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ABSTRACT

Reinforcement learning (RL) has achieved significant success but is hindered by
inefficiency and instability, relying on large amounts of trial-and-error data and
failing to efficiently use past experiences to guide decisions. However, humans
achieve remarkably efficient learning from experience, attributed to abstracting
concepts and updating associated probabilistic beliefs by integrating both uncer-
tainty and prior knowledge, as observed by cognitive science. Inspired by this,
we introduce Conceptual Belief-Informed Reinforcement Learning to emulate hu-
man intelligence (HI-RL), an efficient experience utilization paradigm that can
be directly integrated into existing RL frameworks. HI-RL forms concepts by
extracting high-level categories of critical environmental information and then
constructs adaptive concept-associated probabilistic beliefs as experience priors
to guide value or policy updates. We evaluate HI-RL by integrating it into var-
ious existing value- and policy-based algorithms (DQN, PPO, SAC, and TD3)
and demonstrate consistent improvements in sample efficiency and performance
across both discrete and continuous control benchmarks.

1 INTRODUCTION

Reinforcement Learning (RL) has achieved remarkable success in various exciting areas, including
aligning and enabling efficient inference of large language models Ouyang et al. (2022); Hao et al.
(2025), game playing (Mnih et al., 2015), robotics (Singh et al., 2022), autonomous driving (Kiran
et al., 2021), and etc. Despite these achievements, RL remains fundamentally limited by its signifi-
cant sample inefficiency compared to human learning (Chiu et al., 2023; Ye et al., 2021; Joshi et al.,
2025), typically relying on vast amounts of trial-and-error interactions and often struggling to gener-
alize to unseen or sparsely observed space (states) (Mnih et al., 2015; Lake et al., 2017). In contrast,
humans can quickly learn and adapt to new spaces using only a handful of experiences, highlighting
a substantial gap in data efficiency between RL and human cognition (Tenenbaum et al., 2006; Lake
et al., 2015; Tenenbaum et al., 2011; Griffiths et al., 2010).

The gap in learning efficiency motivates the “Era of Experience” (Silver & Sutton, 2025), which em-
phasizes leveraging past interactions to accelerate learning and foster new concepts and behaviors,
rather than passively processing vast amounts of data. Cognitive science highlights two mechanisms
for leveraging experience that are essential to human learning efficiency (Tenenbaum et al., 2011):
conceptual abstraction and probabilistic priors. Conceptual abstraction distills reusable structures
such as prototypes, taxonomies, causal schemas — that enable compositional reasoning, general-
ization, and knowledge transfer (Tenenbaum et al., 2011; Lake et al., 2015; Rosch, 1978; Kemp
& Tenenbaum, 2008). In parallel, behavioral studies show that humans aggregate past experiences
into adaptive probabilistic priors (Griffiths & Tenenbaum, 2005; Peterson & Beach, 1967), integrat-
ing them with future uncertainty to guide predictions and decisions (Griffiths & Tenenbaum, 2005;
Tenenbaum et al., 2006).

Various RL studies leveraged either conceptual abstraction or probabilistic priors from experience
independently. However, a systematic approach to combining both experience utilization mecha-
nisms - experience-based priors grounded in extracted conceptual formations, the very mechanism
underlying humans’ efficient generalization—remains underexplored (Gerstenberg & Tenenbaum,
2017). Specifically, abstraction in RL has focused on representation learning approaches such as
contrastive learning and bisimulation metrics to compress or align observations into compact latent
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Figure 1: Traditional RL (left) replays raw transitions, while HI-RL (right) organizes them into
conceptual categories with adaptive beliefs, enabling abstraction and belief-guided learning.

spaces to improve downstream task efficiency (Patil et al., 2024; Ferns et al., 2004; Castro, 2020;
Peng et al., 2023). However, these methods typically do not further exploit the abstracted latent space
to aggregate past experience, limiting its utility for improving RL learning efficiency. In parallel,
Bayesian approaches, such as Thompson sampling, Bayesian model-based, and model-free algo-
rithms Dearden et al. (1998) are widely used to address uncertainty and the exploration-exploitation
tradeoff in RL. (Dearden et al., 1998; Ghavamzadeh et al., 2015; Ross & Pineau, 2008; Thompson,
1933; Dearden et al., 1998). However, these methods are rarely integrated with conceptual abstrac-
tion.

