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Abstract
Traditional Video Object Detection (VOD) is limited by pre-defined
closed-set categories, restricting its ability to detect novel objects
in real-world scenarios. To address this limitation, we make three
key contributions. First, we formally define Open-Vocabulary Video
Object Detection (Open-Vocabulary VOD) as the task of detecting
objects in video streams from open-set categories, including novel
categories unseen during training. Second, we establish an evalua-
tion benchmark by utilizing existing datasets (LV-VIS, BURST, and
TAO) to bridge the data gap for this new task. Third, we propose
OV-VOD, an Open-Vocabulary VOD method that detects objects
in videos beyond pre-defined training categories and addresses the
shortcomings of image-level open-vocabulary detectors, which gen-
erally neglect the essential temporal and spatial information. Specif-
ically, we design a Semantic-Presence Memory Tracking (SPMT)
module that propagates object features across frames through a
memory bank to leverage temporal consistency. Moreover, we pro-
pose a Spatial Object Relationship Distillation loss (L𝑆𝑅 ) that cap-
tures inter-object spatial dependencies and enhances knowledge
transfer during feature distillation. Experiments on multiple video
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datasets demonstrate that our OV-VOD exhibits superior zero-shot
generalization capability compared to existing image-level open-
vocabulary object detection methods.
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1 Introduction
Although traditional video object detection (VOD) methods [5, 22,
25, 31, 33, 37, 38, 51, 61, 64, 65] have made significant progress
over the years, they remain fundamentally constrained by their re-
liance on a fixed set of training categories. This closed-set paradigm
limits their ability to generalize to novel concepts and recognize
previously unseen categories, thereby hindering their applicability
in real-world scenarios where new object categories frequently
appear [52]. This limitation is a key factor contributing to the diffi-
culty of deploying traditional VODmethods in practical settings. To
address this issue, recent research has focused on open-vocabulary
object detection [6, 11, 13, 15, 35, 44, 49, 50, 53, 58, 62], which aims
to detect and classify all objects in an image without being restricted
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Figure 1: (a) Traditional VOD can only detect objects from
training categories (e.g. cup and person); (b) Open-Vocabulary
VOD aims to detect and classify both training categories and
novel categories (unseen during training, e.g., walnut and to-
bacco pipe). Different colors in the figure represent different
object instances.

to a pre-defined label set. However, most existing open-vocabulary
object detection methods are designed for static images and fail
to exploit the rich temporal information available in videos. Fur-
thermore, they do not adequately address video-specific challenges
such as object occlusion, atypical poses, and motion blur, which are
either absent or significantly less severe in image-based datasets.
To bridge this gap, we propose the task of Open-Vocabulary Video
Object Detection, which seeks to detect and classify objects from an
open set of categories across video frames. An illustration of this
task is provided in Figure 1.

Accurate benchmarking of Open-Vocabulary VOD methods ne-
cessitates a video dataset that includes a large and diverse set of
object categories. However, existing datasets commonly used in
traditional VOD, such as ImageNet VID [41] and EPIC-KITCHENS-
55 [8], lack sufficient category diversity, as illustrated in Table 1.
This deficiency poses a significant barrier to the advancement of
open-vocabulary techniques in the video domain, due to the ab-
sence of datasets designed for open-vocabulary video tasks.

To address this limitation, we draw inspiration from the fields
of open-vocabulary tracking [32] and open-vocabulary video in-
stance segmentation [7, 12, 48, 57, 63], adapting open-vocabulary
video datasets from these domains to the detection setting. This
cross-domain transfer is highly feasible, as the annotations used in
tracking and segmentation tasks can be readily converted into the
bounding boxes required for object detection. Specifically, we uti-
lize one open-vocabulary video instance segmentation dataset, LV-
VIS [48], and two open-vocabulary tracking datasets, BURST [1] and
TAO [9], to benchmark Open-Vocabulary VOD methods. Among
these, the LV-VIS dataset is particularly well-suited for evaluat-
ing the generalization ability of Open-Vocabulary VOD models to
novel categories, as it includes a large number of object classes,
most of which differ from those in widely used datasets such as
MS-COCO [34] and LVIS [17]. Therefore, we adopt LV-VIS as the
primary benchmark for assessing detection performance.

Table 1: Comparison of key characteristics between datasets
in this paper and the traditional video object detection
datasets. VID refers to the ImageNet VID dataset, while EPIC-
55 refers to the EPIC-KITCHENS-55 dataset.

Dataset VID [41] EPIC-55 [8] TAO [9] BURST [1] LV-VIS [48]

Videos 4417 272 1488 2914 4828
Frames 1298k 174k 51378 16089 25588
Instances 2005k 326k 168k 600k 544k
Categories 30 295 363 482 1196

A straightforward strategy for Open-Vocabulary VOD is to treat
each video frame as an independent image and apply existing open-
vocabulary object detection methods on a frame-by-frame basis.
However, such image-level methods ignore the temporal informa-
tion inherent in videos and fail to exploit inter-frame correlations.
Moreover, video-specific challenges such as variations in object
appearance and quality degradation caused by motion blur or oc-
clusion further compromise the effectiveness of this naive method
and lead to suboptimal detection performance.

