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Abstract001

Supervised fine-tuning (SFT) is crucial for002
aligning Large Language Models (LLMs) with003
human instructions. The primary goal during004
SFT is to select a small yet representative sub-005
set of training data from the larger pool, such006
that fine-tuning with this subset achieves re-007
sults comparable to or even exceeding those008
obtained using the entire dataset. However,009
most existing data selection techniques are de-010
signed for small-scale data pools, which fail011
to meet the demands of real-world SFT sce-012
narios. In this paper, we replicated several013
self-scoring methods—those that do not rely014
on external model assistance—on two million-015
scale datasets, and found that nearly all meth-016
ods struggled to significantly outperform ran-017
dom selection when dealing with such large-018
scale data pools. Moreover, our comparisons019
suggest that, during SFT, diversity in data se-020
lection is more critical than simply focusing on021
high-quality data. We also analyzed the limita-022
tions of several current approaches, explaining023
why they perform poorly on large-scale datasets024
and why they are unsuitable for such contexts.025
Finally, we found that filtering data by token026
length offers a stable and efficient method for027
improving results. This approach, particularly028
when training on long-text data, proves highly029
beneficial for relatively weaker base models,030
such as Llama3.031

1 Introduction032

With the advent of large language models (LLMs)033

such as ChatGPT, we have observed significant034

advancements in tasks involving instruction follow-035

ing (Wang et al., 2023b), intent comprehension (Lu036

et al., 2023), and text generation (Zhao et al., 2023).037

One of the primary objectives of developing LLMs038

is to harness their potential for generalizing to un-039

seen natural language processing (NLP) tasks. To040

achieve this aim, many LLMs focus on precisely041

aligning with human instructions.042
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Figure 1: The discrepancy between each methods and
random selection on BBH benchmark (Suzgun et al.,
2022). The Y-axis represents the differential score,
which is computed by subtracting the random selection
score from the scores obtained using various methods.

Recent studies indicate that supervised fine- 043

tuning (SFT) can customize LLMs for specific 044

domains, tasks, or applications by utilizing well- 045

crafted data. According to the study in (Zhou et al., 046

2024a), it is feasible to fine-tune a pre-trained lan- 047

guage model with a relatively small set of exam- 048

ples. Building on this insight, several papers have 049

explored data selection strategies for SFT of LLMs 050

(Wang et al., 2024; Qin et al., 2024), emphasizing 051

the importance of enhancing the quality of instruc- 052

tion tuning (IT) data or increasing data diversity. 053

These strategies can be classified into two primary 054

categories: (1) Extenral-scoring methods, which 055

require support from more sophisticated external 056

models like GPT-4 to score the data for the subse- 057

quent selection (Lu et al., 2023; Chen et al., 2023; 058

Du et al., 2023; Liu et al., 2023; Zhou et al., 2024b); 059

(2) Self-scoring methods, which leverage LLMs 060

themselves as data scorers (Li et al., 2023d,b; Liu 061

et al., 2024; Xia et al., 2024; Yin et al., 2024). 062

Existing SFT data selection methods, both 063

external-scoring and self-scoring, are evaluated us- 064

ing well-known IT datasets like alpaca-GPT4 (Peng 065
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et al., 2023), Dolly (Conover et al., 2023), FLAN066

