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Abstract

Supervised fine-tuning (SFT) is crucial for
aligning Large Language Models (LLMs) with
human instructions. The primary goal during
SFT is to select a small yet representative sub-
set of training data from the larger pool, such
that fine-tuning with this subset achieves re-
sults comparable to or even exceeding those
obtained using the entire dataset. However,
most existing data selection techniques are de-
signed for small-scale data pools, which fail
to meet the demands of real-world SFT sce-
narios. In this paper, we replicated several
self-scoring methods—those that do not rely
on external model assistance—on two million-
scale datasets, and found that nearly all meth-
ods struggled to significantly outperform ran-
dom selection when dealing with such large-
scale data pools. Moreover, our comparisons
suggest that, during SFT, diversity in data se-
lection is more critical than simply focusing on
high-quality data. We also analyzed the limita-
tions of several current approaches, explaining
why they perform poorly on large-scale datasets
and why they are unsuitable for such contexts.
Finally, we found that filtering data by token
length offers a stable and efficient method for
improving results. This approach, particularly
when training on long-text data, proves highly
beneficial for relatively weaker base models,
such as Llama3.

1 Introduction

With the advent of large language models (LLMs)
such as ChatGPT, we have observed significant
advancements in tasks involving instruction follow-
ing (Wang et al., 2023b), intent comprehension (Lu
etal., 2023), and text generation (Zhao et al., 2023).
One of the primary objectives of developing LLMs
is to harness their potential for generalizing to un-
seen natural language processing (NLP) tasks. To
achieve this aim, many LLMs focus on precisely
aligning with human instructions.

Difference between the scores of different
selection methods and random selection

LESS IFD SelectIT DiverseEvol  ZIP

Data size 10K-300K Data size 1M

Figure 1: The discrepancy between each methods and
random selection on BBH benchmark (Suzgun et al.,
2022). The Y-axis represents the differential score,
which is computed by subtracting the random selection
score from the scores obtained using various methods.
Recent studies indicate that supervised fine-
tuning (SFT) can customize LLMs for specific
domains, tasks, or applications by utilizing well-
crafted data. According to the study in (Zhou et al.,
2024a), it is feasible to fine-tune a pre-trained lan-
guage model with a relatively small set of exam-
ples. Building on this insight, several papers have
explored data selection strategies for SFT of LLMs
(Wang et al., 2024; Qin et al., 2024), emphasizing
the importance of enhancing the quality of instruc-
tion tuning (IT) data or increasing data diversity.
These strategies can be classified into two primary
categories: (1) Extenral-scoring methods, which
require support from more sophisticated external
models like GPT-4 to score the data for the subse-
quent selection (Lu et al., 2023; Chen et al., 2023;
Duetal., 2023; Liu et al., 2023; Zhou et al., 2024b);
(2) Self-scoring methods, which leverage LLMs
themselves as data scorers (Li et al., 2023d,b; Liu
et al., 2024; Xia et al., 2024; Yin et al., 2024).
Existing SFT data selection methods, both
external-scoring and self-scoring, are evaluated us-
ing well-known IT datasets like alpaca-GPT4 (Peng



et al., 2023), Dolly (Conover et al., 2023), FLAN
(Longpre et al., 2023), WizardLM (Xu et al., 2024),
and ShareGPT (Chiang et al., 2023). These datasets
are small and come from a single source. How-
ever, during SFT, much larger data volumes, usu-
ally in the hundreds of thousands to millions, are
often needed. For instance, Qwen2 (qwe, 2024)
used over 500,000 data samples in SFT. Thus, for
effective LLM utilization, large-scale instruction-
following data is crucial in SFT. Furthermore, large-
scale data should not only be abundant but also
diversified, including professional annotations, real
user data, or model-generated data, across various
types like code, math, conversations, and knowl-
edge Q&A. This disparity highlights a gap between
current SFT data selection and real-world appli-
cations. To study how dataset size impacts se-
lection strategy performance, we compared out-
comes from existing methods with random se-
lection within datasets ranging from 10K-30K to
1M on Llama3-8B (Al@Meta, 2024). Figure 1
shows that as dataset size grows to 1M, these meth-
ods perform worse compared to random selection.
"Data size 10K-300K" refers to sources from orig-
inal method papers. "Data size 1M" refers to the
Openhermes2.5-1M dataset (Teknium, 2023).
Motivated by this discovery, we reconsider
whether SFT data selection methods are viable for
large-scale IT datasets. Given the high costs of
external-scoring techniques (Liu et al., 2023), we
focus on self-scoring methods. Referring to (Qin
et al., 2024), we classify self-scoring techniques
into data quality-based and data diversity-based
methods. Data quality-based methods prioritize al-
gorithms and metrics to score data items, selecting
based on these scores, while data diversity-based
methods prioritize dataset diversity. To examine
the impact of self-scoring methods on LLMs’ per-
formance with vast IT data, we test recent methods
on two benchmarks with millions of cases. Our
experiments highlight three key points:

* Most self-scoring data selection methods per-
form similarly to random selection on large
datasets. Although they show improvement on
smaller datasets, their effectiveness decreases
with larger and complex data. Some methods
perform slightly better than random with cer-
tain LLMs, but balancing effectiveness and
efficiency, random selection remains the best
choice for large data sources.

* Data diversity holds more significance than

data quality during the SFT phase. Data
quality-based selection methods are more
effective than data diversity-based methods
when dealing with a small-scale dataset from a
single source. However, when tackling multi-
source data, only considering data quality is
far from enough.

* Analyzing two IT datasets, we find using to-
ken length for data filtering ensures stable and
efficient SFT results with large-scale IT data.
Prior research (Liu et al., 2023) shows ben-
efits of long text training for subjective eval-
uations like MTbench (Zheng et al., 2023)
and AlpacaEval (Li et al., 2023c); we con-
firm its positive effect on objective tasks like
Big-Bench-Hard (Suzgun et al., 2022). Al-
though not always optimal for every language
model, token length is beneficial in training
long texts, notably for a weaker BASE model
such as Llama3-8B.

