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Abstract
Visual representations play a crucial role in de-
veloping generalist robotic policies. Previous vi-
sion encoders, typically pre-trained with single-
image reconstruction or two-image contrastive
learning, tend to capture static information, of-
ten neglecting the dynamic aspects vital for em-
bodied tasks. Recently, video diffusion models
(VDMs) demonstrate the ability to predict future
frames and showcase a strong understanding of
physical world. We hypothesize that VDMs in-
herently produce visual representations that en-
compass both current static information and pre-
dicted future dynamics, thereby providing valu-
able guidance for robot action learning. Based on
this hypothesis, we propose the Video Prediction
Policy (VPP), which learns implicit inverse dy-
namics model conditioned on predicted future rep-
resentations inside VDMs. To predict more pre-
cise future, we fine-tune pre-trained video foun-
dation model on robot datasets along with inter-
net human manipulation data. In experiments,
VPP achieves a 18.6% relative improvement on
the Calvin ABC-D generalization benchmark
compared to the previous state-of-the-art, and
demonstrates a 31.6% increase in success rates
for complex real-world dexterous manipulation
tasks. Videos and code are available at https:
//video-prediction-policy.github.io.

1. Introduction
Building generalist robot policies capable of solving a vari-
ety of tasks is a rapidly advancing area of research (Brohan
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Figure 1. Visual representations inside video prediction models ex-
plicitly express both current and future frames, providing valuable
future information for embodied agent. Previous vision encoders
did not have explicit future representations.

et al., 2023; Team et al., 2024; Wu et al., 2023a; Guo et al.,
2025; Cui et al., 2025; Ding et al., 2024; 2025; Shi et al.,
2025; Zhao et al., 2025). A crucial component in these gen-
eralist policies is the vision encoder, which captures visual
information from pixel observations. Many studies have
focused on optimizing vision representations for embodied
agents, often leveraging internet video datasets (Ebert et al.,
2021; Grauman et al., 2022) and self-supervised techniques
such as single-image reconstruction (Majumdar et al., 2023;
Karamcheti et al., 2023; Gupta et al., 2024), two-image con-
trastive learning, and image-text contrastive learning (Nair
et al., 2022; Ma et al., 2022). Although these visual pre-
training methods have demonstrated success for embodied
tasks, they may not fully exploit the dynamic information en-
coded in sequential video datasets, as they typically operate
on only one or two sampled images.

Recently, powerful video diffusion models (VDMs) (Ho
et al., 2022; Blattmann et al., 2023a; Hong et al., 2022;
Yang et al., 2024) have achieved impressive results in video
generation tasks. Instead of performing pre-training oper-
ation on single image or pairs of images, VDMs directly
model entire video sequences. Text-guided video predic-
tion models (TVPs) (Gu et al., 2023; Chen et al., 2023) can
even predict future frames based on current observations
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and instructions, demonstrating a good understanding of the
physical dynamics.

Inspired by the strong prediction capabilities of TVP mod-
els, we hypothesize that they inherently contain valuable
physical dynamics knowledge and can produce more effec-
tive visual representations for embodied agent. We take a
deeper look at the visual representation inside TVP models.
These representations are typically structured as a tensor
with dimensions (T,H,W ), explicitly representing 1 cur-
rent step and (T−1) predicted future steps (Blattmann et al.,
2023a), where H and W correspond to the height and width
of the image representation. In contrast, previous vision
encoders do not explicitly capture future representations, as
shown in Figure 1. Based on this distinction, we refer to
these latent variables within the video diffusion model as
“predictive visual representations”.

Our key insight is that the downstream policy can implicitly
learn the inverse dynamics model by tracking the robot’s
movements within the predictive representation. As long
as the video model accurately predicts future scenarios for
diverse tasks, the policy can generate appropriate actions
by tracking robot arm’s position implicitly. In this way, we
can transfer the generalization capabilities of the video pre-
diction model to robotic policy. We only need few demon-
strations to align the robot’s action space with the visual
space.

Building on this insight, we introduce the Video Prediction
Policy (VPP), which employs a two-stage learning process:
First, we fine-tune a general-purpose video diffusion model
into a text-guided video prediction (TVP) model using in-
ternet human and robot manipulation data (Goyal et al.,
2017; O’Neill et al., 2023). This step aims to develop a
controllable video generation model that improves predic-
tion capabilities in the manipulation domain. In the second
stage, we learn a inverse dynamics model conditioned on the
predictive representations from the TVP model. Since we
direct use the internal representation and avoid the need for
multiple denoising steps as in previous work (Black et al.,
2023; Du et al., 2024), VPP can operate at high frequency in
a closed-loop manner. We also visualize the representations
within the VDM and confirm that they effectively capture
key information about future evolution.

In experiments, VPP consistently outperform other baseline
algorithms across two simulated (Mees et al., 2022; Yu
et al., 2020) and two real-world settings, demonstrating the
effectiveness of our approach. Notably, the VPP achieves
a 41.5% improvement in the Calvin ABC→D benchmark
(Mees et al., 2022) compared to the previous SOTA method
(Wu et al., 2023a). In real-world experiments, VPP shows
a 31.6% improvement in success rate over the strongest
baseline on high-dimensional dexterous hand manipulation
tasks.

