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Abstract
Methods of statistically testing the accuracy of causal graphical models have traditionally been
limited, with most focusing on parametric global assessments of the entire causal graph. However,
whether or not a causal graphical model passes a statistical test, it is crucial for many practical
applications to find which parts of the graph are accurately reconstructed and which are not. In this
paper, we introduce the Vertex Checker, the only statistical test that we are aware of that takes as
input a causal graphical model G, a vertex X , and an alpha level, sample data, and a conditional
independence test, and provides a non-parametric, asymptotically correct, statistical test of a local
subgraph of X , is computationally feasible for dozens of variables, and is extendable to other
kinds of causal graphical models. Through extensive simulations, we demonstrate the robustness
of the Vertex Checker across various data types, causal graphs, and distributions both in terms of
accuracy of graphical structure and of quantitative estimates of causal effects. Furthermore, we
apply the Vertex Checker to the real-world Sachs dataset, showcasing its practical applicability
in uncovering accurate substructures within causal graphs, even when the overall causal graphical
model is rejected.
Keywords: causal discovery, subgraph evaluation

1. Introduction

Causal discovery algorithms (CDAs) take as input sample data and optional background knowledge,
and aim to identify cause and effect relationships among observed (or even latent) variables under
a variety of different assumptions. In causal discovery the cause and effect relationships are repre-
sented by a causal directed graph in which there is an edge from A to B if and only if A is a direct
cause of B. The output of a CDA is a causal graphical model (CGM) that represents a causal directed
graph or some set of causal directed graphs. In recent years, such algorithms have significantly
influenced the way statistical tools are utilized in handling data. Classical CDAs include constraint-
based methods such as Peter-Clark (PC) and Fast Causal Inference (FCI), score-based methods like
Greedy Equivalence Search (GES), and functional-form approaches like Additive Noise Models
(ANM) and Post-non-linear models (PNL) (Spirtes et al., 2000; Chickering, 2002; Zhang et al.,
2009; Hoyer et al., 2009; Shimizu et al., 2006, 2011, 2009; Ramsey et al., 2017; Bühlmann et al.,
2014). Algorithms such as these have been applied in widely different fields, for example, social
networks, medicine, finance and etc (Ramsey et al., 2010; Glymour et al., 2019; Mooij et al., 2013;
Moneta et al., 2013; Spirtes, 2010; Pearl, 2009; Schlussel, 2020; Peterson and Halpern, 2014; Weng
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and Lee, 2019; Chickering and Heckerman, 1997). However, there is an inherent challenge to the
reliability of causal discovery results. In practice, the estimated results may deviate significantly
from reality due to reasons such as sub-optimal search parameters, violations of algorithmic as-
sumptions, local optima, and small sample sizes. This raises an important question: when and to
what extent should users trust the causal model outputs? Given these issues and the lack of known
ground truth in modeling, it is important to have widely applicable evaluation tools for outcomes
generated by different CDAs and search parameter choices.

A number of CDAs (e.g. Spirtes et al. (2000); Glymour et al. (2019); Heinze-Deml et al.
(2018)) come with guarantees of correct graphical results in the large sample limit (large sample
consistency) under a number of different assumptions. Hence in the large sample limit, where the
assumptions of a CDA (including parametric assumptions) hold exactly, no further post-processing
or further checks of correctness are needed or useful. However, on finite sample sizes, and where
the assumptions may not hold exactly, it is not uncommon for CDAs to produce output that are not
compatible with the population distribution (as determined by being rejected by a statistical test).
In those cases, the combination of a CDA and a post-processor that rejects a CGM that is not com-
patible with the population distribution can be useful in determining when not to trust the output of
a CDA. (Of course, being compatible with the population distribution as determined by a statistical
test does not guarantee that the CDM is correct, since models that are overly complex may also be
compatible with the population distribution.) To address this issue, a variety of statistical tests have
been proposed (see section 2). However, the fact that a CGM is rejected (or fails to be rejected) as a
whole does not mean that we should distrust (or trust) every part of it, and it is crucially important
to identify which specific parts of the graph contribute to its overall performance.

In addition, in many causal discovery tasks, we are often only concerned with specific parts of
an estimated CGM, such as the relationships between treatment variables and outcomes (e.g., in
medicine). For example, identifying the parents of a disease variable (e.g., medications affecting
the disease) is often sufficient (Ramsey et al., 2010; Mooij et al., 2013; Glymour et al., 2019).
Instead of evaluating the entire CGM, focusing on relevant local structures is more appropriate
and efficient. Local tests are valuable in these cases, ensuring accurate results where needed while
avoiding unnecessary analysis on unrelated sections of the CGM. Computationally, many evaluation
methods struggle with scalability and can be costly to execute (Glymour et al., 2019; Zhang and
Hyvärinen, 2012). For instance, the Markov Checker (Ramsey et al., 2024), which is a recent
advance in global graph tests, sometimes relies on the Kernel Conditional Independence (KCI)
test (Zhang et al., 2011) for handling nonlinear models. As a result, its computational complexity
increases quadratically with the number of nodes. Testing the local structures of a set of variables
saves considerable computational time as compared to conducting a global test.

In this paper, we propose a novel test, the Vertex Checker, that (i) helps locate subgraphs of
the output of a CDA which are both approximately qualitatively and quantitatively correct; (ii) can
be applied both to CGMs that fail and CGMs that do not fail a global statistical test; and (iii) can
be implemented as either a non-parametric or parametric test. The Vertex Checker tests a local
subgraph (in this paper the Markov Blanket of a variable) of a CGM G containing a given variable
X by testing a subset of the conditional independence relations entailed by G. Although in this
paper we apply the Vertex Checker to completed partially directed acyclic graphs (CPDAGs), the
basic idea can easily be extended to multiple kinds of CGMs (e.g. DAGs with latent variables,
mixed ancestral graph, partial ancestral graphs, undirected graphs (Spirtes et al., 2000; Zhang, 2008;
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Richardson and Spirtes, 2002; Lauritzen, 1996), etc.) that entail different kinds of constraints. We
demonstrate its effectiveness on both simulated and real world datasets.

The structure of this paper is as follows: In Section 2, we review the current literature. In Section
3, we introduce the Vertex Checker method, detailing its strengths and theoretical guarantees. In
Section 4 we describe the theoretical properties of the Vertex Checker. In Section 5, we present
the experimental results on both simulated and real-world datasets. In section 6 we describe the
limitations of the Vertex Checker and future work, and Section 7 is the conclusion.

2. Literature Review

There are a vast array of model tests that have been proposed (Browne and Cudeck, 1992). For
linear Gaussian models, the p-value of a Chi-squared test applied to a measure of the distance of
the maximum likelihood estimate of the covariance matrix from the population covariance matrix is
often used as a test to reject models with poor fit (Bollen, 1989; Hoyle, 1995). The Chi-squared test
is a theoretically grounded method for rejecting incorrect models. However, it tests entire causal
graphs for a given set of variables. Furthermore, in practice, its usefulness is very limited by its
very strong parametric assumptions, and the fact that even small deviations from the true model
(e.g. one or two incorrect edges in a linear Gaussian structural equation model) lead to rejection
at moderate sample sizes (Bentler and Bonett, 1980; MacCallum et al., 1996; Barrett, 2007). In
the social sciences, these problems with Chi-squared tests have led to the development of a number
of other fit indices, including the Normed Fit Index (NFI) (Bentler and Bonett, 1980)) and the
Comparative Fit Index (CFI) (Bentler, 1990)). Although there are simulation studies that have led
to suggestions about what cutoff in scores to use to reject models (Hu and Bentler, 1999), they
still make strong parametric assumptions and it is not clear how generally the suggested cutoffs
apply. These are all global tests of the entire CGM. They could be applied to a given subgraph of
a CGM (e.g. the Markov blanket of a variable X) by simply removing all of the variables not in
the subgraph, but that would be ignoring much valuable information in the discarded part of the
distribution about whether the subgraph is correct (by not paying attention to entailed conditional
independence relations between X and variables not in the Markov blanket).

