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ABSTRACT

We provide an analysis of the squared Wasserstein-2 (W2) distance between two proba-
bility distributions associated with two stochastic differential equations (SDEs). Based on
this analysis, we propose a novel squared W2 distance-based loss function for efficiently
reconstructing SDEs from noisy data. To demonstrate the practical use our Wasserstein
distance-based loss function, we carry out numerical experiments that show its efficiency
in reconstructing SDEs associated with a number of applications.

1 INTRODUCTION

Stochastic processes are mathematical models of random phenomena that evolve over time or space (Cinlar,
2011). Among stochastic processes, stochastic differential equations (SDE) of the form

dX(t) = f(X(t), t)dt+ σ(X(t), t)dB(t), t ∈ [0, T ] (1)
are widely used to model complex systems with continuous variables and noise in different fields. Here,
f and σ denote deterministic and stochastic components of the SDE, while B(t) represents the standard
Brownian motion. In applications such as computational fluid dynamics, cell biology, and genetics, the
underlying dynamics are often unknown or only partially observed, and subjected to noise. Consequently,
it is vital to develop methods capable of reconstructing the governing SDEs from available data (Sullivan,
2015; Soize, 2017; Mathelin et al., 2005; Bressloff, 2014; Lin & Buchler, 2018). Traditional methods, such
as the Kalman filter (Welch et al., 1995; Welch, 2020) and Gaussian process regression (Liu et al., 2020;
MacKay et al., 1998), often assume specific forms of noise. These methods may not be suitable for complex
or nonlinear systems where the noise affects the dynamics in a complicated manner.

Recent advancements leverage machine learning, specifically neural ordinary differential equations
(NODEs) (Chen et al., 2018), to offer a more flexible approach to reconstructing SDEs in the form of neu-
ral SDEs (nSDEs) (Tzen & Raginsky, 2019; Tong et al., 2022; Jia & Benson, 2019). Despite the promise,
challenges remain, especially when selecting optimal loss functions (Jia & Benson, 2019). The Wasserstein
distance, a family of metrics that measures discrepancies between probability measures over a metric space,
has emerged as a potential solution due to its robust properties (Villani et al., 2009; Oh et al., 2019; Zheng
et al., 2020). In this paper, we introduce bounds on the second-order Wasserstein W2 distance between two
probability distributions over the continuous function space generated by solutions to two SDEs. Our results
motivate the use of this distance for SDE reconstruction. We test our approach on different examples to
showcase its effectiveness.

1.1 RELATED WORK

Traditional methods for reconstructing SDEs from data usually make assumptions on the specific forms
of the underlying SDE and fit the unknown parameters. For example, (De Vecchi et al., 2016) uses some
polynomials to model f, σ in Eq. 1, and (Pereira et al., 2010) assumes linear f and σ in Eq. 1.
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Previous attempts at using neural SDEs (nSDEs) have explored different loss functions for reconstruction.
For example, (Tzen & Raginsky, 2019) models the SDE as a continuum limit of latent deep Gaussian models
and uses a variational likelihood bound for training. (Kidger et al., 2021) models SDEs and adopts Wasser-
stein generative adversarial networks (WGANs), proposed in (Arjovsky et al., 2017), for reconstructing
SDEs as the generator. (Briol et al., 2019) uses a maximum mean discrepancy (MMD) loss and a generative
model for training SDEs. (Song et al., 2020) assumes that σ in Eq. 1 depends only on time and uses a
score-based generative model for SDE reconstruction.

The Wasserstein distance, denoted as W , has gained use in statistics and machine learning. Seminal works
have delved into its analysis (Rüschendorf, 1985) and its utilization in reconstructing discrete-time stochas-
tic processes (Bartl et al., 2021). In the context of SDEs, (Bion-Nadal & Talay, 2019) introduced a re-
stricted Wasserstein-type distance, while (Sanz-Serna & Zygalakis, 2021) and (Wang, 2016; Sanz-Serna &
Zygalakis, 2021) examined its application in ergodic SDEs, Levy processes, and Langevin equations respec-
tively. Calculating the W distance for multidimensional random variables is challenging; hence, approxi-
mations like the sliced W distance and regularized W distance have emerged (Cuturi et al., 2019; Kolouri
et al., 2018; 2019; Rowland et al., 2019; Frogner et al., 2015).

The aforementioned WGAN approach in (Kidger et al., 2021) uses the first-order Wasserstein distance to
indirectly reconstruct SDEs via the Kantorovich-Rubinstein duality (Arjovsky et al., 2017). To the best
of our knowledge, there has been little literature on directly analyzing and applying the W distance for
reconstructing SDEs.

1.2 OUR CONTRIBUTION

In our paper, we propose and analyze a novel squared-W2-distance SDE reconstruction method. To be more
specific, we denote µ to be the probability distribution over the continuous function space generated by the
solution X(t) to Eq. 1. For the following approximation to Eq. 1, where B̂(t) is another standard Brownian
motion that is independent of B(t),

dX̂(t) = f̂(X(t), t)dt+ σ̂(X(t), t)dB̂(t), t ∈ [0, T ], (2)
we denote µ̂ to be the probability distribution over the continuous function space generated by the solution
X̂(t) to Eq. 2. To develop our SDE reconstruction method, we

• First, derive an upper bound for the W2 distance W2(µ, µ̂) between solutions to two SDEs Eq. 1 and
2 given the same initial condition. To be specific, we establish a W2 distance upper bound which
depends explicitly on the difference in the drift and diffusion functions f − f̂ and σ− σ̂ associated
with using Eq. 2 to approximate the SDE in Eq. 1. This bound is developed in Theorem 1 of
Section 2.

• Next, we prove that the W2 distance of two SDEs W2(µ, µ̂) can be approximated by estimating
the W2 distance between their finite-dimensional projections. This result helps us define a simple
squared-W2-distance loss function for reconstructing SDEs, as detailed in Theorem 2 of Section 2.

• Finally, in Section 3, we carry out numerical experiments and find that our squared-W2-distance
loss function performs better than other loss functions commonly used for uncertainty quantification
across many SDE reconstruction problems. Furthermore, we propose ways to generalize our W2-
distance method to the reconstruction of multidimensional SDEs.

2 SQUARED W2 DISTANCE FOR RECONSTRUCTING SDES

In this section, we prove the bounds for the squared W2 distance of two probability measures associated
with two SDEs. Specifically, we demonstrate that minimizing the squared W2 distance leads to efficient
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reconstruction of f, σ in Eq. 1. We also show how to estimate the squared W2 between two probability
measures associated with two SDEs by using their finite dimensional projections. Based on our analysis,
we propose a simple squared W2 distance loss function Eq. 17 for reconstructing SDEs. If we observe the
X(ti) obeying a one-dimensional SDE at uniformly spaced time points ti = iT

N , i = 0, ..., N , our proposed
loss function is simply

∆t

N−1∑
i=1

∫ 1

0

(F−1
i (s)− F̂−1

i (s))2ds, (3)

where ∆t is the timestep and Fi and F̂i are the empirical cumulative distribution functions for X(ti) and
X̂(ti), respectively.

First, we follow the definition of the squared W2 distance in (Clement & Desch, 2008) for two probability
measures µ, µ̂ associated with two continuous stochastic processes X(t), X̂(t), t ∈ [0, T ].
Definition 2.1. For two d-dimensional continuous stochastic processes in the separable space(
C([0, T ];Rd), ∥ · ∥

)
X(t) = (X1(t), ..., Xd(t)) ∈ C([0, T ];Rd), X̂(t) = (X̂1(t), ..., X̂d(t)) ∈ C([0, T ];Rd), t ∈ [0, T ], (4)

with two associated probability distributions µ, µ̂, the squared W2(µ, µ̂) distance between µ, µ̂ is defined as

W 2
2 (µ, µ̂) = inf

π(µ,µ̂)
E(X,X̂)∼π(µ,µ̂)

[
∥X − X̂∥2

]
, (5)

where the distance ∥ · ∥ is defined as ∥X∥ :=
( ∫ T

0

∑d
i=1 |Xi(t)|2dt

) 1
2 and π(µ, µ̂) iterates over all coupled

distributions of X(t), X̂(t), defined by the condition{
Pπ(µ,µ̂)

(
A× C([0, T ];Rd)

)
= Pµ(A),

Pπ(µ,µ̂)

(
C([0, T ];Rd)×A

)
= Pµ̂(A),

∀A ∈ B
(
C([0, T ];Rd)

)
, (6)

where B
(
C([0, T ];Rd)

)
denotes the Borel σ-algebra associated with the space of d-dimensional continuous

functions C([0, T ];Rd).

We shall first prove an upper bound for the W2 distance between the probability measures µ and µ̂ associated
with X(t), X̂(t), solutions to Eq. 1 and Eq. 2, respectively.

