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ABSTRACT

Spike camera with high temporal resolution can fire continuous binary spike
streams to record per-pixel light intensity. By using reconstruction methods, the
scene details in high-speed scenes can be restored from spike streams. However,
existing methods struggle to perform well in low-light environments due to insuf-
ficient information in spike streams. To this end, we propose a recurrent-based
reconstruction framework to better handle such extreme conditions. In more detail,
a light-robust representation (LR-Rep) is designed to aggregate temporal infor-
mation in spike streams. Moreover, a fusion module is used to extract temporal
features. Besides, we synthesize a reconstruction benchmark for high-speed low-
light scenes where light sources are carefully designed to be consistent with reality.
The experiment shows the superiority of our method. Importantly, our method also
generalizes well to real spike streams. All codes and constructed datasets will be
released after publication.

1 INTRODUCTION
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Figure 1: Overview of reconstruction for high-speed spike streams. Left: with decreasing light
intensity, more sparse spike streams are difficult to extract features. A black circle is a spike. Middle:
(a) The state-of-the-art method, WGSE (Zhang et al., 2023). The arrow with a gradient color is the
timeline. (b) Our reconstruction method. Green (red) lines denote the forward (backward) data flow.
① (②) is the release time of spikes (temporal features). ① (②) in forward and backward data flow is
independent. Right: reconstructed results from WGSE and our method.

As a neuromorphic sensor with high temporal resolution (40000 Hz), spike camera (Zhu et al., 2019;
Huang et al., 2022) has shown enormous potential for high-speed visual tasks, such as reconstruction
(Zhao et al., 2020; Zhu et al., 2022; Zheng et al., 2021; Zhao et al., 2021; Zhu et al., 2021; chen
et al., 2022), optical flow estimation (Hu et al., 2022; Zhao et al., 2022b; Zhai et al., 2023), and
depth estimation (Zhang et al., 2022; Liu et al., 2022; Li et al., 2022). Different from event cameras
(Lichtsteiner et al., 2008; Delbrück et al., 2010; Brandli et al., 2014), it can record per-pixel light
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intensity by accumulating photons and firing continuous binary spike streams. Correspondingly,
high-speed dynamic scenes can be reconstructed from spike streams. Recently, many deep learning
methods have advanced this field and shown great success in reconstructing more detailed scenes.
However, existing methods struggle to perform well in low-light environments due to insufficient
information in spike streams.

A dilemma arises for visual sensors, that is, the quality of sampled data can greatly decrease in a
low-light environment (Guo et al., 2020; Li et al., 2021c;b; Zhao et al., 2022b; Graca et al., 2023).
Low-quality data creates many difficulties for all kinds of vision tasks. Similarly, the reconstruction for
the spike camera also suffers from this problem. To improve the performance of reconstruction in low-
light high-speed scenes, two non-trivial matters should be carefully considered. First, Constructing a
low-light high-speed scene benchmark for spike camera is crucial to evaluating different methods.
However, due to the frame rate limitations of traditional cameras, it is difficult to capture images
clearly in real high-speed scenes as supervised signals. Instead of it, a reasonable way is to synthesize
datasets for spike camera (Zhao et al., 2021; Zhu et al., 2021; Hu et al., 2022; Zhang et al., 2022). To
ensure the reliability of the reconstruction benchmark, synthetic low-light high-speed scenes should
be as consistent as possible with the real world, e.g., light source. Second, as shown in Fig. 1, with
the decrease of illuminance in the environment, the total number of spikes in spike streams decreases
greatly which means the valid information in spike streams can greatly decrease. Fig. 1(a) shows
that previous methods often fail under low-light conditions since they have no choice but to rely on
inadequate information.

In this work, we aim to address all two issues above-mentioned. In more detail, a reconstruction
benchmark for high-speed low-light scenes is proposed. We carefully design the scene by controlling
the type and power of the light source and generating noisy spike streams based on Zhao et al.
(2022a). Besides, we propose a light-robust reconstruction method as shown in Fig. 1(b). Specifically,
to compensate for information deficiencies in low-light spike streams, we propose a light-robust
representation (LR-Rep). In LR-Rep, the release time of forward and backward spikes is used
to update a global inter-spike interval (GISI). Then, to further excavate temporal information in
spike streams, LR-Rep is fused with forward (backward) temporal features. During the feature
fusion process, we add alignment information to avoid the misalignment of motion from different
timestamps. Finally, the scene is clearly reconstructed from fused features.

Empirically, we show the superiority of our reconstruction method. Importantly, our method also
generalizes well to real spike streams. In addition, extensive ablation studies demonstrate the
effectiveness of each component. The main contributions of this paper can be summarized as follows:

• A reconstruction benchmark for high-speed low-light scenes is proposed. We carefully construct
varied low-light scenes that are close to reality.

• We propose a recurrent-based reconstruction framework where a light-robust representation, LR-
Rep, and fusion module can effectively compensate for information deficiencies in low-light spike
streams.

• Experimental results on real and synthetic datasets have shown our method can more effectively
handle spike streams under different light conditions than previous methods.