To efficiently leverage experience, we introduce Conceptual Belief-Informed RL, named HI-
RL (Human Intelligence-RL), a framework that combines conceptual abstraction and concept-based
probabilistic prior, illustrated in Figure 1. HI-RL provides an algorithm-agnostic interface that inte-
grates seamlessly with existing RL frameworks, accelerating learning by leveraging experience effi-
ciently. It extracts concepts from large state spaces and reformulates experience into priors grounded
in these abstractions, mimicking human-like conceptualization for learning efficiency. Our main
contributions are summarized as below:

» We present HI-RL , an experience-utilization framework that efficiently leverages past ex-
periences to emulate human-like learning efficiency. HI-RL reformulates the set of past
experiences into probabilistic belief priors grounded in conceptual abstractions. These
concept-based priors are adaptively updated over time and incorporated as auxiliary knowl-
edge into RL value or policy updates.

 HI-RL is algorithm-agnostic and functions as a flexible module that can be seamlessly inte-
grated into existing RL frameworks. To demonstrate its versatility, we integrate HI-RL into
several popular RL algorithms (Q-learning, PPO, SAC, and TD3) and evaluate performance
across both discrete and continuous tasks, achieving consistent improvements in learning
efficiency and overall performance.

2 RELATED WORKS

2.1 COGNITIVE SCIENCE FOR CONCEPTUAL LEARNING

Humans achieve remarkable learning efficiency by generalizing from limited experience through
Bayesian inference, integrating prior knowledge with new evidence under uncertainty (Tenenbaum
& Griffiths, 2001; Griffiths & Tenenbaum, 2005; Tenenbaum et al., 2006). This supports concep-
tual abstraction—extracting high-level structure from sparse data—and enables causal reasoning
and cross-domain transfer (Tenenbaum et al., 2011; Kemp & Tenenbaum, 2008). Recent work for-
malizes how learners reorganize internal knowledge via probabilistic reasoning (Lake et al., 2015;
2017), motivating the integration of such principles into machine learning for scalability, adapt-
ability, and sample efficiency (Ma et al., 2022). Studies further show that uncovering latent causal
structures enhances interpretability and abstraction, even in complex domains such as joint behavior
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analysis (Gu et al., 2025; 2024). Yet, despite these advances, reinforcement learning remains domi-
nated by replay, metric-based similarity, or policy integration, with little use of structured conceptual
abstraction from cognitive science.

2.2  EXPERIENCE-INFORMED REINFORCEMENT LEARNING

Experience has long been exploited to improve efficiency in RL. Habit-based RL models long-term
regularities as habitual priors that accelerate action selection but lack flexibility for abstraction and
transfer (Daw et al., 2005; Collins & Cockburn; Keramati et al., 2011). Replay-based techniques
such as PER (Schaul et al., 2015), HER and its prioritized variants (Andrychowicz et al., 2017; Sun
etal., 2025; Kim et al., 2025) enhance sample efficiency by weighting or relabeling transitions, while
refinements like FODA (Chen et al., 2024) and EDER (Zhao et al., 2024) adapt distributions or pro-
mote diversity to improve generalization. Beyond replay, episodic memory models (NEC) (Pritzel
et al., 2017) enable rapid value retrieval, and hybrid gradients (Q-Prop, IPG) (Gu et al., 2016; 2017)
fuse on- and off-policy signals for variance reduction. Collectively, these methods leverage past in-
teractions via sampling or memory mechanisms, yet remain confined to buffer-level operations and
lack pathways for higher-order conceptual abstraction and belief-structured generalization.

2.3  ABSTRACTION IN REINFORCEMENT LEARNING

State abstraction has long been studied as a means to compress state spaces and enable generalization
in RL (Bertsekas et al., 1988; Givan et al., 2003; Ravindran, 2004; 2003; Li et al., 2006; Kulkarni
et al., 2016). Classical bisimulation and Kantorovich metrics provide strong theoretical guarantees
but are computationally expensive and highly sensitive to perturbations (Ferns et al., 2004; 2011).
Task-specific metrics improve offline evaluation (Pavse & Hanna, 2023) but lack adaptability, while
scalable relaxations (Castro, 2020) trade rigor for tractability. Trajectory-chain and pseudometric
methods (Girgin et al., 2007; Dadashi et al., 2021) offer finer granularity but incur high storage or
auxiliary costs. More recent work, such as Patil et al. (2024), leverages contrastive objectives and
modern Hopfield networks to compress large state spaces into abstract nodes, thereby facilitating
downstream RL. These approaches primarily focus on constructing a new, compressed state space
or representation for downstream algorithms. In contrast, our framework preserves the original
state and exploration space while introducing an abstraction-based belief layer on top. We focus on
utilizing conceptual abstraction as a basis to update its probabilistic priors, efficiently aggregating
and using past experience to improve toward human-like efficient learning.

