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Abstract

Large Language Models (LLMs) excel at in-context learning (ICL), a super-
vised learning technique that relies on adding annotated examples to the
model context. We investigate a contextual bandit version of in-context
reinforcement learning (ICRL), where models learn in-context, online, from
external reward, instead of supervised data. We show that LLMs effectively
demonstrate such learning, and provide a detailed study of the phenomena,
experimenting with challenging classification tasks and models of sizes
from 500M to 70B parameters. This includes identifying and addressing the
instability of the process, demonstrating learning with both semantic and
abstract labels, and showing scaling trends. Our findings highlight ICRL
capabilities in LLMs, while also underscoring fundamental limitations in
their implicit reasoning about errors.

1 Introduction
System Prompt: Use the past interactions to learn
and provide the best possible answer for each query,
aiming to earn positive feedback.

 
Query: It declined my transfer.

Intent: declined transfer

Good job!

 

Query: If I’m getting my identity verified,
what all do I need?

Intent: verify top up

The answer is wrong.

 

Query: How do I contact customer support
about my declined transfer?

Intent: contactless not working

Figure 1: Illustration of in-context bandit re-
inforcement learning. The context shows a
sequence of user queries , model responses ,

and feedback in the Banking77 77-label clas-
sification domain. The model learns in-
context from rewards given to its previous
predictions. The final prediction (shown in
red) represents the model’s current guess.

Large language models (LLMs) have been
shown to exhibit in-context learning (ICL),
a form of supervised learning that does not
require parameter updates (Brown et al.,
2020). ICL relies on including supervised
input-output pairs in the LLM context (i.e.,
prompt),1 and it has proven effective with
few (Brown et al., 2020) and many (Bertsch
et al., 2024; Agarwal et al., 2024) exam-
ples. We ask whether the ability to learn
in-context extends to contextual bandit re-
inforcement learning (RL), i.e., whether lan-
guage models can effectively perform in-
context reinforcement learning (ICRL) with
stateful single-step interaction episodes.

ICRL naturally combines ICL and reinforce-
ment learning (RL). In contrast to ICL, as
an RL process, ICRL does not rely on anno-
tated labels or a fixed dataset. Instead of
constructing the LLM context from super-
vised input-output pairs, the LLM context
is built from triplets of an input, a model’s
predicted output, and its reward. As more
input examples are observed, the model
has access to additional triplets in context,
leading to an online and continual learning
scenario, where model capabilities improve
over time. These triplets are followed by a

1We use the terms prompt and context interchangeably.
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new input, for which the model must predict an output. In this in-context framework,
adding a past episode to the context corresponds, in standard fine-tuning RL settings, to
using an episode at training time. Figure 1 illustrates bandit ICRL prompting.

ICRL is a desirable ability of LLMs. It allows learning new tasks interactively, in an online
setting, at deployment time (without parameter updates), without requiring demonstration
data. This learning signal may be human-generated, automatically provided (i.e., a program
successfully completes; Gehring et al., 2024), or even AI-generated (Zhang et al., 2024a).

We study the bandit ICRL capabilities of Llama 3.1 (Llama Team, 2024), Qwen2.5 (Qwen
et al., 2024), and Gemini 1.5 Flash (Gemini Team, 2024).2 Following existing bandit learning
literature (Zhang et al., 2019; Bietti et al., 2021), we use many-label classification benchmarks
to create contextual bandit RL scenarios, which simplify experimentation and evaluation,
while focusing on the fundamental skills of exploration and learning from rewards.

We find that LLMs demonstrate innate ICRL capabilities, but that two choices are critical
for effective learning. First, a relatively high stochasticity level is needed to encourage
exploration. Second, using only triples with positive rewards performs best.The latter
choice creates a cosmetic similarity to ICL. However, ICRL remains fundamentally different:
in ICRL the model must actively explore to find (i.e., generate) these positive triplets, rather
than having an expert annotator provide them.

A recurring observation in our experiments is the relative instability of the process, as per-
formance can suddenly dip significantly, before often quickly recovering. We propose a new
method, Stochastic ICRL, to add stochasticity to the prompt construction by only sampling
some of the past episodes observed in context, instead of increasing the temperature. This
enhances exploration, stabilizes performance, and maintains relatively shorter contexts.
Interestingly, this also allows the model to learn in the presence of negative signals.We also
study the scaling trends of ICRL, using all Qwen2.5 modeling sizes between 0.5B and 72B.
There is a strong correlation between performance and model scale, but across all scales the
relation between methods is maintained, with regard to both performance and stability.

Overall, we demonstrate that applying bandit ICRL consistently and significantly enhances
the performance of LLMs. For example, in the Banking77 (Casanueva et al., 2020) classifica-
tion task, Qwen2.5-7B improves from 6.2% zero-shot accuracy to 72.2% through Stochastic
ICRL, without access to gold labels and without any updates of model parameters. These
results suggest that LLM hold previously understudied capabilities for in-context learning,
and lay the foundation for their further development and study in future work. Our code,
data, and experimental logs are available at https://lil-lab.github.io/icrl/.

2 In-context Reinforcement Learning

ICL (Brown et al., 2020) operates by providing a model with annotated demonstrations
of a task. A demonstration includes an input (e.g., What is the best football club in Europe?)
and its corresponding annotated output (e.g., AC Milan). ICL’s reliance on pre-existing
gold-standard labeled data follows the common supervised learning paradigm, although
without any change in the model parameters.

ICRL follows the reinforcement learning paradigm (Sutton & Barto, 2018), where models
learn by reinforcing their own good behaviors and suppressing their own bad choices.
Instead of providing models with correct demonstrations, the model generates an output
given an input, then observe the outcome (i.e., reward) of its prediction. It learns from the
reward signals, in an online learning setting, all within the context (i.e., without parameter
updates). In this study we focus on a contextual bandit RL scenario, a restricted variant of
RL, where the length of each episode is one step.

Formally, the model π observes an input x(t) ∼ D sampled from the data distribution D
at time t, generates a prediction ŷ(t), and then observes a reward r(t) ∼ R(x(t), ŷ(t)). We

2We also conduct early experiments on Phi-3.5-mini (Abdin et al., 2024), included in the appendix.
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Algorithm 1 Naive and Naive+ ICRL
Require:
D: Data distribution
π: Language model policy
R: Reward function

1: Init buffer E ← ∅
2: for t = 1, 2, 3, . . . do
3: C ← E
4: Observe input x(t) ∼ D
5: Sample prediction ŷ(t) ∼ π(· | C, x(t))
6: Observe reward r(t) ∼ R(x(t), ŷ(t))
7: if r(t) ≤ 0 then
8: Continue to next t

Only in
Naive+ ICRL

9: end if
10: Add episode to buffer E ← E ∪

{(x(t), ŷ(t), r(t))}
11: end for

Algorithm 2 Stochastic ICRL
Require:
D: Data distribution
π: Language model policy
R: Reward function
pkeep: Prob. to keep examples in context

1: Init episode buffer E ← ∅
2: for t = 1, 2, 3, . . . do
3: Init empty context C(t) ← [ ]
4: for e ∈ E do
5: b ∼ Bernoulli(pkeep)
6: if b = 1 then
7: Add episode to context C(t) += e
8: end if
9: end for

10: Observe input x(t) ∼ D
11: Sample prediction ŷ(t) ∼ π(·|C(t), x(t))
12: Observe reward r(t) ∼ R(x(t), ŷ(t))
13: if r(t) > 0 then
14: Add episode to buffer

E ← E ∪ {(x(t), ŷ(t), r(t))}
15: end if
16: end for

denote the tuple (x(t), ŷ(t), r(t)) as an episode. This formulation does not assume access to
datasets of correct demonstrations, but to a reward (i.e., feedback) function.