2 Related Work

External-scoring Method. (Lu et al., 2023) pro-
posed INSTAG, an open-set instruction tagging
method using ChatGPT to generate tags for measur-
ing instruction diversity/complexity in SFT. ALPA-
GASUS (Chen et al., 2023) model used ChatGPT
to score instructions for threshold-based data selec-
tion. (Du et al., 2023) introduced a model-oriented
selection approach considering instruction quality,
coverage, and LLM capability. (Liu et al., 2023)
developed DEITA, which iteratively enhanced data
complexity or quality via ChatGPT and requested
its evaluation. These models outperformed full-
dataset baselines but rely heavily on external LLMs
for scoring.

Self-scoring Method. (Li et al., 2023b) pro-
posed an LLM self-directed method using IFD met-
rics to identify instruction pairs. DiverseEvol (Wu
et al., 2023) enables models to independently select
diverse subsets without external oversight. (Xia
et al., 2024) introduced LESS, using gradient data-
stores to select instruction-tuning data. (Yin et al.,
2024) proposed ZIP to favor low-compression-ratio
subsets, while SelectIT (Liu et al., 2024) uses LLM
uncertainty for efficient selection. Nuggets (Li
et al., 2023d) employs perplexity-based one-shot
scoring for high-quality data selection.

Specifically, in early research, data distillation
had a similar goal to current SFT data selection,
which was to filter out a small number of repre-



sentative data from large datasets (Lei and Tao,
2023). With the continuous development of LLMs,
DEFT tasks in the past two years have focused on
data distillation for specific tasks. This includes
filtering data using feedback preferences during the
reinforcement learning stage (Zhu et al., 2024) or
selecting fine-tuning data for a specific task such
as text editing (Das and Khetan, 2023). In contrast,
SFT does not focus on specific tasks. Instead, it em-
phasizes unlocking various capabilities of LLMs
through fine-tuning, such as code generation and
logical reasoning. Therefore, the two approaches
have slightly different emphases during the data
selection stage.

3 Self-scoring strategies

In this paper, we focus on self-scoring methods
that do not rely on external advanced LLMs to
score data. We refer (Qin et al., 2024)’s work and
categorize existing resourceful data selection meth-
ods into two main perspectives: data quality-based
methods and data diversity-based methods.

3.1 Quality-based Selections

In this section, we introduce 4 methods based on
data quality assessment and selection. “Quality”
here refers primarily to the complexity, complete-
ness, score, and influence of the datapoints. Dif-
ferent from (Qin et al., 2024), we believe that the
influence of a datapoint in the target dataset is also
a reflection of data quality, especially in practical
scenarios, where we are required to deal with di-
verse tasks rather than a single task. We thus regard
the influence as a quality category as well.

LESS (Xia et al., 2024) employed low-rank gra-
dient similarity search for selecting influential data
in target applications. Initially, a model was pre-
trained with LoRA (Hu et al., 2021) using a small
subset Dyarmup C D, after which the Adam LoRA
gradient features were calculated and saved in a
database. Then, a datastore of reduced-dimensional
gradient features was established for reuse with var-
ious target tasks. For training points x, they com-
puted a d-dimensional projection of the LoRA gra-
dient V{(x; 8;) = 1" V/(x; 0;), where II" uses
a memory-efficient online implementation of ran-
dom projections from (Park et al., 2023). For val-
idation points 2/, I'(z/,-) = II' I'(&/, ) was cal-
culated, representing gradient values for «’ across

different optimization states. Finally, LESS eval-

uated max; Inf pgam (, Df,;)l) over all validation

subsets D,,q;, choosing the top-scoring examples
for Dtrain-a
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IFD introduced the Instruction-Following Diffi-
culty (IFD) score, a metric devised to evaluate the
challenge each instructional sample presents (Li
et al., 2023b). Given a (@), A) pair, they calculated

the ratio between s(A) and s(A|Q):
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where s(A) means Direct Answer Score, which
measures LLM’s ability to generate the answer
alone. s(A|Q) means Conditioned Answer Score,
which is calculated by continuously predicting the
next tokens given the instruction ) and their pro-
ceeding words.

The authors initially created 100 clusters from
instruction embeddings and selected 10 instances
per cluster according to the IFD score on a pre-
trained base LLM. They then trained this LLM for
1 epoch with these chosen datapoints. Post-training,
they recalculated the IFD score of each datapoint
in the entire training set D and ultimately chose the
data with the highest IFD score as Dyyqin.-

SelectIT identified high-quality IT data by ana-
lyzing the inherent uncertainty indicated by LLMs
(Liu et al., 2024). It evaluated samples at three
granular levels: token, sentence, and model level
reflections. At the token level, SelectIT determined
the probability of the following token (from 1 to K)
using the rating prompt R P and the query-response
pair E. The token with the highest probability was
deemed the sample’s quality measure. A higher

P;jbm indicated greater LLM confidence.
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Here, P;, and P,; denote the probability and softmax
probability of token k, respectively. K represents
the number of scores considered. In that study, the
score tokens spanned from 1 to 5. To improve the
reliability of quality assessment, SelectIT evaluated
the average difference between the predicted token
E%es¢ and others, with larger differences indicating
higher LLM confidence.

K
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At the sentence level, different prompts can no-
tably influence LLM outcomes, so K semantically
similar rating prompts {RPy, RP,...,RPx}
were crafted, resulting in a set of quality scores

{E(I_f)oken’ Eioken’ o E}({)ken}.
token | K
sent __ AVg{Ei }izl

1+ a x Std{Efken} K | ©)
where Avg{-} and Std{-} denote the mean and
standard deviation of E!°k¢"  respectively. K
means the number of rating prompts RP.

For model level, SelectIT used N foundation
models with parameter counts {51, 52, ..., N}
and their respective sentence-level scores for a
sample E being {E5¢™, B3, ... E3¢™}, then
the model-level score F,,,q4e; Was computed as fol-
lows.