(Longpre et al., 2023), WizardLM (Xu et al., 2024),067

and ShareGPT (Chiang et al., 2023). These datasets068

are small and come from a single source. How-069

ever, during SFT, much larger data volumes, usu-070

ally in the hundreds of thousands to millions, are071

often needed. For instance, Qwen2 (qwe, 2024)072

used over 500,000 data samples in SFT. Thus, for073

effective LLM utilization, large-scale instruction-074

following data is crucial in SFT. Furthermore, large-075

scale data should not only be abundant but also076

diversified, including professional annotations, real077

user data, or model-generated data, across various078

types like code, math, conversations, and knowl-079

edge Q&A. This disparity highlights a gap between080

current SFT data selection and real-world appli-081

cations. To study how dataset size impacts se-082

lection strategy performance, we compared out-083

comes from existing methods with random se-084

lection within datasets ranging from 10K-30K to085

1M on Llama3-8B (AI@Meta, 2024). Figure 1086

shows that as dataset size grows to 1M, these meth-087

ods perform worse compared to random selection.088

"Data size 10K-300K" refers to sources from orig-089

inal method papers. "Data size 1M" refers to the090

Openhermes2.5-1M dataset (Teknium, 2023).091

Motivated by this discovery, we reconsider092

whether SFT data selection methods are viable for093

large-scale IT datasets. Given the high costs of094

external-scoring techniques (Liu et al., 2023), we095

focus on self-scoring methods. Referring to (Qin096

et al., 2024), we classify self-scoring techniques097

into data quality-based and data diversity-based098

methods. Data quality-based methods prioritize al-099

gorithms and metrics to score data items, selecting100

based on these scores, while data diversity-based101

methods prioritize dataset diversity. To examine102

the impact of self-scoring methods on LLMs’ per-103

formance with vast IT data, we test recent methods104

on two benchmarks with millions of cases. Our105

experiments highlight three key points:106

• Most self-scoring data selection methods per-107

form similarly to random selection on large108

datasets. Although they show improvement on109

smaller datasets, their effectiveness decreases110

with larger and complex data. Some methods111

perform slightly better than random with cer-112

tain LLMs, but balancing effectiveness and113

efficiency, random selection remains the best114

choice for large data sources.115

• Data diversity holds more significance than116

data quality during the SFT phase. Data 117

quality-based selection methods are more 118

effective than data diversity-based methods 119

when dealing with a small-scale dataset from a 120

single source. However, when tackling multi- 121

source data, only considering data quality is 122

far from enough. 123

• Analyzing two IT datasets, we find using to- 124

ken length for data filtering ensures stable and 125

efficient SFT results with large-scale IT data. 126

Prior research (Liu et al., 2023) shows ben- 127

efits of long text training for subjective eval- 128

uations like MTbench (Zheng et al., 2023) 129

and AlpacaEval (Li et al., 2023c); we con- 130

firm its positive effect on objective tasks like 131

Big-Bench-Hard (Suzgun et al., 2022). Al- 132

though not always optimal for every language 133

model, token length is beneficial in training 134

long texts, notably for a weaker BASE model 135

such as Llama3-8B. 136

2 Related Work 137

External-scoring Method. (Lu et al., 2023) pro- 138

posed INSTAG, an open-set instruction tagging 139

method using ChatGPT to generate tags for measur- 140

ing instruction diversity/complexity in SFT. ALPA- 141

GASUS (Chen et al., 2023) model used ChatGPT 142

to score instructions for threshold-based data selec- 143

tion. (Du et al., 2023) introduced a model-oriented 144

selection approach considering instruction quality, 145

coverage, and LLM capability. (Liu et al., 2023) 146

developed DEITA, which iteratively enhanced data 147

complexity or quality via ChatGPT and requested 148

its evaluation. These models outperformed full- 149

dataset baselines but rely heavily on external LLMs 150

for scoring. 151

Self-scoring Method. (Li et al., 2023b) pro- 152

posed an LLM self-directed method using IFD met- 153

rics to identify instruction pairs. DiverseEvol (Wu 154

et al., 2023) enables models to independently select 155

diverse subsets without external oversight. (Xia 156

et al., 2024) introduced LESS, using gradient data- 157

stores to select instruction-tuning data. (Yin et al., 158

2024) proposed ZIP to favor low-compression-ratio 159

subsets, while SelectIT (Liu et al., 2024) uses LLM 160

uncertainty for efficient selection. Nuggets (Li 161

et al., 2023d) employs perplexity-based one-shot 162

scoring for high-quality data selection. 163

Specifically, in early research, data distillation 164

had a similar goal to current SFT data selection, 165

which was to filter out a small number of repre- 166
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sentative data from large datasets (Lei and Tao,167

2023). With the continuous development of LLMs,168

DEFT tasks in the past two years have focused on169

data distillation for specific tasks. This includes170

filtering data using feedback preferences during the171

reinforcement learning stage (Zhu et al., 2024) or172

selecting fine-tuning data for a specific task such173

as text editing (Das and Khetan, 2023). In contrast,174

SFT does not focus on specific tasks. Instead, it em-175

phasizes unlocking various capabilities of LLMs176

through fine-tuning, such as code generation and177

logical reasoning. Therefore, the two approaches178

have slightly different emphases during the data179

selection stage.180

3 Self-scoring strategies181

In this paper, we focus on self-scoring methods182

that do not rely on external advanced LLMs to183

score data. We refer (Qin et al., 2024)’s work and184

categorize existing resourceful data selection meth-185

ods into two main perspectives: data quality-based186

methods and data diversity-based methods.187

3.1 Quality-based Selections188

In this section, we introduce 4 methods based on189

data quality assessment and selection. “Quality”190

here refers primarily to the complexity, complete-191

ness, score, and influence of the datapoints. Dif-192

ferent from (Qin et al., 2024), we believe that the193

influence of a datapoint in the target dataset is also194

a reflection of data quality, especially in practical195

scenarios, where we are required to deal with di-196

verse tasks rather than a single task. We thus regard197

the influence as a quality category as well.198

LESS (Xia et al., 2024) employed low-rank gra-199

dient similarity search for selecting influential data200

in target applications. Initially, a model was pre-201

trained with LoRA (Hu et al., 2021) using a small202

subset Dwarmup ⊂ D, after which the Adam LoRA203

gradient features were calculated and saved in a204

database. Then, a datastore of reduced-dimensional205

gradient features was established for reuse with var-206

ious target tasks. For training points x, they com-207

puted a d-dimensional projection of the LoRA gra-208

dient ∇̃ℓ(x;θi) = Π⊤∇̂ℓ(x;θi), where Π⊤ uses209

a memory-efficient online implementation of ran-210

dom projections from (Park et al., 2023). For val-211

idation points x′, Γ̃(x′, ·) = Π⊤Γ̂(x′, ·) was cal-212

culated, representing gradient values for x′ across213

different optimization states. Finally, LESS eval-214

uated maxj InfAdam(x,D
(j)
val) over all validation215

subsets Dval, choosing the top-scoring examples 216

for Dtrain., 217

InfAdam(x,D
(j)
val) =

∑N
i=1 η̄i

⟨∇̄ℓ(D(j)
val;θi),Γ̃(x,θi)⟩

∥∇̄ℓ(D(j)
val;θi)∥∥Γ̃(x,θi)∥

(1)