2. Related Works
Visual Representation Learning for Robotics. Self-
supervised learning (SSL) techniques, such as con-
trastive (Chen et al., 2021; 2020), distillation-based
(Baevski et al., 2022; Caron et al., 2020), and reconstruc-
tive (He et al., 2022; Bao et al., 2021), have achieved signif-
icant advancements in visual representation learning. Prior
research has shown that these SSL techniques enable vision
encoders to produce effective representations for embod-
ied AI tasks (Yadav et al., 2023b;a; Parisi et al., 2022; Ra-
dosavovic et al., 2023; Chen et al., 2024a), capturing both
high-level semantic and low-level spatial information. No-
tably, methods like R3M (Nair et al., 2022), vip (Ma et al.,
2022), VC-1 (Majumdar et al., 2023), and Voltron (Karam-
cheti et al., 2023) have specifically focused on embodied
tasks by innovating pre-training approaches on human ma-
nipulation video datasets (Goyal et al., 2017; Grauman et al.,
2022). However, regardless of the training objective, the
learned vision encoders primarily focus on extracting perti-
nent information from current observations without explic-
itly predicting future states. In contrast, our Video Predic-
tion Policy leverages predictive representations within video
prediction models to explicitly encapsulate both current and
predicted future frames.

Future Prediction for Embodied Control Tasks. Existing
research also explores the use of future prediction to en-
hance policy learning (Bharadhwaj et al., 2024; Chen et al.,
2024b; Ye et al., 2024; Guo et al., 2024; Zhang et al., 2025;
Song et al., 2025). For example, SuSIE (Black et al., 2023)
conditions its control policy on a predicted future keyframe
generated by InstructPix2Pix (Brooks et al., 2023), while
UniPi (Du et al., 2024) learns the inverse dynamics between
two generated frames. These methods rely on a single fu-
ture prediction step to determine actions, which may not
accurately capture the complexities of physical dynamics.
Additionally, they denoise the final future image which is
time-cosuming and lead to low control frequency. GR-1 (Wu
et al., 2023a) generates subsequent frames and actions au-
toregressively. However, it only generates one image per
forward pass, and its prediction quality lags behind that
of diffusion-based methods. Furthermore, GR-1 does not
leverage pre-trained video foundation models. In contrast,
VPP leverages representation fine-tuned from video founda-
tion model, and predict a sequence of future frames to more
effectively inform policy learning.

Visual Representation inside Diffusion Models. Diffusion
models have achieved remarkable success in the image and
video generation tasks (Rombach et al., 2022; Blattmann
et al., 2023a). Although diffusion models are trained as de-
noisers, researches have shown that image diffusion models
can also function effectively as vision encoders, generating
meaningful visual representations that is linear-separable
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for discrimination tasks (Xiang et al., 2023) and invalu-
able for semantic segmentation (Luo et al., 2024). Gupta
et al. (2024) also point out that representation inside image
diffusion are versatile for embodied tasks. However, the
capabilities of representations within video diffusion mod-
els have not been extensively explored. He et al. (2024) try
to use latent representation inside discrete VDMs to assist
policy learning, however it need not leverage pre-trained
video foundation models and train from scratch. Our find-
ings suggest that representation within pretrained VDMs
have a unique predictive property, making them especially
useful for sequential embodied control tasks.

3. Preliminaries
Video Diffusion Models. The core idea of diffusion models
is to continuously add Gaussian noise to make video se-
quences a Gaussian and leverage the denoising process for
generating videos. Let x0 represent a real video sample, the
forward process aims to add Gaussian noise and result in a
set of noisy data, i.e., q(xt|xt−1) = N (xt;

√
αtxt−1, (1−

αt)I) , where xt and αt indicate the noisy data and noise
amplitude at the timestep t. Let ᾱt =

∏t
i=1 αi, the above

process can be simplified as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt . (1)

The reverse process starts from the most noisy sample xT
can be described in a variational approximation of the prob-
abilities q(xt−1|xt), as follows:

p(xt−1|xt) = N (xt−1;
√
ᾱt−1µθ(xt, t), (1− ᾱt−1)I).

(2)

where µθ(xt, t) = (xt−
√
1− ᾱtϵθ(xt, t))/

√
ᾱt is a learn-

able neural network to estimate xt−1. Further, in text-
guided video generation, the denoising process learns the
noise estimator ϵθ(xt, c) to approximate the score function√
1− ᾱt∇xt

log pψ(xt|c), controlling the video generation
based on the initial frame and language prompt.

Diffusion Policy. The diffusion model has also proven effec-
tive in action learning, known as diffusion policy (Chi et al.,
2023). The diffusion policy aims to denoise the action se-
quence ai = (âi, âi+1, ..., âi+m) based on observations si
and instruction. Chi et al. (Chi et al., 2023) point out that dif-
fusion policy is capable of expressing complex multimodal
action distributions and stabilizing training. Recent work
(Reuss et al., 2024) further enhances the diffusion policy
by incorporating the advanced diffusion transformer (DiT)
block (Peebles & Xie, 2023), a technique we also adopt in
the Video Prediction Policy to improve performance.

4. Video Prediction Policy
In this section, we describe the two-stage learning process of
the Video Prediction Policy, shown in Figure 2. Initially, we

train the Text-guided Video Prediction (TVP) model across
diverse manipulation datasets to harness physical knowledge
from internet data; subsequently, we design networks to
aggregate predictive visual representations inside the TVP
model and output final robot actions.

4.1. Text-guided Video Prediction (TVP) Model for
Robot Manipulation.

Recent advancements have focused on training general
video generation models using extensive online video
datasets, which encode abundant prior knowledge about the
physical world’s dynamics. However, we notice that these
models are not fully controllable and fail to yield optimal
results in specialized domains such as robot manipulation.
To address this, we fine-tune the general video generation
model into a specialized “Manipulation TVP Model” to
enhance prediction accuracy.