N
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where N means the number of the foundation mod-
els. It used Ey,04er as the final evaluation of sample
E in SelectIT.

Cross-entropy: Language models can be consid-
ered a form of compression, with LLMs showing
strong capabilities in data compression empirically
(Delétang et al., 2024). Compression efficiency
is a stable and reliable assessment that is linearly
related to the model’s capabilities. It reflects the
model’s ability to extract relevant information and
eliminate unnecessary elements, providing insight
into the intrinsic capability of the language model
(Huang et al., 2024; Wei et al., 2024).

The cross-entropy loss employed in the training
of LLMs establishes a coherent relationship be-
tween LLMs and information compression of each
query-response pair .
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Inspired by this foundational insight, we select data
based on the cross-entropy of each datapoint, where
the higher value of cross-entropy means the better
quality.

3.2 Diversity-based Selections

In this section, we introduce methods that empha-
size the diversity of instruction datasets, where di-
versity refers to the overall diversity of the entire
training dataset.

DiverseEvol selectively sampled training sub-
sets to enhance its performance iteratively (Wu
et al., 2023). It identified distinct new data points
in its current embedding space each iteration. For
a dataset D, DiverseEvol initially picked a random
data pool Py and trained an initial model M. Each
iteration involved: 1. Adding new data points Dy
to P41 based on model M,;. 2. Training the next
model M, with updated P;;;. The K-Center-
Sampling method was used to choose k data points
from candidates, maximizing their distance from
existing training data.

arg max min A (x4, p;) ®)

At each step, the input parameters to K-Center-
Sampling were the model M, the current train-
ing pool P;, and D;. The selection function K-
Center-Sampling then outputs the new data point
X, which was added to the training pool for the
next iteration Py .

The method ZIP identifies a negative correlation
between model performance and the compression
ratio of training data, often leading to reduced train-
ing loss. (Yin et al., 2024) introduced ZIP, a highly
efficient and universal data selection approach for
training LLMs, focusing on data subsets with low
compression ratios.

It begins by determining the sample-level com-
pression ratio for the dataset D, with mp represent-
ing data redundancy. In each cycle, it picks K3
samples with the smallest 7p, to create an initial
pool D, . It then calculates the compression ra-
tio of the combined set when adding each sample
in D, to the selected set Dyyq4n, updating the re-
dundancy 7p,. Based on sample scores in D, ,
ZIP chooses D, samples with the smallest scores.
Next, an empty set D, is initialized, and the com-
pression ratio for the union of D, and each Dy,
sample is computed. The sample with the lowest
ratio is added to D, and removed from Dy, . Fi-
nally, each D, sample is included in Dy;.q;p,. The
compression ratio g(C(D)) in ZIP is computed as:

Bits(D)

9(C(D)) = Bits(C(D)) )

4 Experiment

4.1 Datasets

In practice, researchers often deal with large and
imperfect datasets from diverse sources in SFT.
This study, instead of using the usual IT datasets



like alpaca (Taori et al., 2023), uses two large-
scale IT datasets at the million level, Openher-
mes2.5 (Teknium, 2023) and WildChat-1M (Zhao
et al., 2024), to evaluate how current data selection
methods perform with large datasets and to assess
their performance in real-world scenarios.

Openhermes2.5 is introduced in (Teknium,
2023) with over 1 million entries, characterized
by its extensive coverage and quality. It mainly
includes generated guides and conversations from
16 sources, such as metamath (Yu et al., 2023),
CamelAl (Li et al., 2023a), etc., covering topics
like mathematics, programming and etc..

WildChat-1M from (Zhao et al., 2024) contains
exclusively non-toxic user inputs and ChatGPT
exchanges, totaling 1 million dialogues. About
25.53% involve GPT-4, the rest GPT-3.5, featuring
varied interactions like ambiguous queries and po-
litical talks. This study extracts over 440k English
dialogues from WildChat.

4.2 Benchmarks

To evaluate LLM capabilities, we explore various
methods across downstream tasks. We use two
datasets, GSM (Cobbe et al., 2021) and BBH (Suz-
gun et al., 2022), to test reasoning in the CoT set-
ting (Wei et al., 2022). For code generation, we em-
ploy the HumanEval dataset (Chen et al., 2021) and
reported pass@1 results. We gauge factual knowl-
edge using MMLU (Hendrycks et al., 2021) with
5-shot results and assess instruction-following us-
ing IFEval (Zhou et al., 2023b) with strict and loose
scores. Additionally, we use Open-Instruct scripts
covering key benchmarks (Wang et al., 2023a; Ivi-
son et al., 2023, 2024).

4.3 Implementation Details

Specifically, we leverage the widely-used
LLaMA3-8B (Al@Meta, 2024) and Qwen2-
7B (qwe, 2024) as our base models, and fine-tune
them using the Llama-Factory framework (Zheng
et al., 2024). We train these models for 3 epochs
with a batch size of 128. Our training process
employs a cosine learning rate scheduler beginning
at 7e — 6, which decays to 0.1, warms to 0.01, and
utilizes an input length of 4096. To replicate our
baseline methods on Openhermes and WildChat,
we adjust some original parameters and implemen-
tations to fit the large-scale datasets. The specific
details of model reproduction are in Appendix A.1.

5 Discussion

5.1 Baseline Methods vs Random

This section replicates baseline methods for
LLaMA3-8B and Qwen2-7B experiments on Open-
Hermes2.5, with results in Table 2 and WildChat
results in Table 3. We evaluate these models with
and without full dataset fine-tuning, using SFT data
selection methods to pick 10,000 samples as per
Section 4.3. We conduct 5 random runs and the
outcomes are in the tables. Additionally, 50,000
samples from various methods are in Appendix
Table 6, 7.