Theorem 1. If {X(t)}Tt=0, {X̂(t)}Tt=0 have the same initial condition distribution and they are solutions to
Eq. 1 and Eq. 2 in the univariate case (d = 1 in Eq. 4), respectively, and the following conditions hold:

• f, f̂ , σ, σ̂ are continuously differentiable; ∂xσ and ∂xσ̂ are uniformly bounded

• there exists two functions η1(x1, x2), η2(x1, x2) such that their values are in (x1, x2)
and f(X1, t) − f(X2, t) = ∂xf(η1(X1, X2), t)(X1 − X2) and σ(X1, t) − σ(X2, t) =
∂xσ(η2(X1, X2), t)(X1 −X2)

then

W 2
2 (µ, µ̂) ≤ 3

∫ T

0

E
[ ∫ t

0

e2
∫ t
s h(X(r),X̃(r),r)dr+2

∫ t
s ∂xσ(η2(X(r)−X̃(r)),r)dB(r)ds

]
dt

× E
[ ∫ T

0

(f − f̂)2(X̃(t), t)dt)
]
+ 3

∫ T

0

E
[ ∫ t

0

e2
∫ t
s h(X(r),X̃(r),r)dr+2

∫ t
s ∂xσ(η2(X(r),X̃(r)),r)dB(r)ds

]
dt

× E
[ ∫ T

0

(
∂xσ(η2(X(t), X̃(t)), t

)2 · (σ − σ̂)2(X̃(t), t)dt
]

+ 3

∫ T

0

E
[ ∫ t

0

e4
∫ t
s h(X(r),X̃(r),r)dr+4

∫ t
s ∂xσ(η2(X(r),X̃(r)),r)dB(r)ds

] 1
2 dt× E

[ ∫ T

0

(σ − σ̂)4(X̃(t), t)dt)
] 1

2
,

(7)
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where X̃(t) satisfies

dX̃(t) = f̂(X̃(t), t)dt+ σ̂(X̃(t), t)dB(t), X̃(0) = X(0), (8)

and h is defined as

h(X(r), X̂(r), r) := ∂xf
(
η1(X(r), X̃(r)), r

)
− 1

2

(
∂xσ

(
η2(X(r), X̃(r)), r

))2
. (9)

The proof of Theorem 1 is given in Appendix A. Theorem 1 indicates that as long as

E
[ ∫ t

0

e4
∫ t
s
h(X(r),X̃(r),r)dr+4

∫ t
s
∂xσ(η2(X(r),X̃(r)),r)dB(r)ds

]
(10)

is uniformly bounded, the upper bound for W2(µ, µ̂) → 0 when f̂ − f → 0 and σ̂ − σ → 0 uniformly in
R× [0, T ]. Specifically, if f = f̂ , σ = σ̂, then the RHS Eq. 7 is 0. This indicates that minimizing W2(µ, µ̂)

is necessary for generating small errors f̂ − f, σ̂ − σ in order to accurately approximate both f and σ.
MSE-based loss functions (defined in Appendix D) suppress noise. On the other hand, using KL divergence
does not ensure a finite divergence between X(t) and X̂(t) even if f̂ approximates f and σ̂ approximates σ.
Detailed discussions on the limitations of MSE and KL divergence in SDE reconstruction can be found in
Appendix B.

Remark: Theorem 1 may be generalized to some higher dimensional cases when X(t) :=

(X1(t), ..., Xd(t)), X̂(t) := (X̂1(t), ..., X̂d(t)) could be described by

dX(t) = f(X(t), t)dt+ σ(X(t), t)dB(t), dX̂(t) = f̂(X̂(t), t)dt+ σ̂(X̂(t), t)dB̂(t) (11)

where f , f̂ : Rd+1 → Rd are the d-dimensional drift functions and σ, σ̂ : Rd+1 → Rd×s are dif-
fusion matrices. B(t) and B̂(t) are two independent s-dimensional standard Brownian motions. Un-
der some additional assumptions, one can derive an upper bound for the W2 distance of the proba-
bility distributions for X, X̂ as in Eq. 7. For example, if for every i = 1, ...d, the ith component
dXi(t) = fi(Xi(t), t)dt + σi(Xi(t), t)dBi(t) and dX̂i(t) = f̂i(X̂i(t), t)dt + σ̂i(X̂i(t), t)dB̂i(t), where
Bi(t), B̂i(t) are independent Brownian motions, then similar conclusions could be derived by calculating
the difference Xi − X̂i. Developing an upper bound to the W2 distance for general dimensions d requires
additional assumptions to find expressions for X − X̂ . We leave this nontrivial derivation as future work.
Although without a formal theoretical analysis, we propose in Example 3.4 a rotated squared-W2-distance
loss function that will be shown to be effective in reconstructing multidimensional SDEs.

Our next theorem provides a way to estimate the W2 distance by using finite dimensional projections. In
general, we only have finite observations of trajectories for {X(t)} and {X̂(t)} at discrete time points. Our
next result provides an estimate of the W2 between of the probability measures µ, µ̂ associated with X(t)

and X̂(t), t ∈ [0, T ] using their finite-dimensional projections. We assume that X(t), X̂(t) solve the two
SDEs described by Eq. 11. We let 0 = t0 < t1 < ... < tN = T, ti = i∆t,∆t := T

N be a uniform mesh in
time, and we define the following projection operator IN

XN (t) := INX(t) =

{
X(ti), t ∈ [ti, ti+1), i < N − 1,

X(ti), t ∈ [ti, ti+1], i = N − 1.
(12)

As in the previous case, we require X(t) and X̂(t) to be continuous. Note that the projected process is no
longer continuous, we define a new space Ω̃N containing all continuous and piecewise constant functions and
µ, µ̂ are allowed to be defined on Ω̃N naturally, see Appendix C for details. Distributions over Ω̃N generated
by XN (t), X̂N (t) in Eq. 12 is denoted by µN and µ̂N , respectively. We can then estimate W2(µ, µ̂) by
W2 (µN , µ̂N ) using the following theorem.
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Theorem 2. Suppose {X(t)}Tt=0 and {X̂(t)}Tt=0 are both continuous-time continuous-space stochastic
processes in Rd and µ, µ̂ are their associated probability measures, then W2(µ, µ̂) can be bounded by their
finite-dimensional projections

W2(µN , µ̂N )−W2(µ, µN )−W2(µ̂, µ̂N ) ≤ W2(µ, µ̂) ≤ W2(µN , µ̂N ) +W2(µ, µN ) +W2(µ̂, µ̂N ) (13)

where µN , µ̂N are the probability distributions associated with XN and X̂N defined in Eq. 12. Specifically,
if X(t) and ˆX(t) solve Eq. 11, and if

F := E
[ ∫ T

0

d∑
i=1

f2
i (X(t), t)dt

]
< ∞, Σ := E

[ ∫ T

0

d∑
ℓ=1

s∑
j=1

σ2
i,j(X(t), t)dt

]
< ∞,

F̂ := E
[ ∫ T

0

d∑
i=1

f̂2
i (X̂(t), t)dt

]
< ∞, Σ̂ := E

[ ∫ T

0

d∑
ℓ=1

s∑
j=1

σ̂2
i,j(X̂(t), t)dt

]
< ∞,

(14)

hold, then we obtain the following bound

W2(µN , µ̂N )−
√
(s+ 1)∆t

(
(F∆t+Σ)

1
2 + (F̂∆t+ Σ̂)

1
2

)
≤ W2(µ, µ̂)

≤ W2(µN , µ̂N ) +
√

(s+ 1)∆t
(
(F∆t+Σ)

1
2 + (F̂∆t+ Σ̂)

1
2

)
.

(15)

The proof of Theorem 2 is provided in Appendix C. Equation 13 is the triangular inequality for metrics,
while Eq. 15 arises from the use of a specific coupling and the Cauchy inequality to bound W2(µ, µN )

and W2(µ̂, µ̂N ). Theorem 2 gives bounds for approximating the W2 distance between X(t), X̂(t) w.r.t. to
their finite dimensional projections XN (t), X̂N (t). Specifically, if X(t), X̂(t) are solutions to Eq. 1 and
Eq. 2, then as the timestep ∆t → 0, W2(µN , µ̂N ) → W2(µ, µ̂). Theorem 2 indicates that we can use
W 2

2 (µN , µ̂N ), which approximates W 2
2 (µ, µ̂) when ∆t → 0, as a loss function. Furthermore,

W 2
2 (µN , µ̂N ) = infπ(µN ,µ̂N )

N−1∑
i=1

E(XN ,X̂N )∼π(µN ,µ̂N )

[∣∣X(ti)− X̂(ti)
∣∣2
2

]
∆t. (16)

Here, π(µN , µ̂N ) iterates over coupled distributions of XN (t), X̂N (t), whose marginal distributions coin-
cide with µN and µ̂N . | · |2 denotes the ℓ2 norm of a vector. Note that µN is fully characterized by values
of X(t) at the discrete time points ti. Alternatively, we can disregard the temporal correlations of values
at different times and relax the constraint on the coupling π(µN , µ̂N ) in Eq. 16, as in (Chewi et al., 2021).
We minimize individual terms in the sum with respect to the coupling πi of X(ti) and X̂(ti) and define a
heuristic loss function N−1∑

i=1

inf
πi

Eπi

[
|X(ti)− X̂(ti)|22

]
∆t ≤ W 2

2 (µN , µ̂N ). (17)

Eq. 17 is a lower bound of Eq. 16. For 1D SDEs, we will show convergence of LHS in Eq. 17 to 0 is
necessary to have f − f̂ , σ − σ̂ → 0 as N → ∞ in Appendix J under certain conditions. In Example 3.4
and Appendix J, we shall also compare the performance of the two losses defined by Eqs. 16 and 17.

3 NUMERICAL EXPERIMENTS

We carry out experiments to investigate the efficiency of our proposed squared-W2 loss function (Eq. 17) by
comparing it to other methods and loss functions. Our code is available in the supplemental material. Our
approach is tested on the reconstruction of several representative SDEs in Examples 3.1, 3.2, and 3.3. In
Example 3.4, we propose a way to generalize Eq. 17 to reconstruct a 2D SDE.
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In all experiments, we use two neural networks to parameterize f̂ := f̂(X, t; Θ1), σ̂ := σ̂(X, t; Θ2) in Eq. 2
for the purpose of reconstructing f, σ in Eq. 1 by the estimates f̂ ≈ f, σ̂ ≈ σ. Θ1,Θ2 are the parameter
sets in the two neural networks for parameterizing f̂ = f̂Θ1 , σ̂ = σ̂Θ2 . We use the sdeint function in the
torchsde Python package (Li et al., 2020) for numerically integrating SDEs. Details of the training steps
for all examples are given in Appendix E.