218

IFD introduced the Instruction-Following Diffi- 219

culty (IFD) score, a metric devised to evaluate the 220

challenge each instructional sample presents (Li 221

et al., 2023b). Given a (Q,A) pair, they calculated 222

the ratio between s(A) and s(A|Q): 223

IFD(Q,A) = s(A|Q)
s(A) =

− 1
N

∑N
i=1 logP (xA

i |Q,xA
1 ,xA

2 ,...,xA
i−1)

− 1
N

∑N
i=1 logP (xA

i |xA
1 ,...,xA

i−1)

(2) 224

where s(A) means Direct Answer Score, which 225

measures LLM’s ability to generate the answer 226

alone. s(A|Q) means Conditioned Answer Score, 227

which is calculated by continuously predicting the 228

next tokens given the instruction Q and their pro- 229

ceeding words. 230

The authors initially created 100 clusters from 231

instruction embeddings and selected 10 instances 232

per cluster according to the IFD score on a pre- 233

trained base LLM. They then trained this LLM for 234

1 epoch with these chosen datapoints. Post-training, 235

they recalculated the IFD score of each datapoint 236

in the entire training set D and ultimately chose the 237

data with the highest IFD score as Dtrain. 238

SelectIT identified high-quality IT data by ana- 239

lyzing the inherent uncertainty indicated by LLMs 240

(Liu et al., 2024). It evaluated samples at three 241

granular levels: token, sentence, and model level 242

reflections. At the token level, SelectIT determined 243

the probability of the following token (from 1 to K) 244

using the rating prompt RP and the query-response 245

pair E. The token with the highest probability was 246

deemed the sample’s quality measure. A higher 247

P
′

Ebase indicated greater LLM confidence. 248

Ebase = arg max P ′
k, P

′
k =

(
ePk∑K
j=1 e

Pj

)
(3) 249

Here, Pk and P
′
k denote the probability and softmax 250

probability of token k, respectively. K represents 251

the number of scores considered. In that study, the 252

score tokens spanned from 1 to 5. To improve the 253

reliability of quality assessment, SelectIT evaluated 254

the average difference between the predicted token 255

Ebase and others, with larger differences indicating 256

higher LLM confidence. 257

Etoken = Ebase × 1

K − 1

K∑
i=1

|P ′
i − P ′

Ebase | (4) 258
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At the sentence level, different prompts can no-259