In this paper, we propose the first Open-Vocabulary Video Object
Detection method, termed OV-VOD. To fully leverage the temporal
information inherent in videos, we introduce a Semantic-Presence
Memory Tracking (SPMT) module. By storing features in a mem-
ory bank and employing the Hungarian algorithm with an update
factor, the module tracks objects across frames, effectively miti-
gating performance degradation caused by object disappearance,
motion blur, or occlusion. Furthermore, to harness spatial contex-
tual information and enhance knowledge transfer from pre-trained
Vision-Language Models (VLMs) during distillation, we propose a
novel Spatial Object Relationship Distillation loss (L𝑆𝑅 ). Inspired
by similarity-based distillation techniques [14, 47], our method
incorporates the spatial relationships among proposal-level fea-
tures within the same frame as an additional constraint, thereby
improving the effectiveness of the distillation process.

Our OV-VOD model is trained on the LVIS dataset and evalu-
ated on three challenging video benchmarks: LV-VIS, BURST, and
TAO. Without any dataset-specific fine-tuning, extensive experi-
ments show that OV-VOD consistently outperforms state-of-the-art
image-level open-vocabulary object detection methods in zero-shot
generalization to novel object categories unseen during training.

In summary, the contributions of this paper are as follows:
• We define the task of Open-Vocabulary VOD, establish an

evaluation benchmark, and introduce the first Open-Vocabulary
VOD method, OV-VOD, which extends the traditional closed-set
VOD framework to an open-set paradigm.

• We develop a Semantic-Presence Memory Tracking (SPMT)
module that effectively leverages temporal information in videos,
mitigating performance degradation caused by object disappear-
ance, blur, or occlusion.

• We propose a Spatial Object Relationship Distillation loss
(L𝑆𝑅 ), which captures spatial contextual relationships among propo-
sal-level features within the same frame, facilitating more effective
knowledge transfer during distillation.

• Experimental results demonstrate that OV-VOD respectively
achieves AP𝑛 of 12.8% on LV-VIS, 4.9% on BURST, and 5.0% on TAO,
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surpassing existing image-level open-vocabulary object detection
methods.

2 Related Work
2.1 Open-Vocabulary Object Detection
Open-Vocabulary Object Detection has progressed rapidly with
the emergence of various large-scale models. ViLD [15] is the
first approach to transfer knowledge from visual-language models
(VLMs) [27, 39, 46, 56] into closed-set detectors [4, 23, 40] using
a knowledge distillation framework. It introduces separate image
and text branches to align visual features with the extensive textual
information learned during the VLMs’ pre-training stage, thereby pi-
oneering the field of open-vocabulary object detection. DetPro [11]
extends ViLD by integrating contextual learning [59, 60] to adapt
static prompts to task-specific contexts, thereby enhancing detec-
tion performance. RegionCLIP [58] aligns image regions with tex-
tual descriptions, leveraging CLIP [39] to generate pseudo-labels
and fine-tuning on manual detection datasets. Detic [62] tackles
data imbalance in long-tail object detection by leveraging image-
level supervision and a joint training strategy to enhance perfor-
mance on novel categories. Furthermore, OV-DETR [54] introduces
region-text alignment and conditional matching to enable end-to-
end open-vocabulary object detection using language-based super-
vision in place of traditional annotations. Recently, BARON [53]
enhances region-level alignment by encoding a bag of contextually
related regions as textual representations, which are then aligned
with visual embeddings from vision-language models.

Although these open-vocabulary object detection methods per-
form well on images, their direct application to videos is limited by
an inability to fully exploit inherent temporal information, poten-
tially yielding suboptimal results.

2.2 Video Object Detection
Video Object Detection typically makes use of abundant tempo-
ral information to enhance detection performance. Based on the
manner in which temporal information is leveraged, current main-
stream video object detection methods can generally be categorized
into two groups: pos-processing and feature aggregation methods.

Post-processing methods first use a detector to extract bounding
boxes from multiple frames and then employ linking or tracking
techniques to connect these boxes into tubelets. For instance, Seq-
NMS [22] forms high-confidence bounding box sequences across
consecutive frames and utilizes them to enhance weaker detections.
T-CNN [31] propagates bounding boxes using optical flow and inte-
grates tracking algorithms to construct extended tubelet sequences.
Feature aggregation methods [5, 16, 21, 28, 45, 55, 64] typically en-
hance the feature representation of the target frame by aggregating
useful temporal information from multiple support frames. These
methods can be classified into frame-level and proposal-level ag-
gregation, depending on the stage at which features are aggregated.
Frame-level aggregation methods, such as FGFA [64], use optical
flow networks to guide the aggregation of features across frames.
DFF [65] accelerates video inference by applying a large network
to sparse key frames and propagating deep features to adjacent
frames via optical flow. Early-stage feature aggregation enables
end-to-end training but yields limited performance gains, whereas

proposal-level methods aggregate features at the proposal stage. For
example, SELSA [51] aggregates semantic features from the entire
sequence rather than just adjacent frames, while MEGA [5] takes
into account both global and local temporal information, utilizing
a memory mechanism to aggregate features at the proposal level.

Although these methods achieve remarkable performance in tra-
ditional video object detection, their closed-set limitation hampers
effective real-world application.

