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Abstract

Large motion poses a critical challenge in Video Frame Interpolation (VFI) task,
as it requires accurate modeling of object correspondences across frames. Existing
methods primarily rely on convolutional or attention-based models, which operate
at the pixel or patch level. This inherently limits them to local object correspon-
dences, making it difficult to capture frame-level object correspondences and often
leading to failure under large motion. Inspired by the fundamental theorem of sur-
face, we explore frame-level object correspondences through the lens of differential
surface. The core idea is to represent video frames as 3D surfaces and align them
by matching their surface properties, thereby achieving global surface alignment
and frame-level object alignment. To implement the core idea, we propose the
Surface-Aware Feed-Forward Quadratic Gaussian framework, mainly consisting
of the Feed-Forward Quadratic Gaussian and Surface Properties modules. Feed-
Forward Quadratic Gaussian is designed to map frames to Quadratic Gaussian,
which flexibly fits the object surface. Unlike previous methods that compute lo-
cal correspondences, Surface Properties facilitates global surface-level alignment,
which drives object correspondence alignment. Finally, we rasterize the surface
properties onto the interpolated camera plane and define loss functions to supervise
alignment explicitly. The outstanding performance on the large motion benchmark
demonstrates the effectiveness of our framework.

1 Introduction
Video Frame Interpolation (VFI) is a fundamental low-level vision task that aims to increase the frame
rate of a video by synthesizing intermediate frames between consecutive inputs. It has a wide range of
real-world applications, including slow-motion video generation [1, 2, 3], video compression [4, 5],
and novel view synthesis [6, 7, 8]. Despite recent progress, VFI remains challenging, particularly in
large and complex motion commonly found in casually captured videos. More recently, the emergence
of film agent frameworks [9, 10, 11] has introduced intelligent agents for cinematic content creation.
In such scenarios, handling large motion is critical for tasks such as scene composition, camera
planning, and visual continuity. These demands highlight the need for more robust VFI methods
capable of modeling long-range object correspondences.

At its core, VFI requires establishing accurate correspondences between objects across frames
[12]. Video frame interpolation methods can be broadly divided into two types: those based on
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Figure 1: Challenge: Existing methods lack global frame-level object correspondences, which results
in suboptimal matching.
Convolutional Neural Networks (CNNs) and those based on attention mechanisms. CNN-based
methods [3, 13, 14, 15, 16, 17, 18, 12] estimate optical flow to synthesize intermediate frames, where
the optical flow serves as a proxy for object correspondences. However, due to the local receptive
field of convolution operations, CNN-based methods often compute object correspondences only at
the pixel level, which limits their ability to capture global relationships. To overcome the locality
of CNNs, attention-based architectures have been introduced for video frame interpolation [19, 20].
These methods divide input frames into patches and compute attention between them. However, this
patch-level modeling still lacks a true global understanding of object correspondences across frames.

Upon scrutinizing and experimenting on the released implementations of existing methods [17, 15,
18, 12], we observe that they suffer from performance deterioration in large motion. As illustrated in
Figure 1, in the large motion, existing approaches fail to establish accurate object correspondences,
leading to misalignment results. We attribute these failures to the inherent locality of convolution-
and attention-based methods, which operate at the pixel or patch level and thus struggle to model
frame-level object correspondences. We further identify two representative failure cases (Figure 1
(b)): (i) Repeated objects across frames confuse optical flow estimation, resulting in incorrect local
correspondences. For example, the red dashed lines show mismatched flags, causing fragmentation in
the interpolated frame. (ii) Some objects required in the target frame are missing in adjacent frames,
leading to ambiguous correspondences [21], as shown in the upper-right region.

As discussed above, overcoming the limitations of local object correspondences, particularly in
the presence of large motion, necessitates the establishment of frame-level object correspondences.
However, how to theoretically formulate and practically implement such correspondences requires
further exploration and discussion. Inspired by the fundamental theorem of surfaces[22], we propose
to represent video frames as differential surfaces (Figure 2), enabling the exploration of geometric
constraints and frame-level correspondences. The core idea of this work is to map video frames
onto 3D surfaces and align the overlapping regions using surface properties. This approach drives
global surface alignment and promotes consistent geometric structure across frames. However,
implementing this idea presents two key challenges: (1) how to effectively represent surface, and (2)
which surface properties are most suitable for alignment.