tably influence LLM outcomes, so K semantically260

similar rating prompts {RP0, RP1, . . . , RPK}261

were crafted, resulting in a set of quality scores262

{Etoken
0 , Etoken

1 , . . . , Etoken
K }.263

Esent =
Avg{Etoken

i }Ki=1

1 + α× Std{Etoken
i }Ki=1

(5)264

where Avg{·} and Std{·} denote the mean and265

standard deviation of Etoken
i , respectively. K266

means the number of rating prompts RP .267

For model level, SelectIT used N foundation268

models with parameter counts {β1, β2, . . . , βN}269

and their respective sentence-level scores for a270

sample E being {Esent
0 , Esent

1 , . . . , Esent
N }, then271

the model-level score Emodel was computed as fol-272

lows.273

Emodel =

N∑
i=1

(
βi∑N
j=1 βj

× Esent
i

)
(6)274

where N means the number of the foundation mod-275

els. It used Emodel as the final evaluation of sample276

E in SelectIT.277

Cross-entropy: Language models can be consid-278

ered a form of compression, with LLMs showing279

strong capabilities in data compression empirically280

(Delétang et al., 2024). Compression efficiency281

is a stable and reliable assessment that is linearly282

related to the model’s capabilities. It reflects the283

model’s ability to extract relevant information and284

eliminate unnecessary elements, providing insight285

into the intrinsic capability of the language model286

(Huang et al., 2024; Wei et al., 2024).287

The cross-entropy loss employed in the training288

of LLMs establishes a coherent relationship be-289

tween LLMs and information compression of each290

query-response pair E.291

ExE∼ρ[−
n∑

i=1

log2 ρmodel(x
E
i |xE1:i−1)] (7)292

Inspired by this foundational insight, we select data293

based on the cross-entropy of each datapoint, where294

the higher value of cross-entropy means the better295

quality.296

3.2 Diversity-based Selections297

In this section, we introduce methods that empha-298

size the diversity of instruction datasets, where di-299

versity refers to the overall diversity of the entire300

training dataset.301

DiverseEvol selectively sampled training sub- 302

sets to enhance its performance iteratively (Wu 303

et al., 2023). It identified distinct new data points 304

in its current embedding space each iteration. For 305

a dataset D, DiverseEvol initially picked a random 306

data pool P0 and trained an initial model M0. Each 307

iteration involved: 1. Adding new data points Dt 308

to Pt+1 based on model Mt. 2. Training the next 309

model Mt+1 with updated Pt+1. The K-Center- 310

Sampling method was used to choose k data points 311

from candidates, maximizing their distance from 312

existing training data. 313

argmax
i∈Xt

min
j∈Pt

∆
(
xi,pj

)
(8) 314

At each step, the input parameters to K-Center- 315

Sampling were the model Mt, the current train- 316

ing pool Pt, and Dt. The selection function K- 317

Center-Sampling then outputs the new data point 318

Xt, which was added to the training pool for the 319

next iteration Pt+1. 320

The method ZIP identifies a negative correlation 321

between model performance and the compression 322

ratio of training data, often leading to reduced train- 323

ing loss. (Yin et al., 2024) introduced ZIP, a highly 324

efficient and universal data selection approach for 325

training LLMs, focusing on data subsets with low 326

compression ratios. 327

It begins by determining the sample-level com- 328

pression ratio for the dataset D, with πD represent- 329

ing data redundancy. In each cycle, it picks K1 330

samples with the smallest πD1 to create an initial 331

pool DK1 . It then calculates the compression ra- 332

tio of the combined set when adding each sample 333

in DK1 to the selected set Dtrain, updating the re- 334

dundancy πD1 . Based on sample scores in DK1 , 335

ZIP chooses DK2 samples with the smallest scores. 336

Next, an empty set DK3 is initialized, and the com- 337

pression ratio for the union of DK3 and each DK2 338

sample is computed. The sample with the lowest 339

ratio is added to DK3 and removed from DK2 . Fi- 340

nally, each DK3 sample is included in Dtrain. The 341

compression ratio g(C(D)) in ZIP is computed as: 342

g(C(D)) =
Bits(D)

Bits(C(D))
(9) 343

4 Experiment 344

4.1 Datasets 345

In practice, researchers often deal with large and 346

imperfect datasets from diverse sources in SFT. 347

This study, instead of using the usual IT datasets 348
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like alpaca (Taori et al., 2023), uses two large-349

scale IT datasets at the million level, Openher-350

mes2.5 (Teknium, 2023) and WildChat-1M (Zhao351

et al., 2024), to evaluate how current data selection352

methods perform with large datasets and to assess353

their performance in real-world scenarios.354

Openhermes2.5 is introduced in (Teknium,355

2023) with over 1 million entries, characterized356

by its extensive coverage and quality. It mainly357

includes generated guides and conversations from358

16 sources, such as metamath (Yu et al., 2023),359

CamelAI (Li et al., 2023a), etc., covering topics360

like mathematics, programming and etc..361

WildChat-1M from (Zhao et al., 2024) contains362

exclusively non-toxic user inputs and ChatGPT363

exchanges, totaling 1 million dialogues. About364

25.53% involve GPT-4, the rest GPT-3.5, featuring365

varied interactions like ambiguous queries and po-366

litical talks. This study extracts over 440k English367

dialogues from WildChat.368

4.2 Benchmarks369

To evaluate LLM capabilities, we explore various370

methods across downstream tasks. We use two371

datasets, GSM (Cobbe et al., 2021) and BBH (Suz-372

gun et al., 2022), to test reasoning in the CoT set-373

ting (Wei et al., 2022). For code generation, we em-374

ploy the HumanEval dataset (Chen et al., 2021) and375

reported pass@1 results. We gauge factual knowl-376

edge using MMLU (Hendrycks et al., 2021) with377

5-shot results and assess instruction-following us-378

ing IFEval (Zhou et al., 2023b) with strict and loose379

scores. Additionally, we use Open-Instruct scripts380

covering key benchmarks (Wang et al., 2023a; Ivi-381

son et al., 2023, 2024).382

4.3 Implementation Details383

Specifically, we leverage the widely-used384

LLaMA3-8B (AI@Meta, 2024) and Qwen2-385

7B (qwe, 2024) as our base models, and fine-tune386

them using the Llama-Factory framework (Zheng387

et al., 2024). We train these models for 3 epochs388

with a batch size of 128. Our training process389

employs a cosine learning rate scheduler beginning390

at 7e− 6, which decays to 0.1, warms to 0.01, and391

utilizes an input length of 4096. To replicate our392

baseline methods on Openhermes and WildChat,393

we adjust some original parameters and implemen-394

tations to fit the large-scale datasets. The specific395

details of model reproduction are in Appendix A.1.396

5 Discussion 397

5.1 Baseline Methods vs Random 398

This section replicates baseline methods for 399

LLaMA3-8B and Qwen2-7B experiments on Open- 400

Hermes2.5, with results in Table 2 and WildChat 401

results in Table 3. We evaluate these models with 402

and without full dataset fine-tuning, using SFT data 403

selection methods to pick 10,000 samples as per 404

Section 4.3. We conduct 5 random runs and the 405

outcomes are in the tables. Additionally, 50,000 406

samples from various methods are in Appendix 407

Table 6, 7.

Llama3-8B Qwen2-7B
OpenHermes WildChat OpenHermes WildChat

LESS 0.77 0.45 0.80 0.86
IFD 0.85 0.53 0.85 0.68

SelectIT 0.71 0.79 0.60 0.58
Entropy 0.92 0.46 0.78 0.30
Diverse 0.39 0.58 0.37 0.45

zip 0.55 0.36 0.42 0.31

Table 1: The P-values of the significance tests for each
method against the results of five rounds of random
selection.