3 PROBLEM FORMULATION

Markov Decision Process (MDP) Considering reinforcement learing problems formalized as MDP
(Bellman, 1957; Sutton & Barto, 2018) M = (S, A, T, 7, po,7,T). Here T is the horizon length.
S denotes states space (s € S) and A denotes the action spaces (a € A). T (s¢11 | S¢, a;) represents
the transition dynamics, specifying the probability distribution over the next state s;4; conditioned
on the current state s; € S and action a; € A at ty, time step (1 < ¢t < T). r(s, a) represents the
reward function given the state s and action a. The initial state follows pg, v € (0, 1) is the discount
factor. The goal of this MDP problem is to identify an optimal policy 7 that achieves the maximum
expected discounted return:

T

max Er 70 [Z vir(sq, at)]. (1)

t=0

Formally, given the horizon length 7" and transition dynamics 7, the long-term return from time step
t = 0tot = T associated with the optimal policy 7 is quantified through the Q-function and the
Value-function (Watkins et al., 1992) by expected cumulative rewards from initial state 1y, defined
as:

T T

Q7 (s,a) =Er 7.4 {thr(st,at) | S0 = 8,a9 = a],V”(s) =Er 7,10 {thr(st,at) ‘ 80 = s]
t=0 t=0
)
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4 CONCEPTUAL BELIEF-INFORMED REINFORCEMENT LEARNING

In this section, we present Conceptual Belief-Informed Reinforcement Learning (HI-RL ), enhanc-
ing experience to emulate human intelligence learning efficiency. HI-RL consists of two core mod-
ules: (i) Concept Formation, which clusters state—based experiences into semantically coherent cat-
egories, and (ii) a belief representing probabilistic prior grounded on different concepts, defining
probabilistic action experience prior over these categories. By coupling conceptual abstraction with
belief-guided reasoning, HI-RL provides a structured and uncertainty-aware foundation for policy
learning, supporting stable updates, efficient generalization, and reuse of past experiences.

4.1 CONCEPT FORMATION

The foundation for abstracting concepts can vary, as long as it represents the current situation and
critical information about the environment and the agent. In this work, HI-RL focuses on state
spaces, as states encapsulate essential information for decision-making and directly influence the
agent’s behavior and learning process, enabling pattern recognition and generalization. Specifi-
cally, we partition the states into disjoint subsets, with each subset representing a distinct concept
formed by grouping states with shared characteristics and properties, thereby facilitating effective
knowledge transfer within each concept. In the following, we mathematically define a conceptual
abstraction as:

Definition 4.1 (Concept Formation in State Space). A concept formation in the state space is defined
as a collection of subsets Cx = {C1,...,Ck} that satisfy S = U,f:l C}, meaning the subsets are
disjoint and collectively cover the entire state space. Here, K denotes a finite, prescribed number of
concept categories.

In practice, conceptual abstractions can be obtained with various clustering methods. In this work,
we adopt K-means (Lloyd, 1982) for its simplicity and scalability, though alternatives (e.g., spectral
or hierarchical clustering) are equally applicable.

4.2 CONCEPTUAL ADAPTIVE BELIEF FOR RL

With abstract concepts in mind, where each concept groups states that share similar features and
actions, we aggregate observed information within a concept into a unified container, a concept-
based belief. Philosophically, a belief is an internal representation of how an agent interprets and
anticipates the world, serving as a guide for inference and decision-making under uncertainty rather
than as absolute truth (Dennett, 1988). In this work, each concept CY, is paired with a time-adaptive
belief b,(- | k) € A(A), derived from the accumulation of past decisions and outcomes within
that concept. Formally, for a conceptual abstraction Cx = {C1,...,Ck}, we define the mapping
b : [K] — A(A), where b,(- | k) encodes the integrated action preferences of all states belonging
to Ck.

We leverage the aggregated experience within each concept to accelerate learning by using concept-
based beliefs as priors in RL updates. These beliefs can be seamlessly integrated into any existing
RL algorithm. At each timestep ¢, we combine two signals: (i) instant feedback Z; : S — A,
defined by the base algorithm (e.g., Q-values in DQN, Gaussian policy in SAC, clipped surrogate
in PPO, or deterministic actor in TD3), and (ii) the prior b;, aggregated from past experience within
the corresponding concept. For a given state s € S, we first identify its concept index c(s) such that
s € U(s) and then fuse the signals as:

Bi(- | s) = (1 = Be) Ze(- | 8) + Bebe (- | c(5)), (3)

where 5; € [0,1] is an adaptive parameter monotonic in ¢, satisfying lim; ,, 8 = 8* with
B* € [0,1] a constant denoting the limiting weight on conceptual priors. In this formulation,
bi(- | ¢(s)) is the empirical concept-based prior aggregated from experience, while B;(- | s) is
the fused distribution actually used for decision-making by combining b; with the instant feedback
Z;.