To address the surface representation challenge, we propose the Feed-Forward Quadratic Gaus-
sian. The Quadratic Gaussian Splatting (QGS) [23] defines a Gaussian distribution on a quadratic
paraboloid, allowing smooth transitions between convex and concave forms for flexible surface fitting.
However, QGS assumes accurate camera poses, which limits its applicability in real-world scenarios
where videos are casually captured. To overcome this, Feed-Forward Quadratic Gaussian efficiently
transforms such video frames into 3D surface representations without relying on strict assumptions
such as accurate camera poses or depth maps.

To facilitate surface alignment, we leverage two key surface properties: normal and curvature.
Surface normals are widely used to ensure geometric continuity across frames [24]. However, normal
alone may become unreliable and introduce errors within large motions (surfaces with rapid bends).
This motivates the incorporation of higher-order geometric descriptors such as curvature, which can
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capture fine-grained surface structures. Therefore, we jointly use surface normals and curvature as
consistency constraints to ensure robust surface alignment across frames.

To explicitly supervise surface continuity, we rasterize the normal and curvature onto the camera plane
and define loss functions. By leveraging these modules, we build a novel pipeline, named Surface-
Aware Feed-Forward Quadratic Gaussian. Our method achieves state-of-the-art performance on
large motion benchmarks [12]. Furthermore, we conduct extensive ablation studies to validate the
contribution of each component.

The contributions of this work are summarized as: (1) Inspired by the Fundamental Theorem
of Surfaces, we introduce a differential surface to present a video, to explore frame-level object
correspondences and geometric constraints. (2) This paper introduces a Surface-Aware Feed-Forward
Quadratic Gaussian framework that maps video frames into 3D surfaces, aiming to overcome the
limited local correspondences. (3) Our pipeline illustrates state-of-the-art performance on the large
motion benchmark.

2 Related Work
Video Frame Interpolation. Recently, advancements in deep learning have led to various methods
for video frame interpolation. These methods can be broadly categorized into two main paradigms:
reconstruction-based [25, 15, 14, 26, 27, 16, 28, 29, 30] and denoising diffusion probabilistic model
(DDPM)-based [31, 32, 33, 34, 35]. (i) Initially, DVF [36] utilized a U-Net-like network to model
two input frames and predicted the voxel flow for warping the two frames into the intermediate
frame. To obtain the optical flow from the intermediate frame to the input frames, [15, 37] proposed
distillation strategies to obtain the optical flow from the intermediate frame to the input frames. In
large-scale motion scenarios, methods such as SGM-VFI [12], FILM[18], and XVFI [17] leverage
enhanced global information in optical flow to establish accurate frame-to-frame correspondences for
objects. These Kernel-based methods are implemented as separable convolutions [38], deformable
convolutions [39, 40, 41]. (ii) Based on Denoising Diffusion Probabilistic Models (DDPM)[42],
leverage generative techniques like DDPM to fill occlusions caused by motion. These DDPM-based
approaches are implemented as score-based diffusion [43, 44, 45], motion-aware diffusion [46, 47],
and Brownian bridge diffusion [48, 49]. However, most DDPM-based methods are significantly
time-consuming and challenging for real-time inference.

3D Gaussian Splatting. In recent years, 3D Gaussian splatting has emerged as an active area of
research in the field of 3D reconstruction. Various approaches have been proposed across different
domains, broadly categorized into static scene Gaussian splatting and dynamic scene Gaussian
splatting. Gaussian Splatting [50] enhances rendering quality in radiance fields. To further adapt
to diverse reconstruction scenarios, [51, 52, 53] have been proposed, significantly improving the
generalization capability of 3DGS-based reconstruction. To accommodate dynamic scenes, [54, 55,
56, 57, 58, 59] has been extended to handle such environments. However, the per-scene optimization
of 3DGS requires densely captured images and sparse point cloud generated by SfM for initialization.
Recent works [60, 61, 62, 63, 64, 65] have explored feed-forward models for sparse-view Gaussian
reconstruction by capitalizing on large-scale datasets and scalable model architectures[66, 67, 68].

3 Preliminary

3.1 3D Gaussian Splatting

Kerbl et al. [69] proposed representing a scene using 3D Gaussian ellipsoids as primitives and
rendering images using differentiable volume splatting. Associates a 3D Gaussian i with a position
µi, covariance matrix Σi, opacity oi and spherical harmonics (SH) coefficients hi. The final opacity
of a 3D Gaussian at any spatial point p = (x, y, z) is:

αi = oi exp

(
−1

2
(p− µi)

TΣ−1(p− µi)

)
︸ ︷︷ ︸

G

, (1)

where the covariance matrix Σ = RSSTRT , and G is Gaussian distribution.

