audio data the relationship is complex with intermediate context length and
larger models performing better (though the reverse is true for short context length).

107 108 109
Evaluation Dataset Size (Bytes)

0.6

0.8

1.0

Co
m
pr
es
sio

n
Ra

tio

Audio OOD Evaluation

107 108 109
Evaluation Dataset Size (Bytes)

0.3

0.4

0.5

0.6

0.7

Co
m
pr
es
sio

n
Ra

tio

Image OOD Evaluation

107 108 109
Evaluation Dataset Size (Bytes)

1

2

3

4

Co
m
pr
es
sio

n
Ra

tio

Text OOD Evaluation

Compressors
FLAC (audio) gzip LZMA2 JPEG 2000 (images) PNG (images) Offline Transformer (ours)

Figure 6: Compression ratio vs. evaluation dataset size. According to Eq. (2), the numerator of
the compression ratio consists of the size of the compressed data and the size of the compressor.
For standard compressors (e.g., gzip), the size of the compressor (a few thousand lines of code) is
negligible given sufficient evaluation data (i.e., the compression ratio is unaffected by the evaluation
dataset size). However, for neural compressors trained offline (i.e., where the size of the compressor
is dominated by the model parameters), the compression ratio improves with increasing data since the
model size has decreasing influence. Moreover, if the model is equal to or larger than the evaluation
dataset size (e.g., 500M parameters and 1GB of data), one cannot achieve a compression ratio < 1.

decreasing the model size. For audio data, the trade-off is even more complex. Overall these results
highlight the difficulty of tuning architectures to achieve best performance across many modalities.

Evaluation Dataset Size Figure 6 visualizes the relationship between the compression ratio and
the evaluation dataset size for all three modalities and our best-performing model (as determined on
the standard 1GB of OOD data in Table A1). For offline (i.e., pre-) trained neural compressors, the
model parameters have to be factored into the compression ratio, which means that their compression
performance will improve with increasing evaluation data (as long as the model generalizes well
to the additional data). In contrast, the size of standard compressors is negligible compared to the
amount of evaluation data, which means that their compression ratios are largely unaffected by the
evaluation dataset size. Note that FLAC cannot losslessly compress more than ∼ 4.2GB of data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1024 2048 3072 4095
Sliding Window Overlap

0.25

0.30

0.35

0.40

0.45

0.50

Co
m
pr
es

sio
n
Ra

tio

OOD Evaluation

Audio
Image
Text

Figure 7: Impact of the sliding win-
dow overlap (for unimodal training and
evaluation). Overlapping context win-
dows only marginally improve the per-
formance (most significantly for images)
in our experiments but come at a huge
cost in terms of computational efficiency.

Sliding Window In all experiments so far we used a
sliding window without overlap to process the evaluation
byte streams, i.e., we completely fill a whole context win-
dow, process it, and then slide it forward by the size of
the context window to process the next chunk of data.
This means that bytes early in the context window are
not conditioned on a lot of data (in theory, conditioning
on more data should help with prediction and thus com-
pression, which may well be exploitable by transformers’
in-context learning abilities (Brown et al., 2020; Genewein
et al., 2023; Ge et al., 2024)). However, sliding the con-
text window with more overlap requires more forward
passes to process the same amount of data, which signif-
icantly increases the computational cost with increasing
overlap. With no overlap processing 4096 bytes with a
context window of 4096 takes a single forward pass. In the
most extreme case of maximal overlap it would take 4095
forward passes, where the context window is moved by
a single byte each time (though each prediction could be
conditioned on the full 4095 preceding bytes). In our final
experiment, we investigate the effect of different overlaps
between context windows. Figure 7 shows that for our
data and model sizes, increasing the overlap window (for
a context length of 4096) has relatively little effect. The
strongest effect is observed for image data, which makes
sense given that 4096 bytes only corresponds to a small fraction of an image and there are obvious
long-range dependencies between channels of the same image. Beyond an overlap of 2048 we do not
see much benefit of further increasing the overlap window in our experiments.