408
As shown in Tables 2 and 3, no data selection 409

methods significantly surpasses random sampling 410

for large, varied IT datasets. Typically, baseline re- 411

sults fall within the range of five random runs, and 412

some are even lower than the worst random out- 413

come. For example, for Cross-Entropy on Qwen2- 414

7B with Openhermes2.5, the average result is 54.02, 415

which is notably less than the lowest random score 416

of 57.04. We also applied the Mann-Whitney U 417

test, using a right-tailed hypothesis that baseline 418

scores exceed random ones, and documented the 419

p-values in Table 1. All methods had p-values over 420

0.05, indicating no baseline method outperformed 421

random selection. 422

Based on the experimental results, when deal- 423

ing with an extensive SFT dataset, it is more effi- 424

cient to randomly select training data instead of 425

spending significant time and resources to metic- 426

ulously choose seemingly optimal training data. 427

Random selection reduces costs and yields superior 428

training results. 429

5.2 Quality vs Diversity 430

Tables 2 and 3 demonstrate that the diversity-based 431

selection strategies outperforms the quality-based 432

one. To examine whether prioritizing diversity 433

over data quality improves data selection, we de- 434

signed a supplementary experiment by incorporat- 435
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24

all data 61.39 80.12 63.32 68.50 40.85 44.18 59.73 63.33 73.24 46.43 63.90 46.40 49.72 57.17

Random 1 59.72 82.41 62.10 68.30 33.27 36.41 57.04 64.72 53.90 45.21 63.20 39.19 43.62 51.64

Random 2 61.48 83.47 64.33 67.90 38.08 40.30 59.26 60.83 56.86 48.99 62.70 41.77 45.47 52.77

Random 3 61.85 81.65 62.90 68.10 36.78 38.45 58.29 63.43 59.74 46.83 62.70 43.25 46.21 53.69

Random 4 61.20 82.71 59.27 68.00 36.60 39.19 57.83 63.98 59.59 45.18 63.80 44.36 47.13 54.01
Random 5 61.30 82.71 62.23 68.90 35.86 37.71 58.12 62.31 56.10 42.07 63.50 44.55 48.80 52.89

LESS 61.20 81.65 53.26 67.60 32.16 37.15 55.50 61.39 57.70 41.43 64.20 38.08 41.96 50.79

IFD 57.96 79.23 68.48 56.70 33.27 35.12 55.13 57.41 53.53 32.41 59.90 43.07 45.84 48.69

SelectIT 59.17 80.44 66.46 67.20 35.86 38.82 57.99 62.59 61.56 42.38 63.60 38.45 42.14 51.79

Entropy 61.30 55.04 61.04 68.90 37.34 40.48 54.02 58.61 50.72 44.02 61.40 32.90 37.89 47.59

Diverse 61.11 81.73 61.71 68.65 40.85 43.44 59.58 65.00 56.25 44.51 63.84 43.99 47.13 53.45

ZIP 60.65 80.52 66.10 68.60 37.15 39.56 58.76 63.98 59.67 40.70 62.60 43.81 46.58 52.89

Table 2: The overall results (%) on a variety of downstream tasks based on Openhermes2.5 dataset. CODE means
HumanEval, Random n denotes the nth random selection. Except for fine-tuning with the entire Openhermes
dataset, the bold numbers indicate the best score of each part, and the underlined numbers indicate the second
highest score.

ing a K-means clustering process on the OpenHer-436

mes dataset. Instead of selecting data based solely437

on method scores, we choose higher-scoring data438

within each cluster to boost the final training set’s439

diversity.440

Table 5 illustrates that integrating the K-means441

clustering with quality-based selection methods en-442

hances the effectiveness for most approaches. No-443

tably, Cross Entropy on both Llama3 and Qwen2444

models shows improvement over 5% and 3%, re-445

spectively, when K-means is used to diversify the446

data. This suggests that for a large-scale IT dataset,447

data diversity holds more importance than data448

quality. This also clarifies why random selection449

often outperforms most SFT data selection meth-450

ods, as the random process preserves the dataset’s451

original distribution and diversity to the greatest452

possible extent.453

5.3 Baseline Analysis454

In this part, we mainly analyze several methods455

and try to find the reasons why these methods fail456

in large-scale data sets and why these methods are457

not applicable to practical applications.458

The lack of availability of Less is primarily evi-459

dent in how its influence score is calculated. Since460

it requires computing the score for the final data461

point in the target task, it is essential to meticu-462

lously design a target set for each task to filter the463

data. However, in practical applications, we face a 464

variety of training tasks that require our target data 465

to be comprehensive and diverse. Hence, the effec- 466

tiveness of LESS is strongly related to the quality 467

of Dval. 468

The IFD approach determines the ultimate IFD 469

score by evaluating the perplexity (ppl) of the re- 470

sponse. However, the length of the data signifi- 471

cantly affects the ppl value. In particular, shorter 472

data tend to produce excessively high ppl values, 473

which contradicts with our expected results. Ul- 474

timately, we note that the IT data instructions se- 475

lected by the IFD approach are quite brief, averag- 476

ing merely 42 tokens on Openhermes, which aligns 477

with the findings reported by (Liu et al., 2023). 478

SelectIT can perform well at the model level, but 479

it necessitates combining LLMs with various sizes 480

to score the data. As IT datasets become larger, the 481

computational cost required for LLMs with more 482

parameters tends to increase exponentially, which 483

limits their applicability to extensive datasets. 484

Cross-entropy is influenced by the length of re- 485

sponses. Typically, cross-entropy favors data with 486

lengthy responses, whereas it shows no specific 487

preference towards instructions. Consequently, the 488

training samples will include simple instructions 489

but extensive responses. 490

We exclude NUGGETS (Li et al., 2023d) as 491

a baseline due to its extensive computational de- 492
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24

all data 62.87 80.82 62.84 68.70 45.84 48.80 61.65 63.70 56.94 47.44 63.30 46.40 49.72 54.58

Random 1 61.30 82.64 61.98 68.10 40.30 42.33 59.44 63.70 56.48 51.92 63.30 39.37 41.95 52.79