Model fit is also often tested with regression residuals (Freedman, 2005; Hastie et al., 2009;
Bollen, 1989; Shadish et al., 2002). It evaluates whether the conditional independencies implied by
the model hold in the data. A common approach involves examining whether regression residuals
are small and free of systematic patterns. However, this method has several limitations. It relies
on parametric assumptions. For example, typical regression models often assume linearity, which
may not hold for real data, leading to incorrect conclusions about the presence or absence of edges
(Shimizu et al., 2006; Hoyer et al., 2008; Monti et al., 2020).

We know of no current method that is an asymptotically correct test of a subgraph of a given
CGM, that is non-parametric, implicitly or explicitly tests a correct set of entailed conditional inde-
pendence constraints entailed by a CGM, and is computationally feasible on dozens of variables.

3. Vertex Checker

The goal of the Vertex Checker is to provide a statistical test at a given level alpha of whether, un-
der assumptions very widely assumed by CDAs, the null hypothesis that a local subgraph (defined
below) of an output CGM that contains a particular vertex V is compatible with the population
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distribution. If the local subgraph is true, the Vertex Checker rejects the local subgraph as being
compatible with the population distribution at level alpha, then the probability of rejecting the local
subgraph is less than or equal to alpha. However, a statistical test may also fail to reject a CGM that
is not even approximately correct for several reasons. One kind of error in the output can occur due
to the true causal model not being represented by the class of graphs that a particular CDA searches
over (e.g. assumptions such as no latent confounders, no selection bias, no feedback, no inter-unit
interference, i.i.d., etc.). If a CDA falsely assumes that there are no latent confounders, a CDA may
output a CGM that contains no latent confounders that entails a proper subset of the constraints en-
tailed by the true CGM (at the expense of some extra complexity) that nevertheless has an estimated
distribution that is quite close to the sample distribution. The Vertex Checker is intended to provide
information about cases where the output CGM is not close to the sample distribution due to prob-
lems such as insufficient sample size, sampling error, small parametric assumption violations, and
suboptimal search parameter settings.

The Vertex Checker is a local version of a recently developed statistical test, the Markov Checker
(Ramsey et al., 2024). However, in contrast to the Vertex Checker, the Markov Checker evaluates
only entire graphs. This fact entails that the Vertex Checker is generally much faster than the Markov
Checker, provides useful information about parts of a causal graph that may be approximately cor-
rect even when the Markov Checker rejects a CGM. In addition, in contrast to the Markov Checker,
we provide tests on both non-linear and non-Gaussian models, and how failure to reject is related to
the accuracy of both qualitative and quantitative estimates of causal effects.

The Vertex Checker has two main parts: first, for a given local subgraph of a CGM it identifies a
set of conditional independence relations entailed by the local subgraph and second it tests whether
the set of conditional independence relations are compatible with the population data. In order to ex-
plain these two steps, we employ standard causal graph terminology, some of which is explained in
the Appendix A, and makes the following widely made assumptions about the relationship between
CGMs and statistical independence explained below.

The local Markov condition is a relationship between a probability distribution P and a DAG
G. P satisfies the local Markov condition for G if each variable is independent of the set of its non-
parents and non-descendants conditional on its parents. The local Markov condition is equivalent
to the following global Markov condition (Pearl, 1988). D-separation is a graphical relationship
between three disjoint sets of variables X, Y, and Z (see the Appendix A.1 for the exact definition.)

Definition 1 (Lauritzen, 1996; Koller and Friedman, 2009; Pearl, 1988)[GMC] Let G = (V,E)
be a directed acyclic graph, with V the set of random variables and E the directed edges. DAG G
and probability distribution P (V) satisfies the Global Markov Condition if for any disjoint subsets
of variables X,Y,Z ⊆ V, if X and Y are d-separated by Z, then X is conditionally independent
of Y conditional on Z in P .

The relationship between a causal DAG for a population and the probability distribution in that
population is given by the following commonly made Causal Markov Assumption (CMA).

Definition 2 (Spirtes et al., 2000; Pearl, 2009)[CMA] Let G = (V,E) be a causal DAG for a
population with distribution P (V) where every direct cause of any pair of vertices in V is also in
V (i.e. V is causally sufficient). It satisfies the Causal Markov Assumption if for any variable
X ∈ V, X is conditionally independent of the set of its non-parents and non-descendants ND(X)
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given its parents Pa(X) in G. Formally,

X ⊥ (ND(X) \Pa(X)) | Pa(X),

where ⊥ denotes conditional independence.

We use the subgraph of a causal DAG containing variables in a Markov blanket of a vertex X
as the local graph, and to determine which set of conditional independencies to test. The Markov
blanket of a vertex X (denoted MB(X)) in a DAG G consists of the parents, children, and parents of
children of X . Given a DAG that satisfies the CMA, it is entailed that X is conditionally independent
of all non-members of its Markov blanket conditional on its Markov blanket (Pearl, 1988).

The CDAs used in this paper to generate output that is input to the Vertex Checker all output
Markov equivalence classes of DAGs represented by CPDAGs. A Markov equivalence class of
DAGs is a set of DAGs that all contain the same variables and the same d-separation relations. A
CPDAG G represents a Markov equivalence classM of DAGs iff X and Y are adjacent in G iff X
and Y are adjacent in every DAG inM. An edge between X and Y is oriented as X → Y in G iff
X → Y in every DAG inM, and as X − Y otherwise. Since every DAG represented by a CPDAG
shares the same set of d-separation relations, they all entail the same set of conditional independence
relations; if any of the DAGs represented by a CPDAG satisfies the global Markov condition, then
they all do (Spirtes et al., 2000; Chickering, 2002). The Vertex Checker takes either a DAG or a
CPDAG as input. When given a CPDAG C as input, it first turns C into some arbitrary member
G of the Markov equivalence class represented by C. This step is used to select which conditional
independencies are tested by the Markov Checker. However, when evaluating the performance of
the Markov Checker, the original CPDAG, not the DAG it is transformed into, is used.

Under the null, the distributions of independent p-values with continuous CDF are distributed
uniformly, as shown in Theorem 3 (Ramsey et al., 2024). This principle forms the foundation of the
Vertex Checker, which evaluates whether the conditional independence relationships in an estimated
graph align with the expected uniform distribution of p-values, thereby assessing the correctness of
the local graph structure. The detailed procedure is summarized below into Algorithm 1.

Theorem 3 (Ramsey et al., 2024)[Uniformity Check] If P is a set of valid p-values of statistical
tests of the form X ⊥ Y | Z obtained from independent samples, where each P (X,Y | Z) has a
continuous cumulative distribution function, then P is uniformly distributed, i.e., P ∼ U(0, 1).

The uniformity test has several desirable properties. It is a non-parametric test and it is a test
of an entire set of conditional independence relations, not just each one individually. If a large set
of conditional independence relations were tested individually, then some of them are bound to fail
due to sampling error, even if the whole set passes the test. An alternative would be to perform a
Bonferroni adjustment; however, this is generally considered to be too conservative (Moran, 2003).