6 DISCUSSION

The main goal of our work is to investigate whether pre-trained transformers can be competitive with
standard compressors, even when taking their parameter size into account. In contrast to previous
work, this places our models into a relatively small regime, where it is unclear whether models
will learn well from large datasets at all and have non-trivial out-of-distribution and cross-modality
transfer. This could partly be countered by training larger models and then subsequently compressing
the model parameters themselves. We chose not to do this in our case since naive lossless compression
of model parameters leads to a 10% reduction at best (see Table A3), and even best-case scenarios
would only lead to marginal improvements in compression ratio given the size of our largest models.
For very large (e.g., foundation) models, compressing weights to achieve competitive compression
ratios may be interesting, though it will be necessary to use lossy weight compression techniques (Tao
et al., 2022), which lead to non-trivial trade-offs between high (lossy) compression and maintaining
strong predictor performance, i.e., the two summands in the numerator of Eq. (2). Exploring these
trade-offs is an interesting direction for future research but beyond the scope of our work. Another
way to allow for larger models would be to simply evaluate on a larger test set. We deliberately
chose to use 1GB of test data as a regime where standard compression algorithms are hard to beat.
Additionally, evaluations on larger test data, and in settings where model parameters are not taken into
account have previously conducted (Delétang et al., 2024; Valmeekam et al., 2023; Li et al., 2024)
(where significant amounts of cross-domain transfer have also been found, unlike in our experiments).

Note that, similar to Xue et al. (2022), we do not use a tokenizer, which has two reasons. First,
tokenizers are typically pre-trained per modality, and we want to rule out bad cross-modality transfer
resulting from a bad tokenizer. Second, tokenization acts as a pre-trained “pre-compression” step
(Delétang et al. (2024) make a similar comment). This pre-compression increases information density
in the context window at the cost of increasing entropy, which can make the prediction problem
harder: Lester et al. (2024) even show that when using a strong neural-based pre-compressor (together
with arithmetic coding) to train LLMs, training performance can collapse catastrophically.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Limitations All our claims regarding the universality of our compressors (or the lack thereof)
are limited to the model size regime and the particular modalities and datasets we studied. We
cannot rule out that there are cases where even in-modality transfer is weak (e.g., when using another
out-of-disribution image evaluation dataset with very different statistics), or that there may be cases
of non-trivial cross-modal transfer (which we have not observed). We did not investigate transfer
learning approaches to improve the out-of-modality performance of our neural compressors, but we
consider this an interesting avenue for future work. Similarly, our claims regarding outperforming
standard compression algorithms are limited to our experiments. We cannot rule out that there
are datasets (such as spreadsheet data, or code, which, technically, are both text) where no pre-
trained transformer outperforms, e.g., LZMA2 (in fact, we think its plausible that such datasets can
be constructed synthetically). Moreover, we can also not rule out that other, more sophisticated
architectures (e.g., Perceivers (Jaegle et al., 2021)), would outperform our models, and we consider
investigating the optimal neural model architecture for lossless compression an interesting direction
for future research. Finally, note that the goal of our study is not to build a practical transformer-based
universal compressor to compete with standard compressors in terms of computational footprint. As
Table A2 shows, our models are orders of magnitude slower for encoding data (and have significantly
larger memory- and FLOPS-demands), and they are about three times slower than Bellard’s online
adaptive transformer. This is only the forward-pass cost, which can be done for a whole context
window at once (without overlap). If our models were used do decode, which has to be performed
token-by-token to obtain the correct conditioning, our running time demands would be even worse,
making our models clearly uncompetitive in that sense.

7 CONCLUSION

In this paper we have shown that it is possible to use pre-trained vanilla transformers as competitive
“zero-shot” compressors on out-of-distribution evaluation data, where competitive means achieving
better compression ratios than both domain-general and domain-specific standard compression
algorithms. We found this to be true for text, images, and audio data, and for all possible combinations
of the three — but only as long as the corresponding modalities have been seen during training. We
further found that, despite their relatively small size, our models have the capacity to train on multiple
modalities, and then compress these well, without losing much performance compared to a purely
unimodal model. On the other hand, we found that even multimodal training does not lead to the
emergence of a universal compression ability that would yield strong compression performance on
unseen modalities. This is in contrast to observations made by Delétang et al. (2024) on LLMs and
indicates that there is a qualitative difference between small and (very) large models, even when the
small models are trained on large amounts of data. Overall our results suggest that small transformers
can be pre-trained to recognize and exploit statistical regularities on par and even better than hand-
crafted standard compressors and current state-of-the-art adaptive online neural compressors, but we
do not observe the emergence of a general compression ability with our model sizes.