To render an image, 3D Gaussians are first projected to 2D image space via an approximation of the
perspective transformation. Specifically, the projection of a 3D Gaussian is approximated as a 2D
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Gaussian with center µ2D
i and covariance Σ2D

i . Center µ2D
i and covariance Σ2D

i are computed as

µ2D
i = (K(Wµi)/(Wµi)z), Σ2D = JWΣiW

TJT , (2)

where W is a transformation from the world space to the camera space, and J is a local affine
transformation.

After sorting the Gaussians in depth order, the color at a pixel is obtained by volume rendering:

I(u, v) =

N−1∑
i=0

ciα
2D
i

i−1∏
j=0

(1− α2D
j ). (3)

Here, α2D
i is a 2D version of Eq. (1), with µi, Σi, P replaced bu µ2D

i , Σ2D
i , (u, v) (pixel coordinate).

ci is the RGB color after evaluating SH with the view direction.

3.2 Quadratic Gaussian

Zhang et al. [23] proposed representing a scene using a Quadratic Gaussian as a surface and rendering
images using differentiable volume splatting. For convenience, the Quadratic Gaussian distribution
is expressed in cylindrical coordinates, and the opacity of a Quadratic Gaussian at any spatial point
p = (θ, ρ, z(θ, ρ)) is:

αi = oi exp

(
− (µi(θ, ρ))

2

2(σi(θ))2

)
︸ ︷︷ ︸

G

, (4)

σi(θ) =
s1s2√

(s2 cos θ)2 + (s1 sin θ)2
, µi(θ, ρ) =

∫ ρ

0

√
1 + (2at)2 dt (5)

where µi(·) [23] is the mean of the Gaussian distribution on the surface, and σi is the covariance
of the Gaussian distribution on the surface. G is defined as the corresponding Gaussian function.
S = diag(s1, s2, s3) denotes the scale of the Quadratic Gaussian. a(·) is related to the coefficient of
θ.

To render an image, the Quadratic Gaussian follows the same 3D Gaussian splatting way, which is
projected to 2D image space via an approximation of the perspective transformation. After splatting
and sorting the Gaussians in depth order, the color at a pixel (u, v) is obtained by rendering [70]:

I(u, v) =

N−1∑
i=0

ciα
2D
i

i−1∏
j=1

(
1− α2D

j

)
(6)

where N denotes the pixel numbers of the rendered image.

4 Method
4.1 Problem formulation

Frame Interpolation.

In the video frame interpolation task, it can be written as

It = F(I0, I1), t ∈ (0, 1), (7)

where I0 and I1 are input frames. 0 and 1 are two input views and t is an interpolated view index
between 0 and 1. To synthesize an intermediate frame It where t ∈ (0, 1), existing algorithms [3,
16, 12, 29, 30] typically extract object correspondences between two consecutive frames, facilitating
object alignment.

Frame Interpolation under Differential Surface.

In large motion scenes, video frame interpolation methods often fall into suboptimal object corre-
spondences, as they operate at the pixel level or patch level and thus struggle to model frame-level
object correspondences.
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Figure 2: The core idea is mapping video
frames into 3D surfaces and aligning them by
matching surface properties, leading to global
surface-level alignment.

To address the limitations of local object correspon-
dences, we redefine the large motion problem as a
global frame-level alignment task by aligning the sur-
faces that represent each frame. The core idea of
frame-level alignment is that aligning the geometric
properties between surfaces (such as normals and cur-
vatures) can facilitate the alignment between surfaces,
as illustrated in Figure 2.

In the following sections, we describe how to con-
struct surface representations from video frames and
how to select surface properties to facilitate accurate
correspondences across surfaces.

4.2 Surface-Aware Feed-Forward Quadratic
Gaussian

Although modeling object correspondences through differential surface representations is theoretically
reasonable, it remains challenging to implement: 1) What type of 3D primitives is suitable for
representing a differential surface? 2) Which surface properties should be selected to facilitate
alignment between differential surfaces?