First, we compare our proposed squared-W2-distance loss (Eq. 17) with several traditional statistical meth-
ods for SDE reconstruction.
Example 3.1. We reconstruct a nonlinear SDE of the form

dX(t) =
(
1
2 − cosX(t)

)
dt+ σdB(t), t ∈ [0, 20], (18)

which defines a Brownian process in a potential of the form U(x) = x
2 − sinx. In the absence of noise,

there are infinitely many stable equilibrium points xk = 5π
3 + 2πk, k ∈ Z. When noise σdB(t) is added,

trajectories tend to saturate around those equilibrium points but jumping from one equilibrium point to
another is possible. In this example, we wish to reconstruct f(x) = 1

2 − cosx, σ(x) = 1
2 . We use the MSE,

the Mean2+Variance, the maximum-log-likelihood, and the proposed squared W2 distance Eq. 17 as loss
functions. For all loss functions, we use the same neural network hyperparameters. Definitions of all loss
functions and training details are provided in Appendix D. Neural networks with the same hidden layers and
neurons in each layer are used for each loss function, as detailed in Appendix E. Using the initial condition
X(0) = 0, the sampled ground-truth and reconstructed trajectories are shown in Fig. 1.

0 5 10 15 20

0

5

10

15

(a)

t

X
(t
)

Ground Truth Dynamics

0 5 10 15 20

(b)

t

X̂
(t
)

MSE Loss Reconstruction

0 5 10 15 20

(c)

t

Mean2+Variance Loss

0 5 10 15 20

(d)

t

W2 Loss

Figure 1: (a) Ground-truth trajectories. (b) Reconstructed trajectories from nSDE using MSE loss. (c) Re-
constructed trajectories from nSDE using Mean2+Variance loss. (d) Reconstructed trajectories from nSDE
using W2 loss. The max-log-likelihood gives almost the same straight lines for all realizations, which is the
worst approximation and not shown.

Fig. 1(a) shows the distributions of 100 trajectories with most of them concentrated around two attractors
(local minima x = −π

3 ,
5π
3 of the potential U(x)). Fig. 1(b) shows that using MSE gives almost deterministic

trajectories that fails to reconstruct the noise. From 1 (c), the Mean2+Variance loss fails to reconstruct the
two local equilibrium because the mean2+Variance loss cannot inform on the shape of the distribution of the
trajectories at any fixed timepoint. Fig. 1(d) shows that when using our proposed squared W2 loss Eq. 17,
the trajectories of the reconstructed SDE can successfully learn the two-attractor feature and potentially the
distribution of trajectories. The reason why the reconstructed trajectories of the W2 distance cannot recover
the third stable equilibrium at x = 11π

3 is because the data is sparse near it.

In the next example, we show that using our squared W2 distance loss function Eq. 17 leads to efficient
reconstruction of f and σ. We shall use the following mean relative L2 errors in the reconstructed f̂ , σ̂ in
Eq. 2 versus the ground-truth f and σ in Eq. 1 for evaluating the SDE reconstruction accuracy( T∑

i=0

∑N
j=1 ∥f(xj(ti), ti)− f̂(xj(ti), ti)∥2

(T + 1)
∑N

j=1 ∥f(xj(ti), ti)∥2
) 1

2

,
( T∑

i=0

∑N
j=1 ∥|σ(xj(ti), ti)| − |σ̂(xj(ti), ti)|∥2

(T + 1)
∑N

j=1 ∥σ(xj(ti), ti)∥2
) 1

2

(19)
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where xj(ti) is the value of the jth ground-truth trajectory at ti.
Example 3.2. Next, we reconstruct a Cox-Ingersoll-Ross (CIR) model which is commonly used in finance
for describing the evolution of interest rates:

dX(t) =
(
5−X(t)

)
dt+ σ0

√
X(t)dB(t), t ∈ [0, 2]. (20)

Specifically, we are interested in how our reconstructed f̂ , σ̂ can approximate the ground-truth f(X) = 5−X

and σ(X) = σ0

√
X , with σ0 a parameter. Here, we take the timestep ∆t = 0.05 in Eq. 17 and the initial

condition is taken to be X(0) = 2. For reconstructing f, σ, we compare using our proposed squared W2

distance Eq. 17 with those derived by minimizing a Maximum Mean Discrepancy (MMD) loss (Briol et al.,
2019) and by using the other loss functions given in Appendix D. Hyperparameters in the neural networks
and used for training are the same across all loss functions.

Figure 2: (a) Ground-truth trajectories and reconstructed trajectories by nSDE using squared W2 loss with
σ0 = 0.5. (b-c) Errors with respect to the numbers of ground-truth trajectories with σ0 = 0.5. (d) Com-
parison of the reconstructed f̂Θ1(u), σ̂Θ2(u) to the ground-truth functions f(u), σ(u) with σ0 = 0.5. (e-f)
Errors with respect to noise level σ0 with 200 training samples. Legends for panels (c, e, f) are the same as
the one in (b).

Fig. 2(a) shows the predicted trajectories using our proposed squared W2 loss function match well with the
ground-truth trajectories. Fig. 2(b, c) indicate that our proposed squared W2 distance loss yields smaller
errors defined in Eq. 19 in f, σ than other methods when the number of ground-truth trajectories is larger
than ∼ 100. More specifically, we plot the reconstructed f̂Θ, σ̂Θ by using our squared W2 loss in Fig. 2(d);
these reconstructions also match well with the ground-truth values f, σ. When we vary σ0 in Eq. 20, our
proposed W2 loss function gives the best performance among all loss functions shown in Fig. 2(e, f).

Next, we reconstruct the Ornstein-Uhlenbeck (OU) process given in (Kidger et al., 2021) to compare our
loss function with the WGAN-SDE method therein and with another recent MMD method.
Example 3.3. We consider reconstructing the following time-inhomogeneous OU process

dX(t) =
(
0.02t− 0.1X(t)

)
dt+ 0.4dB(t), t ∈ [0, 63]. (21)
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We take the timestep ∆t = 1 in Eq. 17 and the initial condition is taken as X(0) = 0. We compare the
numerical performance of minimizing Eq. 17 with the WGAN method and using the MMD loss metric.
Neural networks with the same number of hidden layers and neurons in each layer are used for all three
methods (see Appendix E).

Specifically, in addition to the relative error in the reconstructed f̂ , σ̂, we shall also compare the runtime and
memory usage for the three methods when giving different numbers of ground-truth trajectories for training.

Figure 3: (a) Ground-truth and reconstructed trajectories using the squared W2 loss Eq. 17. Black curves
are the ground-truth, red curves are reconstructed trajectories. Black and red arrows indicate f(x, t) and the
reconstructed f̂(x, t) at fixed (x, t), respectively. (b) Relative errors in reconstructed f̂ and σ̂, repeated 10
times. Error bars show the standard deviation. (c) Resource consumption with respect to Nsamples. Memory
consumption is measured by torch profiler and represents peak memory usage during training.

From Fig. 3(a), the distribution of trajectories of the reconstructed SDE found from using our proposed
squared-W2 loss matches well with the distribution of the ground-truth trajectories. Our method outperforms
the other two methods in the relative L2 error of the reconstructed f, σ for all different numbers of ground-
truth trajectories. If Nsample is the number of training samples, the memory cost in using Eq. 17 is O(Nsample);
however, the number of operations needed is O(Nsample logNsample) because we need to reorder the ground-
truth X(ti) and predicted X̂(ti) data to obtain the empirical cumulative distributions at every ti. On the other
hand, the MMD method needs to create an Nsample ×Nsample matrix and thus its memory cost and operations
needed are at best O(N2

sample). The WGAN-SDE method needs to create a generator and a discriminator
and its training is complex, leading to both a higher memory cost and a larger runtime than our method. For
reconstructing SDEs, a larger number of ground-truth trajectories leads to higher accuracy (see Appendix H).
Even if we consider using the SGD to minibatch for training, we find that the batch size cannot be set too
small due to the intrinsic noisy nature of trajectories of the SDE to be reconstructed; thus using our squared
W2 distance could be overall more efficient than using the MMD method. Additional results are given in
Appendix H.

Finally, we carry out an experiment on reconstructing a 2D correlated geometric Brownian motion. We shall
propose an extension of the 1D squared W2 distance loss Eq. 17 for reconstructing 2D SDEs.
Example 3.4. We consider reconstructing the following 2D correlated geometric Brownian motion that
could represent prices of two correlated stocks (Musiela & Rutkowski, 2006)

dX1(t) = µ1X1(t) +

2∑
i=1

σ1,iXi(t)dBi(t), dX2(t) = µ2X2(t) +

2∑
i=1

σ2,iXi(t)dBi(t), t ∈ [0, 2], (22)

where B1(t) and B2(t) are independent Brownian processes. In this example, f := (µ1X1, µ2X2) is a 2D
vector and σ := [σ1,1X1, σ1,2X2;σ2,1X1, σ2,2X2] is a 2×2 matrix. We take (µ1, µ2) = (0.1, 0.2), and σ =
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[0.2X1,−0.1X2;−0.1X1, 0.1X2]. The initial condition is set to be (X1(0), X2(0)) = (1, 0.5). In addition
to directly minimizing a 2D version of the squared W2 distance Eq. 17, we consider minimizing a sliced
squared W2 distance as proposed in (Kolouri et al., 2018; 2019). To resolve the correlation between X1, X2,
we propose a rotated squared W2 distance. Finally, we also numerically estimate the W2 distance Eq. 16
as well as the time-decoupled approximation Eq. 17 using the ot.emd2 function in the Python Optimal
Transport package Flamary et al. (2021). Formulas of the above five loss functions are in Appendix D.
Hyperparameters in the neural networks and for training are the same for using different loss functions.
Note that since the SDE has two components, the definition of the relative error in σ is revised to[

T∑
i=0

∑N
j=1 ∥σσT (xj(ti), ti)− σ̂σ̂T (xj(ti), ti)∥2F

(T + 1)
∑N

ℓ=1 ∥σ̂σ̂T (xℓ(ti), ti)∥2F

]1/2
, (23)

where ∥ · ∥F is the Frobenius norm for matrices.