REFERENCES

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis M. Tyers, and Gregor Weber. Common voice: A massively-
multilingual speech corpus. In LREC, 2020.

Benjamin Lukas Cajus Barzen, Fedor Glazov, Jonas Geistert, and Thomas Sikora. Accelerated deep
lossless image coding with unified paralleleized GPU coding architecture. In PCS, 2022.

Fabrice Bellard. Lossless data compression with neural networks. Technical report, Amarisoft, 2019.

Fabrice Bellard. NNCP v2: Lossless data compression with transformer. Technical report, Amarisoft,
2021.

Thomas Boutell. PNG (portable network graphics) specification version 1.0. RFC, 1997.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Gregory J. Chaitin. The limits of reason. Scientific American, 2006.

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, and Abhinav Shrivastava. Nerv: Neural
representations for videos. In NeurIPS, 2021.

Josh Coalson. Free lossless audio codec, 2008. URL https://xiph.org/flac.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. In NAACL-HLT (2), 2018.

David Cox. Syntactically informed text compression with recurrent neural networks.
arXiv:1608.02893, 2016.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher
Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression. In ICLR, 2024.

Peter Deutsch. GZIP file format specification version 4.3. RFC, 1996.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail,
Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. arXiv:2407.21783,
2024.

Jarek Duda. Asymmetric numeral systems. arXiv:0902.0271, 2009.

Emilien Dupont, Adam Golinski, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. COIN:
compression with implicit neural representations. arXiv:2103.03123, 2021.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Yee Whye Teh, and Arnaud
Doucet. COIN++: neural compression across modalities. Trans. Mach. Learn. Res., 2022.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. In ICLR, 2024.

Tim Genewein, Grégoire Delétang, Anian Ruoss, Li Kevin Wenliang, Elliot Catt, Vincent Dutordoir,
Jordi Grau-Moya, Laurent Orseau, Marcus Hutter, and Joel Veness. Memory-based meta-learning
on non-stationary distributions. In ICML, 2023.

Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. Deepzip: Lossless data
compression using recurrent neural networks. In DCC, 2019.

Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. Dzip: Improved general-
purpose lossless compression based on novel neural network modeling. In DCC, 2020.

11

https://xiph.org/flac

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Grégoire Delétang, Elliot Catt,
Anian Ruoss, Li Kevin Wenliang, Christopher Mattern, Matthew Aitchison, and Joel Veness.
Learning universal predictors. In ICML, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arxiv:2203.15556, 2022.

Emiel Hoogeboom, Jorn W. T. Peters, Rianne van den Berg, and Max Welling. Integer discrete flows
and lossless compression. In NeurIPS, 2019.

Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junxian He. Compression represents intelligence
linearly. arXiv:2404.09937, 2024.

David A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 1952.

Marcus Hutter. 500’000C prize for compressing human knowledge, 2006. URL http://prize.
hutter1.net.

Marcus Hutter, David Quarel, and Elliot Catt. An Introduction to Universal Artificial Intelligence.
Chapman & Hall, 2024.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and João Carreira.
Perceiver: General perception with iterative attention. In ICML, Proceedings of Machine Learning
Research, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv:2001.08361, 2020.

Hyunjik Kim, Matthias Bauer, Lucas Theis, Jonathan Richard Schwarz, and Emilien Dupont.
C3: high-performance and low-complexity neural compression from a single image or video.
arXiv:2312.02753, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

Friso H. Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap: Recursive bits-back coding for lossless
compression with hierarchical latent variables. In ICML, 2019.

Byron Knoll. CMIX, 2014. URL http://www.byronknoll.com/cmix.html.

Théo Ladune, Pierrick Philippe, Félix Henry, Gordon Clare, and Thomas Leguay. COOL-CHIC:
coordinate-based low complexity hierarchical image codec. In ICCV, 2023.

Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine intelligence. Minds
Mach., 2007.

Mikko Lehtokangas, Jukka Saarinen, Pentti Huuhtanen, and Kimmo Kaski. Neural network opti-
mization tool based on predictive MDL principle for time series prediction. In ICTAI, 1993.