4.2.1 Feed-Forward Quadratic Gaussian

Modeling the texture and surface details in videos remains challenging for 3D primitives such as
point clouds and 3DGS, which often struggle to accurately represent complex surfaces. Fortunately,
Quadratic Gaussian Splatting (QGS) [23] is defined on a paraboloid and constructs Gaussian distribu-
tions based on geodesic distances. This enables the energy of the Gaussians to be concentrated on
the surface, thereby effectively capturing complex surface and textural details. However, existing
methods such as 3DGS [50], 2DGS [71], and QGS [23] still rely on accurate camera poses, which
are difficult to obtain in sparse-view or unconstrained settings, thereby limiting their practical appli-
cability. To overcome this limitation, the practical Feed-Forward Quadratic Gaussian is introduced
that efficiently transforms frames into 3D surface representations.

Given a set of video frames, the goal of Feed-Forward Quadratic Gaussian is to generate the object
surface in the QGS representation. Unlike prior methods, it does not require additional data such
as camera poses, enabling single feed-forward inference. Feed-Forward Quadratic Gaussian mainly
includes two sub-models: a backbone and a Quadratic Gaussian head. Formally, Feed-Forward
Quadratic Gaussian can be written as:

fθ : {I0, I1} 7→
{
P0,P1, C0, C1,F0,F1

}
, hθ :

{
P0,P1,F0,F1

}
7→
{
G0,G1

}
, (8)

fθ is the backbone and hθ is the Quadratic Gaussian Head. F0,F1 is the frame features. P0,P1 is
the 3D point clouds. C0, C1 is the camera parameters. G0,G1 is the Quadratic Gaussian.

Backbone. Foundation models for 3D reconstruction (e.g., DUSt3R[66], MASt3R [67]) have shown
remarkable competitiveness and superior performance in 3D reconstruction tasks [63]. We leverage
pretrained geometric priors from foundation models to achieve a coarse alignment of 3D point clouds
P and camera parameters C, promoting a stable and efficient learning process. For simplicity and
stability in our pipeline, we adopt a simple backbone VGGT [72]. Specifically, given a pair of
input frames I0, I1, the backbone outputs the corresponding image features F0,F1, 3D point clouds
P0,P1, and camera parameters C0, C1.

Quadratic Gaussian Head. Real-world object surfaces are complex, making it difficult for point
clouds to capture their surface structure accurately. QGS [23] defines Gaussian distributions on a
quadratic surface, which can smoothly transition between convex and concave shapes. This flexibility
allows for more accurate modeling of complex object surfaces. To leverage this capability, we propose
the Quadratic Gaussian Head, a module inspired by QGS, that transforms point cloud features into
QGS-based 3D primitives, enabling more effective surface representation. This surface representation
enables estimating surface properties in subsequent stages, thereby preserving surface consistency
across frames. Specifically, QGS contains the following parameters

G0 = {µ0
i , o

0
i , r

0
i , s

0
i , c

0
i }i=1,...,H×W , (9)
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Figure 3: Surface-Aware Feed-Forward Quadratic Gaussian Framework. The Feed-Forward
Quadratic Gaussian module transforms the input frames I0 and I1 into Quadratic Gaussian (G0 and
G1) that represent surfaces. Then, the Surface Properties module computes the normal and curvature
from the Quadratic Gaussian. Finally, the normal, curvature, and frame It are rasterized onto the
camera plane at the interpolation time.

where opacity o, rotation r, scale s and color c and H ×W pixel numbers. Subsequently, the point
cloud P0 is the QGS’s mean µ. Together with the predicted parameters, it forms the Quadratic
Gaussian representation G0 of frame I0.

4.2.2 Surface Properties

Normals usually play a crucial role in facilitating surface alignment and continuity across frames
[73, 74]. Meanwhile, curvature characterizes the degree of surface bending [75, 76]. In regions with
large motion, i.e., highly curved surface areas, relying solely on normals may lead to inaccurate
alignment [77, 78]. This motivates employing higher-order geometric descriptors, such as curvature,
to complement normal in fine-grained alignment surfaces. Therefore, we jointly utilize normals and
curvature as surface constraints to ensure accurate and consistent alignment across frames.

Given a Quadratic Gaussian, we directly compute the normal and curvature at any point on the surface.
Specifically, given any 3D point p on the surface [23], the corresponding normal and curvature are:

n(p) =

(
2λxx, 2λyy,−

1

s3

)
, k(p) =

4λxλy(
1 + 4λ2

xx
2 + 4λ2

yy
2
)2 , (10)

where λx = dx

s21
, and dx ∈ {−1, 0, 1} determines whether the paraboloid is elliptic, hyperbolic, or

planar. More specifically, the dx idepends on both the positional variable x and a temporal variable t,
and is defined as dx =tanh(t) exp(x). For the detailed computation, please refer to Appendix A.1.
Formally, the calculation process is written as:{

G0,G1
}
7→
{
N0,K0, N1,K1

}
, (11)

where N and K represent the normal map and the curvature map, respectively.