In common RL terminology, the model π is the policy, the input x(t) is the state,3 and the
prediction y(t) is the action. Throughout our formulation, the policy is also conditioned on
previous episodes in the form of an LLM context, similar to how supervised examples are
provided in ICL. These past episodes are not part of the RL state. Instead, the context is
used to perform in-context policy improvement, similar to how past episodes are used to
perform policy improvement in conventional RL (e.g., via parameter updates).

We design several methods to elicit ICRL from LLMs. The Naive approach is a straightfor-
ward implementation of ICRL following the common ICL recipe (Section 2.1). The Stochastic
approach (Section 2.2) is an alternative to increasing sampling temperature, but with more
stability. In Appendix B.3, we propose Approximate ICRL, an additional approach that
shares similarities with Stochastic, while being more efficient in high-memory setups.

2.1 Naive and Naive+ ICRL

Algorithm 1 describes the Naive approach, as well as Naive+, a variant that only considers
examples with positive reward. Omitting lines 7–8 gives Naive ICRL, the most straightfor-
ward way to implement ICRL. At each time step t, the model observes a new example x(t),
produces a prediction ŷ(t), and receives a reward r(t). Every such model interaction creates
an episode, which is appended to the buffer E . For each new interaction, we construct a
context C from prior episodes (line 3). In Naive, this context is simply all past episodes.
Naive+ ICRL adds lines 7–8 and ignores negative-reward episodes, retaining only positive
episodes in the buffer. As the LLM’s context window fills, both variants maintain a sliding
window by dropping older episodes.

Empirically, Naive does not learn effectively (Section 4; Figure 2), while Naive+ is very
effective, especially with relatively high sampling temperature. The gap between the two
indicates the failure of Naive is due to the presence of examples with negative reward.

3In the bandit literature, the state is often called context, and hence the name contextual bandits.
We do not use this term to avoid confusion with the LLM context.
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Critically, even when only using positive examples, ICRL still differs from supervised ICL in
that it relies on the model’s generations rather than a fixed set of annotated demonstrations.
This much more challenging scenario necessitates the model to explore and iteratively refine
its outputs through reinforcement; without this capability, further learning does not occur.

2.2 Stochastic ICRL

Stochastic ICRL utilizes model sensitivity to prompt composition as an avenue to increase
exploration, instead of the increased temperature of Naive. Changes in prompt composition
have been widely observed to lead to variance in LLM behavior, including through changes
in the set of ICL examples (Zhang et al., 2022; Liu et al., 2022; Chen et al., 2023; Levy et al.,
2023), seemingly meaningless stylistic changes (Sclar et al., 2024; Lu et al., 2022), or even
interventions based on entropy in the embedding space (Rahn et al., 2024). Generally, this
property of LLMs is not viewed positively. However, it adds stochasticity to the ICRL
process, which encourages exploration.

Stochastic introduces context stochasticity by randomly choosing the subset of past episodes
to include in the prompt for each new input. Like Naive+ ICRL, it includes only positive-
reward episodes, which improves results empirically.

Algorithm 2 describes Stochastic ICRL. For each input, we construct a new context (lines
3–9). We decide what past episodes to include in this context by sampling from a Bernoulli
variable parameterized by pkeep (lines 4–9). We sample independently for each past episode.
This results in different implicit reasoning for each input, because each is done with a
different context. As in Naive+, we only store episodes with positive reward (lines 13–15).

With small pkeep, Stochastic will encounter the issue of the LLM context window saturating
much later than Naive. However, deploy ICRL for enough interactions, and the context
window will saturate, even for models with the largest windows.

Similar to naive, we downsample the context if it overflows the LLM context window. We
do it by removing episodes from the sampled C(t) uniformly at random until the context
fits the model’s context window.

3 Experimental Setup

Models We use the instruction-tuned versions of Llama 3.1 8B (Llama Team, 2024) and
Qwen2.5 (Qwen et al., 2024) for all model sizes.4 For the hardest tasks, we also experiment
with Gemini 1.5 Flash 8B (Gemini Team, 2024).5 We use all models in a multi-turn chat
format. We compute the maximum number of episodes the context window can take for
each model-task combination (Appendix C.2). We use constrained decoding to generate
model predictions, as in recent work on ICL (Bertsch et al., 2024).

Tasks We follow Bertsch et al.’s (2024) study of many-shot ICL in focusing on five clas-
sification problems: Banking77 (77 labels; Casanueva et al., 2020), CLINC150 (150 labels;
Larson et al., 2019, NLU (68 labels; Liu et al., 2021), TREC (6 labels; Li & Roth, 2002; Hovy
et al., 2001), and TREC-fine (50 labels; Li & Roth, 2002; Hovy et al., 2001). Because of the
large output spaces (up to 150 labels in CLINC150), these tasks are particularly challenging
for large language models, as empirically shown by Bertsch et al. (2024) and replicated in
our zero-shot results. The classification problem creates a contextual bandit scenario (Zhang
et al., 2019; Bietti et al., 2021). The labels in each dataset are used to compute rewards, and
are never shown to the model. Appendix C.3 offers more details on the datasets.

The datasets are of different sizes. The size of the datasets dictates the number of time
steps in our experiments. We randomly sub-sample Banking77, CLINC150, and NLU to

4We include in the appendix early experiments with Phi-3.5-mini (Abdin et al., 2024), which
generally performs worse due to relative model weakness.

5We limits our experiments with Gemini due to costs. Overall, we spent $2,120 USD on Gemini
API calls.
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10k examples. TREC and TREC-fine are smaller, so we only use 5k training examples for
each. This allows the experiments to be of relatively standard length. The training data
corresponds to the data distribution D in our algorithms. We also sub-sample all test sets to
500 examples each, to reduce the computational cost of experiments. NLU does not provide
a standard test set, so we create our own train and test splits. In all experiments, the datasets
contain the same examples in the same order.

Semantic vs. Abstract Class Names We study using both the original class names and
abstract labels. The original class names carry important semantic information, which
gives the model helpful clues on how input examples map to them (e.g., the output class
name calendar update in CLINC150 is a strong hint to which input queries may apply
to it). Experiments with abstract labels remove this information by mapping all labels to
meaningless abstract strings (e.g., label5). Experiments and results use the original (semantic)
labels by default, unless noted explicitly that they are using abstract labels.

Rewards and Prompt Design We simulate interactive binary rewards from perfect au-
tomatic verifiers or human actors interacting with the system. We do so by comparing
the model outputs with the gold label of each input. This is a common practice in studies
of the effect of rewards on learning processes (Gao et al., 2023; Lightman et al., 2024), for
practical convenience. We deterministically transform the binary numerical rewards into a
natural language format indicating if the model prediction is correct or not, which is more
suitable for LLM reasoning. This formulation abstracts over challenges like exact numerical
interpretation (i.e., of continuous rewards), while focusing on the fundamental skills of
exploration and learning from rewards. Appendix C.1 elaborates on our prompting.

Evaluation We report running test accuracy, using the held-out test set of each dataset.
We compute it every 500 steps for each test example separately, using the context used to
process that step’s training example. In the appendix, we also report regret, the forgone
utility from an actual model prediction in comparison to the oracle choice.