Brian Lester, Jaehoon Lee, Alex Alemi, Jeffrey Pennington, Adam Roberts, Jascha Sohl-Dickstein,
and Noah Constant. Training llms over neurally compressed text. arxiv:2404.03626, 2024.

Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications,
4th Edition. Springer, 2019.

Ziguang Li, Chao Huang, Xuliang Wang, Haibo Hu, Cole Wyeth, Dongbo Bu, Quan Yu, Wen Gao,
Xingwu Liu, and Ming Li. Understanding is compression. arxiv:2407.07723, 2024.

Qian Liu, Yiling Xu, and Zhu Li. DecMac: A deep context model for high efficiency arithmetic
coding. In ICAIIC, 2019.

12

http://prize.hutter1.net
http://prize.hutter1.net
http://www.byronknoll.com/cmix.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, 2015.

David J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge University
Press, 2003.

Matthew V. Mahoney. Fast text compression with neural networks. In FLAIRS, 2000.

Matthew V. Mahoney. Large text compression benchmark, 2006. URL https://www.
mattmahoney.net/dc/text.html.

Yu Mao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. TRACE: A fast transformer-based general-
purpose lossless compressor. In WWW, 2022.

Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van Gool. Practical
full resolution learned lossless image compression. In CVPR, 2019.

Fabian Mentzer, Luc Van Gool, and Michael Tschannen. Learning better lossless compression using
lossy compression. In CVPR, 2020.

Tomas Mikolov. Statistical Language Models Based on Neural Networks. PhD thesis, Brno Universtiy
of Technology, 2012.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
In CoRL, 2023.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In ACL (1), 2022.

Fazal Mittu, Yihuan Bu, Akshat Gupta, Ashok Devireddy, Alp Eren Ozdarendeli, Anant Singh,
and Gopala Anumanchipalli. Finezip : Pushing the limits of large language models for practical
lossless text compression. arXiv:2409.17141, 2024.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An ASR
corpus based on public domain audio books. In ICASSP, 2015.

Richard C. Pasco. Source coding algorithms for fast data compression (ph.d. thesis abstr.). IEEE
Trans. Inf. Theory, 1977.

Igor Pavlov. 7z Format, 2019. URL http://www.7-zip.org/7z.html.

Etienne Pot, Afroz Mohiuddin, Pierre Ruyssen, Marcin Michalski, Ryan Sepassi Jiri Simsa, and
Martin Wicke. TensorFlow Datasets, a collection of ready-to-use datasets, 2019. URL https:
//www.tensorflow.org/datasets.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lillicrap.
Compressive transformers for long-range sequence modelling. In ICLR, 2020.

Samuel Rathmanner and Marcus Hutter. A philosophical treatise of universal induction. Entropy,
2011.

Hochang Rhee, Yeong Il Jang, Seyun Kim, and Nam Ik Cho. LC-FDNet: Learned lossless image
compression with frequency decomposition network. In CVPR, 2022.

Jorma Rissanen. Generalized kraft inequality and arithmetic coding. IBM J. Res. Dev., 1976.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 2015.

Ionut Schiopu and Adrian Munteanu. Deep-learning-based lossless image coding. IEEE Trans.
Circuits Syst. Video Technol., 2020.

13

https://www.mattmahoney.net/dc/text.html
https://www.mattmahoney.net/dc/text.html
http://www.7-zip.org/7z.html
https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ionut Schiopu, Yu Liu, and Adrian Munteanu. CNN-based prediction for lossless coding of photo-
graphic images. In PCS, 2018.

Jürgen Schmidhuber and Stefan Heil. Predictive coding with neural nets: Application to text
compression. In NIPS, pp. 1047–1054. MIT Press, 1994.

Jürgen Schmidhuber and Stefan Heil. Sequential neural text compression. IEEE Trans. Neural
Networks, 1996.

Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 1948.

Eva Sharma, Chen Li, and Lu Wang. BIGPATENT: A large-scale dataset for abstractive and coherent
summarization. In ACL (1), 2019.

Noam Shazeer. GLU variants improve transformer. arXiv:2002.05202, 2020.