We chose the open-sourced Stable Video Diffusion (SVD)
model (Blattmann et al., 2023a) with 1.5 billion parameters
as our foundation. we observe that the open-sourced SVD
model conditions only on initial-frame images s0. We aug-
ment the model to incorporate CLIP (Radford et al., 2021)
language feature lemb using cross-attention layers. Further-
more, we adjust the output video resolution to 16×256×256
to improve training and inference efficiency. Despite these
modifications, we preserve the other components of the
original pre-trained SVD framework to retain its core ca-
pabilities. We denote this modified version as Vθ. In this
setup, the initial observation s0 is concatenated channel-
wise with each predicted frame as a condition. Then model
Vθ is trained with diffusion objective, reconstructing the full
video sequence x0 = s0:T in datasetD from noised samples
xt =

√
ᾱtx0 +

√
1− ᾱtϵ:

LD = Ex0∼D,ϵ,t∥Vθ(xt, lemb, s0)− x0∥2 (3)

The video prediction objective offers a unified interface that
directly generates future visual sequences, enabling the TVP
model to harness physical knowledge from diverse datasets.
These include internet human manipulation datasets DH ,
internet robot manipulation data DR, and also self-collected
datasets DC . Given the varying quality and scale of these
datasets, we introduce specific coefficients λ to appropri-
ately balance the influence of different dataset types:

Lvideo = λHLDH
+ λRLDR

+ λCLDC
(4)

Then we froze the fine-tuned manipulation TVP models in
downstream action learning.

4.2. Action Learning Conditioned on Predictive Visual
Representation

TVP Model as Vision Encoder. After training the TVP
model specifically for manipulation tasks, it can accurately
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Figure 2. In the first stage, VPP fine-tunes a general-purpose video foundation model into a manipulation-focused Text-guided Video
Prediction (TVP) model using robot and internet manipulation datasets. In the second stage, we use video-former to aggregate the
representations from the TVP model during the first forward pass, followed by the diffusion policy head. This approach enables VPP to
learn an implicit inverse dynamics model from the predicted future while maintaining a high control frequency.

predict future sequences based on image observations and
instructions. However, denoising an entire video sequence
is highly time-consuming and may lead to open-loop con-
trol issues, as discussed in (Du et al., 2024). Moreover,
videos in their original pixel format often contain exces-
sive, irrelevant information that can interfere with effective
decision-making.

To address these concerns, we employ the video diffusion
model primarily as a “vision encoder” rather than a “de-
noiser” by performing only a single forward step. Our in-
sight is that the first forward step, while not yielding a clear
video, still provides a rough trajectory of future states and
valuable guidance. This insight is verified in our experiment
section and shown in Fig 4. Specifically, we concatenate the
current image s0 with the final noised latent q(xt′ |x0) (typi-
cally white noise) and input this combination into the TVP
model. We then directly leverage the latent features. Previ-
ous work (Xiang et al., 2023) highlights that up-sampling
layers in diffusion models yield more effective representa-
tions. The feature at the mth up-sampling layer, with width
Wm and height Hm, is expressed as:

Lm = Vθ(xt′ , lemb, s0)(m), Lm ∈ RT×Cm×Wm×Hm

To effectively aggregate features from the up-sampling lay-
ers and eliminate the need for manual layer selection, we
propose an automatic method for aggregating features across
different layers. First, we linearly interpolate each layer’s
feature map to the same height and width Wp ×Hp:

L′
m = Interpolation(Lm), L′

m ∈ RT×Cm×Wp×Hp

We then stack the features along the channel dimen-
sion. The final predictive visual representation Fp ∈

RT×(
∑

m Cm)×Wp×Hp is given by:

Fp = concate((L′
0, L

′
1, . . . , L

′
m), dim = 1)

For a robot with multiple camera views, such as a third-view
and a wristed camera, we predict the future for each view
independently, denoted as F staticp , Fwristp .

Video Former. These predictive representations within the
video diffusion model are still high-dimensional, as they
express a sequence of image features. To efficiently aggre-
gate representations across spatial, temporal, and multi-view
dimensions, we design a Video Former to consolidate this
information into a fixed number of tokens. The Video For-
mer initializes learnable tokens Q[0:T,0:L] with fixed length
T × L, performing spatial-temporal attention (Blattmann
et al., 2023b) on each corresponding frame, followed by
feed-forward layers. Formally, this branch can be expressed
as follows where i is the index of frame:

Q′ = {Spat-Attn(Q[i], (F staticp [i], Fwristp [i]))}Ti=0

Q′′ = FFN(Temp-Attn(Q′)).
(5)

Action Generation. After the Video-Former aggregates
the Predictive feature into learnable tokens Q′′, a diffusion
policy is employed as the action head to generate the action
sequence a0 ∈ A based on Q′′. We integrate the aggre-
gated presentation Q′′ into diffusion transformer blocks
using cross-attention layers. The diffusion policy aims
to reconstruct the original actions a0 from noised action
ak =

√
β̄ka0 +

√
1− β̄kϵ, where ϵ represents white noise,

and β̄k is the noisy coefficient at step k. This step can be
interpreted as learning a denoiser Dψ to approximate the
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Category Method Annotated Data ith Task Success Rate
1 2 3 4 5 Avg. Len ↑

Direct Action
Learning Method

RT-1 100%ABC 0.533 0.222 0.094 0.038 0.013 0.90
Diffusion Policy 100%ABC 0.402 0.123 0.026 0.008 0.00 0.56
Robo-Flamingo 100%ABC 0.824 0.619 0.466 0.331 0.235 2.47

Future Prediction
Related Method

Uni-Pi 100%ABC 0.560 0.160 0.080 0.080 0.040 0.92
MDT 100%ABC 0.631 0.429 0.247 0.151 0.091 1.55
Susie 100%ABC 0.870 0.690 0.490 0.380 0.260 2.69
GR-1 100%ABC 0.854 0.712 0.596 0.497 0.401 3.06

Vidman 100%ABC 0.915 0.764 0.682 0.592 0.467 3.42
3D Method RoboUniview 100%ABC 0.942 0.842 0.734 0.622 0.507 3.65

Ours VPP (ours) 100%ABC 0.965 0.909 0.866 0.820 0.769 4.33

Data
Efficiency

GR-1 10%ABC 0.672 0.371 0.198 0.108 0.069 1.41
VPP (ours) 10%ABC 0.878 0.746 0.632 0.540 0.453 3.25

Table 1. Zero-shot long-horizon evaluation on the Calvin ABC→D benchmark where agent is asked to complete five chained tasks
sequentially based on instructions. VPP demonstrates a significant improvement in the average task completion length (Avg. Len).

