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ABSTRACT

We present NOVA3R, an effective approach for non-pixel-aligned 3D reconstruc-
tion from a set of unposed images, in a feed-forward manner. Unlike pixel-aligned
methods that tie geometry to per-ray predictions, our formulation learns a global,
view-agnostic scene representation that decouples reconstruction from pixel align-
ment. This addresses two key limitations in pixel-aligned 3D: (1) it recovers both
visible and invisible points with a complete scene representation, and (2) it pro-
duces physically plausible geometry with fewer duplicated structures in overlap-
ping regions. To achieve this, we introduce a scene-token mechanism that aggre-
gates information across unposed images and a diffusion-based 3D decoder that
reconstructs complete, non—pixel-aligned point clouds. Extensive experiments on
both scene-level and object-level datasets demonstrate that NOVA3R outperforms
state-of-the-art methods in terms of reconstruction accuracy and completeness.
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Figure 1: NOVA3R enables non—pixel-aligned reconstruction by learning a global scene representa-
tion from unposed images. Compared to pixel-aligned methods, NOVA3R recovers both visible and
occluded regions and produces more physically plausible geometry with fewer duplicated structures.

1 INTRODUCTION

We consider the problem of non—pixel-aligned 3D reconstruction from one or more unposed images,
in a feed-forward manner. This is a challenging task, as the model must infer a global, view-agnostic
representation of the scene without relying on per-ray supervision. This formulation avoids the lim-
itations of pixel-aligned methods, which reconstruct only visible surfaces and often produce redun-
dant geometry in overlapping regions. It therefore enables more complete and physically plausible
3D reconstruction, capturing both visible and occluded structures in a consistent manner.

Recent work in 3D reconstruction has largely focused on the pixel-aligned formulation, where ge-
ometry is predicted in the form of depth maps, point maps, or radiance fields tied to the image plane.
DUSt3R (Wang et al., 2024a) pioneers this paradigm of dense, pixel-aligned 3D reconstruction from
unposed image collections, achieving impressive results in reconstructing the visible regions of a
scene. Building on this, follow-up works (Tang et al., 2025b; Wang et al., 2025b; Yang et al., 2025;
Zhang et al., 2025b; Wang et al., 2025a) extend DUSt3R from image pairs to multi-view settings, en-
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Figure 2: Comparison of different reconstruction paradigms. Our non-pixel-aligned approach
combines feed-forward efficiency with a global, view-agnostic scene representation, removing the
reliance on pixel-level supervision. NOVA3R provides a unified solution for various reconstruction
tasks, achieving multi-view consistency and geometrically faithful results.

abling feed-forward 3D geometry reconstruction from larger image sets. However, the pixel-aligned
formulation remains tied to per-ray prediction, which restricts reconstruction to visible regions and
yields incomplete geometry and overlapping point layers in areas visible to multiple cameras.

Another line of work explores latent 3D generation, which learns a global representation in a com-
pact latent space and decodes it into voxels or meshes (Vahdat et al., 2022; Zhang et al., 2023;
2024b; Ren et al., 2024; Xiang et al., 2025a; Tochilkin et al., 2024; Team, 2024; 2025; Li et al.,
2025b). While this global formulation can plausibly complete occluded regions beyond the input
views, most approaches remain confined to the object level. They assume canonical space and re-
quire high-quality mesh supervision, which makes these methods struggle with complex, cluttered
scenes. For scene-level reconstruction, some methods (Chen et al., 2024; Liu et al., 2024; Gao
et al., 2024; Szymanowicz et al., 2025) inpaint unseen regions by synthesizing novel views with
pre-trained diffusion models and then post-process to recover geometry. However, such pipelines do
not guarantee physically meaningful point clouds.

To overcome these limitations, we introduce the Non-pixel-aligned Visual Transformer (NOVA3R)
(see Figure 1). First, we address the challenge of non-pixel-aligned supervision by leveraging a
diffusion-based 3D autoencoder. It first compresses complete point clouds into compact latent to-
kens, and then decodes them back into the original space, supervised with a flow-matching loss that
resolves matching ambiguities in unordered point sets. Recent works on 3D autoencoders (Zhang
et al., 2023; Xiang et al., 2025a; Team, 2024; Li et al., 2025b) have demonstrated the effectiveness
of latent representations, but they are primarily designed for object reconstruction, assuming high-
quality meshes for supervision. In contrast, our formulation targets scene-level reconstruction and
requires only point clouds derived from meshes or depth maps for supervision, enabling it to capture
priors of complete 3D scenes and produce physically coherent geometry without duplicated points.

Second, we tackle the problem of mapping unposed images to a global scene representation. Train-
ing such a model directly would require massive amounts of complete scene data and computa-
tional resources. To improve generalization, our model is built on a pre-trained image encoder from
VGGT (Wang et al., 2025a), augmenting it with learnable scene tokens that aggregate information
from arbitrary numbers of views and map them into the latent space of our point decoder. This
design enables NOVA3R to support both monocular and multi-view reconstruction, without being
restricted to a fixed number of inputs. Despite being trained on relatively small datasets, our model
generalizes well to unseen scenes, achieving complete and physically plausible reconstructions.