Note that there are two distinct kinds of tests employed in the Vertex Checker: there are statis-
tical tests of conditional independence, and there is U(P), the result of a statistical test of the uni-
formity of the p-values generated by the statistical tests of conditional independence. The statistical
test of the uniformity of the p-values that we employ is non-parametric, in this case a Kolmogorov-
Smirnoff test (Kolmogorov, 1933; Smirnov, 1948). The statistical tests of conditional independence
that are employed can either be parametric (e.g. a chi-squared test of linear Gaussian models) or
non-parametric (e.g. KCI). In the latter case the algorithm as a whole does not make parametric as-
sumptions. In addition, the tests of conditional independence may only be asymptotically correct, in
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Algorithm 1 Vertex Checker
Input: Estimated DAG or CPDAG Ges = (V,E), random variable X , data set D, conditional inde-

pendence test CI , significance level α
Output: Pass or Fail, p-value of uniformity test
If Ges is a CPDAG, transform it into an arbitrary DAG in the Markov equivalence class represented

by Ges.
Initialize: P = ∅
foreach Y ∈ V\MB(X) do

Test Y ⊥ X |MB(X)
Record p-values from conditional independence tests and append to P

end
Hypothesis: The set of variables in the Markov blanket of X is correct, implying p-values in P

follow a uniform distribution between 0 and 1
Test uniformity of list P with Kolmogorov-Smirnov test or similar tests, obtaining the p-value
U(P)

if U(P) > α then
Return Pass and U(P)

end
else

Return Fail and U(P)
end

which case the correctness of the Vertex Checker may also suffer if the sample size is too small. For
those reasons, we have performed simulations using both parametric and non-parametric statistical
tests of conditional independence.

The Causal Markov Assumption entails that V\MB(X) ⊥ X | MB(X). This in turn entails
that for every Y ∈ V\MB(X), Y ⊥ X |MB(X). The converse (known as the composition axiom
of conditional independence) is not always true. However, for many families of distributions (e.g.
Gaussian, multinomial, and any distribution in which the conditional independencies are algebraic
constraints on the parameters), the conditions under which the converse is false are of Lebesgue
measure 0 in the parameters (Lauritzen, 1996; Spirtes et al., 2000). We choose to test every Y ∈
V\MB(X), Y ⊥ X | MB(X) for two reasons: first, it is much easier to test in terms of sample
size needed for useful power, and it provides a list of p-values needed for the Vertex Checker, rather
than a single p-value. However, one way that the Vertex Checker can fail is if composition is false.

4. Theoretical Results

In this section, we show that under reasonable assumptions, the Vertex Checker provides a correct
p-value in the large sample limit.

Assumption 1

1. The samples {Xi}Ni=1 are i.i.d. with no missing values.

2. The measured variables are causally sufficient, and the true causal graph is a DAG without
selection bias.
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3. (G, P ) satisfies CMA.

4. For a DAG G = (V,E) if for every Y ∈ V\MB(X), Y ⊥ X |MB(X) then V\MB(X) ⊥
X |MB(X).

Theorem 4 (Uniformity of p-values) Let the null hypothesis H0 be that the set of variables in the
Markov Blanket of X in the input to the Markov Checker is correct. Given Assumption 1, under
H0, if the data sets for the statistical tests performed by the Vertex Checker are independent of
each other, the p-values in P in the Vertex Checker for variable X are uniformly distributed on the
interval [0, 1] in the large sample limit.

Theorem 5 (Correctness of p-values) Let the null hypothesis H0 be that the set of variables in
the Markov Blanket of X in the input to the Markov Checker is correct. Given Assumption 1, under
H0, if the data sets for the statistical tests performed by the Vertex Checker are independent of each
other, the probability of falsely rejecting H0 is less than or equal to U(P).

Theorem 4 follows directly from Theorem 3 and the Causal Markov Assumption. According
to CMA, each vertex X is independent of all other variables conditioned on its Markov Blanket,
MB(X). According to Theorem 3, if the p-values are obtained from independent samples, they
should follow a uniform distribution. Theorem 5 then follows directly from Theorem 4 and As-
sumption 1. Theorem 5 does not indicate that the Vertex Checker is useful by itself, since it is
always possible to find causal graphs that satisfy the Markov condition, e.g. any complete graph.
That is why we only use the Vertex Checker in order to test the output of a CDA, which itself im-
poses simplicity constraints on its output, and is already avoiding inputs which are overly complex.

There are alternative sets of conditional independence relations other than the ones entailed by
the Markov Blanket of X that could be used to test a local subgraph of X , e.g. the Local Markov
Condition. Testing the Markov Blanket of X however, is more local than testing the local Markov
condition, since the a test of the local Markov condition may fail because of an error in a feature
of the DAG that is an arbitrary distance from X , e.g. mistaking a descendant of X for a non-
descendant of X . A disadvantage of using the Markov Blanket to select conditional independencies
to test is that this does not test the structure within the Markov Blanket, only the membership in
the Markov Blanket, and the set of Markov Blanket conditions for each vertex does not entail the
Global Markov Condition.

In the large sample limit, where the assumptions of a consistent causal search algorithm (includ-
ing parameteric assumptions) hold exactly, no further post-processing (as in the Vertex Checker) is
needed. However, on finite sample sizes, where the assumptions may not hold exactly, it is not
uncommon for causal search algorithms to produce output that is not Markov to the population dis-
tribution. In those cases, the combination of a causal search algorithm and a post-processor which
rejects parts of the output can be more useful than either part (the causal search algorithm and the
Vertex Checker) is alone. However, whether that is the case for a particular data set depends on how
likely the CDA is to make errors that could be corrected by the Vertex Checker, and how likely the
Vertex Checker is to make errors. For that reason, we have done extensive simulation tests.

4.1. Implementation of the Vertex Checker

The implementation of Algorithm 1 can be challenging due to the difficulty of selecting appropriate
conditional independence (CI) tests, and conducting those tests in such a way that the data providing
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the p-values are independent of each other (as required by the theorem). CI testing is inherently
more complex than testing for unconditional independence (Bergsma, 2004; Lauritzen, 1996). We
discuss different tests of conditional independence under different assumptions in the Appendix E.

Another concern in implementing Algorithm 1 is that collecting p-values from conditional in-
dependence tests involving shared variables may introduce dependency among the p-values. This
could violate the independence assumption of the uniformity test. While this issue can be theoreti-
cally addressed by limiting the number of overlapping samples when calculating p-values (Bickel,
2004; Meinshausen and Bühlmann, 2010), it has been shown empirically (Ramsey et al., 2024) that
such worries are unnecessary, and the results are not significantly affected by such dependencies.

5. Experimental Results

In this section, we demonstrate the effectiveness of the Vertex Checker on both simulated and real-
world datasets. We divide the simulations into graphs rejected (globally fail) or accepted (globally
pass) by the Markov Checker. For graphs that fail globally, we highlight the presence of vertices
with good approximations to the parent sets. Conversely, for graphs that pass globally, we show that
not all components are reliable, exposing local areas that may fail despite strong global performance.
This granularity is important for downstream tasks on graph-based models and understanding their
local structures.

For the real-world application, we apply the Vertex Checker to the Sachs dataset (Sachs et al.,
2005). Although the algorithms used to estimate the causal graph fail the Markov Checker, strong
local performance is observed for several individual vertices, consistent with the domain-specific
knowledge presented in the dataset.

5.0.1. EVALUATION METRICS

The Vertex Checker tests whether the vertices in the Markov blanket are approximately correct in
the DAG (or CPDAG). To quantify this, we use two key metrics, the F1 score and IDA score (Saito
and Rehmsmeier, 2015; Maathuis et al., 2009). Because there are various features of the Markov
blanket which can be useful, we apply the F1 score and and IDA score to a variety of such features.

F1 score (Saito and Rehmsmeier, 2015; van Rijsbergen, 1979): The F1 score combines preci-
sion and recall to provide a balanced measure of performance, with details in Appendix B. In our
experiments, we calculate F1 score for various features of the Markov blanket of a given vertex: (1)
Parents: identifying which vertices serve as parents of X , (2) Children: identifying which vertices
are children of X , (3) Adjacency: identifying vertices that are adjacent to X , and (4) Orientation:
identifying vertices that are adjacent to X with directed edges.