Llama3-8B Qwen2-7B
OpenHermes WildChat OpenHermes WildChat

LESS 0.77 0.45 0.80 0.86
IFD 0.85 0.53 0.85 0.68
SelectIT 0.71 0.79 0.60 0.58
Entropy 0.92 0.46 0.78 0.30
Diverse 0.39 0.58 0.37 0.45
zip 0.55 0.36 0.42 0.31

Table 1: The P-values of the significance tests for each
method against the results of five rounds of random
selection.

As shown in Tables 2 and 3, no data selection
methods significantly surpasses random sampling
for large, varied IT datasets. Typically, baseline re-
sults fall within the range of five random runs, and
some are even lower than the worst random out-
come. For example, for Cross-Entropy on Qwen2-
7B with Openhermes?2.5, the average result is 54.02,
which is notably less than the lowest random score
of 57.04. We also applied the Mann-Whitney U
test, using a right-tailed hypothesis that baseline
scores exceed random ones, and documented the
p-values in Table 1. All methods had p-values over
0.05, indicating no baseline method outperformed
random selection.

Based on the experimental results, when deal-
ing with an extensive SFT dataset, it is more effi-
cient to randomly select training data instead of
spending significant time and resources to metic-
ulously choose seemingly optimal training data.
Random selection reduces costs and yields superior
training results.

5.2 Quality vs Diversity

Tables 2 and 3 demonstrate that the diversity-based
selection strategies outperforms the quality-based
one. To examine whether prioritizing diversity
over data quality improves data selection, we de-
signed a supplementary experiment by incorporat-



Qwen2-7B ‘ ‘ Llama3-8B

BBH GSM CODE MMLU IFEVAL BBH GSM CODE MMLU IFEVAL

3shot 8shot pass1 Sshot strict loose AVG 3shot 8shot pass1 Sshot strict loose AVG
Base 59.07 7240 55.67 7020 28.84 31.24 5290 | 60.93 55.12 3759 6530 19.41 21.07 43.24
all data 61.39 80.12 63.32 68.50 40.85 44.18 59.73|| 63.33 73.24 4643 6390 4640 49.72 57.17
Random 1 | 59.72 82.41 62.10 6830 3327 36.41 57.04| 64.72 5390 4521 6320 39.19 43.62 51.64
Random 2 | 61.48 83.47 6433 6790 38.08 40.30 59.26 || 60.83 56.86 48.99 62.70 41.77 4547 52.77
Random 3 | 61.85 81.65 6290 68.10 36.78 38.45 5829 | 63.43 59.74 46.83 6270 4325 46.21 53.69
Random 4 | 61.20 82.71 59.27 68.00 36.60 39.19 57.83 | 63.98 59.59 45.18 63.80 44.36 47.13 54.01
Random 5 | 61.30 82.71 6223 6890 3586 37.71 58.12 | 62.31 56.10 42.07 63.50 44.55 48.80 52.89
LESS 61.20 81.65 5326 67.60 32.16 37.15 5550 61.39 57.70 4143 64.20 38.08 41.96 50.79
IFD 5796 79.23 68.48 56.70 33.27 35.12 55.13 || 57.41 53.53 3241 59.90 43.07 45.84 48.69
SelectIT | 59.17 80.44 66.46 67.20 35.86 38.82 57.99 || 62.59 61.56 4238 63.60 38.45 42.14 51.79
Entropy | 61.30 55.04 61.04 68.90 37.34 4048 54.02| 58.61 50.72 44.02 61.40 32.90 37.89 47.59
Diverse 61.11 81.73 61.71 68.65 40.85 43.44 59.58 || 65.00 5625 4451 63.84 43.99 47.13 5345
ZIP 60.65 80.52 66.10 68.60 37.15 39.56 58.76 || 63.98 59.67 40.70 62.60 43.81 46.58 52.89

Table 2: The overall results (%) on a variety of downstream tasks based on Openhermes2.5 dataset. CODE means
HumanEval, Random n denotes the nth random selection. Except for fine-tuning with the entire Openhermes
dataset, the bold numbers indicate the best score of each part, and the underlined numbers indicate the second

highest score.

ing a K-means clustering process on the OpenHer-
mes dataset. Instead of selecting data based solely
on method scores, we choose higher-scoring data
within each cluster to boost the final training set’s
diversity.

Table 5 illustrates that integrating the K-means
clustering with quality-based selection methods en-
hances the effectiveness for most approaches. No-
tably, Cross Entropy on both Llama3 and Qwen2
models shows improvement over 5% and 3%, re-
spectively, when K-means is used to diversify the
data. This suggests that for a large-scale IT dataset,
data diversity holds more importance than data
quality. This also clarifies why random selection
often outperforms most SFT data selection meth-
ods, as the random process preserves the dataset’s
original distribution and diversity to the greatest
possible extent.

5.3 Baseline Analysis

In this part, we mainly analyze several methods
and try to find the reasons why these methods fail
in large-scale data sets and why these methods are
not applicable to practical applications.

The lack of availability of Less is primarily evi-
dent in how its influence score is calculated. Since
it requires computing the score for the final data
point in the target task, it is essential to meticu-
lously design a target set for each task to filter the

data. However, in practical applications, we face a
variety of training tasks that require our target data
to be comprehensive and diverse. Hence, the effec-
tiveness of LESS is strongly related to the quality
of szl .

The IFD approach determines the ultimate IFD
score by evaluating the perplexity (ppl) of the re-
sponse. However, the length of the data signifi-
cantly affects the ppl value. In particular, shorter
data tend to produce excessively high ppl values,
which contradicts with our expected results. Ul-
timately, we note that the IT data instructions se-
lected by the IFD approach are quite brief, averag-
ing merely 42 tokens on Openhermes, which aligns
with the findings reported by (Liu et al., 2023).

SelectIT can perform well at the model level, but
it necessitates combining LLMs with various sizes
to score the data. As IT datasets become larger, the
computational cost required for LLMs with more
parameters tends to increase exponentially, which
limits their applicability to extensive datasets.

Cross-entropy is influenced by the length of re-
sponses. Typically, cross-entropy favors data with
lengthy responses, whereas it shows no specific
preference towards instructions. Consequently, the
training samples will include simple instructions
but extensive responses.