3 Setting of Open-Vocabulary VOD
Task Setting.Given a training datasetD𝑡𝑟𝑎𝑖𝑛 consisting of instance-
level candidate bounding box annotations for a set of training cat-
egories C𝑡𝑟𝑎𝑖𝑛 , traditional VOD aims to train a model 𝑓𝜃 (·). This
model is designed to be evaluated on a test datasetD𝑡𝑒𝑠𝑡 = {𝑽 𝑖 }𝐿𝑖=1,
where 𝐿 denotes the number of videos, 𝑽 𝑖 ∈ R𝑇𝑖×𝐻𝑖×𝑊𝑖×3 repre-
sents a video clip of 𝑇𝑖 frames with a spatial resolution of (𝐻𝑖 ,𝑊𝑖 ).
The goal of 𝑓𝜃 (·) is to predict the bounding boxes {𝒃𝑡 }𝑇𝑖𝑡=1 ∈ R𝑇𝑖×𝐾𝑡×4,
where 𝐾𝑡 represents the total number of objects in the 𝑡-th frame,
and corresponding class labels 𝑐 ∈ C𝑡𝑟𝑎𝑖𝑛 (C𝑏𝑎𝑠𝑒 ) for all objects in
the video that belong to the base categories. Objects belonging to
novel categories 𝐶𝑛𝑜𝑣𝑒𝑙 are ignored.

In contrast, Open-Vocabulary VOD aims to train a model on
D𝑡𝑟𝑎𝑖𝑛 and test it on D𝑡𝑒𝑠𝑡 for both𝐶𝑡𝑟𝑎𝑖𝑛 and𝐶𝑛𝑜𝑣𝑒𝑙 . Specifically,
during inference, given a test video sequence 𝑽 𝑖 ∈ R𝑇𝑖×𝐻𝑖×𝑊𝑖×3,
the trained model is expected to predict all object bounding boxes
{𝒃𝑡 }𝑇𝑖𝑡=1 ∈ R𝑇𝑖×𝐾𝑡×4 and the category label 𝑐 ∈ (C𝑡𝑟𝑎𝑖𝑛 ∪ C𝑛𝑜𝑣𝑒𝑙 )
for each bounding box in 𝑽 𝑖 :

𝑓𝜃 (𝑽 𝑖 ) = {{𝒃𝑘 , 𝑐𝑘 }𝐾𝑡

𝑘=1}
𝑇𝑖
𝑡=1, (1)

where the category 𝑐𝑘 belongs to the union of the training categories
and novel categories. Additionally, 𝒃𝑘 = {𝑥,𝑦,𝑤,ℎ} denotes the
bounding box of the 𝑘-th object in the 𝑡-th frame of the 𝑖-th video.
In the experimental section, the training categories are referred to
as base classes, while the categories that do not overlap with the
base classes are referred to as novel classes.

Evaluation Metrics.We follow the standard evaluation setup
in MS-COCO [34] and LVIS [17], using Average Precision (AP) to
assess the performance of both base and novel categories. Specifi-
cally, the average precision for 𝑖-th category across all video frames,
denoted as AP𝑖 , is defined as the area under the precision-recall
curve plotted based on the category confidence scores. The value
of AP𝑖 is measured at 10 Intersection-over-Union (IoU) thresholds
ranging from 0.5 to 0.95, with a step size of 0.05. Finally, the mean
average precision is calculated separately for the base category set
and the novel category set, denoted as AP𝑏 and AP𝑛 , respectively.

4 Structure of OV-VOD
After defining the Open-Vocabulary VOD task, we present our pro-
posed method, OV-VOD, as illustrated in Figure 2. Overall, our
OV-VOD are based on the existing open-vocabulary object detec-
tors [11, 15] and contains two key improvements: a) To address
the limitations of image-level object detection methods, which fail
to leverage the rich temporal information inherent in videos, we
propose a Semantic-Presence Memory Tracking (SPMT) module.
This module enhances detection performance during inference by

491



MM ’25, October 27–31, 2025, Dublin, Ireland. Zhihong Zheng, Yang Cao, Junlong Gao and Hanzi Wang

Static Image

Image 

Head

Text 

Head

ℒ𝐹𝐷 ℒ𝑆𝑅

ℒ𝐶𝐸

…

…

…

: Pairwise Similarity Matrix

: Frozen

: Tunable

: Similarity(⋅,⋅)

𝑬𝑖 : i-th Region Embedding in Memory Bank

ℒ𝑆𝑅 : Spatial Object Relation Distillation Loss

ℒ𝐶𝐸 : Cross Entropy Loss

SPMT : Semantic-Presence Memory Tracking

ℒ𝐹𝐷 : Feature Distillation Loss

Training

RPN

gourd
Novel Categories

chessboard
…

Hand Craft 

or

Learnable

Prompt 

Base Categories
cat

pliers
…

Pre-trained 

Text Encoder
…

𝑬𝑖−1 𝑬𝑖

… …

𝜑𝑀

ReplaceReplace

𝜑𝑀

𝑬𝑘

…

Memory Bank
Support Frame 𝐼𝑖Support Frame 𝐼𝑖−1

Pre-trained 

Image Encoder

Image

&

Text

Head

Prediction

Key Frame 𝐼𝑘

……

Inference

SPMT
Feature

Extractor

Feature

Extractor

Figure 2: The overall architecture of the proposed OV-VOD. It first performs spatial relationship distillation through our
proposed L𝑆𝑅 during training on the image-level dataset, and subsequently conducts inference on video datasets through our
introduced Semantic-Presence Memory Tracking (SPMT) module.

tracking objects from support frames stored in a memory bank, uti-
lizing the Hungarian algorithm and an adaptive update factor; b) In
addition to conventional feature distillation, we introduce a Spatial
Object Relationship Distillation loss (L𝑆𝑅 ), which facilitates more
effective knowledge transfer from VLMs during training, thereby
improving the model’s generalization to unseen categories. Further
details of these contributions are provided in the following sections.

