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Simple, Scalable Reasoning via Iterated Summarization

Anonymous Authors1

1. Introduction
Recent advances in optimizing language models for rea-
soning via reinforcement learning have yielded dramatic
improvements on mathematical tasks (OpenAI, 2024;
DeepSeek-AI et al., 2025). Much of this improvement
comes from “thinking” longer, which has motivated test-
time techniques to extend how long they think (Muennighoff
et al., 2025). However, these techniques increase the length
of the reasoning trace, leading to substantial computational
and memory overhead. While various approaches reduce
this cost through specialized training (Yan et al., 2025; Ag-
garwal & Welleck, 2025; Xia et al., 2025; Cheng & Durme,
2024), we ask: can simple test-time interventions manage
expanding context windows without additional training?

We investigate iterated summarization (IS) as a practical
framework where models alternate between generating and
summarizing reasoning traces (Figure 2). This training-free
approach leverages pretrained LLMs’ summarization capa-
bilities to enable extended mathematical reasoning within
bounded contexts. The key challenge lies in determining
what constitutes an effective summary of mathematical rea-
soning. Should we preserve intermediate calculations, proof
strategies, or only critical insights? We systematically ex-
plore summarization strategies ranging from simple heuris-
tics to LLM-based approaches. Our most effective method
uses an LLM to summarize traces with emphasis on back-
tracking moments—points where the model reconsiders its
approach—which are particularly valuable in mathematical
problem-solving.

Our contributions:

• We introduce Iterated Summarization (IS), enabling
models to “think longer” on mathematical problems
without significantly increasing the context.

• We explore multiple summarization techniques and
identify behaviors that unlock greater reasoning capa-
bilities.

• On AIME 2024 and 2025, our best IS technique
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achieves an 11% performance boost over baselines.

2. Iterated Summarization
IS alternates between reasoning and summarization (Figure
2). In iteration t, a reasoning model R produces trace rt,
which a summarizer S compresses into summary st. The
model then regenerates a solution using all prior summaries
s1 . . . st−1 as context. We use T=5 iterations in our experi-
ments.

2.1. Summarization Methods

We compare four summarization approaches:

1. Base Summary: Prompts an LLM to summarize the
reasoning trace without specific instructions to under-
stand what the summarizer inherently preserves.

2. Backtracking Summary: Instructs the summarizer to
highlight moments where the model changed approach
or revised thinking, motivated by recent work identi-
fying backtracking as crucial for successful reasoning
(Gandhi et al., 2025; Venhoff et al., 2025).

3. Post-Think: Extracts the final answer after the
</think> tag—typically a brief solution justifying
the answer. Open-weights reasoning models structure
responses with <think> tags enclosing their reason-
ing, followed by this “post-think” answer.

4. Last-k truncation: Takes the last k=404 tokens be-
fore </think>, capturing the most recent reasoning
steps. We set k to match the average length of Base
summaries for fair comparison.

2.2. Baselines

Self-consistency Samples multiple solutions and takes
majority vote (Wang et al., 2023). We use 5 samples to
match IS iterations.

Budget forcing (Wait”) Extends reasoning by replacing
</think> with Wait” (Muennighoff et al., 2025), forcing
continued reasoning within context limits.

First-k truncation Negative control taking first k tokens
after <think>.
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Method AIME 2024 AIME 2025 Combined

Pass@1 0.733 ± 0.019 0.525 ± 0.050 0.629 ± 0.026
Self-Consistency 0.753 ± 0.056 0.630 ± 0.059 0.692 ± 0.055
“Wait” 0.733 ± 0.024 0.533 ± 0.043 0.633 ± 0.018
Answer Only 0.808 ± 0.021 0.558 ± 0.042 0.683 ± 0.029
Post-Think 0.792 ± 0.028 0.658 ± 0.042 0.725 ± 0.020
First-k 0.658 ± 0.021 0.450 ± 0.029 0.554 ± 0.022
Last-k 0.783 ± 0.017 0.608 ± 0.021 0.696 ± 0.014
Base Summary 0.775 ± 0.016 0.642 ± 0.037 0.708 ± 0.020
Backtracking Summary 0.817 ± 0.017 0.667 ± 0.043 0.742 ± 0.025

Table 1. Accuracy (± 1 SEM) across methods for AIME 2024,
AIME 2025, and combined datasets. The best method is bold and
the second-best is underlined.

Answer Only Provides only “The answer is final
answer” as summary.

3. Results & Analysis
3.1. Experimental Setup

We use DeepSeek-R1-Distill-Qwen-14B as our reasoner
R and Qwen2.5-14B-Instruct as our summarizer S, se-
lecting models with room for improvement to demonstrate
benefits from extended thinking. We evaluate on AIME
2024 and AIME 2025, comprising 60 high-school math-
ematics competition problems (Mathematical Association
of America, 2024; 2025). Following DeepSeek-AI et al.
(2025), we use temperature 0.6, top-p 0.95, and maximum
generation length of 32,768 tokens. We report mean accu-
racy ± SEM across four independent runs per condition.