This formulation ensures that the decision-making solutions for every state s; are influenced by both
immediate feedback from the environment and the prior experience derived from the conceptual
abstraction C,(,) to which it belongs.
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Algorithm 1 Conceptual Belief-Informed RL (HI-RL)
1: Initialize concept priors b(- | ¢(s))

2: fort=1,2,... do

3: Observe s;; form Z; (- | s¢); fuse Be(- | s¢) = (1 — B) Z¢(- | s¢) + Bibs(- | c(s¢))
4: Sample a; ~ By; step env (7, S¢4+1)

5: Update policy with B; and prior experience b;

6: end for

5 ALGORITHM IMPLEMENTATION

We extend HI-RL framework into multiple RL paradigms by developing HI-Q, HI-PPO and HI-SAC
(For HI-TD3, see Appendix A.1).

5.1 CONCEPTUAL BELIEF-INFORMED Q-LEARNING (HI-Q)

The classical Deep Q-learning (DQN) algorithm (Mnih et al., 2015) relies on updating the Q-
function network using the greedy Bellman operator. Namely, in any iteration ¢, with the sam-
pled batch D; and any sample (s;, a;,r;,s;) € D; within it, the learning target of the Q-network
Qo,., (si,a;) would be
ri +ymax Qy, (s, a;), 4)
acA

where 0; represent the Q-network parameter at time ¢t. With DQN in mind, we propose HI-Q to
replace the learning target to a new one combining both the current Q-network information @y, and
the conceptual abstraction experience prior b;.

Specifically, we first introduce the construction of the concept-based belief prior b;(- | k) at each
time step ¢. Here, b;(- | k) will be defined as the action visiting frequency summarzied over all state
within the concept set C}. For the discrete finite action space .4, we denote the number of visiting
time over each state-action pair at time step t as N;(s, a). Then the experience prior b; of any k-th
concept will be constructed as

Zseck Nt(87 a’)
ZG/EA ZSECA. Nt(S, a/)
The update of b, is typically computational easily, since upon executing an sample tuple
(8i,a4,74,5%), only the (s;, a;)-associated concept b (a; | ¢(s;)) will be updated.

i

Y(a k) € Ax [K]: byla|k) =

)

Therefore, the combined information for any sample tuple (s;, a;, 7, s;) associated with state s at
time ¢ is defined as

Bi(- | s3) = (1= Bo)ae(- | s3) + Bebe(- | e(s7)), (6)
where (3, is a dynamic coefficient and ¢;(- | s}) denotes the task-driven action-preference distribu-
tion, typically instantiated as a smoothing distribution over Q-values (e.g., softmax with temperature
74 or clipped-max with exploration mass J;) that gradually concentrates on the greedy action as ¢
increases (Barber, 2023), computed via a softmax over the top-k Q-values of state s}, effectively
assigning higher probabilities to the most promising actions:

exp(Q(s, a)/7)
a/etop-k-(s;) eXp(Q(S;, a/)/T) /
where 7 is softmax temperature constant. With the constructed concept-based belief based tem-
plate B; in hand, we replace the (greedy) maximum operator in Eq. 4 of classical Q-learning to a
smoothed surrogate one combining both the smoothed-greedy operator of the current Q-function

and the conceptual-based belief. Therefore, the new target in HI-Q for the Q-network to learn is
defined as

qi(a|s;) = > a € top-k(s;) (7

rity Z By(a | 57)Qu(s}, a). ®)
acA
The entire algorithm is specified in Appendix A.2.1. Our conceptual-abstraction belief enables HI-Q
to leverage both immediate task feedback and accumulated conceptual structures, facilitating faster
learning by borrowing experience from other similar concepts.
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5.2 CONCEPTUAL BELIEF-INFORMED PROXIMAL PoLICY OPTIMIZATION (HI-PPO)

The standard PPO (Schulman et al., 2017) is a policy gradient algorithm which updates the policy
by performing stochastic gradient ascent on a surrogate objective function. For any time step ¢, let
D; be a sampled batch and (s;, a;,7;, s;) € Dy any individual sample within it. The objective is to
update the policy 7y (a | ) via the following loss function:

Lero = E(s, ar)may, [min (M“J)At, clip(Zelesls) g ¢ q 4 ) At)] 9)

Ty (@i ]Si Mooy (@ilsi)’

where 0 denotes the policy parameters, A; is the advantage estimate at time step ¢, and e controls
the trust region. While PPO updates the policy via an advantage-weighted likelihood ratio within
this trust region, it depends only on immediate feedback, limiting its ability to exploit structural
regularities. To overcome this, HI-PPO integrates the current policy mg(a | s) with the conceptual
abstraction prior b;.