4.1 Semantic-Presence Memory Tracking
Inspired by MinVIS [26], we adopt region embeddings stored in a
memory bank to establish inter-frame object associations.While the
Hungarian algorithm is employed to match object regions across
frames, naive feature updates are inadequate for modeling long-
term object dependencies in complex scenarios. OV2Seg [48] intro-
duces an update frequency control factor 𝑆obj to mitigate tracking
failures caused by severe occlusions or temporary object disap-
pearances. However, this approach remains suboptimal for open-
vocabulary VOD, where both semantic confidence and bounding
box quality play critical roles in overall detection performance.

As demonstrated in [15], the semantic quality of objects cannot
be reliably assessed using semantic confidence scores alone, as accu-
rate localization through bounding boxes is equally essential. This
limitation is particularly pronounced in cross-frame object track-
ing, where the strong generalization ability of VLMs may result
in high confidence scores for proposals that include only partial
object regions. Such cases introduce false positives and propagate

detection errors across successive frames (e.g., the baseline detec-
tion result shown in the second frame of Figure 5). To mitigate this
issue, we propose a Semantic-Presence Memory Tracking (SPMT)
module, including a novel update factor called Semantic-Presence
that synergistically integrates semantic confidence evaluation with
bounding box quality assessment.

Specifically, we select 𝐾 support frames, each of which contains
𝑁 region embeddings, and maintain a set of updated region embed-
dings 𝑬𝑴 ∈ R𝐾×𝑁×𝑑 in the memory bank to model dependencies
between video objects, where 𝑑 denotes the dimensionality of the
region embeddings, as shown in Figure 2. First of all, we calculate
the inner product similarity between region embeddings 𝑬𝑀

𝑖
of

each frame 𝑖 and the previous region embeddings 𝑬𝑀
𝑖−1 of frame

𝑖 − 1 in memory. Each region embedding is associated with one
region embedding from the previous frame through the Hungarian
algorithm results on the similarity matrix [26]. The first frame 𝑬𝑀0
is initialized by the key frame. Subsequently, the update function
𝜑𝑀 (·, ·) is used to perform updates in the memory bank, gradu-
ally tracking video region embeddings to mitigate issues of object
disappearance or occlusion. The function 𝜑𝑀 (·, ·) is defined as:

𝑬𝑀𝑖 = 𝜑𝑀 (𝑬𝑀𝑖−1, 𝑬
∗
𝑖 )

= 𝛼 · 𝛽obj · 𝑬∗
𝑖 + (1 − 𝛼 · 𝛽obj) · 𝑬𝑀𝑖−1,

(2)

where 𝛼 is a hyperparameter controlling the frequency of embed-
dings updates, 𝑬∗

𝑖
represents the associated region embeddings

after applying the Hungarian algorithm. 𝛽obj is our introduced
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Semantic-Presence factor, which is used to measure the semantic
and bounding box quality of targets. 𝛽obj is defined as:

𝛽obj = 𝑤𝛽 × 𝑆obj + (1 −𝑤𝛽 ) ×𝑂obj, (3)

where 𝑆obj represents the confidence score for each region embed-
ding,𝑂obj represents the objectness score for each region, and𝑤𝛽 is
the weight controlling the balance between semantic and bounding
box quality. By introducing the SPMT module, tracking of regions
with low bounding box quality but high semantic scores can be
prevented. If a target disappears or becomes occluded during track-
ing, the introduced Semantic-Presence factor score tends toward a
lower value, restricting the corresponding region embedding update
to maintain the original high-quality semantic features. Through
maintaining memory regions embeddings of length 𝐾 , OV-VOD
can efficiently track the same object across different frames over
extended periods.

4.2 Spatial Object Relationship Distillation
Rethinking the ViLD [15] approach to open-vocabulary object de-
tection reveals that its core strength lies in distilling knowledge
from a pre-trained vision-language model into a student network,
thereby enabling the student to acquire robust open-vocabulary
classification capabilities. However, during the distillation process,
ViLD adopts a simplistic region embedding strategy as the fea-
ture distillation loss to guide network training. This method treats
objects within an image as independent entities, neglecting their
spatial relationships. As a result, the effectiveness of knowledge
transfer is limited, leading to suboptimal performance.

To address this issue, we are inspired by similarity-preserving
knowledge distillation [2, 47] and propose a Spatial Object Rela-
tionship Distillation loss, denoted as L𝑆𝑅 , to be integrated into the
distillation process. While traditional similarity-preserving distil-
lation is designed to capture inter-sample similarity relationships
across different images within a mini-batch to guide the learning
process, we extend this idea to the video object detection domain. In
this context, different objects within a single image naturally exhibit
stronger spatial and contextual relationships, which can be lever-
aged as additional supervisory signals to enhance the effectiveness
of knowledge transfer.

L𝑆𝑅 is defined based on two paired similarity matrices extracted
from both the student network (detector) and the teacher net-
work (VLM). Specifically, let 𝐼 denote the image, 𝑟 denote the pre-
extracted proposals, V represent the pre-trained image encoder,
and R represent the student network. We first obtain the region em-
beddings from V(crop(𝐼 , 𝑟 )) and R(𝐼 , 𝑟 ), and then compute their
corresponding similarity matrices of shape 𝑁 × 𝑁 , denoted as S𝑉
and S𝑅 , respectively. These matrices are normalized using the 𝐿2
norm applied row-wise. Then, L𝑆𝑅 can be defined as:

S𝑉 =
V(crop(𝐼 , 𝑟 )) · V(crop(𝐼 , 𝑟 ))𝑇

∥ V(crop(𝐼 , 𝑟 )) · V(crop(𝐼 , 𝑟 ))𝑇 ∥2
, (4)

S𝑅 =
R(𝐼 , 𝑟 ) · R(𝐼 , 𝑟 )𝑇

∥ R(𝐼 , 𝑟 ) · R(𝐼 , 𝑟 )𝑇 ∥2
, (5)

L𝑆𝑅 =
1
𝑁 2 ∥ S𝑉 − S𝑅 ∥2𝐹 , (6)

where ∥ · ∥𝐹 denotes the Frobenius norm. The introduced loss
enforces the student network to retain the spatial contextual re-
lationships between different objects within the same image, as
captured by the teacher network. This enhances the efficiency of
knowledge transfer, ensuring that the student network learns more
structured and meaningful object representations.