In summary, our main contributions are as follows: (i) We introduce a unified non-pixel-aligned
reconstruction pipeline with minimal assumptions, applicable to both object-level and scene-level
completed reconstruction tasks. (ii) We address key limitations of pixel-aligned methods, which
often produce incomplete point clouds, duplicated geometry, and 3D inconsistencies in overlap-
ping regions. By contrast, our non-pixel-aligned formulation naturally yields complete and evenly
distributed geometry. (iii) We integrate a feed-forward transformer architecture with a lightweight
flow-matching decoder, effectively bridging the gap between pixel-aligned reconstruction and latent
3D generation, combining feed-forward efficiency with strong 3D modeling capability (see Fig-
ure 2).
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Figure 3: Overview of NOVA3R. Stage 1: a 3D point autoencoder encodes complete point clouds
into latent scene tokens and decodes them with a flow-matching (FM) decoder. Stage 2: an image
encoder with learnable scene tokens integrates multi-view information into a unified scene latent
space, supervised by the FM loss with the Stage-1 decoder frozen. During inference, only the
second stage pipeline is used to produce a complete, non—pixel-aligned point cloud.

2 RELATED WORK

Feed-Forward 3D Reconstruction. Unlike per-scene optimisation methods (Mildenhall et al.,
2020; Kerbl et al., 2023) that iteratively refine a 3D representation for each individual scene, feed-
Sforward 3D reconstruction approaches aim to generalize across scenes by predicting 3D geometry
directly from a set of input images in a single pass of a neural network. Early approaches typi-
cally focus on predicting geometric representations, such as depth maps (Eigen & Fergus, 2015),
meshes (Wang et al., 2018), point clouds (Fan et al., 2017), or voxel grids (Choy et al., 2016), and
are trained on relatively small-scale datasets (Nathan Silberman & Fergus, 2012; Chang et al., 2015).
As a result, these models struggled to capture fine-grained visual appearance and exhibited limited
generalization to unseen scenes.

More recently, DUSt3R (Wang et al., 2024a) and MASt3R (Leroy et al., 2024) directly regress
dense, pixel-aligned point maps from unposed image collections. These approaches mark a sig-
nificant step toward generalizable, pose-free 3D reconstruction. Building on this diagram, many
recent works (Tang et al., 2025b; Wang et al., 2025b; Yang et al., 2025; Zhang et al., 2025b; Wang
et al., 2025a) extend it from image pairs to multi-view settings, enabling feed-forward 3D geometry
reconstruction from sets of uncalibrated images. However, these pixel-aligned methods produce in-
complete geometry and duplicated points in overlapping regions. In contrast, our approach outputs
a unified and complete 3D reconstruction that integrates both visible and occluded regions.

Complete 3D Reconstruction. To achieve a complete 3D reconstruction, existing approaches typ-
ically follow two main paradigms. One line of work (Vahdat et al., 2022; Zhang et al., 2023; Zhao
et al., 2023; Zhang et al., 2024b; Ren et al., 2024; Xiang et al., 2025a; Tochilkin et al., 2024; Team,
2024; 2025; Li et al., 2025b) leverages compact latent spaces (Rombach et al., 2022) or large-scale
networks (Hong et al., 2024; Zhang et al., 2024a; Tang et al., 2025a) for generating complete 3D
assets. While effective, these approaches primarily target individual object reconstruction and fall
short in modeling complex, cluttered scenes. The other paradigm fine-tunes large-scale pre-trained
diffusion models (Rombach et al., 2022; Blattmann et al., 2023). For objects, a notable example
is Zero-1-to-3 (Liu et al., 2023b), which conditions on camera pose for high-quality 360-degree
novel view rendering by training on a huge dataset, Objaverse (Deitke et al., 2023). This is fol-
lowed by a large group of successors (Long et al., 2024; Shi et al., 2024; Han et al., 2024; Liu et al.,
2023a; Li et al., 2024; Zheng & Vedaldi, 2024; Ye et al., 2024; Voleti et al., 2024). For scenes,
several recent approaches aim to achieve complete 3D geometry by leveraging controlled camera
trajectories (Wang et al., 2024b; Sargent et al., 2024; Wu et al., 2024; Gao et al., 2024; Walling-
ford et al., 2024; Zhou et al., 2025) or introducing auxiliary conditioning signals (Liu et al., 2024;
Yu et al., 2024; Chen et al., 2024; Yu et al., 2025). However, these methods do not explicitly re-
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construct the complete underlying 3D geometry. More recently, WVD (Zhang et al., 2025a) and
Bolt3D (Szymanowicz et al., 2025) propose a hybrid RGB+point map representation to combine
geometry and appearance for 3D reconstruction; however, they still require known camera poses for
novel RGB+point map rendering. We address pose-free 3D reconstruction from unconstrained im-
ages, and provide a complete 3D representation. More closely related to our work, Amodal3R (Wu
et al., 2025) introduces amodal 3D reconstruction to reconstruct complete 3D assets from partially
visible pixels, but it still works only on objects.

3 METHOD

Given a set of unposed images Z = {I‘}K  (I' € REXW>3) of a scene, our goal is to learn a
neural network @ that directly produces a complete 3D point cloud, both in terms of visible and
occluded regions. We first discuss the problem formulation in section 3.1, followed by our 3D latent
autoencoder in section 3.2, and we finally describe our global scene representation in section 3.3.

3.1 PROBLEM FORMULATION

Problem Definition. The input to our model is a set of K unposed images T = {I'}X | of a
scene, and the output is a complete 3D point cloud P € RV >3, using a feed-forward neural network
® : 7 — P. This task is conceptually similar to the conventional feed-forward 3D reconstruction
setting (Wang et al., 2024a; 2025a; Jiang et al., 2025), except that here N represents the number
of points in the complete scene point cloud (as shown in fig. 4), rather than K x H x W points
back-projected from all pixels in each input image.