Comparisons We compare ICRL with the zero-shot setting, which corresponds to the
performance on the test set without any in-context examples.6 We also report a supervised
ICL upper bound by testing performance with the maximum possible number of gold-
standard supervised demonstrations in context. These results use expert demonstrations,
which the ICRL results have no access to in our learning process. As expected these
ICL results outperform the ICRL trends we report. However, the reliance on annotated
demonstrations makes them not comparable to the ICRL results. We provide them to get an
idea of the upper bound of ICL in these scenarios.

4 Results and Analysis

Figure 2 shows the test accuracies for Llama 3.1 8B and Qwen2.5 7B. As an upper bound
to in-context learning, we also show the performance of an oracle with access to the gold
labels for the maximum number of in-context examples that the model can fit. Unless
specified otherwise, we use pkeep = 0.1 and sampling temperature T = 1.0 for Stochastic
and zero-shot, T = 1.0 for Naive, and T = 2.0 for Naive+. We choose the best parameters
for each ICRL method and include our analysis in Appendix B.

LLMs Learn In-Context From Their Own Predictions and Rewards Both Naive+ and
Stochastic effectively learn in all tasks and for both models, showing significant improve-
ments over zero-shot. Naive+ and Stochastic improve over the zero-shot accuracies by
between 28.6–74.4% for Llama, and 29.2–68.4% for Qwen. In general, accuracies approach

6We visually highlight the zero-shot performance with sampling temperature T = 1.0, which is
the temperature we use for Naive and Stochastic experiments. Zero-shot accuracy with Naive+’s
temperature of 2.0 can still be observed by looking at the accuracy at the first step of the Naive+
curves.
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Figure 2: Performance of ICRL. Naive, Naive+, and Stochastic held-out test results for
Llama and Qwen and all tasks. Naive+ and Stochastic consistently outperform zero-shot
(i.e., first step) and Naive, while also showing consistent trends of continual improvement
as more data is observed. Table 2 in Appendix D details start and end accuracies.

the supervised performance in many settings, demonstrating the strong bandit ICRL capa-
bilities of Llama and Qwen. Performance also grows monotonically over time, especially
with Stochastic, suggesting further gains with more data. This trend is most evident in the
most challenging datasets (Banking77, CLINC150, NLU), where high label counts demand
more exploration to map inputs to outputs.
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Figure 3: Reward ablations. Test accuracies
of Naive and Stochastic with different reward
signals. Positive reward only is the best choice
for both methods. With Naive, no other strat-
egy facilitates learning. Table 3 in Appendix D
details start and end accuracies.

Reward Signals Are Crucial, but Mistakes
Remain Challenging Figure 3 shows abla-
tions studies. Removing rewards or invert-
ing them brings about negligible gains over
zero-shot performance for both Naive and
Stochastic models. This demonstrates that
learning is driven by the reward signals,
and not simply by the inclusion of domain
examples in the context (i.e., domain effect;
Min et al., 2022; Pan et al., 2023; Lyu et al.,
2023; Kossen et al., 2024).

Unlike Naive, which only performs effec-
tively when exclusively positive-reward
episodes are considered (i.e., Naive+),
Stochastic partially maintains its learning
capabilities even when exposed to nega-
tive outcomes. Although its performance
is negatively impacted, this suggests that
our stochastic approach prevents the model
from becoming overwhelmed by signals it
struggles to interpret. Notably, Stochastic
remains robust even when 10% of the re-
wards are inverted (i.e., noisy), indicating
resilience to noise, which is likely in human-feedback settings.

Overall, our ablations show that (a) LLMs can learn online from their predictions only when
a reward signal is present, and (b) LLMs exhibit inherent limitations in implicitly learning
from mistakes (i.e., without explicit reasoning, as in Wei et al.’s (2022) Chain-of-Thought).

Label Semantics Contribute, but ICRL Occurs Without It Previous supervised ICL work
has shown that LLMs can learn tasks whose labels have no semantic meaning (Pan et al.,
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Figure 4: ICRL with Abstract Labels. We evaluate whether LLMs can learn tasks whose
labels carry no semantic meaning by mapping each label to label {number}. Even without
initial exemplar demonstrations, Qwen and Llama show increasing performance over time.
Gemini similarly excels when given an initial mapping, but struggles in a purely exploratory
setting. Table 4 in Appendix D details start and end accuracies.

2023; Li et al., 2024), that is, tasks with abstract labels. This poses a harder challenge than with
labels with semantic meaning, because cannot rely on pre-trained input-output associations.
We experiment with removing all semantic information from the label space, by mapping
each original label to a format label {number}.7 This ensures that the labels themselves carry
no meaningful information that might help the model. We evaluate two scenarios. In the
first and more challenging setup (Without Exemplars), we provide no prior demonstrations
of correct input-output mappings, thus adhering closely to the ICRL protocol. In the second
setup (With Exemplars), we give exactly one correct demonstration per label at the start of
the prompt (i.e., before past episodes).

Figure 4 summarizes our findings on Llama 8B, Qwen2.5 7B, and Gemini 1.5 Flash 8B. To
contextualize the results, we include upper bound results from standard supervised ICL
with as many gold demonstrations (with abstract labels) as the context can handle, which
generally succeeds across tasks (except for a lower performance on TREC-fine). With just
one exemplar per label, ICRL nearly reaches the upper bound for all tasks and models. We
also stress that just including one gold demonstration per label is not always enough to
reach good performance, and the online process is still important: for example, Llama with
exemplars, when tested on CLINC150 with Stochastic, reaches non-negligible accuracies
only after 3k steps. In the absence of any exemplars, the ICRL process still manages to build
informative contexts, though overall accuracy is not surprisingly lower. For instance, Qwen
and Llama achieve higher than 45% accuracy on NLU and TREC with both Naive+ and
Stochastic, indicating that the models learn and refine their output mappings over time. In
contrast, Gemini excels when the correct mapping is provided but struggles significantly in
a purely exploratory setting.

Given the domain effect observed with semantic labels, and the relatively low, even if
significant results observed with abstract labels, the question arises if this learning is due to a
domain effect. For example, Llama on CLINC150 improves from 0.8→27.6% during learning
with Naive+, a significant, but modest improvement. We ran additional experiments to study
the presence of learning with abstract labels, but without reward signals (i.e., to measure

7We assign each unique label a random integer from 1000 onward, up to the total number of labels
in a given task.
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(b) Stability of Naive+ and Stochastic ICRL. We measure stability by computing Spearman’s rank
correlation between accuracy and time step. Except for TREC and TREC-fine (which give inconclusive
results), Stochastic exhibits more stable learning on Banking77, CLINC150, and NLU. Larger models
also show higher stability, mirroring trends in (a). Table 6 in Appendix D details ρ values.

Figure 5: Comparison of Qwen models (500M–72B). We analyze scaling accuracy gains (a)
and stability differences (b).

the domain effect). We see no improvement over zero-shot performance, confirming the
reward signal is what drives learning.8

Bigger Models Are Better at ICRL We evaluate Qwen Instruct models ranging from 500M
to 72B parameters using both Naive+ and Stochastic to characterize the scaling trends of
ICRL. Figure 5a shows the results. For all model sizes, performance improves substantially
over zero-shot accuracy (measured at the first time step). However, smaller models tend to
plateau at lower accuracies compared to larger models, indicating that ICRL benefits from
model scale, similar to other LLM behaviors.

Stochastic is More Stable Than Naive+ An important differentiating factor between
Stochastic and Naive+ is stability. The results so far (Figures 2, 4, and 5a) often show
sudden, even if temporary dips in performance with Naive+. This instability is undesirable,
because it means the performance of the model in interactions (i.e., with users) temporarily
deteriorates significantly. In contrast, Stochastic’s learning trends are more stable.