4.3 Training and Loss
Since the SPMT is a training-free post-processing module, we can
train on the image-level dataset LVIS while still leveraging video-
specific temporal information during inference on video data. This
approach significantly reduces the training resource requirements
for large-scale video datasets, thus enhancing training efficiency.

Regarding the training loss, following the foundation established
by ViLD [15], we further optimize the objective function to enhance
detection accuracy and efficiency. First, we replace the original
classification loss with a text alignment loss L𝑡𝑒𝑥𝑡 based on the
CLIP [39] approach. Here, 𝑬∗

𝑘
is the feature used for classification

in the key frame, 𝑬𝑏𝑔 is the text embedding of the background
category, and 𝒕𝑖 represents the text embedding of the 𝑖-th category
obtained through a pre-trained text encoder. Note that 𝒕𝑖 can be
obtained through hand-crafted prompts as implemented in [15], or
it can be obtained as learnable text embeddings as implemented
in [11]. Then, L𝑡𝑒𝑥𝑡 can be expressed as:

z(𝑡) =
[
𝑠𝑖𝑚(𝑬∗

𝑘
, 𝑬𝑏𝑔), 𝑠𝑖𝑚(𝑬∗

𝑘
, 𝒕1), · · · , 𝑠𝑖𝑚(𝑬∗

𝑘
, 𝒕 |𝐶𝑡𝑟𝑎𝑖𝑛 | )

]
(7)

L𝑡𝑒𝑥𝑡 =
1
𝑁

∑︁
𝑟 ∈𝑃

L𝐶𝐸 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (z(𝑟 )/𝜏), 𝑦𝑟 ), (8)

where 𝑠𝑖𝑚(a,b) = a𝑇 b/(∥a∥ · ∥b∥), 𝑦𝑟 denotes the class label of
region 𝑟 , 𝜏 is the temperature, 𝑁 is the number of proposals per
image(|𝑃 |), and L𝐶𝐸 is the cross entropy loss.

As for the feature distilling loss L𝐹𝐷 , following [15], we align
region embeddings R(𝜙 (𝐼 ), 𝑟 ) to image embeddings V(𝑐𝑟𝑜𝑝 (𝐼 , 𝑟 )).
Note that the proposals 𝑟 here are extracted offline and contain
objects in both C𝑏𝑎𝑠𝑒 and C𝑛𝑜𝑣𝑒𝑙 . Thus, L𝐹𝐷 can be expressed as:

L𝐹𝐷 =
1
𝑀

∑︁
𝑟 ∈𝑃

∥V(crop(𝐼 , 𝑟 )) − R(𝜙 (𝐼 ), 𝑟 )∥1, (9)

where𝑀 denotes the number of the proposals per image(|𝑃 |). There-
fore, the total training loss can be viewed as a weighted sum of
multiple objective functions:

L = L𝑡𝑒𝑥𝑡 +𝑤1 · L𝐹𝐷 +𝑤2 · L𝑆𝑅 + L𝑏𝑜𝑥 , (10)

where𝑤1 and𝑤2 are hyperparameters that control the weights of
feature distillation L𝐹𝐷 and spatial object relationship distillation
L𝑆𝑅 , respectively.

5 Experiments
5.1 Datasets
To ensure a fair comparison with existing open-vocabulary object
detection methods [6, 11, 15, 53, 58, 62], we follow the training pro-
tocols used in most related works [11, 15, 53]. In particular, we train
our model on the union of common and frequent categories from
LVIS [17] and subsequently evaluate its zero-shot generalization
performance on three video datasets: LV-VIS [48], BURST [1], and
TAO [9]. It is important to note that neither our method nor the
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Table 2: Zero-shot performance comparison on the LV-VIS validation set. AP𝑛 , AP𝑏 , and AP mean the average precision of
novel categories, base categories, and overall categories. ViLD* denotes the reproduced ViLD version from DetPro. Note that for
a fair comparison, all models use ResNet-50 [24] as the backbone, while YOLO-World-L employs YOLOv8-L [29] as its backbone,
which has a parameter count comparable to ResNet-50.