Env C                 Unseen Env D

Env A                        Env B Easy Tasks

Middle Tasks

Hard Tasks

Figure 3. CALVIN and Metaworld benchmarks.

Task Level
(Numbers)

Easy
(28 tasks)

Middle
(11 tasks)

Hard
(11 tasks)

Average ↑
(50 tasks)

RT-1 0.605 0.042 0.015 0.346
Diffusion Policy 0.442 0.062 0.095 0.279

Susie 0.560 0.196 0.255 0.410
GR-1 0.725 0.327 0.451 0.574

VPP (ours) 0.818 0.493 0.526 0.682

Table 2. Multi-task success rate on Metaworld. We use a single language-
conditioned policy to solve all 50 tasks.

noise ϵ and minimize the following loss function:

Ldiff(ψ;A) = Ea0,ϵ,k∥Dψ(ak, lemb, Q
′′)− a0∥2 (6)

5. Experiments
In this section, we conduct extensive experiments on both
simulated and real-world robotic tasks to evaluate the per-
formance of the video prediction policy (VPP). We aim to
answer the following questions:

1. Can VPP achieve a higher success rate in manipulation
tasks with predictive visual representations?

2. How do the video pre-training and internet manipula-
tion datasets enhance the performance of VPP?

3. How does predictive representation compare to previ-
ous visual representations?

4. Which layer of the video diffusion model provides the
most effective predictive visual representations?

5.1. Simulation Setups and Baselines

CALVIN Benchmark. CALVIN (Mees et al., 2022) is a
widely used benchmark designed to assess the instruction-
following capability of robotic policies in long-horizon ma-
nipulation tasks. We focus on the challenging ABC→D

setting, where the agent is trained in the ABC environment
and evaluated in the unseen D environment, as illustrated in
Figure 3. We use settings same as GR1 (Wu et al., 2023a)
which only use the language-annotated ABC datasets for
training.

MetaWorld Benchmark. Metaworld (Yu et al., 2020) fea-
tures a Sawyer robot performing various manipulation tasks
and is widely used to evaluate the precision and dexterity
of robotic policies. As shown on the right of Figure 3, it
includes 50 tasks with a rich array of operating objects at
different levels of difficulty (Radosavovic et al., 2023). We
use official Oracle policy to collect 50 trajectories for each
task as our training dataset.

VPP Training Details. As outlined in Sec. 4, we use a two-
stage training process. In the first stage, we fine-tune a video
foundation model into a manipulation-focused TVP model.
The videos used in this stage include 193,690 human manip-
ulation trajectories (Goyal et al., 2017) and 179,074 robotic
manipulation trajectories (O’Neill et al., 2023), along with
downstream task videos, such as the official Calvin ABC
videos, the MetaWorld videos, and real-world videos. Given
the varying scales and quality of these datasets, we ap-
ply different sampling ratios, following the approach in
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Octo (Team et al., 2024). Detailed dataset scales and sam-
pling ratios can be found in Appendix B. Fine-tuning the
video model takes 2-3 days on eight NVIDIA A100 GPUs.
In the second stage, we train a generalist policy with Calvin
or Metaworld dataset, which requires approximately 6-12
hours on four NVIDIA A100 GPUs.

Policy Roll-out Details. Previous works choose to denoise
high-precision videos, a process that is time-consuming and
results in low-frequency (Black et al., 2023), or even open-
loop control (Du et al., 2024). In contrast, our approach
uses the TVP model as an encoder rather than a denoiser,
ensuring that each observation is processed through the TVP
model only once, which takes less than 160 ms. Then down-
stream policy generate action conditioned on the predictive
representation. This modification allows us to achieve a
significantly higher frequency of 7-10 Hz with consumer-
level NVIDIA RTX 4090 GPU. Additionally, we implement
action chunking (Chi et al., 2023) with 10 steps to further
improve the control frequency.

Comparisons. Generalist robot policy has been widely
explored in previous studies. In our experiments, we opted
to compare against a representative subset of prior methods
that have either achieved state-of-the-art performance or
share a similar approach with our methods.

• RT-1 (Brohan et al., 2022). A direct action learning
robot policy that integrates semantic information us-
ing Efficient-Net with FiLM-conditioning, followed by
token learners for action learning.

• Diffusion Policy (Chi et al., 2023). A direct action
learning policy with novel action diffusers.

• Robo-Flamingo (Li et al., 2023). A direct action learn-
ing policy that leverages a pre-trained LLM, incorpo-
rating visual information into each layer in a flamingo
style (Alayrac et al., 2022).

• Uni-Pi (Du et al., 2024). Begins by learning a video
prediction model to generate future sequences and then
learns an inverse kinematics model between two frames
to determine actions.

• MDT (Reuss et al., 2024). Learns a diffusion trans-
former policy along with an auxiliary mae loss to re-
construct one masked future frame.

• Susie (Black et al., 2023). Uses a fine-tuned Instruct-
Pix2Pix (Brooks et al., 2023) model to generate a goal
image and learns a downstream diffusion policy condi-
tioned on the goal image.

• GR-1 (Wu et al., 2023a). Learns video and action se-
quences jointly using an auto-regressive transformer.
During policy execution, GR-1 outputs one future
frame followed by one action.