The key observation is that a scene in the real world is composed of a fixed set of physical points,
regardless of how many images are captured from different viewpoints. If a physical 3D point is
observed in multiple 2D images, the correct representation of the scene should contain a single
point, rather than duplicated points back-projected from each observation. Conversely, even if a
physical 3D point is never observed in any image, it still exists in the real world and should be
inferred by the model. Therefore, the model should be able to predict the occluded regions of the
scene and avoid generating redundant points in the overlapping visible regions.

Data Preprocessing. The key to training

such a model is the definition of the complete _

3D point clouds of a scene. It must contain v
points in both visible and occluded regions, and
avoid duplicated points in the overlapping vis-
ible regions. The visibility of a 3D point is de- \Z 4
fined with respect to the input images Z. How-  Observation Visible Complete
ever, the notion of invisible points is ambigu-
ous: there are infinitely many points that are
not visible in input images, or even outside the
field of view of all input images. To simplify
the problem, as shown in Figure 4, we define invisible points within the input-view frustum and
discard points outside the frustum.

Figure 4: Visible point clouds vs. complete point
clouds. Our NOVA3R aims to recover the complete
geometry within the input view’s frustum.

Creating such complete point clouds for supervision is non-trivial. The ideal solution is to use the
ground-truth 3D mesh of the scene, which can be easily converted to a complete point cloud by
uniformly sampling points on the mesh surface. However, the ground-truth mesh is not always
available in scene-level datasets. When ground-truth 3D meshes are not available, we instead ap-
proximate the complete point clouds using depth maps aggregated from dense views. Specifically,
we first back-project the depth maps from all dense views into point clouds, then apply voxel-grid
filtering to remove duplicate points in overlapping visible regions. Finally, we discard points outside
the frustum of the selected input views (single, two, or a set of views). During training, we apply
the farthest point sampling method with random initialization to obtain a subset from the complete
point cloud to train our point decoder.

Importantly, as in DUSt3R (Wang et al., 2024a), our completed point clouds are also view-agnostic:
the 3D points are defined in the coordinate system of the first input view I, but are not pixel-aligned
to any input images. This design allows the model to learn to reconstruct the complete 3D scene in
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Figure 5: Different Decoder Architectures. The independent decoder uses cross-attention only,
while the joint decoder implements an efficient self-attention, which yields more precise structures.

the first view’s coordinate system while ignoring the ambiguity of pose estimation. Consequently,
our model can be trained on a wide range of datasets without requiring ground-truth meshes, unlike
existing object-level methods (Zhang et al., 2023; Li et al., 2025b; Team, 2024).

3.2 3D LATENT ENCODER-DECODER WITH FLOW MATCHING

Following recent works in 3D latent vector representation (Zhang et al., 2023), we design a 3D
latent transformer (Vaswani et al., 2017). However, ours does not require a perfect mesh as input or
supervision. As shown in Figure 3 (Stage 1), we implement the model as a diffusion model.

Diffusion-based 3D AutoEncoder. The encoder @, takes the point cloud P € RY*? as input,
and outputs a set of M latent tokens Z € RM*C In practice, to reduce the computational cost, the
initial query points ¢ € R™*3 are sampled from the complete point cloud P € RN *3 using farthest
point sampling, where M < N. We further design a hybrid query representation by concatenating
the point query with learnable tokens of the same length M along the channel dimension, followed
by a linear projection layer that reduces the channel dimension from 2C to C.

Once the latent tokens Z are obtained, existing 3D VAE methods (Zhang et al., 2023; Team, 2025;
Li et al., 2025b) typically use a deterministic decoder to predict an occupancy field 0 = yec(Z, )
or SDF values s = ®ye.(Z, ) for each 3D grid query x € R¥*3. However, this is not suitable
for our task, since obtaining ground-truth occupancy or SDF values for real scene-level datasets is
costly or even infeasible. Importantly, unlike objects that can be enclosed within a canonical space,
scenes typically lack well-defined boundaries and expand as the number of observations increases,
making it difficult to predefine a canonical space. Instead, we directly predict the 3D coordinates of
each query point. However, because point clouds are not ordered or aligned, we cannot directly map
the 3D point query to the ground-truth point clouds P using an Lo loss. We then adopt a diffusion-
based decoder ®gec(x¢, Z,t) to decode the scene tokens Z back to the original point cloud space.
The transformer-based decoder takes as input a set of N noised query point clouds x; € RY>3, at
the flow matching time ¢, and the latent tokens Z as conditioning. The whole architecture is trained
end-to-end with a flow matching loss (Lipman et al., 2023):

Eﬁrl)aw = Et,IONP,GNZ/I(—Ll) ||(bdec(xt7 Z’ t) - (6 - xO)”g s (1)

where x;, = (1 —1t)xo + te. Note that, we do nor use KL loss or any other regularization on the latent
tokens as in existing 3D latent VAE methods (Team, 2025; Li et al., 2025b).

Architecture. As noted above, our 3D autoencoder is implemented with a transformer architec-
ture. Specifically, the encoder is built upon TripoSG (Li et al., 2025b), which consists of one cross-
attention layer and eight self-attention layers. The decoder has three transformer blocks (details are
shown in Figure 5). Notably, the query will be switched between the 3D latent tokens Z and the noisy
point clouds x; in each cross-attention layer. This design reduces the size of the self-attention maps
while preserving information flow between latent tokens and query points. Concurrent work (Chang
et al., 2024) also proposes a diffusion-based 3D latent autoencoder, but they consider a 3D shape as
a probability density function, and process each point independently.