In this paper, we focus on applying PPO in discrete action-space environments, with modifications
analogous to those in HI-Q. At each time step ¢, we compute a concept-based belief prior b; (- | k),
defined as the action visitation frequency aggregated over all states in concept set C}. Its computa-
tion and update follow Eq. 5, and it is combined with the policy s (- | s;) for state s; € D; at time

t as:

By(- | si) = (L= B)mo(- [ si) + Bebe (- | ci(s4)), (10)
where the scheduling parameter 3; € [0, 1] controls the influence of concept priors and increases
gradually throughout training. The clipped surrogate objective of HI-PPO is:

Lurrro = E(s;0:) v, {min (MAt, clip(M 1—e 1+ e)At)}. (11)

oy (@ilsi) ooy (@ilsi)’

The critic and entropy terms follow the original PPO formulation; gradients are propagated through
By, allowing concept priors to steer policy updates while the clip operator guarantees trust-region
stability. More implementation details and pseudocode are provided in Appendix A.2.3.

5.3 CONCEPTUAL BELIEF-INFORMED SOFT ACTOR-CRITIC (HI-SAC)

Traditional Soft Actor-Critic (SAC) is a maximum entropy reinforcement learning algorithm that
integrates both an actor and a critic network (Haarnoja et al., 2018). Given a sampled batch D; at
time step ¢, containing tuples (s;, a;, r;, $;), the updates of the actor and critic networks parameters
0, ¢ from 7y and Q4 respectively are defined as follows:

2 .
Laie(6:) = B[ (Qou(sisar) —w)*], i =12,
where y; =7 + Y Eyron, [Quin (s}, a}) — alog mo(aj | s7)], (12)
£actor(e) — EsiNDt,aiwﬂ'e [a log 770(0/2’ | 52) - min{Q¢1 (Siv ai)a Q¢2 (Si7 az)}:l .

where « is entropy temperature coefficient, y; is the TD target, computed by the next state s; at
time step ¢ + 1 and the corresponding action a} sampled from the policy 7p. In SAC, the Q value
is computed as the minimum of the estimates from two critic networks ()4, and the actor network
produces a Gaussian policy in this paper:

(- | 8) = Nty (5), 07, (5)), (13)

where i, (s) and o2 (s) denote the mean and variance predicted by the policy network for state
s. To support concept-informed decision-making in continuous action spaces, we propose HIS-AC
to integrate current actor network mp, and the conceptual experience prior b;. Unlike HI-Q and HI-
PPO, the concept-based belief prior b;(k) constructed at each time step t is defined over the actor
network parameters corresponding to the states s within the concept set C}:

V(0% k) € {1,0%) X (K] bu(k) = {1y (), 0%, ()}, s € Ci (14)

During training, we update b; using a Bayesian posterior update. Let . and o2 be the parameters
of the current policy g, (s) and p. and o2 be the experience stored in b, (k):

}7 (HC»UE) ~ 7T9t(5)7 (M&O—g) ~ bt—l(k)7 s € Cy (15)
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At the same time, for any sample tuple (s;, a;, r;, s;) at time step ¢, we use both s; and s} to obtain

the corresponding (fir,, (i), o2 o (si)) and (fir,, (s7), 0% o (%)) for the actor and critic, respectively.

This fusion method can then be formally defined as:
Hactor(81) = (1 = Bi)tre, (85) + Bebns  Taeror(s3) = (1 = ,Bt)Uiet (i) + Be,
perite (57) = (1 = By, (87) + Betto,  Taine(s7) = (1= Be)oz, (si) + Beoi,  (16)
where  (up,02) ~ by(k), si, 8, € C

where 5; € [0,1] adaptively controls the relative weighting between task-driven and concept-
informed signals, and 1, 07 denote the currently stored conceptual experience in b (k). This results
in the conceptual belief-informed distribution for both the actor and critic:

By(- | 5i = N(/J'ﬂCtOl’(Si)7Cre?ctor(si))? By(- | ‘5;) = N(McritiC(Sg)vU?ritic(%))" (17)

Finally, we replace the policy 7y in Eq.12 with the integrated B, and perform the updates accord-
ingly:

2 ‘
LHLSAC, 51,0 (¢i) = E[(qul(si,ai) - ) }» i=1,2,
where y; =1 + 7 Eq/op, [Qumin (s}, a]) — alog By(a; | s7)], (18)
LHLSAC c10r (0) = B, a;~5, [log Bi(a; | s:) — min{Qy, (si, i), Qg (si,a:)}].