8Because these experiments showed no learning effect at all, we are omitting them from our figures.
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We quantify stability as Spearman’s rank correlation (ρ) between accuracy and time step.9
Figure 5b shows the relation between stability and model sizes for all Qwen models for the
three methods. Except for TREC and TREC-fine, which give inconclusive results, Stochastic
exhibits more stable learning than Naive+ on Banking77, CLINC150, and NLU across all
model scales. As expected, in general, larger models show higher stability, mirroring the
trends in Figure 5a. We hypothesize that Stochastic is less sensitive to short-term fluctuations,
as it relies on a smaller but more diverse set of episodes at each step.

5 Related Work

Supervised ICL ICL was first demonstrated by Brown et al. (2020), and since then its
causes (Chan et al., 2022; Xie et al., 2022; Olsson et al., 2022; Garg et al., 2022; Von Oswald
et al., 2023; Hendel et al., 2023; Wang et al., 2023) and the level of learning it displays (Min
et al., 2022; Lyu et al., 2023) have been studied extensively. By now, it is well established
that LLMs can learn new tasks in context (Garg et al., 2022; Wei et al., 2023; Pan et al., 2023;
Kossen et al., 2024; Li et al., 2024). Our work builds on this line of work, and provides the
first evidence that LLMs have the innate capability to perform RL in context, and not only
supervised learning (i.e., the standard way it is done), in the contextual bandit setting.

Our study would not be possible without recent increases in the context window length
of LLMs (Llama Team, 2024; Abdin et al., 2024; Gemini Team, 2024). Recent work showed
that model performance can continue to increase when including hundreds or thousands
of ICL demonstrations (Bertsch et al., 2024; Agarwal et al., 2024). We find similar results:
LLMs can continually improve when learning through ICRL until their context does not
saturate. Interestingly, while some work (Zhang et al., 2024b; Mo et al., 2024; Shinn et al.,
2023) find that models can learn from mistakes, we do not observe effective learning from
episodes with negative rewards. It is possible that models can learn from mistakes only
when explicitly reasoning (Kojima et al., 2022; Wei et al., 2022) about them (Shinn et al., 2023;
Zhang et al., 2024b), but not implicitly. This is an important direction for further study.

ICRL Likely the closest work to ours is Krishnamurthy et al.’s (2024) study of whether
LLMs can solve multi-armed bandit problems, a state-less simpler RL setting than the one
we are focused on. We observe similar issues to their findings with the Naive approach. They
present a set of negative results, and finally are able to elicit effective learning, but through
a prompting strategy that cannot generalize beyond their very simple scenario. We address
this challenge by showing the strong performances of both Naive+, which includes only
positive outcomes and an increased sampling temperature, and Stochastic, which features
stochasticity in the prompt construction. Concurrent to our work, Nie et al. (2024) studied
the contextual bandit ICRL, similar to our study. They also propose a working solution,
but take a very different approach by externally tracking learning statistics commonly used
in the UCB bandit learning algorithm (Auer et al., 2002), and fine-tuning or prompting a
model to leverage them. In contrast, the approaches we discuss do not rely on explicitly
tracking statistics or fine-tuning. Instead, we are interested in innate abilities.

Wu et al. (2024) propose benchmarks that include a simplified multi-armed bandit problem.
Their baseline results with a method similar to Naive show mixed results in a setting that is
even simpler than that of Krishnamurthy et al. (2024).

A few studies have also considered multi-step RL toy settings (Brooks et al., 2023; Mirchan-
dani et al., 2023). Mirchandani et al. (2023) prompt models to improve past trajectories,
and Brooks et al. (2023) simulate policy iteration with LLMs. Both works find that models
cannot learn in general. Interestingly, Mirchandani et al. (2023) attribute this failure to LLMs
inability to explore and find optimal solutions, as we also observed in our analysis of Naive.

Transformers and RL Another related line of research is that of Transformers trained to
solve sequential decision-making problems (Janner et al., 2021; Chen et al., 2021; Xu et al.,

9A perfect positive correlation (ρ = 1) indicates strictly increasing accuracy over time, whereas
ρ = −1 means performance strictly decreases.
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2022; Laskin et al., 2022; Zheng et al., 2022; Lee et al., 2023; Grigsby et al., 2024; Raparthy
et al., 2024). In all these cases, Transformers (Vaswani et al., 2017) are trained from scratch.
Our focus is different: we study ICRL that emerges from the process of training LLMs,
without fine-tuning the LLM for this purpose.

6 Discussion and Limitations

We study the innate capabilities of off-the-shelf LLMs to perform ICRL in the contextual
bandit setting. We outline a straightforward algorithm to show this behavior, and propose
an enhanced version featuring stochasticity in the prompt construction, while increasing
stability. We characterize ICRL, including scaling effects, stability, the importance of the
reward signal, and the impact of abstract labels (i.e., that contain no semantic information).

Fundamentally, our work illustrates that exploration is the key ingredient necessary for
ICRL behavior in LLMs. When exploration is combined with filtering of episodes with
negative rewards, conventional ICL abilities (i.e., learning from demonstrations) bring about
strong ICRL trends. Furthermore, exploration can be aided by introducing stochasticity in
the prompt construction. The dependence of the learning trends on filtering out negative
rewards leaves an important challenge for future work – how to elicit or train LLMs to
reason effectively about negative episodes.

While our work provides a plethora of insights into ICRL behavior, much remains to be stud-
ied. We intentionally choose the contextual bandit setting using classification benchmarks
following (Zhang et al., 2019; Bietti et al., 2021), and focus on binary rewards to simplify the
experiments and evaluation in this early stage of studying ICRL. This formulation abstracts
over challenges like exact numerical interpretation (i.e., of rewards), while focusing on the
fundamental skills of exploration and learning from rewards. However, this limitation
leaves open the question of applicability to more complex RL problems, where rewards
are more nuanced, or where interactions comprise multiple steps. For example, math and
coding tasks often require multiple steps, but also introduce complex evaluation challenges.
We believe our study enables future work to study these challenges, and that this is an
important direction.

Our work also leaves open questions about the use of computational resources. ICRL
is relatively compute-intensive, especially after the learner observes many episodes. We
propose Approximate ICRL in Appendix B.3 to reduce certain forms of computational
overhead, and show how it allows to trade-off compute for robustness. Further reducing
computational demands is an important direction for future work.

We hope our work helps to shed light on the capabilities of contemporary LLMs, and that it
lays out the ground for extensive future work, both in research and practice.
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A Evaluation Measures in the Appendix

In the appendix, in multiple cases, we also report regret, the forgone utility from an actual
model prediction in comparison to the oracle choice. Intuitively, regret measures how many
interactions the model handled poorly throughout the experiment. In our experiments,
regret is the accumulated number of incorrect examples throughout learning. Regret gives a
single number that considers both the final performance and how fast the model reached it.
A good system would reach high performance as fast as possible, making fewer mistakes
overall (i.e., would have a low regret).

In some cases, we also report train accuracy as the running mean accuracy over the most
recent 256 episodes.

B Additional Method Analysis

B.1 Naive and Naive+ ICRL Hyperparameters

We study the effect of the model sampling temperature T on both Naive and Naive+ ICRL
(Figure 6). For Naive (Figure 6a), we observe that varying T does not significantly affect
performance, and all values lead to relatively poor results. In contrast, Naive+ ICRL is
highly sensitive to T (Figure 6b): while higher temperatures can sometimes reach stronger
performance, they also introduce substantial instability. Low temperatures are more stable
but plateau at lower levels of accuracy. Overall, we find that T = 2.0 achieves both good
performance and stability. We adopt this value for all subsequent Naive+ experiments,
including the ablations reported in Figure 3.