Figure 4: (a) Black and red dots are the ground-truth (X1(2), X2(2)) and the reconstructed (X̂1(2), X̂2(2))
found using the rotated squared W2 loss function, respectively. Black and red arrows indicate, respectively,
the vectors f(X1, X2) and f̂(X1, X2). (b) Relative errors of the reconstructed f and σ. Error bars indicate
the standard deviation across ten reconstructions. (c) Runtime of different loss functions with respect to
Nsamples. (d) The decrease of different loss functions with respect to training epochs.
From Fig. 4(b), numerically evaluating Eq. 17 and the rotated-W2-distance loss (the green and purple curves)
perform the best, being better than the MMD method, using the sliced W2 distance, or using the 2D W2

loss. Numerically estimating Eq. 16 yields poorer performance than numerically estimating Eq. 17 because
numerically evaluating the W2 distance for high-dimensional empirical distributions is difficult and less ac-
curate. Over training epochs, minimizing Eq. 17 leads to the fastest convergence, implying that training with
Eq. 17 as the loss can be the more efficient than with other losses used in this example. On the other hand, the
runtime and memory usage of numerically evaluating the time-decoupled Eq. 17 using ot.emd2 is larger
than that of the rotated W2 loss when the number of training samples Nsamples is large (Fig. 4(c)), since the
ot.emd2 function needs to calculate a Nsamples×Nsamples cost matrix. However, using ot.emd2 to eval-
uate Eq. 17 could be more advantageous than the rotated W2 distance in reconstructing high-dimensional
SDEs since the operations needed to calculate the cost matrix increases just linearly with dimensionality. In
Appendix I, we carry out additional numerical experiments to investigate how many rotations are needed to
reconstruct Eq. 22. Further analysis on the number of samples and SDE dimensionality [Fournier & Guillin
(2015)] that allows W2-based distances to efficiently reconstruct multivariate SDEs would be helpful.

4 SUMMARY & CONCLUSIONS

In this paper, we analyzed the squared W2 distance and proposed a simple loss function based on it for
the purpose of reconstructing SDEs. Upon performing numerical experiments, we found that our proposed
squared W2 distance could be more efficient than other recent machine-learning and statistical methods for
SDE reconstruction. A promising future direction is to further investigate applying the squared W2 loss to
reconstructing high-dimensional SDEs.
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Daniel Bartl, Mathias Beiglböck, and Gudmund Pammer. The Wasserstein space of stochastic processes.
arXiv preprint arXiv:2104.14245, 2021.

Jocelyne Bion-Nadal and Denis Talay. On a Wasserstein-type distance between solutions to stochastic differ-
ential equations. The Annals of Applied Probability, 29(3):1609–1639, 2019. doi: 10.1214/18-aap1423.

Paul C Bressloff. Stochastic Processes in Cell Biology, volume 41. Springer, 2014.

Francois-Xavier Briol, Alessandro Barp, Andrew B Duncan, and Mark Girolami. Statistical inference for
generative models with maximum mean discrepancy. arXiv preprint arXiv:1906.05944, 2019.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, volume 31, 2018.

Sinho Chewi, Julien Clancy, Thibaut Le Gouic, Philippe Rigollet, George Stepaniants, and Austin Stromme.
Fast and smooth interpolation on Wasserstein space. In International Conference on Artificial Intelligence
and Statistics, pp. 3061–3069. PMLR, 2021.

Erhan Cinlar. Probability and Stochastics. Springer Science & Business Media, 2011.

Philippe Clement and Wolfgang Desch. An elementary proof of the triangle inequality for the Wasserstein
metric. Proceedings of the American Mathematical Society, 136(1):333–339, 2008.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranks and sorting using optimal trans-
port. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp.
6861–6871, 2019.

Francesco C De Vecchi, Paola Morando, and Stefania Ugolini. Reduction and reconstruction of stochastic
differential equations via symmetries. Journal of Mathematical Physics, 57(12), 2016.
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A PROOF FOR THEOREM 1

First, we recall the definition of X̃(t), which satisfies the following SDE

dX̃(t) = f̂(X̃(t), t)dt+ σ̂(X̃(t), t)dB(t), X̃(0) = X(0), (24)

where f̂ , σ̂ are defined in Eq. 2. In other words, we choose a specific realization of X̂(t), coupled to X(t)
in the sense that its initial values equal to X(0) almost surely, and the Itô integral is defined with respect
to the same standard Brownian motion B(t). Therefore, by definition, if we let π in Eq. 5 to be the joint
distribution of (X, X̃), then

W2(µ, µ̂) ≤
(
E
[ ∫ T

0

|X̃(t)−X(t)|2dt
]) 1

2

. (25)

Next, we provide a bound for E
[ ∫ T

0
|X̃(t)−X(t)|2dt

] 1
2 by the mean value theorem for f and g.

d(X(t)− X̃(t)) = ∂xf
(
η1(X(t), X̃(t), t), t

)
· (X(t)− X̃(t))dt

+ ∂xσ
(
η2(X(t), X̃(t)), t

)
· (X(t)− X̃(t))dB(t) + (f − f̂)(X̃(t), t)dt+ (σ − σ̂)(X̃(t), t))dB(t).

(26)
where η1(x1, x2), η2(x1, x2) are defined in Theorem 1 such that their values are in (x1, x2) and f(X1, t)−
f(X2, t) = ∂xf(η1(X1, X2), t)(X1 −X2) and σ(X1, t)− σ(X2, t) = ∂xσ(η2(X1, X2), t)(X1 −X2).

We introduce an integrating factor

H(s, t) := exp

[∫ t

s

h(X(r), X̃(r), r)dr +
∫ t

s

∂xσ
(
η2(X(r), X̃(r), r

)
dB(r)

]
, (27)

with h(X(t), X̃(t), t) defined in Eq. 9. Apply Itô’s formula to [X(t)− X̃(t)]/H(0; t), and we find

d
X(t)− X̃(t)

H(0; t)
=

1

H(0; t)

[
(f − f̂)(X̃(t), t)dt+ ∂xσ(η2(X, X̃), t) · (σ − σ̂)(X̃(t), t)dt

]
+

1

H(0; t)

[
(σ − σ̂)(X̃(t), t)dB(t)

]
.

(28)
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Integrate from 0 to t on both sides to obtain

X(t)− X̃(t) =

∫ t

0

H(s; t) ·
[
(f − f̂)(X̃(s), s) + ∂xσ(η2(X, X̃), s) · (σ − σ̂)(X̃(s), s)

]
ds

+

∫ t

0

H(s; t) · (σ − σ̂)(X̃(s), s)dB(s).

(29)

By invoking Itô isometry and observe that (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we deduce

E[(X(t)− X̃(t))2] ≤ 3E
[ ∫ t

0

(H(s; t) · (f − f̂)(X̃(s), s)ds)2
]

+ 3E
[
(

∫ t

0

H(s; t) · (∂xσ(η2(X, X̃), s) · (σ − σ̂)(X̃(s), s)ds)2
]

+ 3E
[
(

∫ t

0

H(s; t) · (σ − σ̂)(X̃(s), s)dB(s))2
]

≤ 3E
[ ∫ t

0

H(s; t)2ds]× E[
∫ T

0

(f − f̂)2(X̃(s), s)ds
]

+ 3E
[ ∫ t

0

H(s; t)2ds]× E[
∫ T

0

(∂xσ(η2(X, X̃), s) · (σ − σ̂)(X̃(s), s))2ds
]

+ 3E
[
(

∫ t

0

H(s; t)2 × (σ − σ̃)2(X̃(s), s)ds
]

≤ 3E
[
(

∫ t

0

H(s; t)2ds
]
× E[

∫ t

0

(f − f̂)2(X̃(s), s)ds)
]

+ 3E
[
(

∫ t

0

H(s; t)2ds
]
× E

[ ∫ t

0

(∂xσ(η2(X, X̃), s) · (σ − σ̂)(X̃(s), s))2ds)
]

+ 3E
[ ∫ t

0

H(s; t)4ds
] 1

2 × E
[ ∫ t

0

(σ − σ̂)4(X̃(s), s)ds)
] 1

2 .

(30)

Finally, we conclude that

W 2
2 (µ, µ̃) ≤

∫ T

0

E
[
(X(t)− X̃(t))2

]
dt

≤ 3

∫ T

0

E
[ ∫ t

0

H(s; t)2ds
]
dt× E

[ ∫ T

0

(f − f̂)2(X̃(s), s)ds)
]

+ 3

∫ T

0

E
[ ∫ t

0

H(s; t)2ds
]
dt× E

[ ∫ T

0

(∂xσ(η2(X, X̃), s) · (σ − σ̂)(X̃(s), s))2ds)
]

+ 3

∫ T

0

(
E
[ ∫ t

0

H(s; t)4ds
]) 1

2

dt×
(
E
[ ∫ T

0

(σ − σ̂)4(X̃(s), s)ds)
]) 1

2

,

(31)
which proves Theorem 1.
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B SINGLE-TRAJECTORY MSE AND KL DIVERGENCE

We shall first show that using the single-trajectory MSE tends to fit the mean process E[X(t)] and make
noise diminish, which indicates that the MSE is not a good loss function when one wishes to fit σ in Eq. 1.

For two independent d-dimensional stochastic processes {X(t)}Tt=0, {X̂(t)}Tt=0 as solutions to Eq. 11 with
appropriate f , f̂ and σ, σ̂, let E[X] represent the trajectory of mean values of X(t), i.e., E[X] = E[X(t)].
We have

E
[
∥X − X̂∥2

]
= E

[
∥X − E[X]∥2

]
+ E

∥∥X̂ − E[X]∥2
]

− 2E

[∫ T

0

(
X − E[X], X̂ − E[X]

)
dt

]
,

(32)

where ∥X∥2 :=
∫ T

0
|X|22dt, | · |2 denotes the ℓ2 norm of a vector, and (·, ·) is the inner product of

two d-dimensional vectors. In view of the independence between X − E[X] and X̂ − E[X], we have
E
[(

X − E[X], X̂ − E[X]
)]

= E
[
(X − E[X])

]
· E
[(

X̂ − E[X]
)]

= 0, and

E∥X − X̂∥2 ≥ E ∥X − E[X]∥2 . (33)

Therefore, the optimal X̂ that minimizes the MSE is X̂ = E[X], which indicates that the MSE tends to fit
the mean process E[X] and make noise diminish. This is not desirable when one wishes to fit a nonzero σ
in Eq. 1.