3.2. Iterated Summarization Boosts Reasoning

Table 1 shows all IS methods (except First-k) outperform
Pass@1 on both AIME datasets. Our best method, Back-
tracking Summary, achieves +11.3% overall improvement
over Pass@1 (+8.4% AIME 2024, +14.2% AIME 2025) and
+5.0% over Self-Consistency. Figure 1 shows Backtrack-
ing Summary and Post-Think accuracy increasing nearly
monotonically across iterations.

The “Wait” baseline shows minimal improvement (+0.4%),
and generates only 1,345 tokens per continuation versus
9,018 tokens per IS iteration. This reveals a key difference:
budget forcing merely extends existing reasoning, while IS
enables complete solution re-attempts. Even Answer Only
(67.1%) outperforms “Wait”, showing that minimal prior
information aids subsequent attempts.

We examined reasoning traces and their summaries to gain
insights into the properties of Iterated Summarization. Un-
like methods like self-consistency that generate independent
solutions, IS enables the model to retain relevant portions of
the previous attempts and focus effort on trying something
new. This progressive improvement is evident when early
iterations establish correct foundations (such as setting up
equations or coordinate systems) but make errors in later

Method Improved (%) Regressed (%)
wrongt=1 → correctt=5 correctt=1 → wrongt=5

“Wait” 2.00 ± 2.00 0.60 ± 0.60
Answer-Only 30.26 ± 6.76 8.86 ± 3.55
Post-Think 30.11 ± 4.00 2.57 ± 1.86
First-k 21.85 ± 3.64 24.99 ± 3.70
Last-k 23.19 ± 2.71 3.23 ± 2.50
Base Summary 27.88 ± 2.90 4.03 ± 0.85
Backtracking Summary 31.81 ± 3.49 0.66 ± 0.66

Table 2. Stability of methods for extending test-time compute (± 1
SEM) The best method is bold and the second-best is underlined.

steps. Subsequent iterations often preserve these founda-
tions, spending compute on exploring new approaches. In
contrast to other summarization methods, backtracking sum-
maries often describe abandoned approaches, allowing the
model to learn from these attempts.

3.3. Stability of Iterated Summarization

We evaluate whether IS enables solving initially unsolved
problems (improvement) while minimizing regression on
initially solved problems. Tracking problems from iteration
0 to 5, our best method (backtracking) achieves the highest
improvement-to-regression ratio: solving 31.81% of ini-
tially incorrect problems while regressing on only 0.66%
of initially correct ones. This demonstrates IS as a stable
method for scaling inference-time compute.

Conclusion
Iterated Summarization is a framework that alternates be-
tween reasoning and summarization of reasoning traces to
extend a model’s thinking time while managing the chal-
lenges that come with longer reasoning. On the AIME 2024
& 2025 benchmarks, our best variant, Backtracking Sum-
mary, boosts accuracy by over 11% compared to Pass@1,
while also outperforming self-consistency and “Wait” base-
lines. Crucially, these gains are stable: later iterations cor-
rect 31.81% of previously unsolved problems while regress-
ing on only 0.66% of solved ones.

Impact Statement
This paper presents IS, a lightweight, model-agnostic frame-
work that empirically extends the reasoning capabilities of
LLMs at inference-time. This method can be used in a
variety of applications that require a boost in performance
without additional post-training or compute requirements.
While it is possible that powerful reasoning models could
present certain risks when applied to sensitive domains, our
proposed framework is unlikely to introduce or magnify
these risks. IS enhances model reasoning through efficient
context management and iterative thinking, allowing models
to operate within existing safety frameworks and constraints.
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A. Appendix
A.1. Artifact License Details

• Model weights. We rely on two open-weight LLMs: DeepSeek-R1-Distill-Qwen-14B1 and
Qwen2.5-14B-Instruct2, both released under the MIT license.

• Benchmark data. The AIME 2024 & 2025 problem sets are in the public domain (problems reproduced from the Art of
Problem Solving archive).

• Code and prompts. Our implementation, prompts, and evaluation scripts will be released on GitHub under the
permissive MIT license.

A.2. Hyperparameter & Experiment Details

We experimented with using DeepSeek-R1-Distill-Qwen-14B itself as the summarizer but found that it would often
attempt to solve the problem instead of summarizing.

Both DeepSeek-R1-Distill-Qwen-14B and Qwen-2.5-14B-Instruct have 14.7 billion parameters each. Running the main
experiments (4 seeds × 60 problems × 5 iterations) consumed approximately 45 GPU-hours on a single NVIDIA A100-80GB.

We use Hugging Face models and tokenizers for running models and tokenization (Wolf et al., 2020).