• Robo-Uniview (Liu et al., 2024). Learns a 3d-aware
visual encoder with 3d occupation loss to assist policy
learning.

• Vidman (Wen et al., 2024). Pre-trained on the Open
X-Embodiment dataset (OXE) video datasets and use
a layer-wise self-attention adapter to transform video
representation into policy model. However, Vidman
did not finetune video model on down-stream tasks
which lead to sub-optimal performance.

Quantitative Results. The comparisons on the Calvin
benchmark are shown in Table 1. Results for Robo-
Flamingo, Susie, GR-1, and 3D Diffuser Actors are recorded
from their original papers. The MDT result is run on official
implementation. The RT-1 result is sourced from (Li et al.,
2023) and the Uni-Pi result from (Black et al., 2023). We
also ran the Diffusion Policy based on the official open-
source codebase with CLIP language conditions. Our pro-
posed Video Prediction Policy significantly improved the
previous state-of-the-art result from an average task com-
pletion length of 3.65 to 4.33. Even with only 10% of the
annotated Calvin ABC data used for training, our method
still achieved a length of 3.25, which exceeds the results
of related methods using full data. Furthermore, the Video
Prediction Policy also achieved the best performance in
the MetaWorld benchmark with 50 tasks, outperforming
the similar strongest GR-1 baseline by 10.8% in average
success rate.

Visualizations of Predictive Representations. Since we
use the video prediction model as a vision encoder and
perform a single forward pass to obtain predictive represen-
tations, we are curious about the quality of these represen-
tations. In Figure 4 , we visualize the ground truth future,
single-step predictions, and 30-step denoised predictions.
We can observe that single-step representation already con-
veys valuable information, such as the movement of objects
and the robot arm, which effectively supports downstream
action learning.

5.2. Ablation Study

VPP achieves significant improvements in simulated ex-
periments. In this section, we conduct ablation studies to
identify the effectiveness of different components of VPP.
All ablation study are performed on Calvin ABC-D bench-
mark and evaluated with average task completion length.

Effectiveness of Predictive Visual Representations. To
verify the effectiveness of representation inside VDM, we
replace the VDM vision encoder with several other pre-
trained vision encoders designed for embodied tasks, while
keeping all other components and settings unchanged.

1. Stable-VAE (Blattmann et al., 2023a), pre-trained with
a VAE image reconstruction loss. Since the VAE
encoder-decoder already performs well in reconstruct-
ing images from video datasets, we did not perform
further fine-tuning. The input 256×256 images are en-
coded into 32×32 features with VAE, which are then
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  Input                           Ground Truth                    30 Steps Denoise Prediction                   1 Step Direct Prediction

            “Place the grasped object in the drawer.”                                                                             “Place the orange to blue plate.”

Figure 4. Visualization of one-step forward visual representations. We can observe that one-step representation already provide valuable
information on physical evolution, although the textures and details are not precise.

Encoder Pre-training Type Avg. Length ↑
VDM (ours) Video Generation 4.33
Stable-VAE VAE Reconstruction 2.58

VC-1 MAE Reconstruction 1.23

Voltron
MAE Reconstruction+
Language Generation 1.54

Table 3. Ablation study on different visual representations.

Ablation Type Avg. Length ↑ Latency ↓
VPP 4.33 ∼140ms

VPP w/o Internet data 3.97 ∼140ms
VPP w/o Calvin video 3.31 ∼140ms
VPP w/o Internet data

w/o SVD Pretrain 1.63 ∼140ms

VPP w/o Video Former 3.86 ∼450ms
VPP w/o Feature Agg. 3.60 ∼140ms

Table 4. Ablation study on video pre-training and architecture.

resampled into 256 tokens via resampler (Jaegle et al.,
2021) before passing to the diffusion policy, consistent
with VPP.

2. VC-1 (Majumdar et al., 2023), pre-trained with a
masked autoencoder loss. The authors note that fine-
tuning vc-1 encoder with MAE loss on downstream
task datasets can significantly improve performance.
For a fair comparison, we first fine-tuned the model on
the same video datasets used in VPP. The vc-1 features
are resampled into 256 tokens with resampler and pass
to policy head.

3. Voltron (Karamcheti et al., 2023), pre-trained with both
MAE future reconstruction and language generation
tasks. We also fine-tuned the model on our video
datasets and resampled the features into 256 tokens.

The results, presented in Table 3, indicate that replacing our
predictive visual representations leads to a clear decline in
performance.

Effectiveness of Video Pre-training and Internet Manip-
ulation Datasets. A significant advantage of the VPP is

its ability to leverage the physical knowledge encoded in
pre-trained video generation models and Internet manipu-
lation datasets. We conducted experiments to verify the
effectiveness of these two components. As shown in Table
4, removing the co-trained Internet manipulation data re-
sulted in a performance decrease from 4.33 to 3.97. Further
removing the pre-trained SVD model and training the video
prediction model from scratch on the Calvin dataset led
to a substantial performance drop. Notably, removing the
video pretraining on Calvin alone also caused a significant
decline.

Effectiveness of Video Former. The Video Former module
plays a pivotal role in extracting predictive representations
from the TVP model. To evaluate its effectiveness, we
conduct an ablation study by removing the Video Former
and directly connecting the TVP features to the diffusion
policy. The results, presented in Table 5, are obtained by
evaluating the complete VPP model on a single NVIDIA
RTX 4090 GPU. The VPP score decreases from 4.33 to
3.86, while the inference time nearly triples. These findings
indicate that the absence of the Video Former leads to a
substantial degradation in both accuracy and computational
efficiency compared to the full model.