The KL divergence, in some cases, will diverge and thus is not suitable for being used as a loss function.
Here, we provide a simple intuitive example when the KL divergence fail. If we consider the degenerate
case when dX(t) = dt, dX̂(t) = (1− ϵ)dt, t ∈ [0, T ], then DKL(µ, µ̂) = ∞ no matter how small ϵ ̸= 0 is
because µ, µ̂ has different and degenerate support. However, from Theorem 1, lim

ϵ→0
W2(µ, µ̂) = 0. Therefore,

the KL divergence cannot effectively measure the similarity between µ, µ̂. Overall, the squared W2 distance
is a better metric than some of the commonly used loss metrics such as the MSE or the KL divergence.

C PROOF FOR THEOREM 2

Here we provide proof for Theorem 2. We denote

ΩN := {Y (t)|Y (t) = Y (ti) t ∈ [ti, ti+1), i < N − 1; Y (t) = Y (ti), t ∈ [ti, ti+1]} (34)

to be the space of piecewise functions. We also define the space

Ω̃N := {Y1(t) + Y2(t),Y1 ∈ C([0, T ];Rd),Y2 ∈ ΩN}. (35)

Ω̃N is also a seperable metric space because both
(
C([0, T ];Rd), ∥ · ∥

)
and

(
ΩN , ∥ · ∥

)
are separable metric

spaces. Furthermore, both the embedding mapping from C([0, T ];Rd) to Ω̃N and the embedding mapping
from ΩN to Ω̃N preserves the ∥ ·∥ norm. They, the two embedding mappings are measurable, which enables
us to define the measures on B(Ω̃N ) induced by the measures µ, µ̂ on B

(
C([0, T ];Rd)

)
and the measures

µN , µ̂N on B(ΩN ). For notational simplicity, we shall still denote those induced measures by µ, µ̂, µN , µ̂N .

Therefore, the inequality Eq. 13 is a direct result of the triangular inequality for the Wasserstein distance
(Clement & Desch, 2008) because X,XN , X̂, X̂N ∈ Ω̃N .
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Next, we shall prove Eq. 15 when X(t), X̂(t) are solutions to SDEs Eq. 1 and Eq. 2. Because XN (t) is the
projection to X(t), the squared W 2

2 (µ, µN ) can be bounded by

W 2
2 (µ, µN ) ≤

N∑
i=1

∫ ti

ti−1

E
[
|X(t)−XN (t)|22

]
dt =

N∑
i=1

∫ ti

ti−1

d∑
ℓ=1

E
[
(Xℓ(t)−XN,ℓ(t))

2
]
dt (36)

For the first inequality above, we choose a specific coupling, i.e. the coupled distribution, π of µ, µN that
is essentially the “original” probability distribution. To be more specific, for an abstract probability space
(Ω,A, p) associated with X , µ and µN can be characterized by the pushforward of p via X and XN

respectively, i.e., µ = X∗p, defined by ∀A ∈ B
(
Ω̃N

)
, elements in the Borel σ-algebra of Ω̃N ,

µ(A) = X∗p(A) := p
(
X−1(A)

)
, (37)

where X is interpreted as a measurable map from Ω to Ω̃N , and X−1(A) is the preimage of A under X .
Then, the coupling π is defined by

π = (X,XN )∗p, (38)

where (X,XN ) is interpreted as a measurable map from Ω to Ω̃N × Ω̃N . One can readily verify that the
marginal distributions of π are µ and µN respectively. Recall that s represents the dimension of the standard
Brownian motions in the SDEs.

For each ℓ = 1, ..., d, we have

N∑
i=1

∫ ti

ti−1

E
[(
Xℓ(t)−XN,ℓ(t)

)2]
dt

≤ (s+ 1)

[
N∑
i=1

∫ ti

ti−1

(
E
[( ∫ t

ti

fℓ(X̂(r), r)dr
)2]

+ E
[( ∫ t

ti

s∑
j=1

σℓ,j(X̂(r), r)dBj(r)
)2])

dt

]

≤ (s+ 1)

N∑
i=1

(
(∆t)2E

[ ∫ ti

ti−1

f2
ℓ dt
]
+∆t

∑
j

E
[ ∫ ti

ti−1

σ2
ℓ,jdt

])
(39)

The first inequality follows from the observation that (
∑n

i=1 ai)
2 ≤ n(

∑n
i=1 a

2
i ) and application of this

observation to the integral representation of X(t).

Summing over ℓ, we have

( N∑
i=1

∫ ti

ti−1

E
[
|X(t)−XN (t)|22

]
dt
) 1

2 ≤
√
s+ 1

(
F (∆t)2 +Σ∆t

) 1
2 (40)

Similarly, W2(µ̂, µ̂N ) can be bounded by

W2(µ̂, µ̂N ) ≤
√
s+ 1

(
F̂ (∆t)2 + Σ̂∆t

) 1
2 . (41)

Plug Eq. 40 and Eq. 41 into Eq. 13, we have proved Eq. 15.
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D DEFINITION OF DIFFERENT LOSS METRICS USED IN THE EXAMPLES

Five loss functions for 1D cases were considered as follows:

1. Squared 2-Wasserstein distance averaged over each time step:

W̃ 2
2 (µN , µ̂N ) =

N−1∑
i=1

W 2
2 (µN,i, µ̂N,i)∆t,

where ∆t is the time step size, and W2 is the 2-Wasserstein distance between two empirical distri-
butions µN,i, µ̂N,i, where the two empirical distributions µN,i, µ̂N,i are calculated by the samples
of the trajectories at a given time step ti.

2. Mean squared error (MSE) between the trajectories, where M is the total number of the ground-
truth and prediction trajectories. xi,j and x̂i,j are the values of the jth ground-truth and prediction
trajectories at time ti, respectively:

MSE(X, X̂) =

N∑
i=1

M∑
j=1

(xi,j − x̂i,j)
2∆t.

3. The sum of squared distance between mean trajectories and absolute distance between trajectories,
which is a common practice for estimating the parameters of an SDE. Here M and xi,j and x̂i,j

have the same meaning as in the MSE definition. var(Xi) and var(X̂i) are the variances of the
empirical distributions of X(ti), X̂(ti), respectively. We shall denote this loss function by

(Mean2 +Var)(X, X̂) =

N∑
i=1

( 1
n

M∑
j=1

xi,j −
1

n

N∑
i=1

x̂i,j

)2
+
∣∣∣var(Xi)− var(X̂i)

∣∣∣
∆t.

4. Negative approximate log-likelihood of the trajectories:

− logL(X|σ) = −
N−1∑
i=0

M∑
j=1

log ρN

[xi+1,j − xt,j + f(xi,j , ti)∆t

σ2(xi,j , ti)∆t

]
,

where ρN stands for the probability density function of the standard normal distribution, and
f(xi,j , ti), σ(xi,j , ti) are the ground-truth drift and diffusion functions in Eq. 1. M and xi,j and
x̂i,j have the same meaning as in the MSE definition.

5. MMD (maximum mean discrepancy) (Li et al., 2015):

MMD(X, X̂) =

N∑
i=1

(
Ep[K(Xi, Xi)]− 2Ep,q[K(Xi, X̂i)] + Eq[K(X̂i, X̂i)]

)
∆t,

where K is the standard radial basis function (or Gaussian kernel) with multiplier 2 and number of
kernels 5.

Five W2 distance based loss functions for the 2D SDE reconstruction problem Example 3.4 are listed as
follows

1. 2D squared W2 loss
N−1∑
i=1

(
W 2

2 (µN,i,1, µ̂N,i,1) +W 2
2 (µN,i,2, µ̂N,i,2)

)
∆t (42)

where µN,i,1 and µ̂N,i,1 are the empirical distributions of X1, X̂1 at time ti, respectively. Also,
µN,i,2 and µ̂N,i,2 are the empirical distributions of X2, X̂2 at time ti, respectively.
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2. Weighted sliced squared W2 loss

N−1∑
i=1

( m∑
k=1

Nk∑m
k=1 Nk

W 2
2 (µ

s
N,i,k, µ̂

s
N,i,k)

)
∆t

where µs
N,i,k is the empirical distribution for

√
X1(ti)2 +X2(ti)2 such that the angle between the

two vectors
(
X1(ti), X2(ti)

)
and (1, 0) is in [ 2(k−1)π

m , 2kπ
m ); µ̂s

N,i,k is the empirical distribution

for
√
X̂1(ti)2 + X̂2(ti)2 such that the angle between the two vectors

(
X̂1(ti), X̂2(ti)

)
and (1, 0)

is in [ 2(k−1)π
m , 2kπ

m ); Nk is the number of predictions such that the angle between the two vectors
(X̂1(ti), X̂2(ti)) and (1, 0) is in [ 2(k−1)π

m , 2kπ
m ).

3. The loss function Eq. 16
W 2

2 (µ
e
N , µ̂e

N ),

where µe
N and µ̂e

N are the empirical distributions of the vector (X(t1), ...X(tN−1)) and
(X̂(t1), ..., X̂(tN−1)), respectively. It is estimated by

W 2
2 (µ

e
N , µ̂e

N ) ≈ ot.emd2(
1

M
IM ,

1

M
IM ,C), (43)

where ot.emd2 is the function for solving the earth movers distance problem in the ot package of
Python, M is the number of ground-truth and predicted trajectories, Iℓ is an M -dimensional vector
whose elements are all 1, and C ∈ RM×M is a matrix with entries (C)ij = |Xi

N − X̂j
N |22. Xi

N is
the vector of the values of the ith ground-truth trajectory at time points t1, ..., tN−1, and X̂j

N is the
vector of the values of the jth predicted trajectory at time points t1, ..., tN−1.