Method Pretraining Data Vision Training Annotations
Detection Instance Segmentation

AP𝑛 AP𝑏 AP AP𝑛 AP𝑏 AP

ViLD* (ICLR’22) [15] CLIP400M [39] LVIS𝐵𝑎𝑠𝑒 8.7 11.7 10.0 8.3 11.4 9.6
Detpro (CVPR’22) [11] CLIP400M [39] LVIS𝐵𝑎𝑠𝑒 9.7 12.0 10.6 9.2 11.5 10.2
Baron (CVPR’23) [53] CLIP400M [39] LVIS𝐵𝑎𝑠𝑒 9.1 8.4 8.7 9.2 8.0 8.5

Detic (ECCV’22) [62] CC3M [43] LVIS𝐵𝑎𝑠𝑒+Pseudo𝑁𝑜𝑣𝑒𝑙 9.7 3.9 6.3 9.5 3.6 6.1
RegionCLIP (CVPR’22) [58] CC3M [43] LVIS𝐵𝑎𝑠𝑒+Pseudo𝑁𝑜𝑣𝑒𝑙 12.3 6.6 9.0 10.4 5.9 7.8
YOLO-World-L (CVPR’24) [6] O365 [42]+GoldG [30]+CC3M [43] LVIS𝐵𝑎𝑠𝑒+Pseudo𝑁𝑜𝑣𝑒𝑙 11.8 14.7 13.0 - - -

OV-VOD (Ours) CLIP400M [39] LVIS𝐵𝑎𝑠𝑒 12.8 13.7 13.2 12.3 13.1 12.6

comparative methods have been fine-tuned on any video datasets,
ensuring a fair comparison.

LVIS is a widely used image open-vocabulary object detection
dataset that contains 1203 categories. Following the setting in
ViLD [15], we treat the frequent and common categories as base
categories while designating rare categories as novel categories.

LV-VIS is a recently introduced large-scale dataset for evaluating
open-vocabulary video instance segmentation. It contains 1,196
categories, of which 641 are base categories following the LVIS
split, and 555 are novel categories. Among the novel categories,
there are not only rare categories from LVIS but also entirely new
classes not present in LVIS. Therefore, LV-VIS is highly suitable for
assessing the performance of Open-Vocabulary VOD methods.

TAO is a dataset designed for evaluating open-vocabulary track-
ing methods. Although the annotations for multi-object tracking
are similar to those for detection, and may be somewhat incom-
plete, the diverse category set renders TAO suitable for evaluating
Open-Vocabulary VOD methods. Following the LVIS setting, TAO
comprises 363 categories, with 290 categorized as base and 73 as
novel.

BURST is a recently released video dataset that extends TAO. It
consists of 425 base categories and 57 novel categories as defined
by the LVIS partitions.

5.2 Implementation Details
Baseline Model. We select ViLD [15], an open-vocabulary ob-
ject detection method built on Mask-RCNN [23], as our baseline
model. The pretrained image and text encoders are based on CLIP
(ViT-B/32). Additionally, our baseline incorporates learnable text
embeddings, as demonstrated in [11, 59, 60], to further boost detec-
tion performance.

OV-VOD. To ensure a fair comparison with the baseline, we
employ the same backbone (ResNet-50 [24]) in all experiments.
Consistent with the ViLD setting, the temperature coefficient 𝜏 is
set to 0.01 during training and 0.007 during inference. Theweighting
coefficients for the losses L𝐹𝐷 and L𝑆𝑅 are assigned as 𝑤1 = 0.5
and 𝑤2 = 1, respectively. In our SPMT module, the update factor
weight 𝑤𝛽 is empirically determined as 0.5 to balance semantic
information and bounding box quality. The size of the memory
bank 𝐾 is examined in detail in the ablation study section.

Training Details. For a fair comparison, both the baseline and
OV-VODmodels are trained on the LVIS dataset for 20 epochs using
a batch size of 16 with the SGD optimizer [3]. The initial learning
rate is set to 0.2 and decayed by a factor of ten at the 16th epoch.
Momentum is set to 0.9 and weight decay to 0.000025. A warmup
strategy is applied during the first 500 iterations. To maintain con-
sistency, the same data augmentation strategy from [11] is adopted.
Training is conducted on 4 RTX4090 GPUs over approximately 32
hours, while all inference is performed on a single RTX4090 GPU.

5.3 Results on the LV-VIS dataset
We compare the performance of our proposed OV-VOD with ex-
isting mainstream open-vocabulary object detection methods on
the LV-VIS dataset, as shown in Table 2. Compared to existing
methods, OV-VOD achieves optimal performance on the LV-VIS
validation set with 12.8% AP𝑏𝑏𝑜𝑥𝑛 , 13.2% AP𝑏𝑏𝑜𝑥 , 12.3% AP𝑚𝑎𝑠𝑘𝑛 ,
and 12.6% AP𝑚𝑎𝑠𝑘 . This is primarily because existing image-level
open-vocabulary object detectionmethods perform frame-by-frame
detection on video data, ignoring the rich temporal information
between frames, which limits their performance on video datasets.

Notably, methods such as Detic and RegionCLIP, despite achiev-
ing strong performance on the LVIS dataset following large-scale
pretraining, exhibit limited zero-shot generalization capabilities
on the LV-VIS video dataset. Although these two methods achieve
relatively high AP𝑛 scores, which is a key evaluation metric for
open-vocabulary object detection, their performance on base classes
is significantly lower. This discrepancy may stem from the intro-
duction of pseudo-labels during their training phase, potentially
causing the models to prioritize fitting features specific to novel
categories. However, a central goal of open-vocabulary object de-
tection is to successfully identify a wide range of categories in real-
world scenarios. Therefore, an effective method should enhance
novel category detection without compromising performance on
base classes. While YOLO-World performs well on base classes, its
detection accuracy for novel categories is lower than that achieved
by our proposed method.

Furthermore, the aforementioned methods are all pretrained on
large-scale grounding, image-text, and detection datasets before
being fine-tuned on LVIS, incurring significant data and training
costs. In contrast, our method employs knowledge distillation solely
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Table 3: Ablation Study of L𝑆𝑅 and SPMT. Note that AP𝑟 has
been regarded as the metric for novel categories in the LVIS
dataset in previous open-vocabulary object detection works.