Effectiveness of Feature Aggregation Module. Many pre-
vious works (Black et al., 2023; Wu et al., 2023a) directly
use the final predicted image to learn policies. However, the
image from the final layer often contains many irrelevant
details that are not beneficial for the task. In contrast, we
adopt a feature aggregation mechanism to leverage multiple
layers of features within the up-sampling layers. We replace
aggregated features with final layer features while keeping
the other layers unchanged. This process lead to a decrease
in the average task completion length on the Calvin bench-
mark, from 4.33 to 4.05. More ablations on different layers
can be found at Appendix C.2.

5.3. Real World Experiments

We further verified the Video Prediction Policy on two real-
world hardware platforms.
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Franka Panda 
with over 30+ tasks

Dexterous Hand
with over 100+ tasks

“Take the banana 
from my hand.”

“Place the mouse 
on the mouse pad.”

“Place the cup 
on the mat.”

“Stack red block 
on the green block.”

“Put the green towel 
in the basket.”

“Place red ball to empty 
position of board.” 

“Open the drawer.” “Pick up the 
red block.”

Wristed 
Camera

Third-view Camera
& Wristed Camera

“Grasp potato 
into the pot.”

“Relocate banana 
near the panda.”

“Press the button.” 

“Pick up the 
smaller soccer.”

“Close the drawer.” “Put the green toy
into the drawer.”

“Take a spoonful 
of soup.”

“Pour the black liquid 
into blue bowl.”

“Grasp hammer to hit
Red nail.”

“Grasp the 
Electrical drill.”

“Use tool to suck up 
black liquid.”

“Drop liquid into 
orange cup.”

“Pick up the 
blue block.”

Seen Tasks                                                    Unseen Tasks                                      Challenging Tool-use Tasks

Figure 5. Two real-world hardware platforms and visualizations of sampled tasks. We consider a task as “unseen task” if the operated
object or the background scene do not appear in training datasets.

“Relocate the tennis ball to the blue plate. ”                  “Pouring coca cola into the cup. ”                    “Take a spoonful of liquid using spoon.”                               

Figure 6. Predictions and executions on unseen tasks. Video prediction model generate reasonable futures (red). Real execution
trajectories (green) is also closely aligned to the video predicted future (red).

Franka Panda Robot Arm. On the Franka Panda platform,
we collected 2,000 trajectories for over 30 tasks in 6 cat-
egories: picking, placing, pressing, routing, opening, and
closing. We divided the tasks into seen and unseen cate-
gories. A task is considered unseen if the operated object is
new or the background scene is new.

Xarm with 12-degree Xhand Dexterous Hand. On the
dexterous hand platform, we collected 4,000 trajectories
over 100+ tasks in 13 categories, including picking, placing,
cup-upright, relocating, stacking, passing, pressing, unplug-
ging, opening, closing, pouring, suction, and knocking. We
also define a task as unseen if the operated object is new
or the background scene is new. Additionally, we included
four challenging tool-use tasks, including the use of a spoon,
hammer, electrical drill, and pipette for chemistry tasks.
More task details can be found in Appendix A.

Training and Rollout Details. We employ the same text-
guided video prediction (TVP) model as in our simulated
experiments, trained on both internet datasets and collected
real-world data. Then a generalist robot policy is learned
to solve all tasks in the domain conditioned on instructions.
The hardware platform and visualizations of some selected
tasks are shown in Figure 5.

Franka Panda DP Susie GR-1 VPP(ours)
Seen Tasks 0.42 0.56 0.52 0.85

Unseen Tasks 0.25 0.46 0.38 0.73

Dexterous Hand DP Susie GR-1 VPP(ours)
Seen Tasks 0.28 0.45 0.32 0.75

Unseen Tasks 0.11 0.28 0.15 0.60
Tool-use Tasks 0.05 0.23 0.15 0.68

Table 5. Success rates on real-world tasks. Due to space limit, we
only show the average success rate on each category. Detailed
success rate can be found at Appendix A

Quantitative Results. Due to the complexity of deploying
methods on real-world hardware, we select the strongest
baseline models—GR-1, Susie, and the widely-used diffu-
sion policy—as our baselines. For evaluation, we perform
200+ rollouts for Panda arm manipulation tasks and 500+
rollouts for dexterous hand manipulation tasks. The compar-
isons are in the Table 5, which indicate VPP outperforms all
the baselines with a clear margin in both seen tasks, unseen
tasks and tool-use tasks.

Generalization Analysis. we take three unseen tasks as
case studies: picking up a tennis ball, pouring Coca-Cola,
and using a spoon. Notably, none of these objects—tennis
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ball, Coca-Cola, or spoon—appear in our collected dataset.
As illustrated in Figure 6, the video prediction model fore-
cast reasonable future states even on unseen tasks. More-
over, we observe that the actual execution trajectory closely
aligns with the predicted future state. We interpret the gen-
eralization mechanism of the VPP model in two key aspects:
First, video models can make correct visual predictions even
on unseen tasks due to internet-scale pre-training; Second,
the low-level policy learns a robust inverse dynamics model
that only needs to implicitly track the movement of the
robot in the predicted future, without the need to focus on
new objects or backgrounds. In this way, the VPP model
successfully generalizes to a wide range of unseen tasks.

6. Conclusion
We introduce Video Prediction Policy (VPP), a novel ap-
proach for learning a generalist robot policy. VPP learns an
implicit inverse dynamics model conditioned on predictive
representations inside VDMs and yields consistent improve-
ments across both simulated and real-world tasks. As video
generation models are more and more powerful these days,
we aim to fully unlock the power of video model in building
physical intelligence and highlight the potential of video
generation models in embodied tasks.
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For your convenience, videos can be found at https://video-prediction-policy.github.io

Code can be found at supplementary materiel.

A. Real-world experiments
A.1. Panda Maniplation

On the Franka Panda platform, we gathered demonstrations by teleoperating the Panda robotic arm using a space mouse.
we collected 2k trajectories for over 30+ tasks of 6 categories including picking, placing, pressing, routing, opening, and
closing. Detailed success rates for each task in seen and unseen settings are shown in Table 6.