3.3 SCENE REPRESENTATION WITH LEARNABLE TOKENS

We now describe how to learn a global scene representation from a set of unposed images. As shown
in Figure 3 (Stage 2), we implement it using a large transformer that takes the input images Z and a

set of M learnable tokens tg € RM*C as input, and outputs the scene representation Z € RM*C
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Table 1: Quantitative results for scene completion on SCRREAM (Jung et al., 2024). The one-
side Chamfer Distance (GT — Prediction) results are shown in (). K is the number of input views.
* denotes methods that are not trained on scene-level data. Our method shows better completion
results compared to other competitive baselines. Note that, since NOVA3R is a non-pixel-aligned
3D reconstruction model, it does not explicitly distinguish the visible and occluded points.

Type Method Visible (K=1) Complete (K=1) Complete (K=2)
CD| FS@0.11 FS@0.057 CD| FS@0.11 FS@0.05% CD| FS@0.11 FS@0.051
Object THPOSG* — (0.268) (0.418)  (0.301) 0242 0.467 0.333 - - -
ISt TRELLIS*  (0.301) (0.420)  (0.313) 0256  0.429 0312  0.286 0.402 0.288
Metric3D-v2 0.063  0.803 0.534  0.086 0.725 0473 - - -
Single- DepthPro 0.055 0.852 0.603  0.079 0.764 0.535 - - -
. MoGe 0.035  0.945 0.786  0.063 0.836 0.668 - - -
VIEW  LaRI 0.057  0.847 0.589  0.059 0.825 0.590 - - -
DUST3R 0.059  0.851 0.653  0.086 0.757 0.565 0.061 0.833 0.641
Multi- CUT3R 0.069  0.835 0.679  0.091 0.753 0.543  0.092 0.739 0.532
view VGGT 0.041 0.923 0.754  0.070 0.810 0.657 0.065 0.821 0.606
Ours (0.043) (0.904)  (0.730) 0.048 0.882 0.687 0.053 0.862 0.657

Learnable Scene Tokens. As mentioned in Section 3.1, our model aims to predict a fixed num-
ber of non-pixel-aligned point cloud undelying the first view’s coordinate system. Accordingly, in
addition to L patchified image tokens t; € R¥*%, we introduce a set of M learnable global scene
tokens tg € RM*C which are randomly initialized and optimized during training. The combined
token set t; Ut from all input images, i.e., t; = Ufil{ti,}, and the learnable scene tokens tg, is fed
into a large transformer, with multiple frame- and global-level self-attention layers. To simplify the
architecture, the learnable scene tokens tg are treated as a global frame underlying the first view’s
coordinate system. This means that the scene tokens undergo the same operations as the image
tokens in each Transformer block, except that they use the first view’s camera token.

Architecture. Our image encoder is built upon VGGT (Wang et al., 2025a), a representative feed-
forward 3D reconstruction model. However, we do not use its dense predication heads to predict
the pixel-aligned depth and point maps. Instead, we use the output scene tokens Z € RM*C a5 the
conditioning of our point decoder ®g4e., to predict the non-pixel-aligned complete 3D point clouds
P € RN*3, The entire architecture is trained end-to-end with the flow matching loss:

R 2
ngf =K} zonPe~ti(=1,1) [Hfﬁdec(xt, Z,t) — (e — xo)‘u , )

where ®g4.. is frozen in Stage 2, and only the transformer @, : £y Utg — Z and the learnable
scene tokens tg are optimized.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Metrics. Following Li et al. (2025a), we report Chamfer Distance (CD) and F-score (FS) at differ-
ent thresholds (e.g., 0.1, 0.05) for completion tasks. For multi-view reconstruction tasks, we report
accuracy (Acc), completion (Comp), and normal consistency (NC) following Wang et al. (2025b).

Best results are highlighted as first , second , and third .

Implementation Details. By default, we set the number of scene tokens as M = 768 and the
number of points as N = 10, 000 for training. The image encoder architecture is exactly the same
as VGGT (Wang et al., 2025a), while the 3D latent autoencoder contains 8 layers in the encoder
and 3 layers in the decoder. The training contains two stages. In Stage 1, we train the autoencoder
for 50 epochs. In Stage 2, we initialize the image encoder with VGGT pretrained weights and the
flow-matching decoder with Stage-1 weights, then train for another 50 epochs. Note that, we only
fine-tune the image encoder and the scene-token transformer in Stage 2. We train both stages by
optimizing the flow-matching loss with the AdamW optimizer and a learning rate of 3e-4. The
training runs on 4 NVIDIA A40 GPUs with a total batch size of 32. We use standard flow-matching
with cosine noise scheduling, timestep sampling in [0,1], a fixed 0.04 step size at inference, and
identical loss settings for both object-level and scene-level datasets.
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Figure 6: Qualitative results for scene completion on SCRREAM (Jung et al., 2024). Our method
produces more complete point clouds with clearer and less distorted geometry than other baselines.

Table 2: Quantitative results for hole area ratio and point cloud density variance on SCR-
REAM (Jung et al., 2024). Our method significantly outperforms pixel-aligned baselines, achiev-
ing both lower hole ratios and lower density variance.