IDA score: The IDA score builds upon the IDA (Intervention Calculus When the DAG is Ab-
sent) (Maathuis et al., 2009; Nandy et al., 2017), which estimates linear coefficients between vari-
able pairs in a linear Gaussian CPDAG. Since CPDAGs contain undirected edges with unknown
orientations, a single estimate of a linear coefficient isn’t always possible. IDA addresses this by
orienting each undirected edge in all compatible directions, estimating the coefficient for each ori-
entation, and using the min and max of these estimates to provide an interval. We calculate the
distance from this interval to the true coefficient, where the distance is zero if the true value lies
within the interval, or the minimum distance to its endpoints otherwise. Additionally, the IDA score
computes the absolute difference between the true coefficients and the interval estimates for the co-
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efficients of a vertex’s parent set. This allows us to evaluate whether the Vertex Checker improves
estimation accuracy. More details can be found in Appendix C.

5.1. Simulation Results

Algorithms Graph Types Variable Size Sample Size Evaluation Metrics

PC
Linear Gaussian

20, 50 500, 1500

F1 score: Adjacency
Linear Exponential F1 score: Orientation

FGES Nonlinear F1 score: Parents

BOSS
Discrete F1 score: Children

Mixed Type IDA score

Table 1: Simulation settings for evaluating the PC, FGES, and BOSS algorithms under various
graph types, variable sizes, and sample sizes using multiple evaluation metrics.

To demonstrate the robustness of the Vertex Checker, as shown in Table 1, we conduct experi-
ments on a variety of graph types, algorithms, variable and sample sizes. Due to space limitations,
we provide a subset of the results here, with additional details available in the Appendix G, as well
as the simulation details (see the Appendix F.1, A.2). We are not testing the algorithms that provide
the graphs that are input to the Vertex Checker; we are testing how well the Vertex Checker is able
to use these outputs to select vertices which have relatively accurate local structures (e.g. parents),
or relatively accurate estimates of the structural coefficients of related edges.

In our experiments, we evaluate the causal model on the same data used for training. This
raises a potential concern that such evaluation might lead to overly optimistic performance estimates
(Hastie et al., 2009; Bishop and Nasrabadi, 2006). To address this issue, we conducted additional
experiments using a train-test split, where the model is trained on one portion of the data and evalu-
ated on an unseen portion. This approach highlights the robust performance of the Vertex Checker
when applied to new data. Part of the results are presented in Appendix G.2.

5.1.1. VERTEX CHECKER ON MARKOV-REJECTED GRAPHS

By simulating and testing Vertex Checker on graphs rejected by the Markov Checker (M−rejected),
we notice that oftentimes around 45% of the vertices actually pass the Vertex Checker as shown in
Figure 4, indicating their good local Markov structures (Vpr: variable passing rate). This further
demonstrates the necessity of Vertex Checker in uncovering the local properties of graphs.

To evaluate the effectiveness of the Vertex Checker, we separate the vertices into two groups:
those that PASS the test and those that FAIL. For each group, we compute the average Vertex Checker
p-values and evaluation metrics (as defined earlier). We then calculate the correlation between the
p-values and the evaluation metrics. A significant positive correlation (or negative in the case of
the IDA score) would indicate that the Vertex Checker effectively distinguishes vertices with better
local structures. The detailed procedure is summarized in Appendix D.

Table 2 presents the Pearson correlations between the Vertex Checker p-values and the F1 score
on Adjacency and Parents, with the first number in brackets representing the correlations and the
second the p-values, under linear Gaussian distribution. Across different settings and models, the
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correlations are consistently significantly positive. This suggests that vertices with higher Vertex
Checker p-values are significantly more likely to have accurate adjacent edges and parent sets in the
linear Gaussian cases.

In Table 3, we present the results for linear non-Gaussian, nonlinear, and discrete data types
under various algorithms. For simplicity, we fix the size of the data, with the number of variables
equal 50 and the number of samples equal 1500. We can see that the results continue to show
significant positive correlations, indicating that the Vertex Checker is robust and effective across a
wide variety of data types and scenarios.

In practice, we often care more about the the accuracy of quantitative predictions. To further
demonstrate the effectiveness of the Vertex Checker, we evaluated its ability in distinguishing ver-
tices with more accurate estimated edge coefficients under linear models.

Using the IDA score, we recorded the average distance between the estimated parent coeffi-
cients of vertices and the ground truth values. The overall results, shown in Figure 1 and Figure
2, demonstrate that vertices passing the Vertex Checker consistently have lower distances from the
true coefficients compared to those that fail. We further summarize the correlation between the IDA
score and Vertex Checker p-values in Table 7, which indicates that vertices with higher p-values
are more likely to have accurate estimations on parent coefficients. The results provide additional
support for the reliability and utility of the Vertex Checker in identifying accurate local structures.

5.1.2. VERTEX CHECKER ON MARKOV-ACCEPTED GRAPHS

Analogously to the case where an output CPDAG is globally rejected by the Markov Checker,
we aim to demonstrate that having a globally well-performing output CPDAG graph is far from
sufficient for reliable conclusions about the local graphs around each vertex. As illustrated in Figure
3, oftentimes vertices fail local checks even when the graph as a whole passes.

We show that the Vertex Checker remains highly informative by identifying the subset of ver-
tices with problematic local structures, as shown in Table 4. This capability is crucial for providing
a more granular view of the graph’s structure, allowing us to pinpoint specific vertices that deviate
from expected patterns.

Figure 1: IDA score results for PC algorithm with linear exponential distribution (500 samples)

5.2. Empirical Results

To demonstrate the applicability of the Vertex Checker, we applied it to the well-known Sachs
dataset (Sachs et al., 2005), a benchmark in systems biology frequently used for causal discovery
and inference. The dataset consists of continuous measurements of 11 biochemical signals in human
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Figure 2: IDA score results for PC algorithm with linear exponential distribution (1500 samples)

Figure 3: Vpr on M-accepted graphs Figure 4: Vpr on M-rejected graphs

immune system cells with 853 observational samples, making it a suitable candidate for testing
CDAs.

We applied four CDAs: PC, FGES, BOSS, and GRaSP. After generating the estimated graphs
for each algorithm, we evaluated them using both the Markov Checker and the Vertex Checker,
presented in Table 10 and Figure 5, respectively. Since the data are predominantly non-Gaussian and
the relationships are nonlinear (see Appendix H), we use KCI (Zhang et al., 2011) for conditional
independence tests. In Figure 5, variables encircled in red indicate rejected by the Vertex Checker,
while those in blue signify accepted. Detailed parameter settings for the algorithms are in Table 5.

As indicated by the significant p-values from the Markov Checker, all graphs fail the Markov
Checker. However, the Vertex Checker reveals that some local structures are still reliable. For in-
stance, in the BOSS graph, the variable erk passes the Vertex Checker, suggesting a well-reconstructed
local neighborhood around this node. There are ongoing disputes about the ground truth of the data,
but certain causal relationships are generally accepted. In particular, erk pointing to akt is confirmed
by interventional experiment in (Sachs et al., 2005). Also, the KEGG database (Kanehisa, 2002)
suggests erk pointing to several other proteins upstream, which is also reflected in the BOSS and
GRASP outputs. Additionally, it is known that pip2 and pip3 form a cycle, which aligns with the
fact that they fail the Vertex Checker in all graphs. Given the limited information available, the re-
sults should be interpreted with caution. But generally it is demonstrated that the Vertex Checker is
empirically valuable as it can provide valuable insights in the local reliability, even when the global
structure is incorrect.
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Adjacency Parents