Seen Tasks
Diffusion

Policy Susie GR-1 VPP

Pick 0.36 0.56 0.52 0.90
Place 0.40 0.42 0.38 0.86
Press 0.65 0.90 0.80 0.85
Route 0.40 0.55 0.50 0.75

Drawer 0.45 0.60 0.60 0.85
Average 0.425 0.563 0.519 0.856

Unseen Tasks
Diffusion

Policy Susie GR-1 VPP

Pick 0.24 0.40 0.32 0.80
Place 0.12 0.44 0.32 0.72
Press 0.50 0.60 0.60 0.80
Route 0.20 0.50 0.50 0.70

Drawer 0.40 0.50 0.40 0.60
Average 0.250 0.463 0.388 0.737

Table 6. Specific success rate at category level. In seen tasks, We evaluate pick and place tasks 50 times and other tasks 20 times
respectively. In unseen tasks, we evaluate pick and place tasks 25 times and other tasks 10 times respectively

Figure 7. Data collection setups.

A.2. Dexterous Manipulation

To collect data for dexterous manipulation, we employ Vision-Pro to capture the finger joint movements of the human
hand, which are then retargeted to our 12-degree-of-freedom dexterous hand. This setup enables a human operator to
directly control the dexterous hand during various manipulation tasks. We collected 4.0k trajectories over 100+ tasks of 13
categories, including picking, placing, cup-upright, relocating, stacking, passing, pressing, unplugging, opening, and closing.
A low-level PD controller is used to smooth the trajectories generated by VPP.

The detailed success rates for each task category in both seen and unseen settings are shown in Table 7.

1
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Seen Tasks
Diffusion

Policy Susie GR-1 VPP

Pick 0.38 0.61 0.48 0.83
Pick&Place 0.35 0.55 0.40 0.79
Cup-upright 0.00 0.00 0.00 0.64

Relocate 0.28 0.44 0.16 0.80
Stack 0.00 0.08 0.00 0.64
Pass 0.040 0.00 0.00 0.48
Press 0.68 0.96 0.64 0.96

Unplug 0.00 0.00 0.00 0.52
Drawer 0.40 0.64 0.48 0.72
Average 0.287 0.450 0.319 0.749

Unseen Tasks
Diffusion

Policy Susie GR-1 VPP

Pick 0.12 0.42 0.26 0.75
Pick&Place 0.08 0.32 0.20 0.68
Cup-upright 0.00 0.00 0.00 0.40

Relocate 0.12 0.32 0.12 0.76
Stack 0.00 0.00 0.00 0.56
Pass 0.00 0.00 0.00 0.32
Press 0.44 0.76 0.40 0.88

Unplug 0.00 0.00 0.00 0.20
Drawer 0.28 0.44 0.24 0.56
Average 0.110 0.328 0.159 0.605

Tool-use Tasks
Diffusion

Policy Susie GR-1 VPP

Spoon 0.0 0.4 0.3 0.9
Hammer 0.2 0.2 0.1 0.6

Drill 0.0 0.1 0.2 0.8
Pipette 0.0 0.0 0.0 0.4

Average 0.05 0.23 0.15 0.68

Table 7. Specific success rate at category level. In seen tasks, We evaluate pick and place tasks 100 times and other tasks 25 times
respectively. In unseen tasks, we evaluate pick and place tasks 50 times and other tasks 20 times respectively. We evaluate each tool-use
task for 10 times.

B. Video Prediction Model
B.1. Datasets Sample Ratios

Given the varying quality and scale of these datasets, we have introduced different sample ratios to appropriately balance the
influence of different datasets, similar to (Team et al., 2024). Detailed information is shown in Table 8.

B.2. Quantitative result on Prediction Quality

Our TVP models successfully predict future frames on validation datasets across diverse manipulation tasks, with some
prediction results visualized in Appendix B.3. Additionally, we evaluate the quantitative FVD metric (Unterthiner et al.,
2018) on the bridge datasets (Ebert et al., 2021), following the evaluation settings in Seer (Gu et al., 2023). The results are
shown in Table 9. Surprisingly, our model easily outperforms the previous TVP model. We attribute this improvement to
our use of the pre-trained video foundation model SVD (Blattmann et al., 2023a), which the earlier TVP model did not
leverage, giving us a significant advantage.
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Dataset Type Name Trajectory Numbers Smaple Ratio
Internet
Human Maniplation

Something-
something-v2 191,642 0.30

Internet
Robot
Datasets

RT-1 87,212 0.15
Bridge 23,377 0.15
BC-Z 43,264 0.08
Taco-Play 3,603 0.01
Jaco-Play 1,085 0.01
Calvin-ABC 18,033 0.10
Metaworld 2,500 0.05

Self-Collected
Datasets

Panda Arm 2,000 0.05
Dexterous Hand 2,476 0.10

Total - 375,192 1.00

Table 8. We outline the dataset scales and sample ratios used for training our manipulation text-guided video prediction model. Following
(Gu et al., 2023), we exclude 5,558 bridge trajectories and 2,048 something-something-v2 trajectories during training, reserving them for
validation. For all other datasets, 3% of the trajectories are excluded and used as validation datasets.

Bridge VideoFusion Tune-A-Video Seer VPP
FVD↓ 501.2 515.7 246.3 41.4

Table 9. Quantitative evaluation of prediction quality on bridge datasets. The results of VideoFusion (Luo et al., 2023), Tune-A-Video (Wu
et al., 2023b), Seer (Gu et al., 2023) are copied from (Gu et al., 2023).