2 RELATED WORK

2.1 LOW-LIGHT VISION

Low-light environment has always been a challenge not only for human perception but also for
computer vision methods. For traditional cameras, some works concern the enhancement of low-
light images. Wei et al. (2018) propose the LOL dataset containing low/normal-light image pairs
and propose a deep Retinex-Net including a Decom-Net for decomposition and an Enhance-Net
for illumination adjustment. Jiang et al. (2021) proposes the EnlightenGAN which is first trained
on unpaired data to low-light image enhancement. Guo et al. (2020) proposes Zero-DCE which
formulates light enhancement as a task of image-specific curve estimation with a deep network.
Besides, some work focuses on the robustness of vision task to low-light, e.g., object detection.
Sasagawa & Nagahara (2020) proposes a method of domain adaptation for merging multiple models
to handle objects in a low-light situation. Li et al. (2021a) integrates a new non-local feature
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aggregation method and a knowledge distillation technique to with the detector networks. Wang et al.
(2023) combines with the image enhancement algorithm to improves the accuracy of object detection.
For spike camera, it are also affected by low-light environments. Dong et al. (2022) propose a real
low-light high-speed dataset for reconstruction. However, it lacks corresponding image sequences
as ground truth. To solve the challenge in the reconstruction of low-light spike streams, We have
fully developed the task including a reconstruction benchmark for high-speed low-light scenes and a
light-robust reconstruction method.

2.2 RECONSTRUCTION FOR SPIKE CAMERA

The reconstruction of high-speed dynamic scenes has been a popular topic for spike camera. Based
on the statistical characteristics of spike stream, Zhu et al. (2019) first reconstruct high-speed
scenes. Zhao et al. (2020) improved the smoothness of reconstructed scenes by introducing motion
aligned filter. Zhu et al. (2022) construct a dynamic neuron extraction model to distinguish the
dynamic and static scenes. For enhancing reconstruction results, Zheng et al. (2021) uses short-term
plasticity mechanism to exact motion area. Zhao et al. (2021) first proposes a deep learning-based
reconstruction framework, Spk2ImgNet (S2I), to handle the challenges brought by both noise and
high-speed motion. chen et al. (2022) build a self-supervised reconstruction framework by introducing
blind-spot networks. It achieves desirable results compared with S2I. The reconstruction method
(Zhang et al., 2023) presents a novel Wavelet Guided Spike Enhancing (WGSE) paradigm. By using
multi level wavelet transform, the noise in the reconstructed results can be effectively suppressed.

2.3 SPIKE CAMERA SIMULATION

Spike camera simulation is a popular way to generate spike streams and accurate labels. Zhao et al.
(2021) first convert interpolated image sequences with high frame rate into spike stream. Based on
Zhao et al. (2021), Zhu et al. (2021); Kang et al. (2021); Zhao et al. (2022a) add some random noise
to generate spike streams more accurately. To avoid motion artifacts caused by interpolation, Hu et al.
(2022) presents the spike camera simulator (SPCS) combining simulation function and rendering
engine tightly. Then, based on SPCS, optical flow datasets for spike camera are first proposed. Zhang
et al. (2022) generate the first spike-based depth dataset by the spike camera simulation.

3 RECONSTRUCTION DATASETS

In order to train and evaluate the performance of reconstruction methods in low-light high-speed
scenes, we propose two low-light spike stream datasets, Rand Low-Light Reconstruction (RLLR)
and Low-Light Reconstruction (LLR) based on spike camera model. RLLR is used as our train
dataset and LLR is carefully designed to evaluate the performance of different reconstruction methods
as test dataset. We first introduce the spike camera model, and then introduce our datasets where
noisy spike streams are generated by the spike camera model.

Spike camera model Each pixel on the spike camera model converts light signal into current
signal and accumulate the input current. For pixel x = (x, y), if the accumulation of input current
reaches a fixed threshold ϕ, a spike is fired and then the accumulation can be reset as,

A(x, t) = Ax(t) mod ϕ =

∫ t

0

Itot(x, τ)dτ mod ϕ, (1)

Itot(x, τ) = Iin(x, τ) + Idark(x, τ), (2)

where A(x, t) is the accumulation at time t, Ax(t) is the accumulation without reset before time t,
Iin(x, τ) is the input current at time τ (proportional to light intensity) and Idark(x, τ) is the main
fixed pattern noise in spike camera, i.e., dark current (Zhu et al., 2021; Zhao et al., 2022a). Further,
due to limitations of circuits, each spike is read out at discrete time nT, n ∈ N (T is a micro-second
level). Thus, the output of the spike camera is a spatial-temporal binary stream S with H ×W ×N
size. The H and W are the height and width of the sensor, respectively, and N is the temporal
window size of the spike stream. According to the spike camera model, it is natural that the spikes
(or information) in low-light spike streams are sparse because reaching the threshold is lengthy. More
details about low-light spike streams are in appendix.
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Figure 2: Proposed datasets, RLLR and LLR. RLLR includes the random scenes and LLR includes
carefully designed scenes. More details are in our appendix.