A related concern involves zero-shot performance (i.e., performance at time step 0). Because
we use T = 1.0 for Stochastic (and Naive) and T = 2.0 for Naive+, it is unclear whether
to measure zero-shot performance with T = 1.0 or T = 2.0. To ensure fairness, in all
experiments combining Naive+ and Stochastic, we report the higher of these two zero-shot
accuracies as our baseline. In particular, in many instances, because of this choice, the
difference between final and initial performance exceeds the difference between final and
zero-shot performance.

B.2 Stochastic ICRL

B.2.1 Downsampling Strategies

In our formulation of Stochastic ICRL, we downsample too large contexts by randomly
removing selected episodes until they fit the model context. However, we design three
strategies in total to downsample the context if we reach the limit of the LLM context
window: (a) unbiased (the default strategy): randomly remove episodes from C(t) until it
fits the context window; (b) start-biased: use the longest possible prefix of episodes from
C(t) such that it fits the LLM context size; and (c) end-biased: use the longest possible suffix.
Unbiased corresponds to the approach used in the main paper.

In practice, we never saturate the LLM context window when using Stochastic ICRL with
pkeep = 0.1 because our context windows are more than 100k. We conduct experiments to
evaluate the above strategiesby limiting the context window of Llama to 4k or 8k tokens.
Generally, we observe that start-biased strategy outperforms unbiased, which in turn performs
better than end-biased, in all cases, although by only small margins. Given these results, we
focus on unbiased as the most straightforward approach. Figure 8 shows the results of this
analysis for Banking77 and CLINC150.

B.2.2 Hyperparameter Tuning and Sensitivity

Stochasticity in context generation is one of the key components that contribute to both
Stochastic performance. It is controlled by setting pkeep. Figure 7 shows the sensitivity of
Stochastic to different values of pkeep. Without stochasticity (pkeep = 1.0), ICRL struggles

17



Published as a conference paper at COLM 2025

on both models—particularly on Phi —while setting pkeep too low retains too few examples
in the context and hurts performance. Setting pkeep = 0.1 strikes a good balance, yielding
strong results while keeping the context short (and therefore faster to run). We fix pkeep to
0.1 for all subsequent Stochastic experiments.
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(b) Temperature Sensitivity Analysis for Naive+.

Figure 6: Temperature Sensitivity Analysis for Naive and Naive+. We plot the performance
of each approach across different sampling temperatures T. (a) For Naive, varying T has
little impact, and all temperature settings result in relatively poor performance. (b) Naive+
exhibits significant variability: higher T values can lead to strong performance but are less
stable, whereas lower T values yield more stable results but with lower peak accuracy. We
choose T = 2.0 for Naive+ to achieve both strong performance and stability.
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Figure 7: Sensitivity to pkeep in Stochastic ICRL. We compare performance with different
values of pkeep. Intermediate values learn better for both Llama and Phi.
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Figure 8: Varying Maximum Context in Llama for Banking77 and CLINC150. Compari-
son of test accuracy and regret of Llama under varying context lengths and subsampling
strategies for both Banking77 and CLINC150 datasets. Longer contexts generally enhance
performance, with subtle differences observed between subsampling strategies. The differ-
ence between the strategies is negligible.

We do not optimize the sampling temperature T for Stochastic in this work and simply fix
it to a standard value of 1.0. It is possible that performance could improve further with a
more optimal temperature selection. We leave this investigation to future work.

B.3 Approximate ICRL

B.3.1 Stochastic ICRL Computational Costs

An important technical difference between the Naive and Naive+ approaches and Stochastic
is that, until the context window is not saturated, Naive approaches can potentially re-use
past computations from caching. This is not possible in Stochastic, because each episode
requires the construction of a fresh context C(t). The probability of encountering the same
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Algorithm 3 Approximate ICRL

Require:
Everything from Algorithm 2
K: Number of contexts to maintain

1: Init empty contexts C ← {[ ](1), . . . , [ ](K)}
2: for t = 1, 2, 3, . . . do
3: Sample context uniformally C ∼ U (C)
4: Observe input x(t) ∼ D
5: Sample prediction ŷ(t) ∼ π(·|C, x(t))
6: Observe reward r(t) ∼ R(x(t), ŷ(t))
7: if r > 0 then
8: for k = 1 to K do
9: b ∼ Bernoulli(pkeep)

10: if b = 1 then
11: Add episode to cached context

C[k] += (x(t), ŷ(t), r(t))
12: end if
13: end for
14: end if
15: end for

context twice, or even the same prefix, is exceptionally low even after a few episodes. This
means that the context has to be computed from scratch for each input.10

B.3.2 Method

We propose an approximation of Stochastic ICRL that balances between computational cost
and learning effectiveness. Similar to both Naive+ and Stochastic, the approximate version
also excludes episodes with negative reward and, like Stochastic, focuses on exploration by
stochasticity in the context.

Algorithm 3 describes Approximate ICRL. The core idea behind the approximation is to
persistently store a limited number of contexts, so we can simply gradually expand them
with new episodes, rather than always create and compute new contexts. We maintain K
contexts C, which all start empty (line 1). At each time step t, we sample a context C from
the K contexts (line 3), and use it for episode t (lines 4–6. If the reward r(t) > 0, we use the
episode to expand all contexts stochastically. For each context in C, we expand it with the
t-th episode with a probability of pkeep (lines 8–11).

Approximate introduces stochasticity in two places: sampling the context to use for each
episode and the expansion of the stored contexts. In Algorithm 3, we use uniform sampling
to choose the context (line 3). This is a uniform approximation of the probability of a context,
which can also be easily computed exactly using the probabilities of the episodes it contains
and pkeep. In practice, we find the exact computation to work poorly, because contexts
that are assigned more episodes or have low probability episodes quickly receive very low
probability, and are not used. Figure 10b shows this experimental analysis. We use uniform
sampling throughout our experiments.

The level of approximation the algorithm provides depends on the resources available. For
example, one can allocate each context to a compute unit, so a machine with eight compute
units (e.g., GPUs) will support K = 8. Approximate is a strict approximation of Stochastic
in the sense that coupling the exact context sampling strategy with K → ∞ gives Stochastic.
However, the approximation is limited in handling contexts that extend beyond the LLM

10In low-memory setups, this does not lead to noticeable slowdowns (as efficient caching would
not be possible), and Stochastic can be much faster given that each context contains only pkeep% of the
episodes that Naive+ would use. In our setup, we empirically find this to be the case and Stochastic is
significantly faster in practice.
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Figure 9: Performance of ICRL. Stochastic and Approximate held-out test results for both
Llama and Phi and all semantic-labels tasks.

window length. Overcoming this while maintaining the efficiency of the approximation is
an important direction for future work.

B.3.3 Results

We test Approximate on Llama and Phi only, and show the results in Figure 9. If not
specified, we choose K = 8 for Approximate.

Approximate is an Effective Alternative to Stochastic In Figure 9, Approximate performs
almost as well as Stochastic ICRL when using Llama, across all tasks. The results are very
different with Phi: despite early learning, Approximate deteriorates quickly. This stems
from one of the contexts being biased towards one label and therefore predicting only this
label. Eventually, the bias towards the label spreads to other contexts, leading to the collapse
in performance we observe. It is empirically possible to recover, as we see in Banking77
later in the experiment, but the chance of it happening seems low. The success of Llama
and failure of Phi with K = 8 show that different LLMs have different sensitivity to the
approximation. Figure 10a shows that that with a higher number of contexts K > 32 Phi
is able to effectively learn, indicating Phi needs a higher computational budget. On the
other hand, Llama is robust to the approximation, with most values performing similarly to
Stochastic, except with the lowest values of K.