PC FGES BOSS PC FGES BOSS

d = 20, n = 500 (0.6419, 5.26E-71) (0.4274, 7.96E-50) (0.3699, 6.74E-21) (0.2934, 2.20E-13) (0.1157, 1.24E-04) (0.0987, 1.55E-02)
d = 50, n = 500 (0.6341, 8.36E-69) (0.4805, 5.95E-13) (0.7650, 6.47E-59) (0.2835, 1.46E-12) (0.3768, 3.78E-08) (0.2176, 1.45E-04)
d = 20, n = 1500 (0.6994, 2.59E-89) (0.2858, 6.80E-06) (0.2562, 1.40E-13) (0.4690, 3.74E-34) (0.1735, 7.02E-03) (0.0173, 6.22E-01)
d = 50, n = 1500 (0.8200, 5.74E-85) (0.2449, 2.98E-04) (0.6647, 1.26E-39) (0.5860, 6.52E-71) (0.2574, 1.40E-04) (0.1290, 2.55E-02)

Table 2: Correlation between F1 score and p-values on Adjacency and Parents: Linear Gaussian

linear (exp) nonlinear (mlp) discrete

PC (0.8687, 2.41E-62) (0.7092, 5.40E-38) (0.6716, 1.04E-40)
FGES (0.8547, 1.94E-55) (0.5876, 5.85E-20) (0.1904, 6.13E-04)
BOSS (0.4084, 1.93E-12) (0.7210, 2.19E-33) (0.2488, 1.74E-06)

Table 3: FAIL: Correlation between F1 Score on parent sets and Vertex Checker p-values

6. Limitations of the Vertex Checker and Future Work

In addition to the limitations of the Markov Checker already noted, it is also possible that there
are not enough conditional independence relations in P in line 2 of the Algorithm 1 to make the
Vertex Check a powerful enough test of whether the p-values are drawn from a U (0,1) distribution
to be useful. To deal with this we have drawn multiple subsamples from the data, to increase the
number of p-values checked for uniformity. The tradeoff of doing this multiple subsampling is
that it increases the dependence between the p-values, which is required for the uniformity to hold.
However, simulations on the Markov Checker indicate that the dependence from subsampling has
very little effect on the uniformity of the p-values (Ramsey et al., 2024). Another alternative is to use
approaches other than the Uniformity test for the null hypothesis. We emphasize that this paper aims
to provide a framework for testing the local structure (i.e., Markov Blanket), which is independent
of the specific consistent test used for the null hypothesis. In addition to the vanilla Uniformity
test, various multiple testing correction methods can be applied, including Bonferroni Correction,
Benjamini-Hochberg (BH) Correction, Benjamini-Yekutieli (BY) Correction, and Holm-Bonferroni
Correction, which theoretically enhance the model’s stability. In addition, Fisher’s method can be
used as an alternative to the Uniformity test, addressing issues related to p-value dependency and
the potential insufficiency of p-values for achieving a powerful test. (Tillman, 2009). In Appendix

Figure 5: Vertex Checker on Sachs Dataset
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linear (exp) nonlinear (mlp) discrete

PC (0.2359, 7.09E-05) (0.3557, 1.43E-08) (0.1838, 2.93E-05)
FGES (0.3049, 1.20E-06) (0.1730, 3.68E-03) (0.2380, 3.04E-04)
BOSS (0.1790, 1.55E-03) (0.2189, 9.67E-05) (0.1322, 3.24E-03)

Table 4: PASS: Correlation between F1 Score on parent sets and Vertex Checker p-values

G.4, we compare the empirical performance of the model under different tests on simulated data,
suggesting that the choice of test does not significantly affect the Vertex Checker performance.

In addition, the Vertex Checker has a disadvantage shared by all valid statistical tests. At very
large sample sizes, even tiny deviations from the true DAG (or any deviations from the distributional
assumptions made by the conditional independence tests providing the p-values) will lead to rejec-
tion of a model that is very close to the truth and perfectly usable (Spirtes et al., 2000; Haughton,
1988). The simulation tests that we have done at common sample sizes (in the thousands) does not
suffer from this problem, but at large enough sample sizes, this will become a significant problem.
Since almost all real data sets will violate some assumptions to at least a small degree, this will lead
to all models being rejected if there are enough measured variables and a large enough sample size.
However, simulations indicate that the Vertex Checker is still useful at sample sizes where all plau-
sible models are being globally rejected, because the local subgraphs connected to some individual
vertices are not being rejected. One drawback of the Vertex Checker is that it may not be able to
reject some vertices with unnecessary edges. Similarly to the Markov Checker, here we could allow
the Vertex Checker impose a simplicity constraint, in addition to the simplicity constraints imposed
by the CDAs used to generate the input. The full algorithm is in the Appendix D.1.

One potential direction for future work is to relax the assumptions underlying the Vertex Checker.
For instance, while it is theoretically valid for any type of graph, we have not yet developed the cor-
responding algorithm to empirically validate this claim. Additionally, the current assumptions only
consider graphs that consist solely of observed variables, whereas extending the approach to han-
dle latent variables is crucial for real-world applications. Also, in biological datasets such as the
Sachs dataset, new algorithms may be necessary to accommodate cycles in the graphs, expanding
the applicability of the method to more complex causal structures.

7. Conclusion

In this paper, we introduced the Vertex Checker, the only statistical test that we are aware of that
takes as input a causal graphical model G, a vertex X , an alpha level, sample data, and a conditional
independence test, and provides a non-parametric, asymptotically correct, statistical test of a local
subgraph of X , is computationally feasible for dozens of variables, and is extendable to other kinds
of causal graphical models. Through extensive simulations, we demonstrated the robustness of
the Vertex Checker across various data types, causal graphs, and distributions both in terms of
accuracy of graphical structure and of quantitative estimates of causal effects. Furthermore, we
applied the Vertex Checker to the real-world Sachs dataset, showcasing its practical applicability
in uncovering accurate substructures within causal graphs, even when the overall causal graphical
model is rejected.
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Appendix A. Background Information

A.1. Graphical Definitions

A directed graph contains a set of vertices V and a set of directed edges X → Y between distinct
members of V. If X → Y in a directed graph, then X is a parent of Y and Y is a child of X . A
path P from X to Y is a sequence of consecutive edges (independent of their direction). If all of the
edges in a path P point in the same direction, then p is a directed path. Given a path P that contains
X → Y ← Z we refer to Y as a collider on P. X is an ancestor of Y (and Y is a descendant of X), if
there exists a directed path from X to Y. A directed graph is acyclic (a DAG) if there is no directed
path from a vertex to itself.

d-separation is a graphical relation used in DAGs used to determine whether a DAG entails that
two sets of variables are conditionally independent given a third set. It provides a formal rule for
reading conditional independencies from the structure of a graph. Given a DAG, if X, Y, and Z are
disjoint sets of vertices, then X and Y are d-connected by Z in G if and only if there exists a path
U between some vertex in X and some vertex in Y such that for every collider C on U , either C or
a descendant of C is in Z, and no non-collider on U is in Z. X and Y are d-separated by Z in G if
and only if they are not d-connected by X in G (Pearl, 2009; Scheines, n.d.).

A.2. Causal Discovery Algorithms

In this section, we give brief introductions to different CDAs. They represent a diverse set of
approaches within the causal discovery framework:

• Peter-Clark (PC): The PC algorithm is a constraint-based method for learning the causal
structure of a set of variables from data. It assumes the absence of latent variables, selection
bias, cycles, etc. It takes data and operates by testing conditional independencies between
variables and first progressively removing edges from a fully connected undirected graph,
and then orienting the undirected edges as much as possible. The output is a CPDAG. It
has been shown to produce the correct CPDAG with probability 1 in the large sample limit.
(Spirtes et al., 2000).

• Fast Greedy Equivalence Search (FGES): GES is a score-based method that searches over
Markov equivalence classes of DAGs. It takes data and starts from an empty graph and greed-
ily adds or removes edges to maximize a score, such as the Bayesian Information Criterion
(BIC), over the space of CPDAGs. It outputs a CPDAG (Ramsey et al., 2017).

• BOSS (Best Order Score Search): BOSS is a bayesian search-based algorithm, efficiently
searching over the space of permutations of the order of the variables for causal graphs. Its
increased accuracy as compared to PC and FGES makes it an ideal candidate for comparison
against more traditional methods like PC and FGES. It takes data as input and outputs a DAG.
(Andrews et al., 2023).