RLLR As shown in Fig. 2, RLLR includes 100 random low-light high-speed scenes where high-
speed scenes are first generated by SPCS (Hu et al., 2022) and then the light intensity of all pixels in
each scene is darkened by multiplying a random constant (0-1). Each scene in RLLR continuously
records a spike stream with 400× 250× 1000 size and corresponding image sequence. Then, for
each image, we clip a spike stream with 400× 250× 41 size from the spike stream as input.

LLR As shown in Fig. 2, LLR includes 5×2 carefully designed high-speed scenes where we
use the scenes with five kinds of motion (named Ball, Car, Cook, Fan and Rotate) and each scene
corresponds to two light sources (normal and low). To ensure the reliability of our scenes, different
light sources are used, and the power of light source is consistent with the real world. Each scene in
LLR continuously records 21 spike streams with 400× 250× 41 size and 21 corresponding images.

In proposed datasets, we consider noise of spike camera based on Zhao et al. (2022a). We further
discuss the impact of noisy (noise-free) spike streams on the performance of methods in the appendix.

4 METHOD
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Figure 3: Illustration of the proposed recurrent-based reconstruction framework. It includes a light-
robust representation, feature extractor (ResNet), fusion and reconstruction. The green and red lines
represent the forward and backward data flow. The two kinds of data flow are independent.

4.1 PROBLEM STATEMENT

For simplicity, we write St ∈ {0, 1}H×W×(2∆t+1) to denote a spike stream from time t − ∆t to
t+∆t (2∆t+ 1 is the fixed temporal window) and write Yt ∈ RH×W to denote the instantaneous
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Figure 4: Illustration of the proposed light-robust representation. We use convolution blocks to
extract shallow features from input spike stream and GISI, respectively. Then they are fused by an
attention block.

light intensity received in spike camera at time t. Reconstruction is to use continuous spike streams,
{Sti , ti = i ∗ (2∆t+ 1)|i = 1, 2, 3...K} to restore the light intensity information at different time,
{Yti , ti = i ∗ (2∆t + 1)|i = 1, 2, 3...K}. Generally, the temporal window 2∆t + 1 is set as 41
which is the same with Zhao et al. (2021); chen et al. (2022); Zhang et al. (2023).

4.2 OVERVIEW

To overcome the challenge of low-light spike streams, i.e., the recorded information is sparse (see
Fig.1), we propose a light-robust reconstruction method which can fully utilize temporal information
of spike streams. It is beneficial from two modules: 1. A light-robust representation, LR-Rep. 2. A
fusion module. As shown in Fig. 3, to recover the light intensity information at time ti, Yti , we first
calculate the light-robust representation at time ti, written as Repti . Then, we use a ResNet module
to extract deep features, Fti , from Repti . Fti is fused with forward (backward) temporal features as
Ff

ti (Fb
ti ). Finally, we reconstruct the image at time ti, Ŷti with Ff

ti and Fb
ti .

Forward spike stream Backward spike streamInput spike stream

(a) 

 

(c) Maintain:
: x 18

(b) Update: 

 

Figure 5: Illustration of GISI transform for backward in a pixel. (a). Calculate the local inter-spike
interval, LISIti from the input spike stream (chen et al., 2022; Zhao et al., 2022b). (b). Update global
inter-spike interval, GISIti based on the release time of backward spike, Spikebti+1

and LISIti . (c).
Maintain and transmit the release time of backward spike, Spikebti . Black (white) circle is a (no)
spike and the red line is backward data flow. More details are shown in algorithm. 1.

4.3 LIGHT-ROBUST REPRESENTATION

As shown in Fig. 4, a light-robust representation, LR-Rep, is proposed to aggregate the information in
low-light spike streams. LR-Rep mainly consists of two parts, GISI transform and feature extraction.

GISI transform Calculating the local inter-spike interval from the input spike stream is a common
operation (chen et al., 2022; Zhao et al., 2022b) and we call it as LISI transform. Different from LISI
transform, we propose a GISI transform which can utilize the release time of forward and backward
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Figure 6: (a) and (b) show the visualizations of GISIti and LISIti in a real spike stream. (c) shows
the distribution of pixel-wise values in GISIti and LISIti .

spikes to obtain the global inter-spike interval GISIti . It need to be performed twice, i.e. once
forward and once backward respectively. Taking GISI transform for backward as an example, it can
be summarized as three steps as shown in Fig. 5. Our GISI transform can extract more temporal
information from spike streams than LISI transform as shown in Fig. 6.

Feature extraction After GISI transform, we separately extract shallow features of GISIti and
input spike stream, FG and FS through convolution block. Finally, Repti is obtained by an attention
module where FG and FS are integrated, i.e.,

[βti ,αti ] = Att([FG,FS ]), (3)
Repti = βtiFG + αtiFS , (4)

where Att(·) denotes an attention block including 3-layer convolution with 3-layer activation function
and Repti is our LR-Rep at time ti. Related details are in our appendix.