Approximate Reduces Compute Needs. We measure the reduction of tokens processed
in Approximate compared to Stochastic throughout full ICRL runs. We approximate this
measure by computing at each step the number of tokens required for a forward call and
subtracting the number of tokens of the sequence with the longest common prefix processed
in a previous step, as it would be possible to use the KV cache for all the tokens in the
common prefix (assuming infinite memory). We find that Stochastic processes two orders
of magnitude more tokens than Approximate. Table 7 provides numerical results for this
analysis.

C Experimental Setup

We conduct experiments on various type of GPUs: 40GB A100, 80GB A100, 80GB H100,
48GB A6000. For experiments with 70B and 32B models, we use 4 80GB A100/H100 or 8
48GB A6000. For experiments with 14B models, we use 2 80GB A100/H100. For experiments
with 7B or smaller models, we use 1 80GB A100/H100 or 2 48GB A6000 / 40GB A100. For
efficient inference, we use vllm (Kwon et al., 2023).
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Figure 10: Comparison of Approximate parameters. (a) Effect of the number of contexts K.
We report test accuracy for Llama and Phi. Phi proves more sensitive to this approximation.
Generation degenerates for low K, while the model can learn for K ≥ 32. Llama can learn
with all K, although higher values perform better. (b) Comparison of exact and uniform
sampling. We report test accuracy at the final step and regret for Llama. Uniform sampling
strategy is consistently better.

C.1 Prompt Design

We report prompt examples from ICL (Figure 11) and ICRL (Figure 12) experiments. We
show the prompts for Llama as an example. In all cases, we show the prompts with two
in-context examples.

C.2 Context Windows and Episode Capacity

For each task and model combination, we conservatively estimate the maximum number of
examples that could fit within the context window. This is done by including all observed
examples in descending order of token count in the prompt, assuming the model consistently
responds with the longest label and that the formatted reward message is at its maximum
length. We perform this calculation using the maximum context window for all models.
Additionally, for Llama, we repeat the process with context windows of 4,096 and 8,192
tokens specifically for the Banking77 and CLINC150 tasks. Table 1 reports episode capacity.
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Prompt example for ICL in Llama

<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nC ⌋
utting Knowledge Date: December 2023\nToday Date: 26 Jul
2024\n\nYou are an useful assistant. Answer the following
questions.<|eot_id|><|start_header_id|>user<|end_header_id|> ⌋
\n\nQuery: Tell me about the card
PIN?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\ ⌋
n\nIntent: get physical
card<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nQu ⌋
ery: Is there a daily auto top-up
limit?<|eot_id|><|start_header_id|>assistant<|end_header_id| ⌋
>\n\nIntent: automatic top
up<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nQuer ⌋
y: I got a message saying I made a withdrawal from the bank
machine, but I did not.<|eot_id|><|start_header_id|>assistan ⌋
t<|end_header_id|>\n\nIntent:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Figure 11: An example of prompt of ICL for Llama.

Prompt example for ICRL in Llama

<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nC ⌋
utting Knowledge Date: December 2023\nToday Date: 26 Jul
2024\n\nYou are an useful assistant. Answer the following
questions. Feedback will indicate if you answered correctly.
You must answer correctly, using previous feedback to make
better predictions.<|eot_id|><|start_header_id|>user<|end_he ⌋
ader_id|>\n\nQuery: It declined my
transfer.<|eot_id|><|start_header_id|>assistant<|end_header_ ⌋
id|>\n\nIntent: declined
transfer<|eot_id|><|start_header_id|>user<|end_header_id|>\n ⌋
\n'declined transfer' is the correct answer! Good
job!\n\nQuery: Am I allowed to change my PIN anywhere?<|eot_ ⌋
id|><|start_header_id|>assistant<|end_header_id|>\n\nIntent:
verify top
up<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nThe
answer 'verify top up' is wrong! You can do better!\n\nQuery:
If I'm getting my identity verified, what all do I need?<|eot ⌋
_id|><|start_header_id|>assistant<|end_header_id|>\n\nIntent:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Figure 12: An example of prompt of ICRL for Llama.

C.3 Datasets

We use 5 classification tasks (and the corresponding abstract-label variants) in our experi-
ments:

• Banking77 (77 labels; Casanueva et al. (2020)). It involves 77 labels and aims to
detect the intent of user queries in an economic context. For example, one label
could be “balance not updated after cheque or cash deposit”.

• CLINC150 (150 labels; Larson et al. (2019). It includes 150 labels, also focusing on
intent classification. An example label is “calendar update”. While the original dataset
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Table 1: Maximum number of episodes supported by model and task, given a specific
context window. We compute the maximum number of episodes supported by the context
window of Llama, Phi, Qwen, and Gemini across all tasks, including 4k and 8k tokens for
Llama, with Banking77 and CLINC150 only.

Phi Llama Qwen Gemini

Task 128k tokens 4k tokens 8k tokens 128k tokens 128k tokens 1M tokens

Banking77 1538 34 74 1673 1672 -
CLINC150 2241 60 126 2384 2184 -
NLU 2397 - - 2425 2424 -
TREC 2848 - - 2919 2896 -
TREC-fine 2584 - - 2776 2755 -

Abs. Banking77 - - - 1924 1788 13007
Abs. CLINC150 - - - 2485 2270 19501
Abs. NLU - - - 2475 2285 24603
Abs. TREC - - - 2529 2308 5953
Abs. TREC-fine - - - 2531 2308 5953

was designed to detect out-of-scope queries, we concentrate solely on classifying
the 150 defined intents, excluding out-of-scope queries from our analysis.

• NLU (68 labels; Liu et al. (2021)). This dataset includes queries grouped in 68 unique
categories for human-robot interaction in home domain (for example, one label is
“audio volume mute”.

• TREC and TREC-fine (respectively 6 and 50 labels; Li & Roth (2002); Hovy et al.
(2001)). Both are question classification dataset where the goal is to classify the type
of question. Each example contains both a fine label (that we use in TREC-fine), as
“entity vehicle”, and a coarse one (used in TREC), as “entity”. TREC-fine includes 50
categories, while TREC groups them in only 6 categories.

All of these datasets are challenging because of the big number of different labels, and the
sometimes subtle differences between labels. Moreover, in our setting we do not provide any
information about the list of potential labels (except for the “With Exemplars” abstract-label
experiments), challenging the model to either follow previously discovered labels or try to
find new, more suitable ones (i.e., exploitation vs exploration – Sutton & Barto (2018)).