• GRASP (Greedy Sparsest Permutation): GRASP aims to efficiently learn the underlying
causal graph by finding the sparsest permutation that satisfies conditional independence re-
lationships among variables. It is particularly useful when the number of variables is large
relative to the number of samples. It takes data and outputs a fully oriented DAG Lam et al.
(2022).
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By including these algorithms (only three of which were used on the simulated data), we ensure
that we are testing a range of methodologies—constraint-based (e.g. PC), score-based (e.g. FGES),
and a permutation approach (e.g. BOSS)—which provides a comprehensive and reliable evaluation
of causal discovery performance.

A.3. Evaluation Tools

• Chi-squared test: a method for evaluating model fit in structual equation modeling, where the
test statistic measures the discrepancy between the maximum likelihood estimated covariance
matrix and the observed sample covariance matrix, which has the Chi-squared distribution in
the large sample limit (Bollen, 1989).

• Comparative Fit Index (CFI): a measure used to evaluate the fit of a causal model by com-
paring it to a baseline model, with values close to 1 indicating a good fit (Bentler, 1990).

• Normed Fit Index (NFI): a measure use to evaluate the goodness-of-fit of a hypothesized
causal model to a null model, where values closer to 1 indicate a better fit (Bollen, 1989).

Appendix B. F1 score

B.1. Definition

The F1 score is a performance metric used to evaluate a model’s accuracy, defined as the harmonic
mean of precision and recall. An F1 score of 1 represents perfect precision and recall, and a score
of 0 indicates the worst performance. In the following equations we denote the number of True
Positives as TP, the number of False Positives as FP, and the number of False Negatives as NP.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score = 2× Precision× Recall
Precision + Recall

We calculate the F1 score for different local structures around a vertex X as follows. Here the
estimated MB(X) and the true MB(X) represent the Markov blankets of X from the estimated
CPDAG and the true CPDAG, respectively.

• F1 Score on Adjacency:

– True Positives (TP): The number of edges adjacent to X in the estimated MB(X) that
are also adjacent in the true MB(X).

– False Positives (FP): The number of edges adjacent to X in the estimated MB(X) that
are not adjacent in the true MB(X).

– False Negatives (FN): The number of edges adjacent to X in the true MB(X) that are
not adjacent in the estimated MB(X).

• F1 Score on Orientation:
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– True Positives (TP): The number of directed edges in the estimated MB(X) that are
correctly oriented according to the true MB(X).

– False Positives (FP): The number of directed edges in the estimated MB(X) that are
either undirected or incorrectly oriented (reversed) in the true MB(X).

– False Negatives (FN): The number of undirected edges (adjacent in both graphs) in the
estimated MB(X) that are directed in the true MB(X).

• F1 Score on Parents:

– True Positives (TP): The number of parents of X in the estimated graph that are parents
in the true graph.

– False Positives (FP): The number of parents of X in the estimated graph that are not
parents in the true graph.

– False Negatives (FN): The number of missed parents of X in the estimated graph.

• F1 Score on Children:

– True Positives (TP): The number of children of X in the estimated graph that are chil-
dren in the true graph.

– False Positives (FP): The number of children of X in the estimated graph that are not
children in the true graph.

– False Negatives (FN): The number of missed children of X in the estimated graph.

We also include the algorithm on calculating F1 score here in Algorithm 2.

Algorithm 2 Precision, Recall, and F1 Score Calculation with P-values from the Vertex Checker
Input: P-values from the Vertex Checker for {X : i = 1, . . . , d}, threshold th
Output: Precision, Recall, F1 scores, and their correlations with p-values
Initialize: set Pass = {}, set Fail = {} foreach X do

if P-value of X > th then
Add X to Pass

end
else

Add X to Fail
end

end
Calculate precisions, recalls, and F1 scores for all X in the estimated CPDAG with respect to the
true CPDAG

Compute correlations between precisions, recalls, F1 scores, and the p-values from the uniformity
test; record the correlation values and their corresponding p-values

Appendix C. IDA score

In this paper, we use the widely-known IDA (Intervention Calculus when the DAG is Absent)
method (Maathuis et al., 2009; Nandy et al., 2017) to evaluate a vertex’s parent set in CPDAGs.
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One major challenge when assessing the performance of a vertex in comparison to the ground
truth model is that edges in CPDAGs can be undirected. As a result, we cannot directly com-
pare the estimated structural coefficients to the true structural coefficients. We use IDA to estimate
the bounds of a linear coefficient. Then we employ the following IDA score. If the true coeffi-
cient Coef [X,Y ] lies within the interval (min(Coefes[X,Y ]),max(Coefes[X,Y ])), we assign a
difference of 0, indicating no discrepancy between the true and estimated coefficients. However,
if Coef [X,Y ] falls outside the interval, we assign the difference as the minimum absolute dis-
tance between the true coefficient Coef [X,Y ] and the boundary of the interval, i.e., the closest of
(min(Coefes[X,Y ]),max(Coefes[X,Y ])). The details are shown below in Algorithm 3.

Algorithm 3 GetDistances
Input: Estimated DAG or CPDAG Ges, true DAG G, true edge-strengths Coef , data
Output: dist
Initialize: estimated edge-strength Coefes ← {};
foreach X in Ges do

PAls(X) = list of possible parent sets of X
foreach parent set p in PAls(X) do

Set regcoeffs← regress(X, p)
foreach vertex Y in p do

Update Coefes[X,Y ]← Coefes[X,Y ] + regcoeffs[Y ]
end
foreach vertex Y not in p do

Update Coefes[X,Y ]← Coefes[X,Y ] + {0}
end

end
foreach Y in Ges do

if min(Coefes[X,Y ]) ≤ Coef [X,Y ] ≤max(Coefes[X,Y ]) then
Set dist[X,Y ]← 0

else if Coef [X,Y ] ≤ min(Coefes[X,Y ]) then
Set dist[X,Y ]← abs(Coef [X,Y ] - min(Coefes[X,Y ]))

end
else

Set dist[X,Y ]← abs(Coefes[X,Y ] - max(Coef [X,Y ])
end

end
end
Return dist

Appendix D. Examine the Effectiveness of the Vertex Checker with Pearson
Correlation

The detailed procedure for testing the effectiveness of the Vertex Checker is provided in Algorithm
4. We begin by applying the Vertex Checker to each vertex, dividing them into two groups: those
that pass the test and those that fail. For each group, we calculate the Pearson correlation between
the average of various metrics (see B) and the average p-values. A significantly positive correlation
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(or negative in the IDA score case) indicates that higher p-values (vertices passing the test) are
associated with better metric performance. This demonstrates the Vertex Checker’s effectiveness in
identifying vertices with strong performance.

Algorithm 4 Evaluate Effectiveness of Vertex Checker
Input: Set of vertices V from estimated CPDAG Ges, Evaluation metrics M , p-values P
Output: Correlations ρ, pρ
Initialize: set Vpass = {}, Vfail = {}
foreach vertex v ∈ V do

if VertexChecker(v) returns True then
Add v to Vpass

end
else

Add v to Vfail

end
end
Compute average p-values P pass and metrics Mpass for Vpass

Compute average p-values P fail and metrics Mfail for Vfail

Concatenate the p-values P = [P pass, P fail] and evaluation metrics M = [Mpass,Mfail]
Calculate correlation and corresponding p-value ρ, pρ between P and M

D.1. Algorithm on imposing simplicity on Vertex Checker

Here we present the detailed algorithm with the simplicity constraints on the Vertex Checker to
avoid unnecessary edges in Algorithm 5.