4.4 FUSION AND RECONSTRUCTION
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Figure 7: Illustration of fusion module and reconstruction module. (a) denotes forward (green line)
and backward (red line) fusion modules. (b) denotes reconstruction module.

We first extract the deep feature Fti of Repti through a ResNet with 16 layers. Then, as shown in
Fig. 7(a), for forward, temporal features Ff

ti−1
and Fti are fused as temporal features of the input

spike stream Ff
ti . For backward, temporal features Fb

ti+1
and Fti are fused as temporal features of

the input spike stream Fb
ti . To avoid the misalignment of motion from different timestamps, we

use a Pyramid Cascading and Deformable convolution (PCD) (Wang et al., 2019) to add alignment
information to Fti . The above process can be written as,

Fti = f(Repti), (5)

Ff
ti = f([Fti + a(Ff

ti−1
,Fti),F

f
ti−1

]), (6)

Fb
ti = f([Fti + a(Fb

ti+1
,Fti),F

b
ti+1

]), (7)

where f(·) denotes the feature extraction and a(·, ·) denotes the PCD module. Finally, as shown in
Fig. 7(b), we use forward and backward temporal features (Fb

ti and Ff
ti) to reconstruct the current

scene at time ti, i.e.,

Ŷti = c([Fb
ti ,F

f
ti ]), (8)

L =

K∑
i=1

∥Ŷti −Yti∥1 (9)

where c(·) denotes 3-layer convolution with 2-layer ReLU, L is loss function, ∥ · ∥1 denotes 1-norm
and K is the number of continuous spike streams.
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5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

We train our method in the proposed dataset, RLLR. Consistent with previous work Zhao et al. (2021);
chen et al. (2022); Zhang et al. (2023), the temporal window of each input spike stream is 41. The
spatial resolution of input spike streams is randomly cropped the spike stream to 64× 64 during the
training procedure and the batch size is set as 8. Besides, forward (backward) temporal features and
the release time of spikes in our method are maintained from 21 continuous spike streams. We use
Adam optimizer with β1 = 0.9 and β2 = 0.99. The learning rate is initially set as 1e-4 and scaled by
0.1 after 70 epochs. The model is trained for 100 epochs on 1 NVIDIA A100-SXM4-80GB GPU.

5.2 RESULTS

We compare our method with traditional reconstruction methods, i.e., TFI (Zhu et al., 2019), STP
(Zhu et al., 2021), SNM (Zhu et al., 2022) and deep learning-based reconstruction methods, i.e.,
SSML (chen et al., 2022), Spk2ImgNet (S2I) (Zhao et al., 2021), WGSE (Zhang et al., 2023). The
supervised learning methods, S2I and WGSE, are retrained on RLLR and the parameter configuration
is the same as their respective papers. We evaluate methods on two kinds of data:
(1) The carefully designed synthetic dataset, LLR.
(2) The real spike streams dataset, PKU-Spike-High-Speed (Zhao et al., 2021) and low-light high-
speed spike streams dataset (Dong et al., 2022).

Table 1: PSNR, PSNR (scale), and SSIM of reconstruction results on synthetic dataset, LLR. PSNR
(scale): PSNR is calculated after scaling both the ground truth and reconstructed images to 0-255.

Metric TFI SSML S2I STP SNM WGSE Ours

PSNR 31.409 38.432 40.883 24.882 25.741 42.959 45.075
PSNR (scale) 21.665 30.176 31.202 14.894 18.527 32.439 38.131

SSIM 0.72312 0.89942 0.95915 0.55537 0.80281 0.97066 0.98681

TFI WGSESSML S2I Ours Ground TruthSTP SNM WGSE

Figure 8: Results from different reconstruction methods on our LLR. More results are in appendix.

Results on our synthetic dataset As shown in Table. 1, we use the two reference image quality
assessment (IQA) metrics, i.e., PSNR and SSIM to evaluate the performance of different methods on
LLR. We can find that our method achieves the best reconstruction performance and has a PSNR gain
over 4dB than the reconstruction method, S2I, which demonstrates its effectiveness. Fig. 8 shows the
visualization results from different reconstruction methods. We can find that our method can better
restore motion details in dark regions than other methods.

Results on real datasets For real data, we test different methods on two spike stream datasets,
PKU-Spike-High-Speed (Zhao et al., 2021) and low-light spike streams (Dong et al., 2022). PKU-
Spike-High-Speed includes 4 high-speed scenes under normal-light conditions and Dong et al. (2022)
includes 5 high-speed scenes under low-light conditions. Fig. 9 shows the reconstruction results.
Note that we apply the traditional HDR method (Ying et al., 2017) to reconstruction results on Dong
et al. (2022) because scenes are too dark. Our method can more effectively restore the information in
scenes i.e., clear texture and less noise.