Random 2 60.93 81.96 61.43 67.50 38.63 40.67 58.52 62.41 52.62 49.33 64.00 44.18 46.77 53.22

Random 3 60.28 82.64 62.07 68.30 41.04 42.88 59.54 63.52 58.38 43.90 64.10 42.33 45.29 52.92

Random 4 61.11 80.36 65.46 67.50 37.34 40.67 58.74 63.33 55.42 51.10 64.50 41.96 44.55 53.48

Random 5 61.57 81.50 60.27 68.20 41.77 43.99 59.55 64.91 60.27 48.66 64.30 42.14 45.84 54.35

LESS 52.59 60.50 61.19 68.00 38.82 41.77 53.81 63.43 57.01 50.43 64.50 40.85 44.92 53.52

IFD 60.56 76.27 65.24 68.00 36.23 38.26 57.43 63.33 59.29 47.16 64.60 40.30 43.81 53.08

SelectIT 60.37 82.34 64.97 68.50 36.97 39.19 58.72 61.48 53.22 46.01 63.20 40.11 42.88 51.15

Entropy 60.37 81.96 62.90 68.40 42.51 46.21 60.39 63.15 56.10 47.71 63.00 45.10 49.54 54.10

Diverse 61.02 80.82 65.09 67.33 41.04 42.88 59.70 62.59 53.30 33.48 64.46 47.87 50.65 52.06

ZIP 62.59 81.80 68.17 68.00 40.11 42.33 60.50 62.31 60.96 46.58 64.50 45.10 48.06 54.59

Table 3: The overall results (%) on a variety of downstream tasks based on WildChat dataset. CODE means
HumanEval, Random n denotes the nth random selection. Except for fine-tuning with the entire Openhermes
dataset, the bold numbers indicate the best score of each part, and the underlined numbers indicate the second
highest score.

Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

OpenHermes 60.65 80.74 60.18 68.33 37.89 41.40 58.20 64.63 61.33 45.70 64.41 48.43 52.87 56.23

WildChat 61.67 81.05 59.21 67.82 39.56 42.14 58.58 66.11 60.35 51.16 63.91 43.81 47.69 55.51

Table 4: The overall results (%) of token length selection.

mands, requiring over 2,000 hours on 40 A100493

80G GPUs. Given this high time cost, we decide494

to abandon this method.495

The diversity-based approach usually outper-496

forms the quality-based selection methods, how-497

ever, one main issue with the diversity-based ap-498

proach is its time and memory consumption.499

To replicate DiverseEvol, we used 8 A100 80G500

GPUs across 3 iterations, each lasting 1-2 days,501

totaling 5-7 days to select the final subset. When502

dealing with large-scale data sets, the results of-503

ten fall within the random range, though optimal504

results occur sporadically. This may be due to505

modifications in our implementation to address506

memory constraints during replication (see Sec-507

tion 4.3), which may have slightly diminished the508

method’s performance. In contrast, ZIP does not509

need GPU resources, but the computing process is510

greedy. It incrementally adds 100 data at a time to511

the final training subset. For large data scales, it512

takes approximately 7 days to select 50,000 data.513

In addition, ZIP serves as a data selection method 514

that operates independently of the model, meaning 515

that the selected data cannot be adaptively tuned 516

on the basis of the model. As illustrated in Tables 517

2 and 3, the data chosen by ZIP in OpenHermes 518

perform poorly in both Llama3-8B and Qwen2-7B, 519

whereas the data selected in WildChat exhibit the 520

best performance across these models. 521

Moreover, we attempt to utilize DQ (Zhou et al., 522

2023a) as our baseline method. However, DQ uses 523

a submodular strategy to choose a subset by opti- 524

mizing submodular gains within the feature space. 525

When dealing with millions of data points, it re- 526

quires more than 1TB memory resources. Eventu- 527

ally, we decide to forgo this approach. 528

5.4 Which method is the best? 529

By examining the average results, we notice that 530

the majority of methods perform better with Wild- 531

Chat as the data source compared to OpenHermes, 532

as illustrated in Figure 2, which is rather unex- 533
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

LESS 61.20 81.65 53.26 67.60 32.16 37.15 55.50 61.39 57.70 41.43 64.20 38.08 41.96 50.79

IFD 57.96 79.23 68.48 56.70 33.27 35.12 55.13 57.41 53.53 32.41 59.90 43.07 45.84 48.69

SelectIT 59.17 80.44 66.46 67.20 35.86 38.82 57.99 62.59 61.56 42.38 63.60 38.45 42.14 51.79

Entropy 61.30 55.04 61.04 68.90 37.34 40.48 54.02 58.61 50.72 44.02 61.40 32.90 37.89 47.59

LESSkm 61.30 81.96 54.63 67.79 34.38 38.26 56.39 60.93 50.27 48.11 63.97 39.74 44.55 51.26
IFDkm 60.19 78.77 59.70 66.81 30.31 31.79 54.60 60.74 58.98 40.37 62.95 40.67 42.70 51.07
SelectITkm 60.93 82.34 61.04 67.85 36.78 39.19 58.02 62.96 59.36 40.85 63.43 39.74 43.07 51.57

Entropykm 60.37 81.12 59.27 68.55 35.67 38.45 57.24 61.02 61.64 48.32 61.12 39.00 43.99 52.52