We exclude NUGGETS (Li et al., 2023d) as
a baseline due to its extensive computational de-



Qwen2-7B | Llama3-8B

BBH GSM CODE MMLU  IFEVAL BBH GSM CODE MMLU  IFEVAL

3shot 8shot pass1 5Sshot strict loose AVG 3shot 8shot pass1 5Sshot strict loose AVG
Base 59.07 72.40 55.67 7020 28.84 31.24 5290 6093 55.12 37.59 6530 19.41 21.07 43.24
all data 62.87 80.82 62.84 68.70 4584 48.80 61.65| 63.70 56.94 4744 6330 46.40 49.72 54.58
Random 1 | 61.30 82.64 6198 68.10 4030 42.33 59.44 || 63.70 56.48 5192 63.30 39.37 4195 52.79
Random 2 | 60.93 81.96 6143 67.50 38.63 40.67 58.52 | 62.41 52.62 4933 64.00 44.18 46.77 53.22
Random 3 | 60.28 82.64 62.07 68.30 41.04 42.88 59.54|| 63.52 5838 4390 64.10 4233 4529 52.92
Random 4 | 61.11 80.36 6546 67.50 37.34 40.67 58.74 || 63.33 5542 51.10 64.50 41.96 44.55 53.48
Random 5 | 61.57 81.50 60.27 68.20 41.77 43.99 59.55|| 64.91 60.27 48.66 64.30 42.14 4584 54.35
LESS 52.59 60.50 61.19 68.00 38.82 41.77 53.81 | 63.43 57.01 5043 64.50 40.85 4492 53.52
IFD 60.56 76.27 6524 68.00 36.23 38.26 57.43| 63.33 59.29 47.16 64.60 40.30 43.81 53.08
SelectIT | 60.37 82.34 6497 68.50 3697 39.19 58.72 || 61.48 5322 46.01 63.20 40.11 42.88 51.15
Entropy 60.37 81.96 6290 68.40 42.51 46.21 60.39 || 63.15 56.10 47.71 63.00 45.10 49.54 54.10
Diverse 61.02 80.82 65.09 6733 41.04 42.88 59.70 || 62.59 5330 33.48 6446 47.87 50.65 52.06
ZIP 62.59 81.80 68.17 68.00 40.11 4233 60.50 || 62.31 60.96 46.58 64.50 45.10 48.06 54.59

Table 3: The overall results (%) on a variety of downstream tasks based on WildChat dataset. CODE means
HumanEval, Random n denotes the nth random selection. Except for fine-tuning with the entire Openhermes
dataset, the bold numbers indicate the best score of each part, and the underlined numbers indicate the second

highest score.

‘ Qwen2-7B ‘ ‘ Llama3-8B

BBH GSM CODE MMLU IFEVAL BBH GSM CODE MMLU IFEVAL

3 shot 8shot pass1 Sshot strict loose AVG 3 shot 8shot pass1 Sshot strict loose A
OpenHermes | 60.65 80.74 60.18 68.33 37.89 41.40 58.20 || 64.63 61.33 4570 64.41 48.43 52.87 56.23
WildChat 61.67 81.05 59.21 67.82 39.56 42.14 58.58| 66.11 60.35 51.16 6391 43.81 47.69 55.51

Table 4: The overall results (%) of token length selection.

mands, requiring over 2,000 hours on 40 A100
80G GPUs. Given this high time cost, we decide
to abandon this method.

The diversity-based approach usually outper-
forms the quality-based selection methods, how-
ever, one main issue with the diversity-based ap-
proach is its time and memory consumption.

To replicate DiverseEvol, we used 8 A100 80G
GPUs across 3 iterations, each lasting 1-2 days,
totaling 5-7 days to select the final subset. When
dealing with large-scale data sets, the results of-
ten fall within the random range, though optimal
results occur sporadically. This may be due to
modifications in our implementation to address
memory constraints during replication (see Sec-
tion 4.3), which may have slightly diminished the
method’s performance. In contrast, ZIP does not
need GPU resources, but the computing process is
greedy. It incrementally adds 100 data at a time to
the final training subset. For large data scales, it
takes approximately 7 days to select 50,000 data.

In addition, ZIP serves as a data selection method
that operates independently of the model, meaning
that the selected data cannot be adaptively tuned
on the basis of the model. As illustrated in Tables
2 and 3, the data chosen by ZIP in OpenHermes
perform poorly in both Llama3-8B and Qwen2-7B,
whereas the data selected in WildChat exhibit the
best performance across these models.

Moreover, we attempt to utilize DQ (Zhou et al.,
2023a) as our baseline method. However, DQ uses
a submodular strategy to choose a subset by opti-
mizing submodular gains within the feature space.
When dealing with millions of data points, it re-
quires more than 1'TB memory resources. Eventu-
ally, we decide to forgo this approach.

5.4 Which method is the best?

By examining the average results, we notice that
the majority of methods perform better with Wild-
Chat as the data source compared to OpenHermes,
as illustrated in Figure 2, which is rather unex-



Qwen2-7B ‘ ‘ Llama3-8B

BBH GSM CODE MMLU IFEVAL BBH GSM CODE MMLU IFEVAL

3 shot 8shot pass1 5shot strict loose AVG 3 shot 8shot pass1 5shot strict loose AVG
LESS 61.20 81.65 5326 67.60 32.16 37.15 5550 61.39 57.70 4143 6420 38.08 41.96 50.79
IFD 57.96 79.23 68.48 56.70 33.27 35.12 55.13 || 57.41 53.53 3241 5990 43.07 45.84 48.69
SelectIT 59.17 8044 6646 6720 35.86 38.82 57.99 | 62.59 61.56 4238 63.60 38.45 42.14 51.79
Entropy 61.30 55.04 61.04 6890 37.34 4048 54.02 || 58.61 50.72 44.02 61.40 3290 37.89 47.59
LESSkm 61.30 8196 54.63 67.79 34.38 38.26 56.39 || 60.93 50.27 48.11 6397 39.74 4455 51.26
IFDim, 60.19 78.77 59.70 66.81 30.31 31.79 54.60 || 60.74 58.98 40.37 6295 40.67 42.70 51.07
SelectI Ty, | 60.93 8234 61.04 67.85 36.78 39.19 58.02 | 62.96 59.36 40.85 63.43 39.74 43.07 51.57
Entropyrm | 60.37 81.12 59.27 6855 35.67 38.45 57.24|| 61.02 61.64 4832 61.12 39.00 43.99 52.52

Table 5: Overall results (%) for various downstream tasks are based on the Openhermes2.5 dataset. The notation
Methody,,, refers to the method incorporating the k-means process. Bold numbers represent the average performance

gain following the addition of the K-means phase.