We use these sampling parameters for experiments:

Parameter Reasoning Model Summarizer

max tokens 32768 32768
temperature 0.6 0.6
top p 0.95 0.95
top k 40 40
presence penalty 0 0
frequency penalty 0 0

Table 3. Sampling parameters for reasoning and summarization models.

These parameters were chosen to maintain consistency with the original DeepSeek-R1 paper (DeepSeek-AI et al., 2025).
The max tokens value was set high enough to accommodate the longest reasoning traces while avoiding truncation.

Algorithm 1 Iterated Summarization (IS)
Require: question q, reasoning model R, summarizer S, iterations T
0: Σ← [ ] {list of summaries}
0: for t = 1 to T do
0: rt ← R

(
q, summaries = Σ

)
0: if t < T then
0: st ← S(rt) {compress trace}
0: Σ.append(st)
0: end if
0: end for
0: return final answer extracted from rT =0

4
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Figure 1. Accuracy on AIME 2024 and 2025 problems by iteration for different methods of extending test-time compute. Shaded regions
represent ± 1 SEM.

A.3. Additional Figures

Approach Iter 1 Iter 2 Iter 3 Iter 4 Average

Backtracking 2.14 2.09 2.00 1.94 2.04
Base Summarization 0.45 0.44 0.39 0.50 0.45

Table 4. Average Backtracking Behavior Counts For Summaries Across Iterations

Method Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Overall

Backtracking 1.28 1.79 2.00 1.88 1.98 1.78
Base Sum 1.46 2.00 2.14 1.87 2.16 1.93

Table 5. Average Backtracking Behavior Counts For Reasoning Across Iterations

AIME Problems Prompt

Solve the following AIME problem. All answers are integers ranging from 0 to 999, inclusive. Report your answer in
\boxed{} format.

PROBLEM:
{question}

Figure 3. AIME Problem Prompt Template

1https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
2https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
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Last-k tokens

Summarization Methods

Use last k tokens from 
think section as summary

Post-think

Use the text after 
</think> as summary

k tokensreasoning post-think content

Backtracking Summary

reasoning

“focus on backtracking”

summary

problem reasoning 1

Iteration t
problem reasoning tsummary 1

Iterated Summarization

… summary t - 1

reasoner summarizer…

reasoner summarizer

summary 1

summary t

Reasoning Model Output Structure

post-think content<think> reasoning </think>

Iteration 1

Figure 2. Iterated Summarization Overview. Top: Iterated summarization alternates between summarizing lengthy reasoning traces and
using those summaries as context for a reasoning model’s next attempt at solving a problem. Left: structure of reasoning model outputs,
divided into reasoning and post-think content. Right: Illustration of three summarization methods: Last-k, Post-Think, and Backtracking
summary.

Base Summarization Prompt

Summarize the following attempted solution to the problem:

PROBLEM:
{question}
ATTEMPTED SOLUTION:
{reasoning}
SUMMARY:

Figure 4. Base Summarization Prompt Template

Backtracking Summarization Prompt

Summarize the following attempted solution to the problem, emphasizing the instances where the model changed its
strategy, revised a previous decision, or explicitly backtracked from a prior line of reasoning.

PROBLEM:
{question}
ATTEMPTED SOLUTION:
{reasoning}
SUMMARY:

Figure 5. Backtracking Summarization Prompt Template
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Improve Using Summaries Prompt

Solve the following AIME problem. All answers are integers ranging from 0 to 999, inclusive. Report your answer in
\boxed{} format.

PROBLEM:
{question}
Here are summaries of your previous solution attempts:
{summaries}

Based on your previous solution attempts, evaluate whether the most recent approach and answer are correct.
If not, consider a different approach.

Figure 6. Prompt Template for later iterations to use and build from previous summaries

Figure 7. Token Count Distribution

Method Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Answer Only 12438.47 ± 521.66 11839.93 ± 488.61 11821.38 ± 517.14 11672.89 ± 503.48 11939.12 ± 535.31
Backtracking 12438.47 ± 521.66 10609.80 ± 509.23 9036.55 ± 424.25 8444.58 ± 425.09 7979.73 ± 438.79
Base Summary 12438.47 ± 521.66 9596.15 ± 401.03 8427.26 ± 393.72 9116.83 ± 484.48 8246.03 ± 421.15
First-$k$ 12438.47 ± 521.66 11517.05 ± 514.59 11451.91 ± 543.41 10740.58 ± 496.92 10849.08 ± 522.41
Last-$k$ 12438.47 ± 521.66 9225.58 ± 439.45 7627.92 ± 372.73 7438.36 ± 417.94 5919.89 ± 320.07
Post-Think 12438.47 ± 521.66 9759.13 ± 476.39 9240.95 ± 419.28 8854.25 ± 465.18 8341.21 ± 419.39
“Wait” 12438.47 ± 521.66 1635.50 ± 104.94 1390.48 ± 92.66 1243.05 ± 97.79 1109.97 ± 83.68

Table 6. Summary statistics (± SEM) for each method across iterations.
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