4.2.3 Rasterization

Finally, we rasterize the surface properties from the 3D space into the camera plane with the
interpolation camera parameter. The total process can be written as:{

G0,G1, N0,K0, N1,K1, Ct
}
7→ {It, N t,Kt}, (12)

where Ct = C0 × t+ C1 × (1− t) is the interpolation camera parameter.
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Table 1: Quantitative comparison with SOTA methods on the standard benchmark, regarding
PSNR/SSIM. The best and the second best results are denoted by pink and yellow.

Vimeo-90K [13] UCF101[79]
SNU-FILM[80]

Average
easy medium hard extreme

DAIN[25] 34.71/0.9756 34.39/0.9683 39.73/0.9902 35.46/0.9780 30.17/0.9335 25.09/0.8584 33.36/0.9507
AdaCoF[40] 34.47/0.9730 34.90/0.9680 39.80/0.9900 35.05/0.9754 29.46/0.9244 24.31/0.8439 33.00/0.9458
CAIN[80] 34.65/0.9730 34.91/0.9690 39.89/0.9900 35.61/0.9776 29.90/0.9270 24.78/0.8507 33.29/0.9493
Softsplat[27] 36.13/0.9805 35.17/0.9690 40.26/0.9911 36.09/0.9798 30.93/0.9365 25.16/0.8608 33.92/0.9530
XVFI[17] 35.09/0.9759 35.17/0.9685 39.93/0.9907 35.37/0.9776 29.58/0.9276 24.17/0.8450 33.22/0.9477
M2M-VFI[21] 35.20/0.9768 35.28/0.9697 40.10/0.9906 36.12/0.9797 30.63/0.9368 25.27/0.8601 33.68/0.9519
RIFE[15] 35.61/0.9779 35.29/0.9697 40.10/0.9906 36.12/0.9797 30.63/0.9368 25.27/0.8601 33.68/0.9519
IFRNet-L[81] 36.20/0.9808 35.42/0.9698 40.36/0.9910 36.12/0.9797 30.63/0.9368 25.27/0.8609 33.96/0.9531
AMT-L[82] 36.35/0.9815 35.39/0.9696 39.95/0.9913 36.09/0.9805 30.75/0.9384 25.41/0.8638 33.99/0.9542
EMA-VFI-S[20] 36.64/0.9819 35.48/0.9701 39.98/0.9905 36.09/0.9801 30.94/0.9392 25.69/0.8661 34.14/0.9547
SGM-VFI[12] 35.81/0.9793 35.40/0.9693 40.14/0.9907 36.06/0.9795 30.81/0.9375 25.69/0.8661 33.96/0.9535
VFIMamba-S[29] 36.09/0.9800 35.36/0.9696 40.21/0.9909 36.17/0.9800 30.80/0.9381 25.59/0.8655 34.14/0.9540
Ours 36.06/0.9791 35.40/0.9692 39.98/0.9906 36.10/0.9798 30.90/0.9391 25.50/0.8651 33.35/0.9475

Table 2: Quantitative comparison with VFI methods on large motion benchmark. The best and the
second best results are denoted by pink and yellow.

X-Test-L [12] SNU-FILM-L[12] Xiph-L[12]
Runtime (s) FLOPs (T)

2K 4K hard extreme 2K 4K

XVFI[17] 29.82/0.8951 29.02/0.8866 27.58/0.9095 22.99/0.8260 29.17/0.8449 28.09/0.7889 0.075 0.37
FILM[18] 30.08/0.8941 29.10/0.8886 28.35/0.9156 23.06/0.8247 29.89/0.8533 27.11/0.7699 1.29 1.36
BiFormer[19] 30.32/0.9067 30.15/0.9070 28.18/0.9154 23.85/0.8393 29.61/0.8541 28.98/0.8183 1.09 0.39
RIFE[15] 29.87/0.8805 28.98/0.8756 28.19/0.9172 22.84/0.8230 30.18/0.8633 28.07/0.7982 0.20 0.2
AMT-L[82] 29.39/0.8771 28.35/0.8731 28.33/0.9184 23.14/0.8288 30.32/0.8710 28.27/0.8095 0.58 0.58
EMA-VFI-S[20] 29.51/0.8775 28.60/0.8733 28.57/0.9189 23.18/0.8292 30.54/0.8718 28.40/0.8109 0.076 0.91
SGM-VFI[12] 30.39/0.8946 29.25/0.8861 28.90/0.9209 23.19/0.8301 30.89/0.8745 28.59/0.8115 0.93 1.79
VFIMamba-S[29] 31.58/0.9169 30.50/0.9077 28.80/0.9208 23.41/0.8300 30.72/0.8780 28.62/0.8111 0.128 0.24
Ours 31.33/0.9011 30.13/0.9066 29.05/0.9213 24.20/0.8400 31.20/0.8814 29.19/0.8197 0.340 1.28