Modules LVIS LV-VIS

L𝑆𝑅 SPMT AP𝑟 AP AP𝑛 AP𝑏 AP

16.8 26.8 9.7 12.0 10.6
✓ 19.9↑3.1 28.5↑1.7 10.3↑0.6 12.7↑0.7 11.3↑0.7

✓ - - 12.1↑2.4 13.4↑1.4 12.7↑2.1
✓ ✓ - - 12.8↑3.1 13.7↑1.7 13.2↑2.6

on the LVIS dataset, thereby reducing data dependency and training
overhead while still delivering superior performance.

5.4 Ablation Studies
We conduct comprehensive ablation studies to validate the effec-
tiveness of the key components of OV-VOD.

Effectiveness of the L𝑆𝑅 and SPMT. We evaluate the effec-
tiveness of the proposed Spatial Object Relationship Distillation
loss (L𝑆𝑅 ) and Semantic-Presence Memory Tracking (SPMT) mod-
ule on the LVIS and LV-VIS validation sets. As shown in Table 3,
introducing L𝑆𝑅 yields improvements of 3.1% AP𝑟 and 1.7% AP
on the LVIS validation set over the baseline. On the video dataset
LV-VIS, it further improves AP𝑛 by 0.6% and AP by 0.7%, indicating
that spatial relation distillation effectively captures contextual de-
pendencies, enhances knowledge transfer, and boosts image-level
open-vocabulary detection. Additionally, incorporating SPMT leads
to substantial gains on LV-VIS, improving AP𝑛 by 2.4%, AP𝑏 by 1.4%,
and AP by 2.1%. These improvements highlight SPMT’s ability to
leverage temporal cues and mitigate the limitations of image-based
detectors in video scenarios. When combined, L𝑆𝑅 and SPMT are
highly complementary: the final model achieves a 3.1% gain in AP𝑛
and 2.6% in AP on LV-VIS. The stronger spatial-aware detector
enabled by L𝑆𝑅 further enhances SPMT’s robustness, particularly
under occlusion, disappearance, or motion blur.

Impact of the Support Frame Selection Strategy. Consis-
tent with prior findings [18, 20, 36], the support frame selection
strategy and the memory bank size remain crucial factors influ-
encing the performance of conventional video object detection.
Accordingly, we analyze these factors in our proposed method. As
in prior work [10, 36, 38], support frames are defined as frames
sampled from the same video and stored in the SPMT memory
bank, from which corresponding region embeddings are retrieved.
We analyze variations in AP50 and AP𝑛 on the LV-VIS validation
set by varying memory bank size and employing different support
frame selection strategies, as illustrated in Figure 3. Irrespective
of selection strategy, both AP50 and AP𝑛 demonstrate consistent
improvement as memory bank size 𝐾 increases. When 𝐾 = 0 (i.e.,
SPMT is not utilized for video-level inference), the model achieves
AP50 of 17.0% and AP𝑛 of 17.3%. Performance steadily improves
as 𝐾 increases from 0 to 6, yet saturates at 𝐾 = 14, indicating
a performance bottleneck. This trend corroborates findings from
prior video object detection research [18–20, 37, 38], demonstrating
that increasing support frame count enables SPMT to track objects
across extended temporal windows, thereby enhancing key frame

Figure 3: AP50 and AP𝑛 under different size of memory bank
K and the selection strategy of support frames on the LV-
VIS validation set. Random denotes selecting support frames
randomly from the entire video sequence, whereas Sequential
refers to selecting the past 𝐾 frame set {𝐼𝑡−𝐾 , · · · , 𝐼𝑡−2, 𝐼𝑡−1}
before the current time step 𝑡 .

Figure 4: AP50 and AP𝑛 under different size of memory bank
K and the update factor of SPMT on the LV-VIS validation
set. w𝑂obj and w/o𝑂obj denote the inclusion and removal of
the objectness score in the update factor, respectively.

detection through leverage of support frames with superior visual
features. However, once 𝐾 exceeds a certain threshold, marginal
or negligible additional benefits are observed, suggesting an up-
per bound on achievable performance improvement. Furthermore,
models employing random selection strategy consistently outper-
form those using sequential strategy, consistent with observations
in [5, 36]. The random strategy facilitates global temporal informa-
tion aggregation, particularly advantageous for handling occluded
or blurred objects by incorporating support frames with clearer
visual appearances. Conversely, the sequential strategy constrains
support frames to those preceding the key frame, which proves
suboptimal under low video sampling rates and complicates object
tracking in complex scenarios. Optimal performance is achieved
using random selection strategy with 𝐾 = 14, yielding AP50 of
19.9% and AP𝑛 of 12.8% on the LV-VIS validation set.

Impact of the Semantic-Presence factor. To further evaluate
the impact of the Semantic-Presence factor introduced in Equa-
tion 2, we analyze performance variations on the LV-VIS validation
set by altering the size of memory bank 𝐾 and removing 𝑂obj in
the update factor, as illustrated in Figure 4. The impact of the size
of memory bank 𝐾 on performance is consistent with the anal-
ysis in the previous subsection. Regardless of the update factor
used, increasing 𝐾 from 0 to 6 results in significant performance
improvement, after which the gains gradually plateau. The best per-
formance is achieved when 𝐾 = 14 and the update factor includes
𝑂obj. Notably, incorporating𝑂obj into the update factor consistently
leads to higher AP50 and AP𝑛 across all values of 𝐾 . In particular,
when performance saturates with increasing 𝐾 , the inclusion of
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Table 4: Zero-shot generalization on the validation sets of BURST and TAO. We report the detection and segmentation metrics
on the BURST validation set, denoted as AP𝑏𝑏𝑜𝑥∗ and AP𝑚𝑎𝑠𝑘∗ , respectively. Additionally, due to the low quality of instance
segmentation annotations in TAO, we only report the detection metrics for it, represented as AP𝑏𝑏𝑜𝑥∗ .