Method Complete (K=1) Complete (K=2) Complete (K=4)

Hole Ratio]  Density Var. | Hole Ratio ]  Density Var. | Hole Ratio|  Density Var. |
DUST3R 0.317 7.758 0.237 6.553 0.257 4.801
CUT3R 0.363 8.402 0.237 6.554 0.326 4.658
VGGT 0.307 7.105 0.238 6.546 0.261 5.217
Ours 0.088 5.127 0.121 2.188 0.134 1.881

4.2 SCENE-LEVEL RECONSTRUCTION

Datasets. The scene-level model was trained on 3D-FRONT (Fu et al., 2021) and Scan-
Net++V2 (Yeshwanth et al., 2023), using the training splits from LaRI (Li et al., 2025a) and
DUSt3R (Wang et al., 2024a), which contain 100k and 230k unique images, respectively. For visible
part training, we further incorporate ARKitScenes (Baruch et al., 2021). Ideally, our model is able to
handle an arbitrary number of input views, similar to VGGT (Wang et al., 2025a). However, limited
by the available computational resources, we mainly verify our contributions on two-view pairs and
train with 1-2 input views.

To evaluate the cross-domain generalisation ability of our model, we directly evaluate performance
on the unseen SCRREAM dataset (Jung et al., 2024), which provides complete ground-truth scans.
We follow LaR[I’s setting for single-view evaluation, with 460 images for testing. For the two-view
setting, we sample 329 pairs from the same scene with a frame-ID distance of 40-80, where the
maximum pose gap is 30% (measured by point cloud covisibility) and the hole area ratios (measured
by completeness with threshold 0.1) range from 5.3% to 48.6%. We additionally evaluate visible-
surface multi-view reconstruction on the 7-Scenes (Shotton et al., 2013) and NRGBD datasets (Azi-
novi¢ et al., 2022), sampling input images at intervals of 100 frames.

Baselines. We compare NOVA3R with several representative scene-level 3D reconstruction meth-
ods, including i) single-view Metric3D-v2 (Hu et al., 2024), DepthPro (Bochkovskii et al., 2024),
and MoGe (Wang et al., 2025¢); ii) multi-view DUSt3R (Wang et al., 2024a), CUT3R (Wang et al.,
2025b), and VGGT (Wang et al., 2025a). However, these methods only focus on pixel-aligned visi-
ble 3D reconstruction. Hence, we further compare with the concurrent complete 3D reconstruction
work LaRI (Li et al., 2025a). Since it does not support multi-view inputs, for completeness, we also
report the results from object-level methods TripoSG (Li et al., 2025b) and TRELLIS (Xiang et al.,
2025b) by disabling the input mask, while they are not trained on scene-level data.

Scene Completion. Following LaRI, we evaluate our amodal 3D reconstruction results on both
visble and complete (visible + occluded) regions. For visible setting, we follow the same evalua-
tion protocol as DUST3R (Wang et al., 2024a) and VGGT (Wang et al., 2025a), where the ground
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Figure 7: Qualitative results for density evaluation on NRGBD (K = 4) (Azinovic et al., 2022).
Yellow regions denote higher density, and purple regions denote lower density. Despite being trained
with only two views, NOVA3R generalizes well to multiple views (K = 4).)

Table 3: Quantitative results on visible reconstruction on 7-Scenes (K=2) (Shotton et al., 2013).
Our NOVA3R model can be trained on RGB-D data and achieves competitive results compared to
multi-view reconstruction methods. Note that, we use much less token to represent a 3D scene.

Method # Tokens Acc | Comp | NCT

Mean Med. Mean Med. Mean Med.
DUSt3R 2048 0.054 0.023 0.075 0.034 0.772 0.901
Spann3R 784 0.044 0.022 0.046 0.025 0.792 0.922
CUT3R 768 0.043 0.023 0.054 0.028 0.760 0.884
VGGT 2738 0.042 0.020 0.045 0.025 0.813 0.923
Ours 768 0.041 0.021 0.033 0.019 0.794 0.917

truth contains only the visible points from the input views. For the complete setting, we use the
full point cloud as ground truth, including occluded and unseen regions. However, unlike pixel
ray-conditional LaRI, NOVA3R does not explicitly identify the visible region. We therefore adopt
one-sided Chamfer Distance (GT — Prediction) for the visible part: each GT-visible point must be
explained by a nearby prediction. This measures coverage of the visible ground truth, yet without
penalizing missing, occluded regions. Table | shows three settings: 1-view visible, 1-view complete,
and 2-view complete. Despite using only two datasets to train, our method consistently outperforms
multi-view baselines on complete reconstruction in both K = 1 and K = 2 settings, demonstrating
the effectiveness of our non—pixel-aligned approach. Our method also achieves competitive results
on visible-surface reconstruction. Qualitative results in Figure 6 show that our method produces sur-
faces without holes (unlike pixel-aligned methods such as VGGT) and yields clearer, less distorted
geometry than LaRI. Such benefit is attributed to our non—pixel-aligned design, which prevents ray-
direction bias in reconstruction. We further quantify the completion capability using the hole area
ratio, which is computed by checking whether each ground-truth point has a predicted point within a
distance threshold of 0.1. As shown in Table 2, our method consistently achieves significantly lower
hole ratios, demonstrating its strong capability for complete reconstruction. In terms of density
variance, our approach outperforms all pixel-aligned baselines, even in unseen four-view settings,
indicating better physical plausibility with more evenly distributed point clouds. Moreover, when
comparing across different K, the density variance consistently decreases from one to four input
views, further confirming that incorporating more views leads to improved spatial uniformity.