Specifically, the rasterization of color is performed according to the following equation:

It(u, v) =

N−1∑
i=0

ciα
2D
i

i−1∏
j=0

(1− α2D
i ). (13)

Similarly, [23] renders the normal and curvature on the camera plane as follows:

N t(u, v) =

N−1∑
i=0

niα
2D
i

i−1∏
j=0

(1− α2D
i ), Kt(u, v) =

N−1∑
i=0

kiα
2D
i

i−1∏
j=0

(1− α2D
i ), (14)

where N denotes the pixel number of the rendered image.

4.3 Loss Function

Finally, we minimize the following loss function:

L = Lc + αLkn, Lkn = (1− sigmoid(ln(|K(u, v)|) + ε))Ln (15)

where Lc = ∥Itgt − It∥2 is an RGB reconstruction loss function. Lkn(u, v) denotes the curvature-
aware normal loss, which enforces surface alignment [23]. And Ln [71] is the normal consistency
loss to ensure primitives are locally aligned with the surface.

5 Experiments

Metrics. We use common quantitative metrics: Peak Signal-To-Noise Ratio (PSNR) and Structural
Similarity Image Metric (SSIM), where higher scores indicate better image quality. To assess temporal
consistency between frames, we additionally employ the tOF metric [17].

To further illustrate the effectiveness of our algorithm in addressing large motion scenarios, we present
a statistical analysis of the relationship between motion magnitudes [8, 18] and the corresponding
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Figure 4: PSNR versus motion magnitude. Higher motion magnitudes correspond to larger inter-
frame displacements, representing more challenging motion scenarios.

Figure 5: Comparison of temporal consistency under the tOF metric.

PSNR performance, as shown in Figure 4. Note that a higher motion magnitude corresponds to larger
inter-frame displacement, indicating more challenging motion scenarios.

Datasets. For fair comparison, we follow the training and testing datasets established by the large
motion benchmark [12]. For training, we follow the setting [12], utilizing both the Vimeo90K and
X4K1000FPS (X-Train) datasets. Vimeo90K [13] consists of 51,312 triplets with a resolution of
448×256, featuring an average motion magnitude between 1 and 8 pixels. X4K1000FPS (X-Train)
[17] contains 4,408 clips at a resolution of 768×768, with each clip comprising 65 consecutive frames.

We evaluate its performance following the large motion benchmark introduced by SGM-VFI [12].
X-Test-L [17, 12] with the largest temporal gap, as our primary benchmark for evaluating large
motion scenarios. We also choose the 0th and 32nd frames as input and evaluate the quality of the
synthesized 16th output frame. SNU-FILM-L [80, 12] is the most challenging half of the SNU-FILM
hard and extreme, with 155 triplets each. Xiph-L [12] is constructed based on the original Xiph
dataset [83] by doubling the input temporal intervals and retaining the most challenging half of the
data to form this benchmark.

Implementation Detail. We optimize the loss using Adam in PyTorch framework. The cosine
scheduler schedules the learning rate from 1e−4 to 1e−6. Standard data augmentation techniques,
such as flipping, rotation, and cropping, are applied to the data with a size of 518 × 280. We train our
model on the training datasets with a batch size 16 for 800 epochs.

5.1 Comparison with Previous Methods

As shown in the Table 1 and 2, methods are compared, which are tested on the standard and large
motion benchmark. To comprehensively evaluate the capability of our model, we conduct experiments
on benchmarks with varying motion magnitudes. We compare our method against recent video frame

8



Figure 6: Visual comparison with state-of-the-art methods.

interpolation (VFI) approaches, including those specifically designed for large motion, as well as
methods that perform well on standard benchmarks.

Large Motion. The large motion benchmark contains a significant number of scenes with large
inter-frame displacements, resulting in motion magnitudes that are higher than those in standard
benchmarks. As shown in Table 2, our method consistently outperforms state-of-the-art approaches
on the large motion benchmark, demonstrating its effectiveness in handling complex motion scenarios.
To further analyze performance under varying motion magnitude, we examine the PSNR across
different motion magnitude intervals, as illustrated in Figure 4.