Athanassios Skodras, Charilaos A. Christopoulos, and Touradj Ebrahimi. The JPEG 2000 still image
compression standard. IEEE Signal Process. Mag., 2001.

Ray J. Solomonoff. A formal theory of inductive inference. part I. Inf. Control., 1964a.

Ray J. Solomonoff. A formal theory of inductive inference. part II. Inf. Control., 1964b.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
Compression of generative pre-trained language models via quantization. In ACL (1), 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv:2307.09288, 2023b.

James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent variables
using bits back coding. In ICLR (Poster), 2019.

Chandra Shekhara Kaushik Valmeekam, Krishna Narayanan, Dileep Kalathil, Jean-François Cham-
berland, and Srinivas Shakkottai. Llmzip: Lossless text compression using large language models.
arXiv:2306.04050, 2023.

Aäron van den Oord and Benjamin Schrauwen. The student-t mixture as a natural image patch prior
with application to image compression. J. Mach. Learn. Res., 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. TL;DR: Mining Reddit to learn
automatic summarization. In Proceedings of the Workshop on New Frontiers in Summarization,
2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir
Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri,
Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta
Patro, Tanay Dixit, and Xudong Shen. Super-naturalinstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In EMNLP, pp. 5085–5109. Association for Computational
Linguistics, 2022.

Terry A. Welch. A technique for high-performance data compression. Computer, 1984.

Wikimedia. Wikimedia downloads, 2023. URL https://dumps.wikimedia.org.

Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data compression.
Commun. ACM, 1987.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte models.
Trans. Assoc. Comput. Linguistics, 2022.

15

https://dumps.wikimedia.org

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 TRAINING DATA SOURCES

We source all of our data from the following open-source TensorFlow datasets (Pot et al., 2019):

Text Since most of TensorFlow’s text datasets are quite small, we concatenate the following five
datasets into a single collection of 165GB: (i) Wikipedia (Wikimedia, 2023), the filtered UTF-8
encoded text from an XML dump from 2023-06-01, containing all languages but predominantly
English and western languages (113.9GB); (ii) PG-19 (Rae et al., 2020), books from the Project
Gutenberg, also encoded in UTF-8 (9.4GB); (iii) Big Patent (Sharma et al., 2019), a dataset of patents
in English (30.2GB); (iv) Scientific Papers (Cohan et al., 2018), from arXiv and PubMed, containing
the raw text including the LaTeX code (8.1GB); and (v) Natural Instructions (Mishra et al., 2022;
Wang et al., 2022), tasks formulated in English covering different domains and lanugages (4.1GB).

Image We collect a subset of 165GB of the ImageNet dataset (Russakovsky et al., 2015), uniformly
sampled across the 1000 classes, which contains 14 197 122 annotated images (of varying resolutions)
from the WordNet hierarchy. We decode the images into RGB arrays (three uint8 channels), flatten
them, and concatenate them into a byte stream of flattened images. As a consequence, we ignore
image boundaries when sampling from this data source (i.e., sequences are not guaranteed to start or
end at the start or end of an image).

Audio We create a subset of 165GB from the Common Voice dataset (Ardila et al., 2020), a
multilingual dataset of voice recordings. We downsample the dataset from 48 kHz to 16 kHz and
encode the waveform as int16, i.e., with two bytes per sample. As for images, we concatenate all
individual audio samples into a single byte stream. Accordingly, there is no guarantee that a sequence
sampled from our dataset starts or ends at the beginning of a recording.

A.2 OUT-OF-DISTRIBUTION EVALUATION DATA SOURCES

We source all of our data from the following open-source TensorFlow datasets (Pot et al., 2019):

Text We consider a 1GB subset of the Reddit dataset (Völske et al., 2017), which contains 3.8
million Reddit posts encoded in UTF-8.

Images We create a 1GB subset of the CelebA HQ dataset (Liu et al., 2015) with a resolution of
512× 512. We process the images in the same way as for our image training set, i.e., flattening and
concatenation, and we subsample uniformly across classes of CelebA.

Audio We use 1GB from the LibriSpeech (Panayotov et al., 2015) dataset, which contains roughly
1000 hours of English speech data derived from audiobooks that have been segmented and aligned in
the LibriVox project. The data is already in 16kHz (with a sample size of 2 bytes), and we simply
concatenate samples into a single byte stream.