We perform a user study written as US (Wilson, 1981; Jiang et al., 2021) to quantify the visual quality
of different methods. For each scene in datasets, we randomly select reconstructed images at the same
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Figure 9: Results from different reconstruction methods on the real datasets, PKU-Spike-High-Speed
(Top) and low-light high-speed spike streams dataset (Bottom). More results are in our appendix.
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Figure 10: User study scores (↑) of reconstructed images from different methods. The max (min)
score is 7 (1).

time from different methods and display them on the screen (the image order is randomly shuffled).
30 human subjects (university degree or above) are invited to independently score the visual quality
of the reconstructed image. The scores of visual quality range from 1 to 7 (worst to best quality). The
average subjective scores for each spike stream dataset are shown in Fig. 10 and our method reaches
the highest US score in all methods.

5.3 ABLATION

Proposed modules To investigate the effect of the proposed light-robust representation LR-Rep,
the adjacent (forward and backward) deep temporal features (ADF), i.e., Fb

ti and Ff
ti in our fusion

module, the alignment information in our fusion module (AIF) and GISI transform in LR-Rep, we
compare 5 baseline methods with our final method. (A) is the basic baseline without LR-Rep, ADF
and AIF. Table. 2 shows ablation results on proposed dataset, LLR. The comparison between (A)
and (C) ((B) and (D)) proves the effectiveness of LR-Rep. The comparison between (A) and (B)
((C) and (D)) proves the effectiveness of ADF. Further, by adding the alignment information in the
fusion module i.e., AIF, our final method (F) appropriately reduces the misalignment of motion from
different timestamps and can reconstruct high-speed scenes more accurately than (D). Besides, the
comparison between (E) and (F) shows GISI has better performance than LISI. It is because GISI can
extract more temporal information than LISI (see Fig. 6).

Comparison with other representation We compare the performance of different representation
in our framework, i.e., (1) General representation of spike stream: TFI and TFP (Zhu et al., 2019)
(2) Tailored representation for reconstruction networks: AMIM (chen et al., 2022) in SSML, SALI
(Zhao et al., 2021) in S2I and WGSE-1d (Zhang et al., 2023) in WGSE. We replace LR-Rep in our
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method as above representation. They are retrained on the dataset, RLLR and implementation details
are the same with our method. As shown in Table. 3, our LR-Rep achieves the best performance
which means LR-Rep can better adapt to our framework.

Table 2: Abltion results on synthetic dataset, LLR.

Index Effect of different network structures PSNR SSIM

(A) Removing LR-Rep & AIF & ADF 42.743 0.97403
(B) Removing LR-Rep & AIF 44.151 0.98514
(C) Removing AIF & ADF 44.739 0.98636
(D) Removing AIF 44.956 0.98678
(E) Replace GISI with LISI 44.997 0.98676
(F) Our final method 45.075 0.98681

Table 3: Performance of different representation methods in our framework. All methods are trained
on RLLR and are tested on LLR.

Rep. TFP TFI AMIM SALI WGSE-1d LR-Rep

PSNR 38.615 37.617 41.95 43.314 42.302 45.075
SSIM 0.96641 0.93632 0.97493 0.98304 0.97438 0.98681

The number of continuous spike streams For solving the reconstruction difficulty caused by
inadequate information in low-light scenes, the release time of spike in LR-Rep and temporal features
in fusion module are maintained forward and backward in a recurrent manner. The number of
continuous spike streams has an impact on our method performance. Fig. 11 shows its effect on the
performance. We can find that, as the number increases, the performance of our method can greatly
increase until convergence. This is because, as the number increases, our method can utilize more
temporal information until sufficient. The reconstrued image from 21 continuous spike streams has
more details in a shaded area.
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Figure 11: Effect of the number of continuous spike streams on the performance. We test on the
dataset, LLR.

6 CONCLUSION

We propose a recurrent-based reconstruction framework for spike camera to better handle different
light conditions. In our framework, a light-robust representation (LR-Rep) is designed to aggregate
temporal information in spike streams. Moreover, a fusion module is used to extract temporal features.
To evaluate the performance of different methods in low-light high-speed scenes, we synthesize a
reconstruction benchmark where light sources are carefully designed to be consistent with reality.
The experiment on both synthetic data and real data shows the superiority of our method.

Limitation Due to the need to fuse both forward and backward temporal features, our method
is offline, i.e., After spike camera collects spike streams for a long period of time, the data can
be reconstructed. However, real-time applications may require spike stream reconstruction to be
performed while the spike camera is capturing the scene. In future work, we plan to extend our
method so to online reconstruct.
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A APPENDIX

A.1 LOW-LIGHT SPIKE STREAMS ANALYSIS

In low-light spike streams, the valid information can greatly decrease. It includes two reasons: (a)
The information carried by each spike from the input signal is greatly reduced due to the interference
of noise. (b) The total number of spikes in spike streams decrease greatly. Based on (1) in our main
paper, we can get the valid accumulation in a spike. First, for the pixel x, the time to fire a spike, tx,
can be written as,

tx = A−1
x (ϕ). (10)

Note that A−1
x (·) exists because Ax(·) is monotonically increasing. Especially, when the light

intensity is fixed, i.e., Iin(x, τ) = I , (11) can be written as,

tx = ϕ(I + Idark(x))
−1. (11)

Figure 12: Influence of input current on spikes. In low-light environment, i.e., input current is low,
the time to fire a spike is long and the valid accumulation in each spike is small.