Physically-reasonable Reconstruction. Except for 3D completion, our non—pixel-aligned formu-
lation also features physically plausible reconstruction by fusing evidence in 3D rather than along
camera-pixel rays, reducing duplicated points in overlapping regions and improving cross-view con-
sistency. To illustrate this, we evaluate visible reconstruction with K = 4 views on NRGBD (Azi-
novic et al., 2022). As shown in Figure 7, pixel-aligned methods like CUT3R (Wang et al., 2025b)
and VGGT (Wang et al., 2025a) accumulate 3D points in co-visible regions, producing uneven den-
sities and multi-layer artifacts. This is physically incorrect, as each point corresponds to a single
location in the real world, regardless of the number of views. In contrast, our NOVA3R generates
cleaner, single-surface geometry with uniform point distribution, achieving competitive results de-
spite using fewer datasets and views (see Table 3). We further quantify physical plausibility by
computing the density variance in Table 2, which indicates that our method achieves a more uni-
formly distributed reconstruction compared to pixel-aligned baselines.

4.3 OBJECT-LEVEL RECONSTRUCTION

Datasets. We demonstrate the versatility of our method as a unified non—pixel-aligned approach
for both scenes and objects. Following Li et al. (2025a), we train an object-completion model on
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Table 4: Quantitative results for object completion on GSO (Downs et al., 2022). NOVA3R pro-
vides a unified solution for both scene and object completion with unposed images input.

Type Method View-aligned (K=1) View-aligned (K=2)
CDJ FS@0.11 FS@0.05f CDJ FS@0.11 FS@0.05%
SF3D 0037 0913 0.738 - - -
: SPAR3D 0038 0912 0.745 ; - -
3;2516 LaRI 0025  0.966 0.894 : - -
TripoSG 0025  0.961 0.899 - ; ;
Multi-  TRELLIS 0.025  0.962 0.896 0028  0.946 0.874
view Ours 0.020  0.985 0.925 0.023 0978 0.903

S22 1ke

Input (K=1) Lari TRELLIS Ours GT Input (K=2) TRELLIS Ours GT

Figure 8: Qualitative results for object completion on GSO (Downs et al., 2022). Our method
provides more precise geometry and better 3D consistency with multi-view inputs.

Objaverse (Deitke et al., 2023) with 190k annotated images. For evaluation, we report results on
unseen Google Scanned Objects (Downs et al., 2022). For single-view reconstruction, we use the
same 1030-object split as LaRI (Li et al., 2025a). For two-view reconstruction, we fix the Oth image
and uniformly sample three additional views, yielding three pairs per object (3090 pairs in total).

Baselines. We compare with several representative object-level 3D reconstruction methods, in-
cluding SF3D (Boss et al., 2025), SPAR3D (Huang et al., 2025), TripoSG (Li et al., 2025b), and
TRELLIS (Xiang et al., 2025b). We also include LaRI (Li et al., 2025a) as a strong baseline, which
is trained on the same dataset and supports amodal 3D reconstruction.

Object Completion. Table 4 reports results for single view (KX = 1) and two views (K = 2).
Our NOVA3R outperforms LaRI on all three metrics. Importantly, our pipeline supports multi-view
completion that maps different unposed images into the same view-aligned space. On the multi-view
benchmark, our method also outperforms TRELLIS, highlighting the benefits of non—pixel-aligned
reconstruction for consistent global geometry. Qualitative comparisons in Figure 8 show that our
completions preserve fine structures, and achieve better 3D consistency in the multi-view setting.

4.4 ABLATION STUDIES

We perform comprehensive ablation studies on the SCRREAM complete (K = 1) setting to validate
the key design choices of our method, with particular emphasis on assessing the contribution of
Scene Tokens to global structure modeling. The results are summarized in Table 5, and we discuss
each component in detail below.

Initial Query (Stage 1). Prior work (Zhang et al., 2023) shows that the initialization of point
queries affects autoencoder performance. We compare three options: (i) downsampled input points,
(i) learnable query tokens, and (iii) a hybrid that concatenates (i) and (ii). Downsampled points pre-
serve the input geometry distribution, whereas learnable tokens add flexibility under source—target
shifts. As shown in Table 5, the hybrid combines these benefits and yields the best results.

Number of latent scene tokens (Stage 1). As described in Section 3, we represent each scene
with a fixed-length set of latent tokens. The number of tokens M directly affects the representation
capacity and ability to capture fine details, especially in large scenes. We evaluate different numbers
of scene tokens from {256, 512, 768} and observe consistent improvements as the count increases
(see Table 5). To balance accuracy and efficiency, we use M = 768 tokens by default. Ideally, M
could be further increased for better performance. We leave this for other works to explore.

Different architecture of flow-matching decoder (Stage 1). The latest work (Chang et al., 2024)
also presents a flow-matching decoder for ponint cloud encoder, but it assumes that all points are
independent (shown in Figure 5). This design is efficient, but ignores spatial correlations between
points. In our work, we instead adopt a lightweight self-attention + cross-attention decoder that
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Table 5: Ablations. All models are evaluated on the SCRREAM complete (K = 1) setting. We
report CDJ, FS@0.11, FS@0.051 and FS@0.021 across different ablation settings.