Llama3-8B
56.00

54.00
52.00
50.00
48.00
46.00

44.00

LESS IFD  SelectlT Entropy Diverse  ZIP

openhermes wildchat

Qwen2-7B
62.00

60.00
58.00
56.00
54.00
52.00

50.00

LESS IFD  SelectIT Entropy Diverse  ZIP

openhermes M wildchat

Figure 2: The average score (%) of each methods on Llama3 and Qwen2.

pected. Nonetheless, from a quality perspective,
WildChat’s conversation data tends to be noisy, par-
ticularly since the context of multiple conversation
rounds is sometimes unrelated, while OpenHer-
mes’s data quality should be substantially higher
than WildChat. However, the performance patterns
for these data sources are contrary to our predic-
tions. WildChat’s average token length is 1142,
compared to 354 for OpenHermes. Inspired by
(Shen, 2024), we designed a new experiment fo-
cused on selecting data by token length. We ap-
plied K-Means to form NV clusters, then chose a
data quantity from each cluster proportional to its
size, based on token length. Results are in Table 4.

Based on Table 4, it is evident that using token
length as the criterion for data selection generally
yields optimal results. Specifically, for Llama3,
regardless of whether the data source is OpenHer-
mes or WildChat, the results are superior to those
achieved by other methods. In addition, the aver-
age score on WildChat (55.51) surpasses that ob-
tained by fine-tuning with the entire dataset (54.58).
Since random selection may not ensure the best
fine-tuning results, we believe that selecting data

by token length can stably obtain a relatively
high training benefit, reduce the uncertainty
caused by randomness, and reduce costs. This
approach is particularly beneficial for BASE lan-
guage models which generally have limited capa-
bilities, as they tend to derive the most significant
benefits from training on longer texts. Notably,
both Qwen2 (qwe, 2024) and Llama3 (Al@Meta,
2024) incorporate long-text training components in
their pre-training stages. Based on this observation,
we posit that with the continuous iteration of foun-
dational models, the advantages of length-based
data selection will gradually diminish.

6 Conclusion

In this study, we rethinking whether SFT data selec-
tion methods can work when they are required to
handle large-scale IT datasets. We replicate exist-
ing self-scoring data selection methods on million-
scale datasets and observe that most hardly outper-
form random selection. Additionally, during the
SFT phase, data diversity matters more than quality.
Token length proves a better quality metric for SFT
data selection than other detailed metrics.



7 Limitations

Due to financial limitations, the External-scoring
Method was not implemented as a comparative
approach in this study. We were unable to identify
a data selection technique that universally applies
to all LLMs. While accounting for both temporal
costs and model effectiveness, it appears that token
length typically yields optimal outcomes; however,
this method is not suitable for every model.

8 Ethics Statement

The primary aim of this study is to select specific
portions of data from existing open-source public
datasets to be used in the supervised fine-tuning
of LLMs. We have chosen two datasets for this
purpose: OpenHermes2.5 and WildChat. Open-
Hermes2.5 comprises various general open-source
datasets that are free from security or ethical con-
cerns. Meanwhile, the WildChat dataset has been
curated to exclude toxic user inputs, thus guaran-
teeing its safety.

References

2024. Qwen?2 technical report.
Al@Meta. 2024. Llama 3 model card.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan

Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned 1lm.

Devleena Das and Vivek Khetan. 2023. Deft: Data
efficient fine-tuning for pre-trained language models

via unsupervised core-set selection. arXiv preprint
arXiv:2310.16776.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise
Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang,
Matthew Aitchison, Laurent Orseau, Marcus Hut-
ter, and Joel Veness. 2024. Language modeling is
compression. In /CLR.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. 2023.
Mods: Model-oriented data selection for instruction
tuning. arXiv preprint arXiv:2311.15653.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junx-
ian He. 2024. Compression represents intelligence
linearly. Preprint, arXiv:2404.09937.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu
Wu, Valentina Pyatkin, Nathan Lambert, Noah A.
Smith, Yejin Choi, and Hannaneh Hajishirzi. 2024.
Unpacking dpo and ppo: Disentangling best prac-
tices for learning from preference feedback. Preprint,
arXiv:2406.09279.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-
agy, and Hannaneh Hajishirzi. 2023. Camels in a
changing climate: Enhancing lm adaptation with tulu
2. Preprint, arXiv:2311.10702.


https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2404.09937
https://arxiv.org/abs/2404.09937
https://arxiv.org/abs/2404.09937
https://arxiv.org/abs/2406.09279
https://arxiv.org/abs/2406.09279
https://arxiv.org/abs/2406.09279
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702

Shiye Lei and Dacheng Tao. 2023. A comprehensive
survey of dataset distillation. /IEEE Transactions on
Pattern Analysis and Machine Intelligence, 46(1):17—
32.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. Camel: Communicative agents for "mind"
exploration of large scale language model society.
Preprint, arXiv:2303.17760.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2023b. From quantity to quality: Boosting
IIm performance with self-guided data selection for
instruction tuning. arXiv preprint arXiv:2308.12032.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023c. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang,
Min Yang, Lei Zhang, Shuzheng Si, Junhao Liu,
Tongliang Liu, Fei Huang, et al. 2023d. One shot
learning as instruction data prospector for large lan-
guage models. arXiv preprint arXiv:2312.10302.

Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li,
Ziyi Wang, Baotian Hu, and Min Zhang. 2024. Se-
lectit: Selective instruction tuning for large language
models via uncertainty-aware self-reflection. arXiv
preprint arXiv:2402.16705.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for
alignment? a comprehensive study of automatic
data selection in instruction tuning. arXiv preprint
arXiv:2312.15685.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuangi Tan, Chang Zhou, and Jingren
Zhou. 2023. # instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
In The Twelfth International Conference on Learning
Representations.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. Trak:
Attributing model behavior at scale. In International
Conference on Machine Learning (ICML).

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Yulei Qin, Yuncheng Yang, Pengcheng Guo, Gang Li,
Hang Shao, Yuchen Shi, Zihan Xu, Yun Gu, Ke Li,
and Xing Sun. 2024. Unleashing the power of data

10

tsunami: A comprehensive survey on data assess-
ment and selection for instruction tuning of language
models. arXiv preprint arXiv:2408.02085.

Ming Shen. 2024. Rethinking data selection for super-
vised fine-tuning. arXiv preprint arXiv:2402.06094.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-1lab/stanford_alpaca.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist llm assistants.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang,
and Dianhui Chu. 2024. A survey on data se-
lection for llm instruction tuning. arXiv preprint
arXiv:2402.05123.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
1z Beltagy, and Hannaneh Hajishirzi. 2023a. How far
can camels go? exploring the state of instruction tun-
ing on open resources. Preprint, arXiv:2306.04751.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xing-
shan Zeng, Wenyong Huang, Lifeng Shang, Xin
Jiang, and Qun Liu. 2023b. Aligning large lan-
guage models with human: A survey. arXiv preprint
arXiv:2307.12966.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang,
and Weiran Huang. 2024. Large language model
evaluation via matrix entropy. arXiv preprint
arXiv:2401.17139.

Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin,
Qi Su, and Chang Zhou. 2023. Self-evolved diverse
data sampling for efficient instruction tuning. arXiv
preprint arXiv:2311.08182.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: Se-
lecting influential data for targeted instruction tuning.
In International Conference on Machine Learning
(ICML).

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei


https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2306.04751

Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei
Guo, Yasheng Wang, Yong Liu, Ruiming Tang, Defu
Lian, and Enhong Chen. 2024. Entropy law: The
story behind data compression and llm performance.
arXiv preprint arXiv:2407.06645.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqgian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie,
Yejin Choi, and Yuntian Deng. 2024. Wildchat: Im
chatGPT interaction logs in the wild. In The Twelfth
International Conference on Learning Representa-
tions.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan lyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024a. Lima: Less is more for
alignment. Advances in Neural Information Process-
ing Systems, 36.

Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng,
Dongze Lian, Yifan Zhang, Yang You, and Jiashi
Feng. 2023a. Dataset quantization. arXiv preprint
arXiv:2308.10524.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023b. Instruction-following evaluation for
large language models. Preprint, arXiv:2311.07911.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng
Chen, Wayne Xin Zhao, Jing Sha, Zhichao Sheng,
Shijin Wang, and Ji-Rong Wen. 2024b. Jiuzhang3.
0: Efficiently improving mathematical reasoning by

11

training small data synthesis models. arXiv preprint
arXiv:2405.14365.

Liang Zhu, Feiteng Fang, Yuelin Bai, Longze Chen,
Zhexiang Zhang, Minghuan Tan, and Min Yang.
2024. Deft: Distribution-guided efficient fine-tuning
for human alignment. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
15318-15331.

A Appendix
Al

In term of LESS, individual models are built and
trained on specific tasks. However, in practical ap-
plications, our goal is to train a model that enhances
performance across various scenarios. Thus, given
that the two datasets we select are both extensive
and diverse, we randomly select 1000 data points
from each dataset as D,,;. Additionally, due to
the volume of our data, we randomly pick 10,000
data points for warm-up training, differing from
the method described in (Xia et al., 2024).

As for IFD, we initially generate 1000 clusters
on instruction embeddings, which differs from the
settings given in (Li et al., 2023b). For SelectIT,
we adopt model-level selection as the final strategy
for the Qwen2 model and evaluate the model-level
score on Qwen2-1.5B and Qwen2-7B. While for
Llama3, we employ sentence-level selection as the
final approach. Considering that the Llama3 fam-
ily only has two public variants, Llama3-8B and
Llama3-70B, and to mitigate time costs, we com-
pute the score based solely on Llama3-8B.

Within DiverseEvol, during each iteration’s K-
Center-Sampling stage, data points are selected
based on maximizing their distance to the nearest
existing training data points, one at a time, until the
desired count is reached. Consequently, it is essen-
tial to maintain a n x n float-type matrix for the
entire computation, where n represents the dataset
size. Given that our OpenHermes dataset exceeds
1 million entries, the matrix calculation would re-
quire more than 1 terabyte of memory. Therefore,
we revised this part to select all required data points
once for each iteration, which significantly reduces
the memory requirement.