B.3. More Visualization of Complete Prediction Results

We present additional visualizations of prediction results from our fine-tuned manipulation TVP model. Predictions on
human manipulation datasets are displayed in Figure 8, and those on robotic manipulation datasets are illustrated in Figure
10. All trajectories are sampled from the validation datasets and are predicted using the same manipulation TVP model.
Each sample was denoised in 30 steps using classifier-free guidance set at 7.5, as described in (Gu et al., 2023). Our TVP
model predicts a horizon of 16, and we visualize 8 frames at a skip step of 2 due to space constraints.

B.4. More Visualizations of Predictive Representations

We visualize the intermediate predictive representations through one-step direct predictions. Additional visualizations can
be found in Figure 9. As discussed in the experimental section, while the textures and details in the one-step forward videos
are not precise, they still offer valuable insights into physical evolution. The movements of objects and robot arm itself
already can be reflected in the visualized representations.

C. More Details for Experiments
C.1. Structure details

We provide the VPP architecture and hyperparameter setting details in four evaluate environments, as shown in Table 13.
The transformer block in TVP follows the setting in (Blattmann et al., 2023a), and the rest of the hyperparameter in Diffusion
Transformer follows the work (Reuss et al., 2024).

C.2. More ablation

In this section, we present additional ablation experiments conducted under the ABC→D setting of CALVIN (Mees et al.,
2022).

Ablation 1 on the video former entails the removal of the Temporal-attn module from the Video Former while maintaining
all other configurations same as VPP. The results, displayed in Table 12, demonstrate that the Temporal-attn module could
enhance the temporal comprehension capabilities of the Video Former.

Ablation 2 on the number of denoising steps introduces a 2-step denoising process in the TVP to derive the predictive
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visual representation. The outcomes are summarized in Table 12, revealing that the 2-step process did not yield superior
performance. We hypothesize this is because a single denoising step suffices to generate an effective representation for
trajectory prediction in our configuration. Additionally, the 2-step denoising process nearly doubles the inference time and
reduces the control frequency by half. Due to these factors, we opted for a one-step direct encoder in our main experiments.

Single-view Ablation evaluate the Calvin ABC→D task using only a single observation viewpoint (static view) and find that
the success rate for Task 5 reaches 3.58. This even surpasses the success rate achieved by the state-of-the-art 3D Diffuser
Actor, which utilizes two viewpoints along with depth images.

Ablations on using different layers of features The average task completion length are listed in Table 10.

Ablations on using different diffusion time-step The average task completion length are listed in Table 11.

Calvin abc-d Layer-3 Layer-6 Layer-9 Layer-12 VPP
Avg. Len 3.72 3.88 4.29 4.05 4.33

Table 10. Ablations on different layers of features.

Calvin abc-d Time-step 10 Time-step 20 Time-step 30
Avg. Len 4.21 4.33 4.25

Table 11. Ablations on the Use of different diffusion time-step.

Method Tasks completed in a row
1 2 3 4 5 Avg. Len ↑

VPP(Ours) 0.965 0.909 0.866 0.820 0.769 4.33
VPP(Single-view) 0.909 0.815 0.713 0.620 0.518 3.58

Ablation.1 0.949 0.900 0.839 0.780 0.714 4.18
Ablation.2 0.951 0.904 0.840 0.777 0.718 4.19

Table 12. More ablation studies.

C.3. Baseline Implementations

The baseline methods, including RT-1 (Brohan et al., 2022), GR-1 (Wu et al., 2023a), and Diffusion Policy (Chi et al., 2023),
are implemented based on their official repositories. For comparison with Susie (Black et al., 2023) in both the Metaworld
and real-world manipulation scenarios, we adopt InstructPix2Pix (Brooks et al., 2023) as the future frame predictor and use
an image-goal Diffusion Policy (Chi et al., 2023) to generate the state sequence.
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Type Name Calvin Metaworld Franka Panda Xhand

Prediction Video lens 16 8 16 16
Action shape 10 ∗ 7 4 ∗ 4 10 ∗ 7 10 ∗ 18

TVP Language shape 20 ∗ 512 20 ∗ 512 20 ∗ 512 20 ∗ 512
Image shape 256 ∗ 256 256 ∗ 256 256 ∗ 256 256 ∗ 256

Video Former

Token shape 16 ∗ 14 ∗ 384 8 ∗ 28 ∗ 384 14 ∗ 16 ∗ 384 14 ∗ 16 ∗ 384
Input dim 1280 1280 1280 1280
Latent dim 512 512 512 512
Num heads 8 8 8 8
num Layers 6 6 6 6

Diffusion Transformer

Latent dim 384 384 384 384
Condition shape 225 ∗ 384 225 ∗ 384 225 ∗ 384 225 ∗ 384
Num heads 8 8 8 8
Encoder Layers 4 4 4 4
Decoder Layers 4 4 4 4
Sampling Steps 10 10 10 10

Hyperparameter

TVP batchsize 4 4 4 4
Policy batchsize 76 64 128 128
Epoch nums 12 30 30 40
Learning rate 1 ∗ 10−4 5 ∗ 10−5 1 ∗ 10−4 1 ∗ 10−4

Table 13. Hyper-parameters in the Video Prediction Policy (VPP).
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Figure 8. Visualization of video prediction results on Internet human manipulation validation datasets with 30 steps de-noising.
The green frames indicate the ground truth while the red frames indicate the predicted futures. Zoom in for better comparisons.

Figure 9. Visualization of Predictive representations. Green frames represent the ground truth, red frames correspond to the predicted
future states, and blue frames illustrate the visualized predictive representations. Zoom in for better comparisons.
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Figure 10. Visualization of video prediction results on robotic datasets with 30 steps de-noising. The green frames indicate the ground
truth while the red frames indicate the predicted futures. (a)-(j) are sourced from internet robotic while (k)-(p) are from self-collected
datasets. Zoom in for better comparisons.
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