D Additional Results
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Figure 13: Detailed visualization of Approximate for Llama, Banking77 with exact context
sampling. We report test accuracy (top left), a 256-step running average of the training
accuracy (bottom left), the training accuracy of each context (top right), and the hit rate of
each context (bottom right).
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Figure 14: Detailed visualization of Approximate for Llama, Banking77 with uniform
context sampling. We report test accuracy (top left), a 256-step running average of the
training accuracy (bottom left), the training accuracy of each context (top right), and the hit
rate of each context (bottom right).
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Figure 15: Detailed visualization of Approximate for Llama, CLINC150 with exact context
sampling. We report test accuracy (top left), a 256-step running average of the training
accuracy (bottom left), the training accuracy of each context (top right), and the hit rate of
each context (bottom right).
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Figure 16: Detailed visualization of Approximate for Llama, CLINC150 with uniform
context sampling. We report test accuracy (top left), a 256-step running average of the
training accuracy (bottom left), the training accuracy of each context (top right), and the hit
rate of each context (bottom right).
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Figure 17: Detailed visualization of Approximate for Phi, Banking77 with uniform context
sampling. We report test accuracy (top left), a 256-step running average of the training
accuracy (bottom left), the training accuracy of each context (top right), and the hit rate of
each context (bottom right).
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Figure 18: Detailed visualization of Approximate for Phi, CLINC150 with uniform context
sampling. We report test accuracy (top left), a 256-step running average of the training
accuracy (bottom left), the training accuracy of each context (top right), and the hit rate of
each context (bottom right).

27



Published as a conference paper at COLM 2025

Table 2: Detailed Figures for Figure 2. We report three key figures for each dataset and
method: initial (zero-shot) accuracy, final (post-ICRL) accuracy, and regret (total mistakes).
(a) contains the results for Llama, (b) for Qwen.

(a) Llama

Naive Naive+ Stochastic Upper Bound

Dataset 0-step Final Reg. 0-step Final Reg. 0-step Final Reg. Acc.
Acc. Acc. Acc. Acc. Acc. Acc.

Banking77 0.172 0.104 8755 0.152 0.648 4358 0.172 0.660 4613 0.846
CLINC150 0.246 0.292 7126 0.092 0.836 2280 0.246 0.814 2790 0.944
NLU 0.338 0.322 6868 0.286 0.578 4486 0.338 0.706 3545 0.844
TREC 0.476 0.412 3692 0.326 0.744 2235 0.476 0.836 1183 0.872
TREC-fine 0.238 0.29 4390 0.070 0.610 2585 0.238 0.740 2183 0.760

(b) Qwen

Naive Naive+ Stochastic Upper Bound

Dataset 0-step Final Reg. 0-step Final Reg. 0-step Final Reg. Acc.
Acc. Acc. Acc. Acc. Acc. Acc.

Banking77 0.064 0.174 8265 0.070 0.572 4433 0.062 0.722 4274 0.862
CLINC150 0.154 0.108 8691 0.138 0.802 2378 0.154 0.838 2913 0.960
NLU 0.216 0.230 7369 0.248 0.788 2967 0.208 0.748 3235 0.874
TREC 0.430 0.292 3883 0.372 0.664 2477 0.440 0.806 1181 0.880
TREC-fine 0.146 0.014 4734 0.122 0.536 3337 0.144 0.704 1920 0.812

Table 3: Detailed Metrics for Figure 3. We report three key metrics for each dataset and
method: initial (zero-shot) accuracy, final (post-ICRL) accuracy, and regret (total mistakes).
(a) shows results for Banking77, (b) for CLINC150.

(a) Banking77

Naive Stochastic

Reward 0-step Final Reg. 0-step Final Reg.
Acc. Acc. Acc. Acc.

None 0.156 0.034 9426 0.172 0.308 7132
Only neg. 0.152 0.060 9331 0.172 0.214 7814
Only pos. 0.152 0.648 4358 0.172 0.660 4613
Both pos. and neg. 0.156 0.184 8624 0.172 0.458 5943
Noisy pos. and neg. 0.156 0.174 8713 0.172 0.394 6256
Inv. pos. and neg. 0.152 0.098 9234 0.172 0.282 7047

(b) CLINC150

Naive Stochastic

Reward 0-step Final Reg. 0-step Final Reg.
Acc. Acc. Acc. Acc.

None 0.092 0.056 9214 0.246 0.388 6555
Only neg. 0.092 0.082 9010 0.246 0.208 7496
Only pos. 0.092 0.836 2280 0.246 0.814 2790
Both pos. and neg. 0.092 0.170 8280 0.246 0.582 4688
Noisy pos. and neg. 0.092 0.146 8454 0.246 0.586 4810
Inv. pos. and neg. 0.092 0.098 8995 0.246 0.448 5865
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Table 4: Detailed Figures for Figure 4. We report three key figures for each dataset and
method: initial (zero-shot) accuracy, final (post-ICRL) accuracy, and regret (total mistakes).

(a) Llama Accuracies

Abs. Banking77 Abs. CLINC150 Abs. NLU Abs. TREC Abs. TREC-fine

Method 0-step Final 0-step Final 0-step Final 0-step Final 0-step Final

Naive 0.020 0.018 0.002 0.000 0.010 0.028 0.030 0.086 0.034 0.030
Naive+ (w/o Ex.) 0.020 0.454 0.008 0.276 0.010 0.476 0.118 0.790 0.080 0.144
Naive+ (w/ Ex.) 0.024 0.178 0.000 0.590 0.056 0.656 0.238 0.792 0.006 0.196
Stochastic (w/o Ex.) 0.018 0.350 0.002 0.162 0.010 0.428 0.030 0.838 0.034 0.258
Stochastic (w/ Ex.) 0.030 0.584 0.006 0.650 0.162 0.722 0.238 0.840 0.008 0.036

Up. Bound Acc. 0.780 0.886 0.750 0.886 0.612

(b) Llama Regrets

Abs. Banking77 Abs. CLINC150 Abs. NLU Abs. TREC Abs. TREC-fine

Method Reg. Reg. Reg. Reg. Reg.

Naive 9909 9928 9674 4032 4828
Naive+ (w/o Ex.) 7164 8507 6789 2046 4597
Naive+ (w/ Ex.) 4704 5727 4166 2214 4153
Stochastic (w/o Ex.) 8280 9437 7288 2244 4767
Stochastic (w/ Ex.) 4380 6276 3725 2424 4773

(c) Qwen Accuracies

Abs. Banking77 Abs. CLINC150 Abs. NLU Abs. TREC Abs. TREC-fine

Method 0-step Final 0-step Final 0-step Final 0-step Final 0-step Final

Naive 0.016 0.002 0.012 0.014 0.010 0.014 0.124 0.130 0.010 0.024
Naive+ (w/o Ex.) 0.014 0.442 0.008 0.204 0.014 0.622 0.136 0.526 0.010 0.146
Naive+ (w/ Ex.) 0.248 0.626 0.048 0.602 0.162 0.656 0.158 0.776 0.004 0.526
Stochastic (w/o Ex.) 0.016 0.208 0.012 0.134 0.010 0.564 0.124 0.886 0.010 0.532
Stochastic (w/ Ex.) 0.316 0.680 0.080 0.712 0.182 0.706 0.200 0.890 0.002 0.462

Up. Bound Acc. 0.844 0.902 0.822 0.892 0.574

(d) Qwen Regrets

Abs. Banking77 Abs. CLINC150 Abs. NLU Abs. TREC Abs. TREC-fine

Method Reg. Reg. Reg. Reg. Reg.