Multimodal Evaluations For our evaluations on multimodal data, we use the unimodal evaluations
on 1GB of data as described above and average the results accordingly (both for our models but also
all standard compression algorithms, and Bellard’s online adaptive transformer), either over two or
three evaluations depending on the evaluation mixture composition.

A.3 SWEEPS

Model Size vs. Dataset Size The experiment to investigate the impact of training dataset- and model
size, with results shown in Fig. 4, used the following model parameters. Dataset sizes were 20%,
40%, 60%, 80%, and 100% of the full 165GB for each training set mixture (uni- and multimodal).
All models used a context size of 4096, 8 attention heads per layer, a widening factor of 4 and the
number of layers was either 2, 4, 6, 8, or 10. Models were trained with a batch size of 32. The
learning rate was 1× 10−4, and a sinusoid positional encoding was used.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table A1: Best compression ratios for each compressor. This table shows the same results as Fig. 2
but as precise numerical values to facilitate detailed comparison.

Out-of-Distribution Compression Ratio
Evaluation Modality Ours Bellard gzip LZMA2 FLAC PNG JPEG 2000
Audio 0.487 0.509 0.813 0.699 0.538 - -
Image 0.285 0.281 0.698 0.545 - 0.426 0.390
Text 0.217 0.204 0.394 0.286 - - -
Audio + Image 0.393 0.395 0.756 0.622 - - -
Audio + Text 0.362 0.357 0.604 0.493 - - -
Image + Text 0.270 0.243 0.546 0.415 - - -
Audio + Image + Text 0.349 0.331 0.635 0.510 - - -

Model Size vs. Context Size Fig. 5 in the main paper shows the relationship between context length
and model size. For this experiment we performed a large-scale sweep with the goal of covering a
good range of training FLOPS budget with models that make various trade-offs between model size
and context length (given the same model size, compute demand increases with increasing context
length). The main question was whether there is a qualitatively similar relationship across parameters,
and whether there is a clear sweet spot — see the main paper for results and discussion. For our
sweep we used the same model parameters as in the previous paragraph (the training data size was
always at 100%) and sweep over the following four context sizes (with training batch size in brackets):
[1024 (128), 2048 (64), 4096 (32), 8192 (16)]. For each context size we train five models (XS, S, M,
L, and XL) on all three unimodal datasets, respectively. Each model has a different combination of
embedding dimension and number of layers for each different context size. The XS models have
embedding dimensions [112, 96, 80, 64] and numbers of layers [11, 7, 5, 3] for the different context
sizes respectively (i.e., wider and deeper models for shorter contexts and more narrow and more
shallow models for long context size). The S models have embedding dimensions [192, 160, 112, 96]
and numbers of layers [10, 8, 6, 4]. The M models have embedding dimensions [224, 192, 144, 112]
and numbers of layers [12, 9, 7, 5]. The L models have embedding dimensions [272, 240, 176, 144]
and numbers of layers [13, 10, 8, 5]. The XL models have embedding dimensions [320, 304, 240, 160]
and numbers of layers [12, 9, 7, 6]. The main goal with these settings is to create families of models
that have roughly the same demand in terms of FLOPS (iso-FLOPS) but very different trade-offs in
terms of model- and context size.

A.4 COMPUTATIONAL RESOURCES

We trained every model on 16 NVIDIA A100 GPUs from our internal cluster. We trained 315 models
in total, yielding a computational footprint of 5040 A100s. We ran Bellard’s code on an NVIDIA
GeForce RTX 4090 GPU with a 24-core Intel i9-13900KF CPU @ 3Ghz.

B ADDITIONAL RESULTS

B.1 COMPRESSION RATIOS

Table A1 shows the optimal compression ratios that each of the compressors achieve on all of
the different evaluation modalities (note that all evaluations are on out-of-distribution data). The
same values as shown in Fig. 2 in the main paper and given here as precise numerical values for
completeness.

B.2 RUNNING TIMES

Table A2 shows the wall-clock running times in seconds for compressing 1GB of data from each
of the three modalities for our models, Bellard’s online adaptive transformer (Bellard, 2021), and
the standard compression algorithms used in our work. As the table clearly shows, our models and
Bellard’s model are orders of magnitudes slower (let alone the increased computational demand and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table A2: Running times to compress 1GB of data for all compressors used in our study. Note that
we use the best model per modality, which have different sizes and thus different running times.