Model Reproduction Details

A.2 Other Results

In this section, table 6, 7 includes training results
of various methodologies with a training dataset
comprising 50,000 entries 6, 7.
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Qwen2-7B I Llama3-8B

BBH GSM CODE MMLU IFEVAL BBH GSM CODE MMLU IFEVAL

3 shot 8shot pass1 5shot strict loose AVG 3 shot 8shot pass1 5shot strict loose AVG
Base 59.07 7240 55.67 70.20 28.84 31.24 5290 60.93 55.12 37.59 6530 19.41 21.07 43.24
all data 61.39 80.12 63.32 6850 40.85 44.18 59.73 || 63.33 73.24 4643 6390 46.40 49.72 57.17
Random; | 62.87 80.67 62.44 6833 34.75 38.08 57.86|| 63.89 6437 46.19 62.75 45.10 49.72 5534
Random, | 61.11 80.82 65.76 68.12 38.08 40.67 59.09 || 62.13 66.57 47.32 61.57 46.58 49.54 55.62
Randomg | 61.02 81.35 60.15 68.54 38.63 40.85 58.42 || 65.65 63.53 44.05 6196 4251 46.21 53.99
Randomys | 60.37 80.06 5598 6895 37.34 40.30 57.17|| 62.78 62.40 45.12 6241 47.87 50.83 55.24
Randoms | 60.19 80.14 6329 69.16 38.08 40.85 58.62 || 64.72 65.13 45.18 62.51 4547 49.17 55.36
LESS 60.46 80.29 58.66 67.40 39.00 43.25 58.18 | 61.02 57.85 17.01 63.01 4030 46.40 47.60
IFD 57.50 80.52 67.13 66.79 35.86 38.08 57.65| 61.94 52.84 44.63 63.36 41.04 43.99 51.30
SelectIT 60.56 7998 62.77 6796 36.04 39.00 57.72|| 61.20 64.22 40.03 6240 41.96 4492 52.46
Entropy 60.83 77.56 59.24 69.02 36.78 39.56 57.17 || 60.65 55.50 49.02 57.51 47.13 51.02 53.47
Diverse 61.67 81.35 61.89 68.60 44.55 4640 60.74 || 63.33 61.11 48.75 63.62 46.21 49.17 55.37
zip 59.81 82.03 68.48 68.08 35.67 38.26 58.72| 63.89 57.92 42.65 62.58 43.25 4695 52.87
LESSim 61.20 81.88 5451 67.77 3290 36.60 55.81| 61.02 59.44 47.04 6335 42.14 4732 53.39
IFDgm, 59.81 78.92 60.55 67.09 28.65 31.24 5438 | 63.43 63.23 4341 61.19 40.11 43.81 52.53
SelectITk,, | 61.20 81.20 66.52 69.10 34.57 38.45 58.51( 61.85 6149 4576 61.64 43.44 48.43 53.77
Entropyrm | 61.02 80.82 66.04 6825 36.78 39.37 58.71|| 61.85 64.22 48.66 61.85 42.70 46.58 54.31
Lengthg,, |60.46 83.62 6335 68.79 38.26 41.59 59.35 H 65.09 62.70 47.29 62773 45.10 49.17 55.35

Table 6: The comprehensive results (%) on various downstream tasks using OpenHermes. Mention that CODE
means Humaneval. Algorithmy,,, means the algorithm has a Kmeans process, and Random,, denotes the ,th random
selection. The bold numbers indicate the best avg score of each part, and the underlined numbers indicate the second
highest score.
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Qwen2-7B I Llama3-8B

BBH GSM CODE MMLU IFEVAL BBH GSM CODE MMLU IFEVAL

3 shot 8shot pass1 5shot strict loose AVG 3 shot 8shot pass1 5shot strict loose AVG
Base 59.07 7240 55.67 70.20 28.84 31.24 5290 60.93 55.12 37.59 6530 19.41 21.07 43.24
all data 62.87 80.82 62.84 68.70 45.84 48.80 61.65| 63.70 56.94 47.44 6330 46.40 49.72 54.58
Random; | 61.85 81.50 60.55 68.02 40.48 42.70 59.18 || 63.61 5572 4890 64.07 4251 45.66 53.41
Randomy, | 60.74 82.03 58.72 68.05 40.67 44.36 59.10|| 61.76 54.66 50.95 63.38 42.88 46.03 53.28
Randomg | 59.07 81.35 64.45 67.63 41.77 4492 59.87| 63.98 5542 53.11 63.33 43.81 46.77 54.40
Randoms | 62.41 82.34 6095 6843 4251 45.10 60.29|| 63.70 5891 50.09 63.84 43.62 46.03 54.37
Randoms | 61.30 82.49 59.05 67.60 42.70 4492 59.68 || 64.54 55.65 4991 64.16 4270 45.84 53.80
LESS 58.80 81.35 6695 68.10 41.04 43.99 60.04 || 63.43 57.01 5043 64.50 40.85 44.92 53.52
IFD 59.44 81.50 66.46 6790 3845 40.85 59.10| 63.33 59.29 47.16 64.60 40.30 43.81 53.08
SelectIT 60.74 84.23 60.49 69.24 41.04 4436 60.02|| 61.48 53.22 46.01 63.20 40.11 42.88 51.15
Entropy 61.02 8196 60.88 68.40 43.07 46.58 60.32|| 61.48 5534 4890 64.02 47.50 51.02 54.71
Diverse 59.81 82.03 67.10 68.00 41.77 44.36 60.51| 65.09 56.18 38.81 63.03 4436 47.13 52.43
zip 5991 79.83 71.04 6797 42.88 45.84 61.25| 64.72 57.16 4149 61.54 4584 48.43 53.20
LESSim 59.54 80.89 67.84 6820 43.62 46.95 61.17 | 61.94 5474 4899 64.10 43.99 4695 53.45
IFDgm, 59.26 80.67 68.41 68.13 41.77 43.99 60.37 | 62.69 56.10 48.63 63.02 40.85 42.70 52.33
SelectITk,, | 60.46 83.17 59.39 68.79 39.93 43.07 59.14 || 61.20 54.89 4588 63.50 43.99 48.06 52.92
Entropyrm | 60.93 82.79 59.82 67.01 39.19 42.14 58.65|| 63.06 58.45 45.73 63.85 41.04 45.10 52.87
Lengthg,,, |61.30 79.76 59.76 68.19 42.88 45.29 59.53H 62.41 60.05 49.82 064.23 45.47 48.80 55.13

Table 7: The comprehensive results (%) on various downstream tasks using WildChat. Mention that CODE means
Humaneval. Algorithmg,,, means the algorithm has a Kmeans process, and Random, denotes the ,th random
selection. The bold numbers indicate the best avg score of each part, and the underlined numbers indicate the second
highest score.
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