Naive 9877 9892 9731 3876 4810
Naive+ (w/o Ex.) 7391 8824 6479 3304 3713
Naive+ (w/ Ex.) 4618 4481 3818 1564 3044
Stochastic (w/o Ex.) 8653 9449 6128 1591 3868
Stochastic (w/ Ex.) 4353 4385 3882 1520 4440

(e) Gemini Accuracies

Abs. Banking77 Abs. CLINC150 Abs. NLU Abs. TREC Abs. TREC-fine

Method 0-step Final 0-step Final 0-step Final 0-step Final 0-step Final

Naive 0.018 0.000 0.008 0.010 0.048 0.004 0.076 0.012 0.002 0.018
Naive+ (w/o Ex.) 0.014 0.174 0.002 0.144 0.044 0.218 0.104 0.900 0.006 0.130
Naive+ (w/ Ex.) 0.430 0.778 0.356 0.818 0.474 0.774 0.480 0.896 0.134 0.682
Stochastic (w/o Ex.) 0.014 0.214 0.008 0.060 0.050 0.290 0.072 0.876 0.002 0.060
Stochastic (w/ Ex.) 0.440 0.792 0.434 0.858 0.480 0.794 0.494 0.872 0.138 0.636

Up. Bound Acc. 0.902 0.964 0.890 0.946 0.860

(f) Gemini Regrets

Abs. Banking77 Abs. CLINC150 Abs. NLU Abs. TREC Abs. TREC-fine

Method Reg. Reg. Reg. Reg. Reg.

Naive 9996 9929 9938 4841 4915
Naive+ (w/o Ex.) 8858 9264 7978 1308 3998
Naive+ (w/ Ex.) 2776 1711 2582 1127 2448
Stochastic (w/o Ex.) 8625 9710 8281 1505 4920
Stochastic (w/ Ex.) 3292 1984 2560 1439 3420
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Table 5: Detailed Metrics for Figure 5a. We report three key metrics for each dataset and
method: initial (zero-shot) accuracy, final (post-ICRL) accuracy, and regret (total mistakes).
(a)–(g) show results for different sizes of Qwen2.5.

(a) Qwen2.5 500M

Naive+ Stochastic

Dataset 0-step Final Reg. 0-step Final Reg.

Banking77 0.082 0.284 7351 0.146 0.364 6874
CLINC150 0.062 0.404 5959 0.118 0.552 5157
NLU 0.088 0.358 6746 0.146 0.544 6162
TREC 0.290 0.382 2260 0.318 0.514 2182
TREC-fine 0.032 0.154 3955 0.034 0.308 3961

(b) Qwen2.5 1.5B

Naive+ Stochastic

Dataset 0-step Final Reg. 0-step Final Reg.

Banking77 0.074 0.258 6069 0.092 0.524 5824
CLINC150 0.066 0.482 4660 0.182 0.684 3945
NLU 0.242 0.302 5084 0.288 0.636 4619
TREC 0.274 0.302 2150 0.362 0.754 1835
TREC-fine 0.042 0.538 2979 0.074 0.680 2681

(c) Qwen2.5 3B

Naive+ Stochastic

Dataset 0-step Final Reg. 0-step Final Reg.

Banking77 0.082 0.532 4959 0.094 0.614 4852
CLINC150 0.156 0.778 2370 0.148 0.812 2936
NLU 0.270 0.734 3355 0.266 0.772 2666
TREC 0.428 0.744 2482 0.506 0.730 1246
TREC-fine 0.098 0.520 3439 0.214 0.620 2131

(d) Qwen2.5 7B

Naive+ Stochastic

Dataset 0-step Final Reg. 0-step Final Reg.

Banking77 0.070 0.572 4433 0.062 0.722 4274
CLINC150 0.138 0.802 2378 0.154 0.838 2913
NLU 0.248 0.788 2967 0.208 0.748 3235
TREC 0.372 0.664 2477 0.440 0.806 1181
TREC-fine 0.122 0.536 3337 0.144 0.704 1920

(e) Qwen2.5 14B

Naive+ Stochastic

Dataset 0-step Final Reg. 0-step Final Reg.

Banking77 0.126 0.506 4902 0.144 0.730 4136
CLINC150 0.192 0.800 2505 0.248 0.882 2439
NLU 0.348 0.574 4198 0.376 0.748 3228
TREC 0.492 0.786 2105 0.556 0.904 919
TREC-fine 0.252 0.522 2989 0.322 0.734 1869

(f) Qwen2.5 32B

Naive+ Stochastic

Dataset 0-step Final Reg. 0-step Final Reg.

Banking77 0.132 0.518 5015 0.144 0.778 3733
CLINC150 0.220 0.838 2164 0.280 0.884 2467
NLU 0.360 0.702 3588 0.380 0.768 2842
TREC 0.590 0.622 2185 0.646 0.920 770
TREC-fine 0.264 0.516 2800 0.354 0.662 1599

(g) Qwen2.5 72B

Naive+ Stochastic

Dataset 0-step Final Reg. 0-step Final Reg.

Banking77 0.186 0.592 4404 0.212 0.794 3512
CLINC150 0.328 0.870 1714 0.360 0.906 1983
NLU 0.380 0.776 2520 0.438 0.794 2609
TREC 0.392 0.656 2277 0.416 0.898 782
TREC-fine 0.100 0.706 2398 0.170 0.764 1614
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Table 6: Detailed Stability Metric ρ for Figure 5b. Each cell contains the stability metric
ρ for the corresponding dataset and method. (a)–(g) show results for different sizes of
Qwen2.5.

(a) Qwen2.5 500M

Naive Naive+ Stochastic

Banking77 -0.343 0.491 0.710
CLINC150 -0.459 0.634 0.877
NLU -0.025 0.045 0.868
TREC -0.500 0.264 0.700
TREC-fine -0.202 0.164 0.724

(b) Qwen2.5 1.5B

Naive Naive+ Stochastic

Banking77 0.209 0.427 0.875
CLINC150 -0.369 0.278 0.949
NLU -0.260 0.088 0.851
TREC -0.500 0.064 0.501
TREC-fine 0.500 0.882 0.697

(c) Qwen2.5 3B

Naive Naive+ Stochastic

Banking77 -0.069 0.710 0.932
CLINC150 -0.652 0.748 0.956
NLU -0.857 0.711 0.925
TREC -0.500 0.882 0.773
TREC-fine 0.500 0.210 0.564

(d) Qwen2.5 7B

Naive Naive+ Stochastic

Banking77 -0.653 0.694 0.989
CLINC150 -0.794 0.679 0.985
NLU -0.570 0.661 0.963
TREC -0.230 -0.134 0.314
TREC-fine -0.674 0.784 0.487

(e) Qwen2.5 14B

Naive Naive+ Stochastic

Banking77 0.394 0.548 0.964
CLINC150 -0.730 0.956 0.981
NLU -0.494 0.337 0.859
TREC -0.790 0.927 0.441
TREC-fine -0.691 0.540 0.825

(f) Qwen2.5 32B

Naive Naive+ Stochastic

Banking77 -0.218 0.684 0.972
CLINC150 -0.419 0.939 0.989
NLU 0.035 0.887 0.945
TREC -0.791 0.074 0.822
TREC-fine -0.849 0.886 0.292

(g) Qwen2.5 72B

Naive Naive+ Stochastic

Banking77 -0.456 0.894 0.965
CLINC150 0.159 0.854 0.986
NLU -0.633 0.461 0.910
TREC -0.500 0.936 0.765
TREC-fine -0.500 0.970 0.600

Table 7: Tokens processed in Approximate compared to Stochastic throughout full ICRL
runs. Stochastic processes two orders of magnitude more tokens than Approximate.

Phi Llama

Task Expl. Approx. Ratio Expl. Approx. Ratio

Banking77 87,369,607 510,786 171 102,282,989 539,367 190
CLINC150 105,545,002 398,677 265 122,455,599 440,019 278
NLU 89,894,548 409,680 219 114,517,653 433,254 264
TREC 29,306,971 212,855 138 34,509,170 229,046 151
TREC-fine 20,658,980 222,955 93 25,522,358 234,884 109
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