Table 5: Overall results (%) for various downstream tasks are based on the Openhermes2.5 dataset. The notation
Methodkm refers to the method incorporating the k-means process. Bold numbers represent the average performance
gain following the addition of the K-means phase.
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Figure 2: The average score (%) of each methods on Llama3 and Qwen2.

pected. Nonetheless, from a quality perspective,534

WildChat’s conversation data tends to be noisy, par-535

ticularly since the context of multiple conversation536

rounds is sometimes unrelated, while OpenHer-537

mes’s data quality should be substantially higher538

than WildChat. However, the performance patterns539

for these data sources are contrary to our predic-540

tions. WildChat’s average token length is 1142,541

compared to 354 for OpenHermes. Inspired by542

(Shen, 2024), we designed a new experiment fo-543

cused on selecting data by token length. We ap-544

plied K-Means to form N clusters, then chose a545

data quantity from each cluster proportional to its546

size, based on token length. Results are in Table 4.547

Based on Table 4, it is evident that using token548

length as the criterion for data selection generally549

yields optimal results. Specifically, for Llama3,550

regardless of whether the data source is OpenHer-551

mes or WildChat, the results are superior to those552

achieved by other methods. In addition, the aver-553

age score on WildChat (55.51) surpasses that ob-554

tained by fine-tuning with the entire dataset (54.58).555

Since random selection may not ensure the best556

fine-tuning results, we believe that selecting data557

by token length can stably obtain a relatively 558

high training benefit, reduce the uncertainty 559

caused by randomness, and reduce costs. This 560

approach is particularly beneficial for BASE lan- 561

guage models which generally have limited capa- 562

bilities, as they tend to derive the most significant 563

benefits from training on longer texts. Notably, 564

both Qwen2 (qwe, 2024) and Llama3 (AI@Meta, 565

2024) incorporate long-text training components in 566

their pre-training stages. Based on this observation, 567

we posit that with the continuous iteration of foun- 568

dational models, the advantages of length-based 569

data selection will gradually diminish. 570

6 Conclusion 571

In this study, we rethinking whether SFT data selec- 572

tion methods can work when they are required to 573

handle large-scale IT datasets. We replicate exist- 574

ing self-scoring data selection methods on million- 575

scale datasets and observe that most hardly outper- 576

form random selection. Additionally, during the 577

SFT phase, data diversity matters more than quality. 578

Token length proves a better quality metric for SFT 579

data selection than other detailed metrics. 580
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7 Limitations581

Due to financial limitations, the External-scoring582

Method was not implemented as a comparative583

approach in this study. We were unable to identify584

a data selection technique that universally applies585

to all LLMs. While accounting for both temporal586

costs and model effectiveness, it appears that token587

length typically yields optimal outcomes; however,588

this method is not suitable for every model.589

8 Ethics Statement590

The primary aim of this study is to select specific591

portions of data from existing open-source public592

datasets to be used in the supervised fine-tuning593

of LLMs. We have chosen two datasets for this594

purpose: OpenHermes2.5 and WildChat. Open-595

Hermes2.5 comprises various general open-source596

datasets that are free from security or ethical con-597

cerns. Meanwhile, the WildChat dataset has been598

curated to exclude toxic user inputs, thus guaran-599

teeing its safety.600
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A Appendix 857

A.1 Model Reproduction Details 858

In term of LESS, individual models are built and 859

trained on specific tasks. However, in practical ap- 860

plications, our goal is to train a model that enhances 861

performance across various scenarios. Thus, given 862

that the two datasets we select are both extensive 863

and diverse, we randomly select 1000 data points 864

from each dataset as Dval. Additionally, due to 865

the volume of our data, we randomly pick 10,000 866

data points for warm-up training, differing from 867

the method described in (Xia et al., 2024). 868

As for IFD, we initially generate 1000 clusters 869

on instruction embeddings, which differs from the 870

settings given in (Li et al., 2023b). For SelectIT, 871

we adopt model-level selection as the final strategy 872

for the Qwen2 model and evaluate the model-level 873

score on Qwen2-1.5B and Qwen2-7B. While for 874

Llama3, we employ sentence-level selection as the 875

final approach. Considering that the Llama3 fam- 876

ily only has two public variants, Llama3-8B and 877

Llama3-70B, and to mitigate time costs, we com- 878

pute the score based solely on Llama3-8B. 879

Within DiverseEvol, during each iteration’s K- 880

Center-Sampling stage, data points are selected 881

based on maximizing their distance to the nearest 882

existing training data points, one at a time, until the 883

desired count is reached. Consequently, it is essen- 884

tial to maintain a n × n float-type matrix for the 885

entire computation, where n represents the dataset 886

size. Given that our OpenHermes dataset exceeds 887

1 million entries, the matrix calculation would re- 888

quire more than 1 terabyte of memory. Therefore, 889

we revised this part to select all required data points 890

once for each iteration, which significantly reduces 891

the memory requirement. 892

A.2 Other Results 893

In this section, table 6, 7 includes training results 894

of various methodologies with a training dataset 895

comprising 50,000 entries 6, 7. 896
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24

all data 61.39 80.12 63.32 68.50 40.85 44.18 59.73 63.33 73.24 46.43 63.90 46.40 49.72 57.17

Random1 62.87 80.67 62.44 68.33 34.75 38.08 57.86 63.89 64.37 46.19 62.75 45.10 49.72 55.34