Init Query tokens (Stage 1) # Scene tokens (Stage 1) FM Decoder (Stage 1) Img Resolution (Stage 2)

Settings | Point Learnable Hybrid | 256 512 768 Indep. Joint 224 518
CDJ 0.011 0.013 0.011 |0.014 0.013  0.011 0.012 0.011 0.054 0.048
FS@0.117 | 0.999  0.998 0999 099 0.998  0.999 0.998 0.999 0.861 0.882
FS@0.051 | 0.991 0.981 0.993 | 0975 0986  0.993 0.990 0.993 0.648 0.687
FS@0.021 | 0.894  0.841 0904 |0.811 0.839  0.904 0.889 0.904 0.327 0.350

Table 6: Ablations on different training loss functions. All models are evaluated on the SCR-
REAM complete (K = 1) setting. We report CDJ, FS@0.17, FS@0.057 and FS@0.027 and infer-
ence time/, for the decoder.

SCRREAM (Stage 1)
CDJ) FS@0.11t FS@0.051 FS@0.021 Inference Time (s) |

Chamfer distance 0.024 0.981 0.907 0.575 0.557
Flow-matching  0.011 0.999 0.993 0.904 2.985

Training Loss

jointly reasons over points and scene tokens, allowing information exchange across the point set.
To investigate the effect of this design, we compare it with an independent variant without self-
attention. Empirically, the joint decoder yields lower CD, higher F-scores, and sharper fine details
(Table 5), with small quantitative but significant qualitative gains (Figure 5).

Input image resolution (Stage 2). In Stage 2 (image-to-point), we adopt a transformer to integrate
information between image and scene tokens. The input resolution determines the number of image
tokens used in the aggregation process. With patch size 14, a resolution of 224 x 224 yields 16 x 16 =
256 tokens, while a resolution of 518 x 518 yields 37 x 37 = 1369 tokens. As shown in Table 5,
training with resolution 518 inputs consistently improves CD and F-scores.

Flow-matching loss vs. Chamfer distance loss. To verify the necessity of flow-matching for un-
ordered point cloud encoding, we conducted an ablation using the same architecture but replaced
the flow-matching loss with Chamfer Distance. Both models were trained on SCRREAM (Stage 1)
under the same protocol. As shown in Table 6, flow-matching achieves significantly better recon-
struction quality and generalization. Chamfer Distance struggles in scene-level settings because its
nearest-neighbor formulation is computationally expensive, sensitive to density imbalance, and un-
able to capture global structure across varying scales and input views, while flow-matching produces
stable, complete, and globally consistent reconstructions.

5 CONCLUSION

We present NOVA3R, a non-pixel-aligned framework for amodal 3D scene reconstruction from un-
posed images. Unlike prior pixel-aligned methods, our NOVA3R achieves state-of-the-art results
in amodal, including both visible and invisible points, 3D reconstruction on both scene and object
levels. Notably, it also pioneers a paradigm for physically plausible scene reconstruction that recon-
structs a uniform point cloud for the entire scene, without holes or duplicated points. This simple
yet effective design makes it a promising solution for real-world applications.

Limitations and Discussion. Limited by the computational resources, we train our model with a
relatively small number of scene tokens (768) and point clouds (10,000) and a moderate number of
input views (up to 2). Hence, the reconstruction quality may degrade for large-scale scenes with
complex structures. Future work can explore scaling up the model and training data to enhance
performance and generalization. In addition, our model currently focuses on reconstructing static
scenes and does not handle dynamic objects or temporal consistency across frames.
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS.

Model architectures. For the 3D point autoencoder (Stage 1), we follow the point encoder design
from TripoSG Li et al. (2025b), which consists of one cross-attention layer and eight self-attention
layers. The initial point queries are obtained by farthest point sampling from the input point cloud,
while the learnable queries are randomly initialized tokens. We use 512 tokens with dimension 64
for the object-level model and 768 tokens with dimension 128 for the scene-level model. For the
flow-matching decoder, we use a joint block with two cross-attention layers and one self-attention
layer. The goal is to enable self-attention—like information exchange among queries while keeping
computation manageable. Concretely, each block (i) aggregates information from noisy query points
into the scene tokens via cross-attention, (ii) performs self-attention on the scene tokens (small M)
to mix global context efficiently, and (iii) projects the updated scene tokens back to the queries with
a second cross-attention.

For the image-to-latent transformer in Stage 2, we follow the architecture of VGGT (Wang et al.,
2025a), which alternates between local (frame-level) and global attention. Due to computational
constraints, we adopt a 16-layer variant instead of the full 24-layer VGGT, initializing from its
pretrained weights. We also reuse VGGT’s image tokenizers with frozen weights to obtain image
tokens. The initial 3D scene tokens are treated as a 3D frame and share the same local attention
mechanism with the image tokens. For the 3D scene token, we copy the camera token from the first
view to enable reconstruction in the camera coordinate of the first view.

Training. We train our model in two stages. In Stage 1, we aggregate per-view point clouds into
a single input cloud and apply farthest point sampling on a randomly selected subset to supervise
the flow-matching decoder. Farthest point sampling ensures that the target point cloud is distributed
more evenly, reducing the influence of overlapping points in visible regions. Stage 1 is trained for
50 epochs. In Stage 2, we reuse the flow-matching decoder from Stage 1 and train it together with
our image encoder, initialized with pretrained VGGT weights. The same flow-matching loss is used
in both stages. For object and scene completion, target point clouds are sampled from complete
reconstructions. To demonstrate compatibility with pixel-aligned formats, we also train a variant
using RGB-D input, where target point clouds are sampled from point maps back-projected from
depth. Stage 2 is trained for another 50 epochs.