4. The formula on the right-hand-side of Eq. 17, which is an approximation of Eq. 16. It is estimated
by

N−1∑
i=1

inf
πi

Eπi [|X(ti)− X̂(ti)|22]∆t

≈
N−1∑
i=1

W 2
2 (µ

e
N,i, µ̂

e
N,i)∆t ≈ ∆t

N−1∑
i=1

ot.emd2(
1

M
IM ,

1

M
IM ,Ci),

(44)

where µe
N,i, µ̂

e
N,i are the empirical distribution of X(ti), X̂(ti), respectively, and ot.emd2 is

the function for solving the earth movers distance problem in the ot package of Python, M is the
number of ground-truth and predicted trajectories, IM is an ℓ-dimensional vector whose elements
are all 1. Here, the matrix Ci ∈ RM×M has entries (Ci)sj = |Xs(ti) − X̂j(ti)|22 for i =
1, ..., N − 1. Xs(ti) is the vector of the values of the sth ground-truth trajectory at the time point
ti, and X̂j(ti) is the vector of the values of the jth predicted trajectory at the time point ti.

5. Rotated squared W2 loss

m−1∑
k=0

N−1∑
i=1

(
W 2

2 (µ
k
N,i,1, µ̂

k
N,i,1) +W 2

2 (µ
k
N,i,2, µ̂

k
N,i,2)

)
∆t (45)

where µk
N,i,1 is the empirical distribution for the random variable Xk

1 (ti) :=
(
cos( kπ

2m )X1(ti) +

sin( (k−1)π
2m )X2(ti)

)
and µk

N,i,2 is the empirical distribution for the random variable Xk
2 :=(

− sin( kπ
2m )X1(ti) + cos( kπ

2m )X2(ti)
)
. Similarly, µ̂k

N,i,1 is the empirical distribution for the ran-
dom variables X̂k

1 :=
(
cos( kπ

2m )X̂1(ti) + sin( kπ
2m )X̂2(ti)

)
and µ̂k

N,i,2 is the empirical distribution
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for the random variable X̂k
2 :=

(
− sin( (k−1)π

2m )X̂1(ti) + cos( kπ
2m )X̂2(ti)

)
. This rotated squared

W2 loss generalizes the 2D squared W2 loss by rotating the vector (X1, X2) and (X̂1, X̂2) to the
same degree θ, θ = kπ

2m , k = 0, ...,m − 1 and projecting the rotated vectors into X1 and X2 axes,
aiming at providing a potential way to resolve the correlation between X1, X2. The 2D squared
W2 loss Eq. 42 may not effectively handle skewed (correlated) distributions, which can be ad-
dressed by applying a suitable rotation and using the rotated squared W2 loss. A figure of such a
2D skewed distribution and how a rotation can help identify the correlation between the two dimen-
sions is shown here. For linear rotations, the original and rotated SDEs can interconvert with each

x1

x2
x1

x2

true distribution
& samples

perceived distribution
by the decoupled W2 method

x1 + x2

x2 − x1

perceived distribution
after proper rotation

x
1

x
2

project
ion into x1and x2

rotation and projection

Figure S1: An illustration of how a proper rotation helps resolve the correlation between (x1, x2) for a 2-
dimensional distribution.

other reversibly, without loss of information. Specifically, the rotated squared W2 loss (Eq. 45) is
a lower bound for m

∑N−1
i=1 W 2

2 (µ
e
N,i, µ̂

e
N,i)∆t, where µe

N,i, µ̂
e
N,i are empirical distributiosn for

X(ti), X̂(ti), respectively. Actually, in Eq. 45, for each k and i,

W 2
2 (µ

k
N,i,1, µ̂

k
N,i,1) +W 2

2 (µ
k
N,i,2, µ̂

k
N,i,2) ≤ W 2

2 (µ
e
N,i, µ̂

e
N,i). (46)

To be more specific, if πi(µ
e
N,i, µ̂

e
N,i) is a coupling such that its marginal distributions satisfy

∫
πi(µ

e
N,i, µ̂

e
N,i)

(
X(ti), X̂(ti)

)
dX(ti) = µ̂e

N,i(X̂(ti)),∫
πi(µ

e
N,i, µ̂

e
N,i)

(
X(ti), X̂(ti)

)
dX̂(ti) = µe

N,i(X(ti)),

(47)
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then the marginal distributions of πi(µ
e
N,i, µ̂

e
N,i) also satisfy∫

πi(µ
e
N,i, µ̂

e
N,i)

(
Xk

1 (ti), X
k
2 (ti), X̂

k
1 (ti), X̂

k
2 (ti)

)
dXk

1 (ti)dX̂
k
1 (ti)dX̂

k
2 (ti) = µk

N,i,2(X
k
2 (ti)),∫

πi(µ
e
N,i, µ̂

e
N,i)

(
Xk

1 (ti), X
k
2 (ti), X̂

k
1 (ti), X̂

k
2 (ti)

)
dXk

2 (ti)dX̂
k
1 (ti)dX̂

k
2 (ti) = µk

N,i,1(X
k
1 (ti))∫

πi(µ
e
N,i, µ̂

e
N,i)

(
Xk

1 (ti), X
k
2 (ti), X̂

k
1 (ti), X̂

k
2 (ti)

)
dXk

1 (ti)dX
k
2 (ti)dX̂

k
1 (ti) = µ̂k

N,i,1(X̂
k
2 (ti)),∫

πi(µ
e
N,i, µ̂

e
N,i)

(
Xk

1 (ti), X
k
2 (ti), X̂

k
1 (ti), X̂

k
2 (ti)

)
dXk

1 (ti)dX
k
2 (ti)dX̂

k
2 (ti) = µ̂k

N,i,2(X̂
k
1 (ti)).

(48)
Thus, for all πi that satisfies the condition Eq. 47, we conclude that

W 2
2 (µ

k
N,i,1, µ̂

k
N,i,1) +W 2

2 (µ
k
N,i,2, µ̂

k
N,i,2) ≤ Eπi

[
|Xk

1 (ti)− X̂k
1 (ti)|2 + |Xk

2 (ti)− X̂k
2 (ti)|2

]
= Eπi

[
|X(ti)− X̂(ti)|22

]
,

(49)
which implies

W 2
2 (µ

k
N,i,1, µ̂

k
N,i,1) +W 2

2 (µ
k
N,i,2, µ̂

k
N,i,2) ≤ inf

πi

Eπi

[
|X(ti)− X̂(ti)|22

]
= W 2

2 (µ
e
N,iµ̂

e
N,i). (50)

E DEFAULT TRAINING SETTING

Here we list the default training hyperparameters and gradient descent methods for each example in Table 1.

Loss Example 1 Example 2 Example 3 Example 4 Appendix K

Gradient descent method AdamW AdamW AdamW AdamW AdamW
Learning rate 0.001 0.002 0.002 0.0005 0.002
Weight decay 0.005 0.005 0.005 0.005 0.005
Number of epochs 1000 2000 2000 2000 500
Number of samples 100 200 256 200 100
Hidden layers in Θ1 2 1 1 1 1
Neurons in each layer in Θ1 32 32 32 32 150
Hidden layers in Θ2 2 1 1 1 1
Activation function tanh ReLu ReLu ReLu ReLu
Neurons in each layer in Θ2 32 32 32 32 150
∆t 0.1 0.05 1 0.02 0.5

Table 1: Training settings for each example.

F UNCERTAINTY IN THE INITIAL CONDITION

For reconstructing the CIR model Eq. 20 in Example 3.2, instead of using the same initial condition for all
trajectories, we shall sample the initial condition from a distribution to investigate the numerical performance
of our proposed squared W2 distance loss when the initial condition is not fixed and instead is sampled from
a distribution.
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First, we construct an additional dataset of the CIR model to allow the initial value u0 ∼ N (2, δ2), with δ2

ranging from 0 to 1, and N stands for the 1D normal distribution. We then train the model by minimizing
Eq. 17 to reconstruct Eq. 20 with the same hyperparameters as in Example 3.2. The results are shown in
Table 2, which indicate our proposed squared W2 loss function is rather insensitive to the “noise”, i.e., the
variance in the distribution of the initial condition.

Loss δ Relative Errors in f Relative Errors in σ Nrepeats

W2 0.0 0.072 (± 0.008) 0.071 (± 0.023) 10
W2 0.1 0.053 (± 0.008) 0.043 (± 0.016) 10
W2 0.2 0.099 (± 0.007) 0.056 (± 0.019) 10
W2 0.3 0.070 (± 0.014) 0.083 (± 0.026) 10
W2 0.4 0.070 (± 0.014) 0.078 (± 0.040) 10
W2 0.5 0.075 (± 0.013) 0.138 (± 0.021) 10
W2 0.6 0.037 (± 0.018) 0.069 (± 0.017) 10
W2 0.7 0.075 (± 0.016) 0.043 (± 0.014) 10
W2 0.8 0.041 (± 0.012) 0.079 (± 0.023) 10
W2 0.9 0.082 (± 0.015) 0.108 (± 0.033) 10
W2 1.0 0.058 (± 0.024) 0.049 (± 0.025) 10

Table 2: Reconstructing the CIR model Eq. 20 when u0 ∼ N (2, δ2) with different variance δ2. The results
indicate that the reconstruction results are not sensitive to the variance in the distribution of the initial value
u0.

G NEURAL NETWORK STRUCTURE

We examine how the neural network structure affects the reconstruction of the CIR model Eq. 20 in Exam-
ple 3.2. We vary the number of layers and the numbqer of neurons in each layer (the number of neurons are
set to be the same in each hidden layer), and the results are shown in Table 3.

The results in Table 3 show that increasing the number of neurons in each layer improves the reconstruction
accuracy in σ. For the reconstructing CIR model in Example 3.2, using 32 neurons in each layer seems to be
sufficient. On the other hand, when each layer contains 32 neurons, the number of hidden layers in the neural

Table 3: Reconstructing the CIR model when using neuron networks of different widths and numbers in
each hidden layer to parameterize f̂ , σ̂ in Eq. 2.