Random2 61.11 80.82 65.76 68.12 38.08 40.67 59.09 62.13 66.57 47.32 61.57 46.58 49.54 55.62
Random3 61.02 81.35 60.15 68.54 38.63 40.85 58.42 65.65 63.53 44.05 61.96 42.51 46.21 53.99

Random4 60.37 80.06 55.98 68.95 37.34 40.30 57.17 62.78 62.40 45.12 62.41 47.87 50.83 55.24

Random5 60.19 80.14 63.29 69.16 38.08 40.85 58.62 64.72 65.13 45.18 62.51 45.47 49.17 55.36

LESS 60.46 80.29 58.66 67.40 39.00 43.25 58.18 61.02 57.85 17.01 63.01 40.30 46.40 47.60

IFD 57.50 80.52 67.13 66.79 35.86 38.08 57.65 61.94 52.84 44.63 63.36 41.04 43.99 51.30

SelectIT 60.56 79.98 62.77 67.96 36.04 39.00 57.72 61.20 64.22 40.03 62.40 41.96 44.92 52.46

Entropy 60.83 77.56 59.24 69.02 36.78 39.56 57.17 60.65 55.50 49.02 57.51 47.13 51.02 53.47

Diverse 61.67 81.35 61.89 68.60 44.55 46.40 60.74 63.33 61.11 48.75 63.62 46.21 49.17 55.37

zip 59.81 82.03 68.48 68.08 35.67 38.26 58.72 63.89 57.92 42.65 62.58 43.25 46.95 52.87

LESSkm 61.20 81.88 54.51 67.77 32.90 36.60 55.81 61.02 59.44 47.04 63.35 42.14 47.32 53.39

IFDkm 59.81 78.92 60.55 67.09 28.65 31.24 54.38 63.43 63.23 43.41 61.19 40.11 43.81 52.53

SelectITkm 61.20 81.20 66.52 69.10 34.57 38.45 58.51 61.85 61.49 45.76 61.64 43.44 48.43 53.77

Entropykm 61.02 80.82 66.04 68.25 36.78 39.37 58.71 61.85 64.22 48.66 61.85 42.70 46.58 54.31

Lengthkm 60.46 83.62 63.35 68.79 38.26 41.59 59.35 65.09 62.70 47.29 62.73 45.10 49.17 55.35

Table 6: The comprehensive results (%) on various downstream tasks using OpenHermes. Mention that CODE
means Humaneval. Algorithmkm means the algorithm has a Kmeans process, and Randomx denotes the xth random
selection. The bold numbers indicate the best avg score of each part, and the underlined numbers indicate the second
highest score.
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24

all data 62.87 80.82 62.84 68.70 45.84 48.80 61.65 63.70 56.94 47.44 63.30 46.40 49.72 54.58

Random1 61.85 81.50 60.55 68.02 40.48 42.70 59.18 63.61 55.72 48.90 64.07 42.51 45.66 53.41

Random2 60.74 82.03 58.72 68.05 40.67 44.36 59.10 61.76 54.66 50.95 63.38 42.88 46.03 53.28

Random3 59.07 81.35 64.45 67.63 41.77 44.92 59.87 63.98 55.42 53.11 63.33 43.81 46.77 54.40

Random4 62.41 82.34 60.95 68.43 42.51 45.10 60.29 63.70 58.91 50.09 63.84 43.62 46.03 54.37

Random5 61.30 82.49 59.05 67.60 42.70 44.92 59.68 64.54 55.65 49.91 64.16 42.70 45.84 53.80

LESS 58.80 81.35 66.95 68.10 41.04 43.99 60.04 63.43 57.01 50.43 64.50 40.85 44.92 53.52

IFD 59.44 81.50 66.46 67.90 38.45 40.85 59.10 63.33 59.29 47.16 64.60 40.30 43.81 53.08

SelectIT 60.74 84.23 60.49 69.24 41.04 44.36 60.02 61.48 53.22 46.01 63.20 40.11 42.88 51.15

Entropy 61.02 81.96 60.88 68.40 43.07 46.58 60.32 61.48 55.34 48.90 64.02 47.50 51.02 54.71

Diverse 59.81 82.03 67.10 68.00 41.77 44.36 60.51 65.09 56.18 38.81 63.03 44.36 47.13 52.43

zip 59.91 79.83 71.04 67.97 42.88 45.84 61.25 64.72 57.16 41.49 61.54 45.84 48.43 53.20

LESSkm 59.54 80.89 67.84 68.20 43.62 46.95 61.17 61.94 54.74 48.99 64.10 43.99 46.95 53.45

IFDkm 59.26 80.67 68.41 68.13 41.77 43.99 60.37 62.69 56.10 48.63 63.02 40.85 42.70 52.33

SelectITkm 60.46 83.17 59.39 68.79 39.93 43.07 59.14 61.20 54.89 45.88 63.50 43.99 48.06 52.92

Entropykm 60.93 82.79 59.82 67.01 39.19 42.14 58.65 63.06 58.45 45.73 63.85 41.04 45.10 52.87

Lengthkm 61.30 79.76 59.76 68.19 42.88 45.29 59.53 62.41 60.05 49.82 64.23 45.47 48.80 55.13

Table 7: The comprehensive results (%) on various downstream tasks using WildChat. Mention that CODE means
Humaneval. Algorithmkm means the algorithm has a Kmeans process, and Randomx denotes the xth random
selection. The bold numbers indicate the best avg score of each part, and the underlined numbers indicate the second
highest score.
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