Comparison of Temporal Consistency. We employ the tOF metric [17] to evaluate the temporal
consistency. As shown in Figure 5, our method consistently outperforms existing approaches on the
large motion benchmark in terms of both the mean and variance of tOF, indicating more stability.
This superior temporal consistency can be attributed to our method’s accurate modeling of surface
properties, which enables fine alignment of object correspondences across frames. We employ
the tOF metric [17] to evaluate the temporal consistency. Figure 5 reports the quality of motion
reconstruction across several existing models on the large motion benchmark. We can clearly observe
that our method consistently outperforms existing methods in both the mean and variance of tOF.
Outstanding temporal consistency is due to our method’s fine alignment of object correspondence by
modeling the surface properties, which improves motion temporal consistency.

Comparison of Visual Results. We further compare the visualization results in large motion. Figure
6 compares our method and several state-of-the-art approaches. CNN-based methods estimate pixel-
level object correspondences, which often fall into local optima under large motion, leading to subpar
interpolation results. Attention-based methods estimate patch-level object correspondences, which
improves interpolation results under large motion.

5.2 Ablation Study

Table 3: Ablation studies of Architecture on SNU-
FILM-L extreme.

Backbone Gaussian Head Perfermence
Setting CUT3R MonST3R VGGT 3DGS head QGS head PSNR tOF(↓)

(i) ✓ ✓ 23.27 308
(ii) ✓ ✓ 24.11 240
(i) ✓ ✓ 23.25 297
(ii) ✓ ✓ 24.12 236
(i) ✓ ✓ 23.30 286
(ii) ✓ ✓ 24.20 226

In this section, we present experimental insights
to analyze and discuss the questions raised in
the previous section: which 3D primitives are
suitable for representing differential surfaces,
and which surface properties facilitate surface
alignment.

Architecture. To demonstrate the superiority of
the QGS head in capturing complex geometric
structures compared to the 3DGS head, we first
compare their texture representations. Figure 7 provides qualitative evidence, while Table 3 offers
quantitative validation of the QGS head’s effectiveness.

Figure 7 presents a visual comparison between the two heads, highlighting the QGS head’s ability to
preserve fine-grained geometric details. As shown in the error maps of Figure 7, the surface-aware
QGS head achieves significantly better reconstruction quality, particularly in regions with complex
textures.

To further isolate the contribution of the QGS head from that of the backbone, we conduct an ablation
study by combining different backbones, CUT3R [84], VGGT [72], and MonST3R [85], with both the
3DGS and QGS heads. Table 3 summarizes the performance of these combinations. The results show
that the QGS head consistently outperforms all other configurations, especially under challenging
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large motion scenarios, demonstrating its effectiveness in improving both reconstruction quality and
temporal consistency.

3DGS Head QGS Head GT

Figure 7: A visual comparison between the 3DGS
head and the QGS head. The bottom part shows a
heatmap of the interpolated frame error.
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Figure 8: We visualize the surface properties, and
notably, as discussed earlier, the curvature high-
lights motion regions, particularly those corre-
sponding to rapidly bending surfaces.

Table 4: Ablation studies of Surface properties on
X-Test-L 2K.

Surface Properties Perfermence
Setting RGB Normal Curvature PSNR tOF (↓)

(i) ✓ 29.07 183
(ii) ✓ ✓ 30.47 117
(iii) ✓ ✓ ✓ 31.33 96

Surface properties. We conduct an ablation
study to further investigate the role of surface
properties in enhancing surface alignment. Both
qualitative and quantitative results are presented
in Figure 8 and Table 4. Figure 8 visualizes the
surface normals and curvature maps rendered
by the QGS head. Notably, the curvature map
highlights regions with high surface variation,
such as bends and folds. This observation sup-
ports our earlier analysis that curvature serves
as a higher-order geometric descriptor, complementing surface normals and facilitating more accu-
rate surface alignment. These additional insights contribute to improved video frame interpolation
performance in large motion.