Loss Width Layer Relative Errors in f Relative Errors in σ Nrepeats

W2 16 1 0.131(±0.135) 0.170(±0.102) 10
W2 32 1 0.041(±0.008) 0.109(±0.026) 10
W2 64 1 0.040(±0.008) 0.104(±0.019) 10
W2 128 1 0.040(±0.008) 0.118(±0.019) 10
W2 32 2 0.049(±0.015) 0.123(±0.020) 10
W2 32 3 0.094(±0.013) 0.166(±0.041) 10
W2 32 4 0.124(±0.020) 0.185(±0.035) 10
W2 32 5 0.041(±0.008) 0.122(±0.024) 10
W2 32 6 0.043(±0.013) 0.117(±0.024) 10
W2 32 7 0.044(±0.012) 0.109(±0.017) 10
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Table 4: Reconstructing the CIR model Eq. 20 when neuron networks have different numbers of hidden
layers and are equipped with the ResNet technique. Each hidden layer contains 32 neurons.

Loss Layer Relative Errors in f Relative Errors in σ Nrepeats

W2 1 0.045(±0.012) 0.116(±0.025) 10
W2 2 0.053(±0.011) 0.108(±0.024 10
W2 3 0.071(±0.017) 0.117(±0.040) 10
W2 4 0.096(±0.035) 0.149(±0.064) 10

network seems does not affect the reconstruction accuracy of f, σ, and this indicates even 1 or 2 hidden layers
are sufficient for the reconstruction of f, σ. Thus, reconstructing the CIR model in Example 3.2 using our
proposed squared W2 based loss function does not require using complex deep or wide neural networks.

We also consider using the ResNet neural network structure (He et al., 2016). However, the application
of the ResNet technique does not improve the reconstruction accuracy of the CIR model in Example 3.2.
This is because simple feedforward multilayer neural network structure could work well for learning Eq. 20
when reconstructing both f and σ so we do not need deep neural networks. Thus. the Resnet technique is
not required. The results are shown in Table 4.

H USING THE STOCHASTIC GRADIENT DESCENT METHOD FOR OPTIMIZATION

Here, we shall reconstruct the OU process Eq. 21 in Example 3.3 with the initial condition X(0) = 0 using
the MMD and our squared W2 distance as loss functions with different numbers of ground-truth trajectories
and different batch sizes for applying the stochastic gradient descent technique for optimizing the parameters
in the neural networks for reconstructing the SDE. We train 2000 epochs with a learning rate 0.001 for all

Table 5: Errors and runtime for different loss functions and different numbers of ground-truth trajectories
when the training batch size is fixed to 16 and 256. The MMD and our proposed squared W2 distance Eq. 17
are used as the loss function.

Loss Nsample Relative Error in f Relative Error in σ Runtime Nrepeats Batch Size

MMD 256 0.25 ± 0.09 0.43 ± 0.18 0.43 ± 0.04 10 16
MMD 512 0.29 ± 0.08 0.41 ± 0.19 0.37 ± 0.0 10 16
MMD 1024 0.27 ± 0.09 0.41 ± 0.21 0.37 ± 0.0 10 16
W2 256 0.21 ± 0.07 0.41 ± 0.13 0.42 ± 0.02 10 16
W2 512 0.21 ± 0.06 0.38 ± 0.16 0.36 ± 0.00 10 16
W2 1024 0.19 ± 0.05 0.41 ± 0.15 0.36 ± 0.00 10 16
MMD 256 0.24 ± 0.10 2.71 ± 6.15 1.60 ± 0.29 10 256
MMD 512 0.21 ± 0.15 0.38 ± 0.22 1.81 ± 0.13 10 256
MMD 1024 0.21± 0.13 0.33 ± 0.20 1.82 ± 0.13 10 256
W2 256 0.21 ± 0.10 0.40 ± 0.20 0.63 ± 0.05 10 256
W2 512 0.24 ± 0.10 0.34 ± 0.18 0.49 ± 0.003 10 256
W2 1024 0.23 ± 0.08 0.32 ± 0.16 0.49 ± 0.005 10 256

numerical experiments, which is sufficient for all cases because the loss function stays almost unchanged
before 2000 epochs. From Table 5, for both the MMD and the squared W2 distance, a larger number of
training samples leads to more accurate reconstruction of σ (the noise term). Furthermore, it can be seen
from Table 5 that using a smaller batch size (16) for training leads to inaccurate reconstruction of σ for
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applying both the MMD and the squared W2 distance as the loss function even if the number of trajectories
in the training set is large. This might be owing to the fact that the trajectories are intrinsically noisy, and
thus in order to reconstruct the noise in the SDE Eq. 17, a larger batch size is needed to capture the statistical
properties of the noise. Therefore, using a smaller batch size could not help remedy the high cost of MMD
as the reconstruction error is large and leads to inaccurate reconstruction of the ground-truth SDE. Thus, a
larger batch size for training could be an intrinsic need for accurately reconstructing SDEs.

From both the results in Example 3.3 and Table 5, our proposed squared W2 distance is faster and more
efficient than the MMD method, making it potentially more suitable than the MMD loss function for recon-
structing SDEs.

I SENSITIVITY TEST FOR USING THE ROTATED SQUARED W2 DISTANCE LOSS
FUNCTION

We experimented with different numbers of rotations for reconstructing the 2D correlated geometric Brown-
ian motion Eq. 22 in Example 3.4 when using the rotated squared W2 distance loss function in Appendix D.
The results are shown in Fig. S2.
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Figure S2: The relative errors in f defined in Eq. 19 and the relative errors in σ defined in Eq. 23 with
respect to m, the number of rotations for the rotated squared W2 loss function outlined in Appendix D when
reconstructing the 2D correlated geometric Brownian motion Eq. 22 in Example 3.4.

From Fig. S2, there is a drastic improvement in the reconstruction accuracy of σ when the number of rota-
tions m is increased above 2. The matrix σ is not diagonal and thus the diffusion in X1, X2 are correlated,
so rotations could help reconstruct the correlation of the diffusion term in Eq. 22.

On the other hand, the reconstruction accuracy of f does not improve significantly when the number of rota-
tions is increased. Therefore, we carry out an additional numerical example of reconstructing the following
2D SDE

dX1(t) =

2∑
i=1

µ1,iXi(t) +

2∑
i=1

σ1,iXi(t)dBi(t), dX2(t) =

2∑
i=1

µ2,iXi(t) +

2∑
i=1

σ2,iXi(t)dBi(t). (51)
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Eq. 51 is different from Eq. 22 in the drift term. To be more specific, both components in f :=

(
∑2

i=1 µ1,iXi,
∑2

i=1 µ2,iXi) depend on X1, X2. We apply the rotated squared W2 distance with differ-
ent numbers of rotations to reconstruct f and σ := [σ1,1X1, σ1,2X2;σ2,1X1, σ2,2X2] in Eq. 51. We set
(µ1,1, µ1,2, µ2,1, µ2,2) = (0.1, 0.05, 0.05, 0.2), and σ = [0.2X1,−0.1X2;−0.1X1, 0.1X2]. The initial con-
dition is set to be (X1(0), X2(0)) = (1, 0.5) and we let t ∈ [0, 2].
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Figure S3: The relative errors in f defined in Eq. 19 and the relative errors in σ defined in Eq. 23 with
respect to m, the number of rotations for the rotated squared W2 loss function outlined in Appendix D when
reconstructing the 2D correlated geometric Brownian motion Eq. 51. The parameters used in the neural
network is the same as in Example 3.4.

From Fig. S3, we can see that even though both components of f depend on X1 and X2, there is no
drastic improvement in the reconstruction error when the number of rotations m is increased. However,
the reconstruction error in σ becomes much smaller when m is increased above 2. This indicates that
the existence of correlations between diffusion terms confounds the reconstruction by the 2D squared W2

distance defined in Appendix D (the 2D squared W2 distance is the same as the m = 1 case of the rotated
W2 loss), while correlation in drift terms does not. The results in both Fig. S2 and Fig. S3 also show that our
proposed rotated squared W2 distance with m ≥ 3 has the potential to resolve the correlation between X1

and X2 in both the drift and the diffusion terms. Overall, it is worth carrying out further analysis on how to
efficiently apply the rotated squared W2 distance to reconstruct general multi-dimensional SDEs.

J ADDITIONAL DISCUSSION ON THE LOSS FUNCTION EQ. 17

Here, we make an additional comparison of using Eq. 16 and Eq. 17 as loss functions in Example 4. We
set the number of training samples to be 128 and other hyperparameters for training to be the same as in the
hyperparameters in Example 4 detailed in Table 1. First, we minimize Eq. 16 and record Eq. 16 and Eq. 17
over training epochs. Next, we minimize Eq. 17 and record Eq. 16 and Eq. 17 over training epochs. The
results are shown in Fig. S4.

From Fig. S4 (a), we can see that when minimizing Eq. 16, Eq. 16 is almost 100.5 times larger than Eq. 17.
However, when minimizing Eq. 17, the values of Eq. 16 and Eq. 17 are close to each other (Fig. S4 (b)).
In both cases, Eq. 17 converges to approximately 10−1. Interestingly, minimizing Eq. 17 leads to a smaller
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Figure S4: (a) The change in Eq. 16 and Eq. 17 when minimizing Eq. 16 over training epochs. (b) The
change in Eq. 16 and Eq. 17 when minimizing Eq. 17 over training epochs.

discretized W2 distance defined in Eq. 16. This again implies that minimizing Eq. 17 could be more effective
than minimizing Eq. 16 in Example 3.4. Overall, more analysis on Eq. 17 is needed to understand its
theoretical properties and compare the performances of minimizing Eq. 17 versus minimizing Eq. 16 from
both theory and numerical aspects.