By integrating policy learning with semantically grounded beliefs, HI-SAC enables agents to gener-
alize across conceptually coherent behaviors. This fusion facilitates better sample reuse, long-term
coherence, and more human-like decision-making. The pseudocodes are provided in Appendix
A22.

6 EXPERIMENT

Experimental setup: Evaluation is based on Feasible Cumulative Rewards, where higher values
indicate better performance, averaged over three seeds (123, 321, 666). The evaluation spans a wide
range of environments, including Classic Control, Box2D (Catto, 2005), MetaDrive (Li et al., 2022),
MulJoCo (Todorov et al., 2012), and Atari (Bellemare et al., 2013) domains. Conceptual clustering is
simulated using clustering algorithms that group similar state-action pairs into latent categories. All
methods employ identical hyperparameters and are implemented on the XuanCe benchmark suite
(Liu et al., 2023).

Evaluated methods: For discrete action spaces, we compare HI-Q and HI-PPO with the following
baselines: DQN (Mnih et al., 2013), DDQN (Van Hasselt et al., 2016), DuelDQN (Wang et al.,
2016), and PPO(Schulman et al., 2017), covering standard Q-value approximations, decoupled ac-
tion evaluation, state-action advantage estimation, and clipped policy optimization. For continuous
action spaces, HI-SAC is compared with A2C (Mnih, 2016), PPO, SAC (Haarnoja et al., 2018),
and DDPG (Lillicrap, 2015), representing common policy-gradient and actor-critic methods with
entropy regularization or deterministic gradients.

6.1 COMPARATIVE PERFORMANCE OF HI-RL AND BASELINES

To rigorously evaluate the HI-RL framework, we report results across a broad set of benchmark
environments spanning both discrete and continuous action spaces (Table 1, Table 2). The tasks
range from low-dimensional control (Classic Control, Box2D) to high-dimensional, perceptually
rich domains (MetaDrive, MuJoCo), enabling a systematic assessment of generalization and sample
efficiency under varying levels of complexity.

Discrete Action Space: As shown in Table 1, HI-DQN (HI-Q) consistently outperforms baselines
(DQN, DDQN, Dueling DQN, PPO) across diverse discrete-action tasks. In simple settings such
as CartPole, HI-DQN nearly reaches the performance ceiling with lower variance. In more com-
plex tasks like Box2D-CarRacing and MetaDrive, HI-DQN achieves the highest rewards across all
sub-tasks, demonstrating robustness and adaptability. Even in intermediate (7OrSX) and highly
challenging scenarios (X7OC), HI-DQN maintains clear advantages, highlighting the effectiveness
of belief-guided abstraction for stable learning under increasing complexity.
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Table 1: Average cumulative rewards of HI-RL variants and baselines across discrete and continuous
action environments.