Further, we can get the valid accumulation from input current I in a spike, Qx(I), as,

Qx(I) = Itx = Iϕ(I + Idark(x))
−1. (12)

The orange curve in Fig. 12 shows that the valid accumulation Qx(I) increases with increasing input
current I which means each spike in low-light environments is more difficult to record information.
The blue curve in Fig. 12 shows that time to fire spikes tx decreases with increasing input current I
which means the total information i.e., the amount of spikes, in low-light spike stream is sparse. The
above two characteristics explains the sparsity of information in low-light spike streams.

Light Type

Motion Type

Light Type

Motion Type

Driving 

Photography

Sunlight
Area Light

(Power: 30W)

Object Motion

(Fixed Lens)

Light

Light

Figure 13: The CarN (left) and CookL (right) in LLR. N (L) means normal (low) light.

A.2 DATASETS DETAILS

A.2.1 SCENE

LLR serves as the test set and is designed to be as consistent as possible with the real world in order
to effectively evaluate different methods. To achieve this, as shown in Fig. 13, we have carefully
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designed the light source type and the illumination power for each scene to match the real world.
Besides, motion of objects is close to the real world. The motion in Ball, Cook, Fan and Rotate is
from Hu et al. (2022) while the motion in Car is created based on vehicle speed in real world.

Light source set We set the lighting parameters in the advanced 3D graphics software, blender,
to make the lighting conditions as consistent as possible with the real world. The following are the
configuration details in Blender. In Blender, various types of lighting simulation functions, including
sunlight, point lights, and area lights, have been integrated into the graphical interface. We can
adjust lighting parameters to control brightness and darkness. For sunlight in Blender, the watts
per square meter can be modified. Typically, 100 watts per square meter corresponds to a cloudy
lighting environment. For the CarL scene, we have set sunlight to 10 watts per square meter, which
is deemed sufficiently low. For point lights and area lights, Blender allows modification of radiant
Power, measured in watts. This is not the electrical power of consumer light bulbs. A light tube with
the electrical power of 30W approximately corresponds to a radiant power of 1W. In the CookL scene,
we have set an area light with the radiant Power to 1W (the electrical power of 30W) . It already
represents a very dim indoor light source.
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Figure 14: (a) Grayscale histograms of images in low-light scenes, i.e., Ball, Car, Cook, Fan and
Rotate with low-light light source. Each bar represents 5 grayscale levels. (b) Reference images.

Grayscale The brightness is not only determined by the light source, but also by factors such as
camera distance, object occlusion, and so on. These factors are ultimately reflected in the grayscale
of the rendered images. Therefore, we calculate the grayscale histograms of images in low-light
scenes. As shown in Fig. 14, we can see that the grayscale is diverse and in a lower range. To further
demonstrate the performance advantages of our method under different lighting conditions, based on
the scene Car, we generate spike streams by modifying the light source parameters. All results are
shown in Table 4.

0°

45°

90°

135°

180°

225°

270°

315°

Degree

3.43.23.02.82.62.42.22.0

Frequency (log scale)

Motion direction histogram

Figure 15: Motion direction histogram of optical flow in LLR.

Motion The motion in LLR is diverse. We generate a optical flow every 40 frames for LLR. The
degree distribution of the optical flow is in Fig. 15. We can find that the motion in LLR covers all
kinds of directions.
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Table 4: PSNR and SSIM of reconstruction results under different light sources. We set sunlight in
the scene Car to 30, 50, 70, 90, 110 and 130 watts per square meter to render images respectively.

Light level 30W 50W 70W 90W 110W 130W Avg.

WGSE(PSNR) 37.12 35.68 34.45 33.88 33.61 33.36 34.68
Ours(PSNR) 41.52 40.69 39.99 39.51 39.15 38.91 39.96

WGSE(SSIM) 0.9514 0.9418 0.9324 0.9306 0.9305 0.9307 0.9362
Ours(SSIM) 0.9772 0.9748 0.973 0.9711 0.9701 0.9693 0.9725

Table 5: Reconstruction results on synthetic dataset, LLR. Retrainidea: our method is retrained on the
noise-free version of RLLR.

Metric Our Retrainidea
PSNR 45.075 37.679
SSIM 0.98681 0.85374

A.2.2 IMPACT OF SPIKE CAMERA NOISE ON PERFORMANCE

In proposed datasets, we have considered noise of spike camera refer to Zhao et al. (2022a). We
further discuss the impact of noisy and noise-free spike streams on the performance of our method as
shown in Table. 5. We use an ideal spike camera model in SPCS (Hu et al., 2022) to synthesize a
noise-free version of RLLR and retrain our method using the dataset (written as Retrainidea). We can
find that our method has better performance than Retrainidea. Besides, Fig. 16 shows our method can
handle noise in real spike streams better than Retrainidea.

A.2.3 TRAIN DATASET SIZE.