We let µi, µ̂i be the two probability distributions on the space of continuous functions associated with
X(t), t ∈ [ti, ti+1) and X̂(t), t ∈ [ti, ti+1). We shall show that Eq. 17 is an approximation to the time-
decoupled summation of squared W2 distances

∑N−1
i=1 W2(µi, µ̂i) as N → ∞. This result is similar to

approximating W 2
2 (µ, µ̂) by Eq. 16 as N → ∞ in Theorem 2.

We assume that the conditions in Theorem 2 hold true. By applying Theorem 2 with N = 1, the bound
holds true for all i = 1, 2, ..., N − 1

inf
πi

Eπi
[|X(ti)− X̂(ti)|22]

1
2∆t

1
2 −

√
(s+ 1)∆t

(
(Fi∆t+Σi)

1
2 + (F̂i∆t+ Σ̂i)

1
2

)
≤ W2(µi, µ̂i)

≤ inf
πi

Eπi
[|X(ti)− X̂(ti)|22]

1
2∆t

1
2 +

√
(s+ 1)∆t

(
(Fi∆t+Σi)

1
2 + (F̂i∆t+ Σ̂i)

1
2

)
.

(52)

In Eq. 52,

Fi := E
[ ∫ ti+1

ti

d∑
i=1

f2
i (X(t), t)dt

]
< ∞, Σi := E

[ ∫ ti+1

ti

d∑
ℓ=1

s∑
j=1

σ2
i,j(X(t), t)dt

]
< ∞,

F̂i := E
[ ∫ ti+1

ti

d∑
i=1

f̂2
i (X̂(t), t)dt

]
< ∞, Σ̂i := E

[ ∫ ti+1

ti

d∑
ℓ=1

s∑
j=1

σ̂2
i,j(X̂(t), t)dt

]
< ∞,

(53)

owing to the fact that

N−1∑
i=0

Fi = F < ∞,

N−1∑
i=0

F̂i = F̂ < ∞,

N−1∑
i=0

Σ̂i = Σ < ∞,

N−1∑
i=0

Σ̂i = Σ̂ < ∞, (54)
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where F, F̂ ,Σ, Σ̂ are defined in Eq. 14. Taking the square of the inequality 52, we have

W 2
2 (µi, µ̂i) ≤ inf

πi

Eπi
[|X(ti)− X̂(ti)|22]∆t+ 2 inf

πi

Eπi
[|X(ti)− X̂(ti)|22]

1
2

×
√
s+ 1∆t

(
(Fi∆t+Σi)

1
2 + (F̂∆t+ Σ̂i)

1
2

)
+ 2(s+ 1)∆t(Fi∆t+Σi + F̂i∆t+ Σ̂i),

W 2
2 (µi, µ̂i) ≥ inf

πi

Eπi
[|X(ti)− X̂(ti)|22]∆t− 2W2(µi, µ̂i)

√
(s+ 1)∆t

(
(Fi∆t+Σi)

1
2 + (F̂∆t+ Σ̂i)

1
2

)
− 2(s+ 1)∆t(Fi∆t+Σi + F̂i∆t+ Σ̂i)

(55)
Specifically, if there is a uniform bound M > 0 such that

inf
πi

Eπi
[|X(ti)− X̂(ti)|22]

1
2 < M, ∀i = 1, ..., N − 1, (56)

then
W2(µi, µ̂i) ≤ ∆t

1
2

(
M +

√
s+ 1

(
(FT +Σ)

1
2 + (F̂ T + Σ̂)

1
2

))
:= M̃∆t

1
2 , M̃ < ∞ (57)

Summing over i = 1, ..., N − 1 for both inequalities in Eq. 55 and noticing that ∆t = T
N , we conclude

N−1∑
i=1

W 2
2 (µi, µ̂i) ≤

N−1∑
i=1

inf
πi

Eπi
[|X(ti)− X̂(ti)|22]∆t

+ 2M

N−1∑
i=1

√
s+ 1∆t

(
(Fi∆t+Σi)

1
2 + (F̂i∆t+ Σ̂i)

1
2

)
+ 2(s+ 1)∆t(F∆t+Σ+ F̂∆t+ Σ̂),

≤
N−1∑
i=1

inf
πi

Eπi
[|X(ti)− X̂(ti)|22]∆t+ 2(s+ 1)∆t(F∆t+Σ+ F̂∆t+ Σ̂)

+M
√
s+ 1∆t

1
2 ((F + F̂ + 2T )∆t

1
2 +Σ+ Σ̂ + 2T )

(58)
and

N−1∑
i=1

W 2
2 (µi, µ̂i) ≥

N−1∑
i=1

inf
πi

Eπi [|X(ti)− X̂(ti)|22]∆t

− 2M̃

N−1∑
i=1

√
s+ 1∆t

(
(Fi∆t+Σi)

1
2 + (F̂i∆t+ Σ̂i)

1
2

)
− 2(s+ 1)∆t(F∆t+Σ+ F̂∆t+ Σ̂),

≥
N−1∑
i=1

inf
πi

Eπi [|X(ti)− X̂(ti)|22]∆t− 2(s+ 1)∆t(F∆t+Σ+ F̂∆t+ Σ̂)

− M̃
√
s+ 1∆t

1
2 ((F + F̂ + 2T )∆t

1
2 +Σ+ Σ̂ + 2T )

(59)
Eqs. 58 and 59 indicate that as N → ∞,

N−1∑
i=1

inf
πi

Eπi
[|X(ti)− X̂(ti)|22]∆t−

N−1∑
i=1

W 2
2 (µi, µ̂i) → 0, (60)

Specifically, if the limit

lim
N→∞

N−1∑
i=1

W 2
2 (µi, µ̂i) (61)
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exists, denoted by W̃ 2
2 (µ, µ̂), then we conclude that W̃ 2

2 (µ, µ̂) can be approximated by∑N−1
i=1 infπi

Eπi
[|X(ti) − X̂(ti)|22]∆t (the left hand side of Eq. 17) as ∆t → 0, which is similar to

the effectiveness of approximating W2(µ, µ̂) by W2(µN , µ̂N ) proved in Theorem 2. Furthermore, from
Eq. 17, we can deduce that

W̃ 2
2 (µ, µ̂) = lim

N→∞

N−1∑
i=1

inf
πi

Eπi
[|X(ti)− X̂(ti)|22]∆t ≤ lim

N→∞
W 2

2 (µN , µ̂N ) = W 2
2 (µ, µ̂). (62)

Therefore, the upper bound of W 2
2 (µ, µ̂) in Theorem 1 is also an upper bound of W̃ 2

2 (µ, µ̂), i.e., to recon-
struct a 1D SDE, minimizing W̃ 2

2 (µ, µ̂) is necessary to have small f − f̂ and σ − σ̂ for f, f̂ , σ, σ̂ defined
in Eqs. 1 and 2. Thus, minimizing the loss function defined in Eq. 17, when ∆t is sufficiently small, is also
necessary for minimizing the errors in f̂ and σ̂ of the reconstructed SDE Eq. 2. The analysis above provides
intuitive and heuristic understanding of the loss function Eq. 17. Further study on the existence of W̃ (µ, µ̂)
deserves attention.

K APPLICATION IN RECONSTRUCTING A 5D SDE FEATURING CIRCADIAN CLOCKS

Finally, as an application of our SDE reconstruction approach in biology, we reconstruct a five-dimensional
SDE model which is derived by adding Brownian noise to five coupled ODEs describing a periodic circadian
clock (Goldbeter, 1995).

dM =
(
vs

K4
I

K4
I + P 4

N

− vm
M

Km +M

)
dt+ 0.1MdB1

t ,

dP0 =
(
ksM − v1

P0

K1 + P0
+ v2

P1

K2 + P1

)
dt+ 0.05P0dB2

t ,

dP1 =
(
v1

P0

K1 + P0
− v2

P1

K2 + P1
− v3

P1

K3 + P1
+ v4

P2

K4 + P2

)
dt+ 0.1dB3

t ,

dP2 =
(
v3

P1

K3 + P1
− v4

P2

K4 + P2
− k1P2 + k2PN − vd

P2

Kd + P2

)
dt,

dPN =
(
k1P2 − k2PN − vn

PN

Kn + PN

)
dt+ 0.01dB4

t , t ∈ [0, 50].

(63)

In Eq. 63, M describes the concentration of mRNA, P0 is the concentration of native protein, P1, P2 rep-
resent concentrations of two different forms of phosphorylated protein, and PN quantifies the concentration
of nuclear protein. The parameters K1 = 2µmol,K2 = 2µmol,K3 = 2µmol,K4 = 2µmol,Kn,KI =
1µmol, and Km = 0.5µmol are concentration parameters associated with Michaelis-Menten kinetics. Reac-
tion rates are represented by vs = 0.76µmol/h, v1 = 3.2µmol/h, v2 = 1.58µmol/h, v3 = 5µmol/h, v4 =
2.5µmol/h, vm = 0.65µmol/h, vd = 0.95µmol/h, and ks = 0.38h−1, k1 = 1.9h−1, k2 = 1.3h−1. The
dynamics involve four independent Brownian noises described by dBi

t, i = 1, 2, 3, 4.

We plot the ground truth trajectories and the trajectories generated using our W2-distance SDE reconstruc-
tion method in Fig. S5. The training details are given in Table 1. For simplicity, we plot the mRNA concen-
tration M , the naive protein concentration P0, and the nuclear protein concentration PN , which all display
periodic fluctuations over time. The reconstructed trajectories by our Wasserstein-distance SDE approach
can accurately reproduce the noisy periodic changes in the mRNA and protein concentrations.
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Figure S5: The reconstructed trajectories using our Wasserstein-distance SDE reconstruction approach com-
pared to the ground truth trajectories obtained by simulating Eqs. equation 63. For simplicity, we plot the
ground truth and reconstructed trajectories of the concentrations of mRNA, native protein, and nuclear pro-
tein. The initial condition is set as (M(0), P0(0), P1(0), P2(0), PN (0)) = (1, 0.5, 2, 0, 1) (unit: µmol) for
all trajectories.
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