HI-RL for DQN Variants

Environment/Method HI-DQN PPO DQN Duel . DQN DDQN
Classic Control - CartPole 499.78 + 0.22 499.17 £ 0.83 478.44 £ 21.56 440.69 + 59.31 396.51 + 103.49
Classic Control - Acrobot -80.57 + 17.48 -500.00 £ 0.00 -87.19 + 18.55 -104.53 + 54.19 -100.77 +24.79
Box2d - CarRacing 854.66 + 45.35 189.05 + 56.48 830.78 £ 51.61 -13.05 & 24.66 766.16 + 88.22
Box2d - LunarLander 232.73 + 40.20 204.95 +48.77 52.67 4 192.08 -58.97 + 4.08 191.79 + 69.16
MetaDrive - rXTSC 189.22 + 63.71 156.74 £31.44 82.05 +82.84 39.50 +7.27 185.55 + 107.80
MetaDrive - TOrSX 159.39 + 38.40 149.97 +26.28 101.60 £ 13.72 69.16 + 14.07 83.77 +£22.37
MetaDrive - XTOC 303.15 + 50.89 293.72 + 66.42 170.73 £ 31.60 67.42 + 6.29 170.73 £ 31.60
MetaDrive - XTSC 233.91 + 64.92 191.50 £ 39.31 215.94 £ 205.74 63.47 £ 4.96 147.71 £ 92.55
MetaDrive - CYrXT 97.99 + 2543 97.83 + -38.66 77.23 + 47.94 9.12 £+ 39.53 75.39 £ 49.99
MetaDrive - COrXSrT 117.90 + 24.56 89.27 +23.52 117.18 4 30.28 53.01 +£4.91 29.15 + 16.26
MetaDrive - SrOYCtryS 130.27 + 117.07 75.38 +8.12 105.01 + 88.37 38.90 £ 0.39 100.72 + 81.92
HI-RL for SAC Variants
Environment/Method HI-SAC SAC PPO DDPG A2C
Box2d - BipedalWalker 295.16 + 99.64 28571 £11.43 -17.21 £4545 -34.58 & 8.92 -115.66 & 1.95
Mujoco - Ant 2862.15 + 606.91 2386.54 + 489.76 108.47 + 14.97 2351.56 4 147.15 1566.19 + 346.25
Mujoco - Humanoid 3248.46 + 812.84  2090.07 + 2233.68 52.35 £0.08 401.39 + 84.60 179.26 + 74.62
Mujoco - H idStandug 132391.49 + 606.23  121643.72 +25.53  112603.41 £ 65.06  69209.17 £ 14951.33  80250.37 + 46.46
Mujoco - Reacher -3.96 + 0.71 -4.65 + 1.77 -6.88 + 0.08 -5.73 £0.96 -10.88 +0.12
Mujoco - HalfCheetah 10276.66 + 2448.76  9678.01 + 810.58  7378.66 £ 1951.02  3574.82 & 2267.63 3043.32 + 388.69
Mujoco - Hopper 3121.56 + 573.84 2246.74 £ 657.82  1530.17 + 1869.52  2338.46 + 1075.83 520.53 £25.98
Mujoco - Walker2d 4444.48 +292.20  3382.66 + 1177.36  992.81 + 1799.20 3756.60 + 840.68 733.50 + 755.30
Mujoco - Pusher -25.44 + 6.16 -31.76 £ 4.15 -36.36 + 0.82 -45.50 + 3.14 -55.29 + 1.65
Mujoco - InvertedPendul 998.13 + 1.87 860.78 £ 590.78 609.51 +4.51 973.82 £26.18 991.25 + 116.64
Mujoco - InvertedDoublePendul 9247.71 + 103.30 8703.18 £ 644.18 126.87 £ 56.87 6444.11 +3857.15  7981.28 £ 1365.03

Table 2: Average cumulative rewards of HI-PPO, HI-TD3 and baselines across discrete and contin-
uous action environments.

HI-RL for PPO Variants

Method/Environment Atari - AirRaid Atari - Amidar Atari - Asteroids Atari - Centipede Atari - Zaxxon
PPO 7210.01 £ 1594.32 917.56+ 65.08 4190.79+ 928.38 4792.76+ 1244.33 15690.27+ 3486.71
HI-PPO 9659.79 + 2333.36 2302.55 + 627.01  4419.23+ 1404.85 6002.09+ 1495.15 16663.71+5093.18

HI-RL for TD3 Variants
Method/Environment Box2d - BipedalWalker Mujoco - Ant Mujoco - Swimmer Mujoco - HalfCheetah Mujoco - Walker2d

TD3 276.03 £ 42.42 5634.15+ 620.63 50.50+ 1.45 13194.89+ 755.84 4565.46+ 147.63
HI-TD3 291.86 + 23.45 6358.90+ 420.75 132.89+ 1.99 13706.98+399.64 6194.91+ 319.83

Continuous Action Space: A similar trend is observed in continuous-control benchmarks (Ta-
ble 1). HI-SAC consistently outperforms SAC, PPO, and DDPG across both medium- and high-
dimensional MuJoCo and Box2D tasks. In challenging domains such as Humanoid and Humanoid-
Standup, HI-SAC achieves substantially higher rewards with improved stability, while in locomo-
tion tasks (HalfCheetah, Walker2d), it converges faster and produces more resilient policies. Over-
all, these results demonstrate that HI-SAC leverages belief-guided generalization to deliver reliable
gains in environments requiring both precise control and long-horizon reasoning.