Algorithm 5 Select Vertex with Fewest Adjacent Edges After Vertex Checker
Input: Set of vertices V from different causal graphs {G1, G2, . . . , Gk}, Vertex Checker function
Output: Vertex with the fewest adjacent edges: SelectedVertex
Initialize: SelectedVertex = ∅, minEdges =∞
foreach vertex v ∈ V do

Set adjacentEdgesv = 0 foreach graph Gi do
if VertexChecker(v,Gi) returns True then

Count the adjacent edges for v in Gi

adjacentEdgesv+ = edge count of v in Gi

end
end
if adjacentEdgesv < minEdges then

minEdges = adjacentEdgesv
SelectedVertex = v

end
end
Output: Vertex with the fewest adjacent edges: SelectedVertex
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Appendix E. Additional Information on the Consistency of CI tests in Various Cases

We include the additional asymptotic consistency of CI tests under more complex data types,
demonstrating the consistency of the Vertex Checker in dealing with different kinds of data.

E.1. Linear continuous cases

When the data are generated by a linear Gaussian causal DAG, the Fisher’s Z-test is guaranteed to
be asymptotically consistent in estimating CI relations.

Theorem 6 (Edwards, 2000)[Asymptotic Distribution of Fisher’s z-test for Conditional Indepen-
dence] Let ρXY |W be the partial correlation coefficient between two variables X and Y , condi-
tioned on a set of variables W. Under the null hypothesis of conditional independence, the test
statistic:

z =
1

2
log

(
1 + rXY |W

1− rXY |W

)√
n− |W| − 3,

asymptotically follows a standard normal distribution N(0, 1) as the sample size n goes to ∞,
where |W| denotes the number of variables in the conditioning set W and rXY |W is the sample
estimate of the partial correlation.

E.2. Nonlinear continuous cases

When the causal relations between variables are nonlinear, we use KCI test to better capture the
conditional independence relations between variables.

Under the following assumptions, we have Theorem 7.

Assumption 2

• The observations are independent and identically distributed (i.i.d.).

• The kernels used for X , Y , and Z are characteristic, ensuring that the kernel embeddings
capture all dependencies.

• The kernels are bounded and continuous

• Sufficient sample size n

Theorem 7 (Asymptotic Distribution of KCI Test for Conditional Independence) (Zhang et al.,
2011) Under the null hypothesis H0 : X ⊥ Y | Z and assuming that the kernel functions used for
X , Y , and Z are characteristic, bounded, and continuous, the test statistic Tn satisfies:

√
n (Tn − E[Tn | H0])

d−→ N(0, σ2),

as n to∞, where d−→ denotes convergence in distribution, and σ2 is the asymptotic variance of the
test statistic under the null hypothesis.
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E.3. Discrete cases

When the variables are discrete, we use a Chi-squared test to test the conditional independence
relations between variables.

Under the following assumptions, we have Theorem 8.

Assumption 3

• The observations are independent and identically distributed (i.i.d.).

• The sample size n is sufficiently large

• The variables are discrete with a finite number of levels.

Theorem 8 (Asymptotic Distribution of Chi-squared Test for Conditional Independence) (McHugh,
2013)

Define the observed frequency Oijk as the count of occurrences where X = i, Y = j, and
Z = k. Z here denotes a potential set of variables and k represents a joint state of these variables.
We let the expected frequency under the null hypothesis be Eijk =

Oi·kO·jk
O··k

, where the dot notation
· indicates summation over the corresponding index.

Suppose the number of variables in Z is m. The Chi-squared test statistic is given by:

χ2 =
∑
i,j,k

(Oijk − Eijk)
2

Eijk
.

Under the null hypothesis H0, the test statistic χ2 asymptotically follows a Chi-squared distribution
with degrees of freedom given by:

df = (|X| − 1)(|Y | − 1)

m∏
t=1

|Zt|,

where |X|, |Y |, and |Zt| are the number of levels of X , Y , and Zt, respectively. That is:

χ2 d−→ χ2
df ,

as n→∞, where d−→ denotes convergence in distribution.

E.4. Mixed-type cases

In real world, it is often the case that the dataset is mixed type. That is, we have both the contin-
uous and discrete variables in the dataset. We also take this into consideration and use Degenerate
Gaussian to test the CI relations.

Assumption 4

• The data are generated from a Gaussian copula model

• The sample size n is sufficiently large
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• The residual correlation rXY |Z is well-defined and estimated consistently from the data.

Theorem 9 (Asymptotic Distribution of Degenerate Gaussian Test for Conditional Independence)
(Fan and Pham, 2018; Bergsma, 2004)

Let X , Y , and Z be mixed-type random variables (continuous or discrete) with a joint distribu-
tion modeled by a Gaussian copula. The test statistic Tn is constructed as follows:

Tn = n · r2XY |Z,

the test statistic Tn asymptotically follows a Chi-squared distribution with one degree of freedom:

Tn
d−→ χ2

1,

as n→∞, where d−→ denotes convergence in distribution.

Appendix F. Experimental Setting

F.1. Data Generation Process on Simulated Data

The data for the simulations are generated either using Tetrad (Ramsey et al., 2018) or Python.

Linear Cases (Pearl, 2009) In the linear case, the relationships between variables can be expressed
as X = WX + E, where E is a vector of independent noise terms, following distributions such
as Gaussian, Exponential, etc. The matrix W contains the structural coefficients representing the
causal relationships between variables. The data generation process begins by first generating E
and W, and then calculating X from these components.

In this paper, we generate the structural coefficients W uniformly between 0 and 1, and the
noise term EX for arbitrary variable according to Gaussian, Exponential, and Uniform distributions
as follows:

• Gaussian Distribution:

EX ∼ N (0, 1)

The noise z is drawn from a standard normal distribution with mean 0 and variance 1.

• Exponential Distribution:

EX ∼ Exp(1)

The noise z is drawn from an exponential distribution with rate parameter 1.

• Uniform Distribution:

EX ∼ U(−1, 1)

The noise EX is drawn from a uniform distribution between −1 and 1.
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Nonlinear Cases (Kalainathan and Goudet, 2019) In the nonlinear case, linear structural relation-
ships cannot be applied. Instead, for each variable X , the relationship is defined as:

X = f(PA(X)) + EX ,

where f(·) is a nonlinear function of the parent set PA(X), and EX is the noise term for X . The
noise term for each variable is simulated according to a specified distribution, and the parent set
PA(X) is determined from the adjacency matrix. After determining the parent set, the nonlinear
function f(PA(X)) is applied to calculate the value of X .

For each vertex X , we generate the corresponding noise term EX fromN (0, 1). Let dX denote
the number of parents of X , and hX represent the hidden size, which is a hypterparameter we
specify in the models. We use two types of nonlinear functions: mlp and mim, which are defined
as follows:

MLP: Multilayer Perceptron (Goodfellow et al., 2016)

X = σ(PA(X)W1)W2 + EX

• W1 ∼ U(0.5, 2.0), with W1 ∈ RdX×hX being the weight matrix between the input and the
hidden layer.

• W2 ∼ U(0.5, 2.0), with W2 ∈ RhX×1 being the weight matrix between the hidden layer and
the output.

• Both W1 and W2 are centered by multiplying each element by −1 with a 50% probability.

• σ(·) denotes the sigmoid activation function.

MIM: Mixed Interaction Model (Zhang et al., 2017)

X = tanh(PA(X)W1) + cos(PA(X)W2) + sin(PA(X)W3) + EX

• W1,W2,W3 ∼ U(0.5, 2.0), with W1,W2,W3 ∈ RdX×1 being the weight vectors.

• tanh(·) is the hyperbolic tangent function.

• cos(·) is the cosine function.

• sin(·) is the sine function.

• Similar to MLP, we center W1, W2, and W3 by multiplying them by −1 with a 50% proba-
bility.