Regarding computational cost, the Stage-1 point encoder is lightweight and requires no paired im-
age—point cloud data, enabling efficient training on large-scale synthetic 3D datasets. In practice,
Stage 1 takes about 40% less training time than Stage 2, and inference remains single-stage, feed-
forward, and efficient regardless of the two-stage setup. Overall, the two-stage design adds small
overhead while substantially improving stability, data flexibility, and reconstruction quality.

Evaluation. For object- and scene-level completion, we follow Li et al. (2025a) and sample 10k
points for the object task and 100k for the scene task. However, correspondence-based point cloud
alignment is not applicable due to our non—pixel-aligned reconstruction. Instead, we optimize a
3D translation and a global (1D) scale relative to the ground-truth point cloud using Adam to im-
prove alignment. We do not optimize rotation, as our reconstruction is expressed in the first-view
coordinate frame.

A.2 MORE ABLATION STUDY.

Reconstruction at any resolution. Since our approach models the point distribution rather than a
per-pixel point map, it naturally supports resolution-agnostic generation by adjusting the number of
noisy queries at inference. Figure 9 presents results with varying query counts for the flow-matching
decoder, demonstrating that our method consistently produces point clouds at different resolutions
with reliable reconstruction quality.

A.3 MORE VISUALIZATIONS.

We show more visualization results for scene-level completion on SCRREAM (Jung et al., 2024)
dataset, as shonw in Figure 10. We also include density evaluation on NRGBD (Azinovi¢ et al.,
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Figure 9: Visualization of point cloud generation at different resolutions. Our non—pixel-aligned
formulation allows inference at arbitrary resolutions.

Input (K=1) VGGT LaRI Ours GT

Figure 10: Qualitative results for scene completion on SCRREAM Jung et al. (2024). Our
method shows better scene completion results compared to other baselines.

2022) in Figure 11. While trained with K = 2 views only, our method generalize to multiple image
views (K = 4) and provides more evenly distributed point cloud .

A.4 UNCERTAINTY COMPARISON WITH LATENT 3D GENERATION

Our method is specifically designed to reduce the uncertainty typically observed in latent diffusion-
based 3D generation approaches such as TRELLIS (Xiang et al., 2025a) and TripoSG (Li et al.,
2025b). These methods perform generation in a high-dimensional latent space, which often leads to
hallucinated geometry, shape deviations, and inconsistencies across viewpoints—particularly when
multiple input images are involved (see Figure 12). As a result, they struggle to maintain strong
pixel-scene and cross-view alignment.

A.5 PERFORMANCE ON OUTDOOR SCENES

To validate the robustness and generalization capability of our framework, we further evaluate
NOVA3R using the outdoor dataset Virtual KITTI 2 (Cabon et al., 2020). We finetune our model
on Virtual KITTI 2 to better adapt to large-scale outdoor environments. To construct pseudo ground
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Figure 11: Qualitative results for density evaluation on NRGBD (K=4) (Azinovic et al., 2022).
Yellow regions denote higher density, and purple regions denote lower density. Our method provides
more evenly-distributed point cloud (colored by density).
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Input TRELLIS Ours

Figure 12: Qualitative comparison for generation uncertainty on SCRREAM. Our method pro-
duces more geometrically faithful reconstructions compared to TRELLIS (Xiang et al., 2025a).

truth, for each input frame we collect neighboring frames within [-4,8] timesteps and additional
views from +15° and +30° viewpoints. Using depth maps and camera parameters, we project them
into per-frame point clouds, transform them to world coordinates, and retain only points within the
target view’s frustum. As shown in Figure 13, NOVA3R performs well on outdoor scenes, further
demonstrating its ability to handle both indoor and outdoor scenarios.

A.6 DISCUSSION

Large-scale Scenes. Modeling large-scale scenes with many input images is a major compu-
tational bottleneck for existing learning-based 3D reconstruction methods, particularly for pixel-
aligned approaches like VGGT, which must handle duplicated points across multiple views. In
contrast, our point-wise decoding uses fewer tokens to represent the scene, making it inherently
more scalable. However, the number of points needed varies across scenes of different scales, re-
quiring adaptive point selection strategies, such as using sparse COLMAP point maps to guide point
count. Furthermore, when processing a large number of images that cannot fit in GPU memory si-
multaneously, an online image encoder (e.g., CUT3R-style) with a fixed memory buffer can be used
to enable incremental processing without increasing memory usage.
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Figure 13: Qualitative results for outdoor scenes reconstruction on Virtual KITTI 2. Our
method is also applicable to outdoor scene reconstruction (colored by Y axis).

Dynamic Scenes. Our paradigm is inherently extensible to dynamic scenes, either by adding a
branch to predict target time point maps (Sucar et al., 2025; Feng et al., 2025) or by extending
the 3D latent autoencoder to a time-conditioned 4D latent representation. Such a representation
can potentially model the entire 4D scene more efficiently by capturing both complete geometry
and temporal evolution across the whole sequence, rather than relying on per-frame reconstruction.
However, this requires carefully designed training data and loss functions to address temporal coher-
ence and motion ambiguity, which is beyond the scope of this work. In this paper, we focus on static
scene-level completion from multi-view inputs, which remains a challenging and under-explored
problem.
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