6 Conclusion
This work is the first to analyze frame-level object correspondence under large motion from the
perspective of differential surface. Building on this insight, we propose an explicit Surface-Aware
Feed-Forward Quadratic Gaussian pipeline to mitigate the challenge. Specifically, the proposed
method transforms video frames into Quadratic Gaussians representing differential surfaces. Within
this representation, we compute corresponding surface properties, such as normal and curvature.
These properties are rendered onto the camera plane for explicit supervision and alignment. Extensive
experiments demonstrate that our framework achieves state-of-the-art performance on the large motion
benchmark, highlighting its effectiveness and robustness in handling complex motion scenarios. This
framework opens new avenues for incorporating differential surface into the video frame interpolation
task, particularly under large motion conditions.

Limitation. While our pipeline can cover most cases of large motion, there are many other cases
beyond that coverage. The main reason for the limitations is that our definition of large motion and
the proposed ideas are somewhat naive, which makes the solution sub-optimal for geometry. Our
current definition focuses more on static correspondences in the background regions across different
frames. For dynamic correspondences, due to the relatively short time interval between adjacent
frames, we adopt a simplified assumption of linear motion in this work. At present, we employ a
relatively basic differential surface theory to model the problem. We believe that, in the future, a more
unified modeling of camera motion and object motion within a comprehensive differential geometry
framework could lead to a more accurate characterization of complex dynamic scenes.
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(2022ZD0161800), the National Natural Science Foundation of China under Grant 62271203, AI-
Empowered Research Paradigm Reform and Discipline Leap Plan under Grant 2024AI01012 and the
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: [TODO]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [No]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [No]
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Justification: [TODO]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM


A Theoretical Supplement

A.1 Surface Properties of Quadratic Gaussian

A paraboloid is defined as:

f(x, y, z) =
[
x y z 1

]


dx

s21
0 0 0

0
dy

s22
0 0

0 0 0 − dz

2s3

0 0 − dz

2s3
0



x

y

z

1


=

dx
s21

x2 +
dy
s22

y2 − dz
s3

z = 0. (16)

S = diag(s1, s2, s3), which denotes the orientation and scale of the quadric in the object space.
The matrix D defines the surface shape: D = diag(1, 1, 1, 1) yields an ellipsoid, while D =
diag(1, 0, 0, 0) produces a plane. dii ∈ {0,±1} determines whether the paraboloid is elliptic,
hyperbolic, or planar. For convenience in writing and subsequent derivations, we simplify Equation
16 as follows:

f(x, y, z) = λxx
2 + λyy

2 − 1

sz
z = 0 (17)

A.1.1 Normal

QGS is a surface-based representation that naturally possesses multiview consistent geometric
properties, making it straightforward to compute surface normals. Given any point p = (x, y, z) on
the surface, we can take the partial derivatives of Eq. 17, yielding:

n(p) =

(
2λxx, 2λyy,−

1

sz

)
, (18)

A.1.2 Curvature

Here, we compute the Gaussian curvature analytically using a standard differential geometry approach
[22]. By the way, throughout the entire paper, the parameter domain is expressed using (u, v)
coordinates, while the surface is represented using (x, y, z) coordinates. We simplify Eq. 17 as
z = λxx

2 + λyy
2. Given the point p = (x, y, z), the partial derivatives are:

xu = (1, 0, 2λxx) (19)
xv = (0, 1, 2λyy) (20)

The first fundamental form is:
E = ⟨xu, xu⟩ = 1 + 4λ2

xx
2 (21)

F = ⟨xu, xv⟩ = 4λxλyxy (22)

G = ⟨xv, xv⟩ = 1 + 4λ2
yy

2 (23)
The second fundamental form is:

n =
xu × xv

∥xu × xv∥
=

(−2λxx,−2λyy, 1)√
1 + 4λ2

xx
2 + 4λ2

yy
2

(24)

xuu = (0, 0, 2λx) (25)
xuv = (0, 0, 0) (26)
xvv = (0, 0, 2λy) (27)

L = ⟨n, xuu⟩ =
2λx√

1 + 4λ2
xx

2 + 4λ2
yy

2
(28)

M = ⟨n, xuv⟩ = 0 (29)

N = ⟨n, xvv⟩ =
2λy√

1 + 4λ2
xx

2 + 4λ2
yy

2
(30)

24



Finally, the Gaussian curvature can be computed as:

k(p) =
LN −M2

EG− F 2
=

4λxλy

1 + 4λ2
xx

2 + 4λ2
yy

2

1 + 4λ2
xx

2 + 4λ2
yy

2
=

4λxλy(
1 + 4λ2

xx
2 + 4λ2

yy
2
)2 (31)

B More Visual Results

The anonymous GitHub repository provides visualization results in both video and 3D formats.
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