The size of train datasets has an impact on the performance of our network. A larger train dataset
typically provides more samples and a wider range of variations. In fact, proposed RLLR is enough
for the reconstruction task of low-light spike streams. As shown in Table. 6, we find that as the
dataset size increase, the performance of the model also improve. However, it is observed that the
improvement in performance becomes less significant after the dataset size reaches 60% of RLLR. It
shows that the proposed RLLR is sufficient for training our network.

A.3 LR-REP DETAILS

A.3.1 GISI TRANSFORM

As shown in Fig. 4 in our main paper, we first use the GISI transform to get the global inter-spike
interval, GISIti , from the input spike stream and the release time of forward and backward spikes.
The GISI transform can be summarized as three steps (see Fig. 5): (a). Calculate the local inter-spike
interval from input spike stream as chen et al. (2022); Zhao et al. (2022b) and we call it LISI transform
for simplicity. (b). Update the local inter-spike interval as global inter-spike interval based on the
release time of forward and backward spikes. (c). Maintain the release time of forward (backward)
spikes of backward (forward) spike streams. Related details are shown in Algorithm.1. As shown in
Fig. 17, GISI (our final method) not only outperform LISI (Baseline (E) in Table 2) in both PSNR

Figure 16: Reconstruction results on a real spike stream. Please enlarge the figure for more details.
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Table 6: Evaluation results on LLR. We retrain our network where 20%, 40%, 60%, and 80% of
RLLR data are used as training set respectively.

Metric 20% 40% 60% 80% 100%

PSNR 35.001 38.618 44.415 44.753 45.075
SSIM 0.93411 0.97113 0.98459 0.98581 0.98681

and SSIM on LLR but also have better generalization on real data. More importantly, the cost of
using GISI instead of LISI is negligible (we only need to use two 400×250 matrices to store the time
of the forward spike and the backward spike, respectively), which does not affect the parameter and
efficiency of the network.

Baseline (E) Our final method

Figure 17: Reconstruction results on a real spike stream. The scene is a high-speed train that exceeds
200 km/h. The glass in the former result (left) shows obvious artifacts, and our result (right) is very
smooth and natural.

Algorithm 1 GISI Transform.
Require:The spike streams at different time {Sti | i = 1, 2, . . . , K}, K is the number of Continuous
spike streams.

1: Initialize forward state Spikeforward
t1 = 0.

2: Initialize backward state Spikebackward
tK = 2K∆t.

3: for i from 1 to K do
4: Calculate LISIti based on Sti .
5: end for
6: for i from 2 to K do
7: Forward search the recent release time of spike to ti+1, Spikeforward

ti based on Sti .
8: if Spikeforward

ti is None then
9: Set Spikeforward

ti = Spikeforward
ti−1

.
10: end if
11: Update GISIti based on Sti and Spikeforward

ti−1
.

12: end for
13: for i from K − 1 to 1 do
14: Backward search the recent release time of spike to ti−1, Spikebackward

ti based on Sti .
15: if Spikebackward

ti is None then
16: Set Spikebackward

ti = Spikebackward
ti+1

.
17: end if
18: Update GISIti based on Sti and Spikebackward

ti+1
.

19: end for
20: Return {GISIti | i = 1, 2, . . . , K}

A.3.2 ROBUSTNESS TO LIGHT CONDITION

In LR-Rep, we utilize an attention mechanism to fuse the input spike stream and proposed global
inter-spike interval (GISI) to extract shallow features of areas with different brightness. We first state
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the fact that under normal-light condition, the input spike stream contains sufficient information and
can be well extracted by the network Zhao et al. (2021); chen et al. (2022). Under low-light condition,
proposed GISI can supplement the missing information in the input spike stream by maintaining
the release time of both forward and backward spikes. If we do not maintain the release time of
forward and backward spikes, we will obtain local inter-spike intervals (LISI), which will result in
the loss of low-light scene information (see Fig. 6). Further, the attention module can adaptively
select feature information from both the input spike stream and GISI based on light condition and
LR-Rep is light-robust.

Table 7: Comparison between Spk2ImgNet (S2I), WGSE and our method. The input spike stream
size is 21× 41× 250× 400. We test the average of 50 rounds for Inference time.

Method Para. Train time Inference time

S2I 3.91m 2h 1458.45ms
WGSE 3.63m 1h 1344.06ms

Our 5.32m 17h 818.03ms

TFI SSML S2I OursSTP SNM WGSE

Figure 18: The reconstructed results on the real dataset Zhao et al. (2021).

A.4 EXPERIMENT

A.4.1 MODEL EFFICIENCY

Table. 7 demonstrates the training time and inference time of the supervised methods, i.e.,
Spk2ImgNet, WGSE and our method. Although our method requires more training time com-
pared to Spk2ImgNet and WGSE (Recurrent-based networks typically consume more time during
training due to Backpropagation Through Time (BPTT)), our method outperforms Spk2ImgNet and
WGSE in terms of inference speed. Besides, due to the need to fuse both forward and backward
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TFI WGSESSML S2I OursSTP SNM

Figure 19: The reconstructed results on the real dataset Dong et al. (2022).

temporal features, our method is offline, i.e., After spike camera collects spike stream for a long
period of time, the data can be reconstructed. In future work, we would extend our method so to
online reconstruct.