F.2. Parameter Settings for Sachs Dataset

Here we list the parameter settings when testing on the Sachs data for different models.
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PC FGES BOSS GRASP

Significance level (α) / Penalty discount 0.05 14 14 14
Score/Test Fisher’s z Fisher’s z BIC Fisher’s z & BIC

Table 5: Parameter settings for the PC, FGES, BOSS, and GRASP algorithms.

Appendix G. Additional Simulation Results

The experiments were conducted on a system running AlmaLinux with the following specifications:
an AMD EPYC 7272 12-Core CPU (24 threads, 2.9 GHz), 128 GB of RAM, and 6.7 TB of total
disk space.

We present additional simulation results here to demonstrate the effectiveness of the Vertex
Checker.

Table 6 shows the correlations (and corresponding p-values) between the F1 scores for the cor-
rectness of adjacency and parent sets, and the Vertex Checker p-values when the data follow linear
exponential distribution. These results are evaluated across different variable sizes, sample sizes,
and algorithms. The results indicate that the correlations are almost always significantly positive.

Table 7 shows that correlation between the IDA score (defined in C) and Vertex Checker p-
values. The results strongly indicate the effectiveness of Vertex Checker in the estimation of coeffi-
cients in the linear case.

G.1. Experimental Results on Chi-square Rejected Graphs

We evaluated the Vertex Checker on graphs that were rejected by the Chi-square test (Pearl, 2009;
Bollen, 1989), demonstrating that it provides more informative insights than the classic Chi-square
approach (Bollen, 1989). The results presented here focus on the scenario with 50 variables and
1500 samples. As shown in Figure 6, out of 100 simulated graphs that were all rejected by the
Chi-square test, those variables that passed the Vertex Checker displayed strong performance in key
metrics, including Adjacency and Parents. This highlights the Vertex Checker’s effectiveness in
identifying well-performing variables even within rejected graphs.

G.2. Experimental Results on Train-Test Data

It may be questioned whether it is appropriate to use the same dataset both to estimate the causal
graph and to evaluate its performance. While this is not necessarily a critical issue, we also con-
ducted experiments using a train-test split to address this concern. Specifically, we divided the data
into training (70%) and test (30%) sets. The training set was used to estimate the causal graph, while
the test set was used to apply the Vertex Checker to the resulting graph. Tables 8 and 9 present the
F1 scores of the parent sets under nonlinear causal relationships, using the MLP and MIM models
as described in Section F.1.

The same as the previous experiments, we first applied the Markov Checker to separate the
vertices into PASS and FAIL groups, followed by the application of the Vertex Checker. The re-
sults show a significantly positive correlation between the F1 scores of the parent sets and the Ver-
tex Checker p-values across different causal models, demonstrating the effectiveness of the Vertex
Checker.
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Figure 6: F1 score results for PC algorithm with linear exponential distribution on Chi-square re-
jected graphs (1500 Samples, 50 Variables)
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Adjacency Parents

PC FGES BOSS PC FGES BOSS

d = 20, n = 500 (0.4156, 2.79E-45) (0.5702, 4.37E-17) (0.2948, 2.26E-05) (0.5009, 1.84E-20) (0.2868, 8.62E-05) (0.3004, 1.55E-05)
d = 50, n = 500 (0.7053, 1.54E-39) (0.7292, 1.82E-34) (0.4845, 1.56E-15) (0.5203, 5.02E-19) (0.5691, 1.45E-18) (0.1638, 1.10E-02)
d = 20, n = 1500 (0.7621, 7.65E-58) (0.1767, 1.23E-02) (0.1911, 8.00E-04) (0.3994, 7.61E-13) (0.1632, 2.09E-02) (0.1986, 5.39E-04)
d = 50, n = 1500 (0.6495, 9.48E-22) (0.4400, 1.08E-10) (0.2090, 1.57E-03) (0.5035, 2.56E-12) (0.3659, 1.33E-07) (0.6990, 1.80E-34)

Table 6: Correlation between F1 score and p-values on Adjacency and Parents: Linear Exponential

PC FGES BOSS

d = 20, n = 500 (-0.6720, 1.23E-27) (-0.1580, 2.54E-02) (-0.4311, 1.85E-10)
d = 50, n = 500 (-0.6223, 1.46E-36) (-0.2357, 1.08E-08) (-0.8053, 2.08E-92)
d = 20, n = 1500 (-0.6017, 4.33E-21) (-0.1372, 5.26E-02) (-0.2883, 3.81E-05)
d = 50, n = 1500 (-0.5857, 3.78E-13) (-0.1305, 7.73E-04) (-0.8236, 7.67E-31)

Table 7: Correlation between IDA score and Vertex Checker p-values: Linear Exponential

G.3. Computational Complexity

We empirically measured the time complexity of the Vertex Checker when the causal relations
follow mlp (defined in F.1), with the results presented in Table 11. The results demonstrate that the
Vertex Checker is highly efficient for conducting local tests on individual vertices.

G.4. Alternatives to Uniformity test for the Null Hypothesis

A potential concern regarding the validity of the Vertex Checker is the multiple testing problem,
which raises the question of whether applying multiple test corrections could improve the results.
To address this, we conducted simulations using several multiple testing correction methods, in-
cluding Bonferroni Correction, Benjamini-Hochberg (BH) Correction, Benjamini-Yekutieli (BY)
Correction, and Holm-Bonferroni Correction.

Beyond the issue of multiple comparisons, other potential concerns, as discussed in Section 6,
include the dependency among p-values and the limited number of p-values available. While tradi-
tional multiple test corrections assume independence or a large number of tests, these assumptions
may not always hold in practice. In such cases, approaches like Fisher’s method in Shipley’s C-
Test offer an alternative model evaluation framework by aggregating individual d-separation tests,
mitigating the limitations posed by p-value dependencies and finite sample sizes (Shipley, 2000;
Tillman, 2009). However, we would also like to point out that relying on Fisher’s method may
introduce new challenges. For example, it can become unstable when p-values are close to zero,
leading to numerical issues. The trade-off in choosing an appropriate test depends on the specific
data structure in practice.

In this section, we compare the empirical performance of different testing strategies in evaluat-
ing the local structure. We present IDA score results for each method (C-test in the graph denotes
Fisher’s method) and compare them with the results from the Uniformity Test (which applies no
correction). We assess the outcomes for vertices that pass and fail the Vertex Checker. As shown
in Figure 7 and 8, the results before and after applying the corrections do not differ significantly,
suggesting that multiple test corrections may have limited impact in this context.

29



HAN RAMSEY SPIRTES

mlp mim

PC (0.1622, 5.45E-03) (0.1550, 7.56E-03)
FGES (0.2962, 4.46E-07) (0.1723, 5.75E-03)
BOSS (0.3182, 5.60E-04) (0.3435, 2.22E-08)

Table 8: PASS: Correlation between F1 Score on parent sets and Vertex Checker p-values on Test
set

mlp mim

PC (0.3765, 7.36E-47) (0.4079, 1.82E-07)
FGES (0.3697, 1.39E-34) (0.5562, 2.98E-50)
BOSS (0.3848, 3.27E-21) (0.7414, 9.43E-58)

Table 9: FAIL: Correlation between F1 Score on parent sets and Vertex Checker p-values on Test
set

Figure 7: IDA score results for vertices that
pass the Vertex Checker

Figure 8: IDA score results for vertices that
fail the Vertex Checker

Appendix H. Scatterplot on Sachs data

We attach the scatterplot on Sachs data (Sachs et al., 2005) here, which provides more information
on the distributions and causal relations of the variables.
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PC FGES BOSS GRASP

p-values 5.32E-11 1.07E-25 5.48E-18 9.53E-28

Table 10: P-values from Markov Checker on Sachs dataset

(20,500) (20,1500) (50,500) (50,1500) (100,500) (150,1500)

Seconds 0.0071 0.0106 0.0097 0.0227 0.0191 0.0318

Table 11: Average runtime in seconds for the Vertex Checker on each vertex

Figure 9: Scatterplot of Sachs
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