Method Backbone
BURST TAO

AP𝑏𝑏𝑜𝑥𝑛 AP𝑏𝑏𝑜𝑥
𝑏

AP𝑏𝑏𝑜𝑥 AP𝑚𝑎𝑠𝑘𝑛 AP𝑚𝑎𝑠𝑘
𝑏

AP𝑚𝑎𝑠𝑘 AP𝑏𝑏𝑜𝑥𝑛 AP𝑏𝑏𝑜𝑥
𝑏

AP𝑏𝑏𝑜𝑥

ViLD* (ICLR’22) [15] ResNet-50 3.8 7.7 7.0 3.4 7.0 6.4 3.6 7.7 6.9
Detpro (CVPR’22) [11] ResNet-50 3.8 7.7 7.0 3.1 7.0 6.3 3.9 7.8 7.1
Baron (CVPR’23) [53] ResNet-50 3.0 6.2 5.6 3.5 5.7 5.3 3.1 6.5 5.9

RegionCLIP (CVPR’22) [58] ResNet-50 4.5 6.8 6.5 3.3 5.7 5.3 4.8 6.9 6.6
Detic (ECCV’22) [62] ResNet-50 4.6 7.9 7.3 4.4 7.3 6.7 4.8 7.6 7.3
YOLO-World-L (CVPR’24) [6] YOLOv8-L 4.3 9.1 8.2 - - - 4.6 9.6 8.8

OV-VOD (Ours) ResNet-50 4.9 8.4 7.7 4.5 7.9 7.2 5.0 8.5 7.8

Figure 5: Qualitative comparison between baseline (a) andOV-
VOD (b) on the LV-VIS val set. Blue represents base category
objects, while pink denotes novel category objects.

𝑂obj results in a 0.5% and 0.4% improvement in AP50 and AP𝑛 , re-
spectively. This strongly validates the effectiveness of the proposed
Semantic-Presence factor. Moreover, it demonstrates that combin-
ing the confidence score and the objectness score enables the model
to account for both semantic information and bounding box quality
when tracking objects across frames. By effectively suppressing the
update of key frame features when encountering support frames
with high semantic relevance but low quality, it imposes stricter
control over the tracked object quality, thereby facilitating the key
frame update with visually clearer support objects.

5.5 Zero-shot Generalization
To further assess the performance of existing object detection meth-
ods and our approach on a broader range of video datasets, we
evaluate them on two open-vocabulary tracking datasets, BURST
and TAO, as shown in Table 4. It is important to note that, due to
the highly specialized nature of the tracking domain, annotations in
these datasets are inherently incomplete and may not fully reflect
the true performance in real-world scenarios. Our model achieves
robust detection performances of 4.9% AP𝑛 on BURST and 5.0%
AP𝑛 on TAO, surpassing the baseline method Detpro by 1.1% and
decisively outperforming existing mainstream open-vocabulary ob-
ject detection methods. However, our method does not achieve the
highest AP across all categories. Based on our detailed statistical
analysis, this is primarily attributed to the fact that novel class
annotations constitute only a mere 3.6% of the total annotations in

the validation sets of BURST and TAO. Therefore, it conclusively
indicates that both datasets are heavily skewed toward base class
annotations, making the overall AP an insufficient metric for accu-
rately assessing the generalization capability of Open-Vocabulary
VOD methods on novel categories.

5.6 Qualitative Analysis
The qualitative comparison results presented in Figure 5 illustrate
distinct advantages of our OV-VOD over the baseline approach
through three representative video frames. Although both methods
show the capability to detect objects from base and novel cate-
gories, OV-VOD delivers significantly superior detection perfor-
mance under challenging scenarios. For instance, in the first and
third frames, OV-VOD achieves much higher confidence scores and
exhibits more stable detection performance for both novel and base
categories. Moreover, the incorporation of the SPMT module plays
a critical role, as evidenced in the second frame, where the fore-
ground occlusion poses a significant challenge. Thanks to the SPMT
module, OV-VOD effectively leverages support frames stored in
the memory bank to provide supplementary temporal and contex-
tual cues, thereby enhancing the key frame detection. In contrast,
the baseline method fails to detect these occluded objects entirely,
illustrating the substantial advantage afforded by the additional
temporal information. These qualitative results substantiate that
the proposed OV-VOD effectively mitigates visual degradation in
video sequences, particularly overcoming persistent issues such as
object occlusion and transient object disappearance.

6 Conclusion
In this paper, we introduce a novel Open-Vocabulary VOD task
aimed at detecting objects from open-set categories in videos. To
facilitate the evaluation of open-vocabulary VOD methods, we re-
purpose annotations from existing video datasets to establish a com-
prehensive benchmark. Furthermore, we propose a new method,
OV-VOD, which leverages video-specific temporal information via a
training-free Semantic-Presence Memory Tracking (SPMT) module
and enhances knowledge transfer by incorporating a Spatial Object
Relationship Distillation loss (L𝑆𝑅 ) during the distillation process.
Our proposed OV-VOD demonstrates significantly stronger zero-
shot generalization capabilities compared to existing image-level
open-vocabulary object detection methods across video datasets.
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