A.4.2 REAL DATA

Here, we show more results on two real datasets. Fig. 18 and Fig. 19 show more reconstructed
images. We find that for traditional methods, TFI performs better on low-light data than TFP, SNM
and TFSTP. For deep learning-based methods, SSML introduces a large amount of motion blur while
Spk2ImgNet and WGSE may introduces some loss in dark backgrounds. Our method restores texture
details in low-light scenes clearly more than other methods. Besides, We also provide the adjusted
results from STP based on our reconstruction results as shown in Fig. 20.

A.4.3 SYNTHETIC DATA

Here, we show more results on synthetic dataset LLR. Fig. 21 shows more reconstruction results on
proposed dataset LLR. We find that for traditional methods, TFI performs better on low-light data
than TFP, SNM and TFSTP. For deep learning-based methods, SSML introduces a large amount
of motion blur while Spk2ImgNet and WGSE may introduces some loss in dark backgrounds. Our
method restores texture details in low-light scenes clearly more than other methods.

Spike-Car TFI SSML S2I

OursSTP SNM WGSE

Spike-Water Ball TFI SSML S2I

OursSTP SNM WGSE

Figure 20: The reconstructed results on the real spike streams. Results from STP are adjusted based
on our reconstruction results.
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TFI WGSESSML S2I Ours GTSTP SNM

BallL

BallN

CarN

CookN

FanL

FanN

RotateL

RotateN

TFI

CarL

Figure 21: The reconstructed results on LLR. N (L) means normal (low) light.
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1 2 3
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Figure 22: A water polo bursting at high speed in a low-light indoor. We selected the reconstruction
results under 6 sampling moments, and the interval between two adjacent sampling moments is
41/40000 s. The above is our method and the bottom is the state-of-the-art reconstruction method
Zhang et al. (2023). We apply the traditional HDR method Ying et al. (2017) to reconstruction results
because the scene is too dark.

A.4.4 STABILITY OF CONTINUOUSLY RECONSTRUCTING

Our reconstruction method is stable to spike stream at different moments. Fig. 22 shows the
continuous motion of an object in a real high-speed low-light scene. We find that our method can
clearly recover motion details at different moments, while the loss introduced by the state-of-the-art
WGSE is varied at different time.

A.4.5 COMPARISON OF QUANTA IMAGE SENSOR

We would like to discuss Quanta Image Sensors (QIS). Spike camera Zhu et al. (2019) and QIS Ma
et al. (2022) (including CIS-QIS and SPAD-QIS) share some similar characteristics, such as high
temporal resolution and 1-bit (0 or 1) data. Besides, they also have differences in principles and
circuits. For one sampling (one frame), QIS records whether a photon has arrived during the sampling,
with a corresponding pixel output of 1 if photons arrive, and 0 otherwise Ma et al. (2020). Different
from QIS, spike camera continuously accumulates photons Zhu et al. (2019), and if the accumulated
value reaches a fixed threshold, the pixel outputs 1 and the accumulation is reset. Otherwise, it
outputs 0, and the accumulation value. The different principles result in distinct meanings of two data
(QIS data and spike streams). In QIS, 1 reflects the information of a specific sampling. In contrast, in
spike camera, 1 contains the information from previous multiple sampling, and adjacent spikes are
interdependent. This also leads to differences in the data patterns. This characteristic brings both
advantages and disadvantages. In terms of advantages, in spike cameras, the influence of photon shot
noise on each spike is reduced as multiple samples of photons are dynamically accumulated together,
while QIS is sensitive to poisson shot noise Ma et al. (2022). In terms of disadvantages, spike cameras
face more challenges in low-light conditions due to difficulties in reaching the accumulation threshold
(see limitation in Zhao et al. (2022b)). Furthermore, the pixel circuits of two cameras are also different.
A spike camera continuously accumulates photons in the form of voltage and the voltage can be kept
for next sampling. QIS cameras (using SPAD-QIS as an example) amplify the signal through the
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3DCNN Our Ground Truth

Figure 23: The reconstructed results of RotateN. Our method has clearer images.

avalanche multiplication mechanism to detect the presence or absence of individual photons Qian
et al. (2023). Besides, we test 3DCNN Chandramouli et al. (2019) (a reconstruction method for
QIS). To ensure fairness, we retrain 3DCNN using RLLR with spike streams as inputs. Table. 8
demonstrates the reconstruction evaluation on LLR. As shown in Fig. 23, our method removes motion
blur better.

Table 8: Reconstruction results on synthetic dataset, LLR. We compare the open source Single Photon
Avalanche Diode method, 3DCNN Chandramouli et al. (2019) (ICCP 2019) which is retrained on
RLLR.

Method PSNR SSIM

Our 45.075 0.98681
3DCNN 34.507 0.93506
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