Running Times [s]
Evaluation Modality Ours Bellard gzip LZMA2 FLAC PNG JPEG 2000
Audio 305 609 101 178 55 524 169 - -
Image 222 065 103 391 47 436 174 495 99
Text 452 355 100 657 102 881 184 - -

Table A3: Compression ratios for model parameters. We losslessly compress the trained model
parameters with standard compressors. For each modality we choose the best-performing model. As
is shown, the maximal compression is 11%, which would affect the overall compression ratio on the
corresponding evaluation data only very marginally.

Model Parameter
Compression Ratio

Evaluation Modality gzip LZMA2
Audio 0.93 0.90
Image 0.93 0.90
Text 0.92 0.89

GPU requirements). Note that running times for our models differ, because we pick the best model
per modality, which are models of different sizes.

B.3 COMPRESSING MODEL PARAMETERS

Throughout our paper we report compression rates that take uncompressed model parameters into
account. As discussed in the main paper, compression ratios could be improved by also compressing
model parameters. However, as Table A3 shows, naively compressing model parameters with a
lossless compressor does not lead to much compression, which would translate into very marginal
gains on the overall compression ratio. While it is possible to investigate more sophisticated compres-
sion schemes, in particular lossy compression of network weights (though this opens the problem
of having to solve a trade-off between increasing weight compression and maintaining compression
performance), this is beyond the scope of our paper. Accordingly, our compression rates can be
understood as (somewhat) conservative estimates that give (in our case fairly tight) upper bounds
on compression performance. The topic of compressing network weights to achieve competitive
compression ratios would be of greater significance in a regime where models are significantly larger
than ours (but the evaluation data stays roughly at the same size).

B.4 SCALING ANALYSIS FOR MULTIMODAL TRAINING

Fig. A1 shows the results of simultaneously scaling dataset- and model size across training. In
contrast to the similar Fig. 4 in the main paper, where models were trained on unimodal data, Fig. A1
shows models trained on multimodal data (i.e., the uniform mixture across all three modalities, with
55GB per modality). The multimodal training mixture acts as a regularizer, which can clearly be seen
by the lack of overfitting of the largest models on images. Compare this against the unimodal training
results in Fig. 4 where overfitting can be observed. In line with our other main results in Fig. 2 and
Fig. 3, the overall compression ratios are slightly worse for the models trained on multimodal data
compared to unimodal training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25
FLOPS 1e19

0.51

0.53

0.55

0.57

0.59

0.61

Co
m
pr
es
sio
n
Ra
tio

Audio OOD Evaluation

0.00 0.25 0.50 0.75 1.00 1.25
FLOPS 1e19

0.30

0.34

0.38

0.42

0.46

0.50

Co
m
pr
es
sio
n
Ra
tio

Image OOD Evaluation

0.00 0.25 0.50 0.75 1.00 1.25
FLOPS 1e19

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Co
m
pr
es
sio
n
Ra
tio

Text OOD Evaluation
Model Size

412K
546K
679K
813K
947K

Figure A1: Similar to Fig. 4 in the main paper, but here the models are trained on a uniform mixture
over all three modalities (55GB per modality). The plot shows compression performance evaluated
on the unimodal datasets as training progresses for various model- and training set sizes (models are
different colors, each line is a different training set size of either 20%, 40%, 60%, 80%, and 100%).
We always train for 2 epochs, regardless of dataset size, i.e., smaller datasets require fewer FLOPS.
In contrast to Fig. 4, where models are trained on unimodal data, we observe no overfitting, e.g., on
images, even for the largest models tested. Note, however, that the compression ratios are slightly
worse than for unimodal training, which is in line with our other expriments that show small losses
when training on multimodal data.

19

	Introduction
	Background
	Related Work
	Methods
	Results
	Discussion
	Conclusion
	Experimental Details
	Training Data Sources
	Out-of-Distribution Evaluation Data Sources
	Sweeps
	Computational Resources

	Additional Results
	Compression Ratios
	Running Times
	Compressing Model Parameters
	Scaling Analysis for Multimodal Training