6.2 LEARNING DYNAMICS WITH EXPERIENCE-DRIVEN ABSTRACTION

While the previous section demonstrates that HI-RL achieves superior final performance over base-
line algorithms in both discrete and continuous action spaces, practical reinforcement learning of-
ten places greater emphasis on sample efficiency, training stability, and convergence speed than on
post-convergence metrics. These factors are especially critical in resource-constrained or high-risk
settings. To this end, we analyze the learning dynamics of HI-PPO vs. PPO and HI-TD3 vs. TD3
on Atari and MuJoCo (Fig. 2, Table 2), illustrating how HI-RL leverages cognitive belief priors for
faster exploration and structured abstraction for more stable optimization.

In high-dimensional visual environments such as Atari, HI-PPO consistently improves both con-
vergence speed and final performance. For example, in Amidar, HI-PPO surpasses 2000 reward at
40M steps, whereas PPO converges around ~ 900. In more challenging tasks such as Asteroids and
Centipede, HI-PPO not only learns faster but also exhibits reduced variance, indicating more stable
policy updates. The progressive increase of 3; enables HI-PPO to exploit conceptual priors early on
and transition smoothly to task-specific fine-tuning, resulting in efficient and robust learning.
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Figure 2: Learning curves comparing HI-PPO and PPO (Atari tasks) as well as HI-TD3 and TD3
(Mujoco and Box2D tasks). HI-RL variants demonstrate faster convergence, higher sample effi-
ciency, and reduced variance across diverse environments.

Similarly, in continuous control tasks, HI-TD3 achieves faster convergence, higher rewards, and
greater stability compared to TD3. In simpler tasks such as BipedalWalker, HI-TD3 converges more
rapidly and attains comparable or better final performance. In more complex locomotion tasks in-
cluding Ant, Swimmer, HalfCheetah, and Walker2d, HI-TD3 not only reaches higher asymptotic
rewards but also produces smoother learning curves with lower variance. By contrast, TD3 often
suffers from slower convergence and mid-training stagnation, underscoring the efficiency and ro-
bustness advantages of HI-TD3.

7 CONCLUSION

We introduce Conceptual Belief-Informed Reinforcement Learning (HI-RL ), a representation-level
framework that organizes experiences into conceptual categories and integrates belief-guided fusion
into policy learning. Moving beyond buffer replay and static policy libraries, HI-RL establishes a
structured memory that supports abstraction, reuse, and generalization. Across Q-learning, PPO,
TD3, and SAC, it consistently improves sample efficiency, final returns, and stability in both dis-
crete and continuous domains. By achieving higher returns with fewer interactions and stabiliz-
ing updates, HI-RL also reduces computational cost, underscoring its potential for sustainable and
resource-efficient training. More broadly, HI-RL illustrates how cognitive principles—conceptual
abstraction and belief—can be operationalized to advance reinforcement learning, shifting the field
from raw data manipulation toward structured, human-aligned inference. We view this as a step
toward an “Era of Experience,” in which intelligence is grounded in the active organization of inter-
action history rather than rote prediction from data.



Under review as a conference paper at ICLR 2026

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

David Barber. Smoothed g-learning. arXiv preprint arXiv:2303.08631, 2023.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253-279, 2013.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679—
684, 1957.

Dimitri P Bertsekas, David A Castanon, et al. Adaptive aggregation methods for infinite horizon
dynamic programming. 1988.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp- 10069-10076, 2020.

Erin Catto. Iterative dynamics with temporal coherence. In Game developer conference, volume 2,
2005.

Ruifeng Chen, Xu-Hui Liu, Tian-Shuo Liu, Shengyi Jiang, Feng Xu, and Yang Yu. Foresight distri-
bution adjustment for off-policy reinforcement learning. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, pp. 317-325, 2024.

Zih-Yun Chiu, Yi-Lin Tuan, William Yang Wang, and Michael Yip. Flexible attention-based multi-
policy fusion for efficient deep reinforcement learning. Advances in Neural Information Process-
ing Systems, 36:13590-13612, 2023.

Anne GE Collins and Jeffrey Cockburn. Beyond simple dichotomies in reinforcement learning.

Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, and Matthieu
Geist. Offline reinforcement learning with pseudometric learning. In International Conference
on Machine Learning, pp. 2307-2318. PMLR, 2021.

Nathaniel D Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nature neuroscience, 8(12):1704—-1711,
2005.

Richard Dearden, Nir Friedman, Stuart Russell, et al. Bayesian Q-learning. Aaai/iaai, 1998:761—
768, 1998.

Daniel C Dennett. Précis of the intentional stance. Behavioral and brain sciences, 11(3):495-505,
1988.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pp. 162-169, 2004.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov
decision processes. SIAM Journal on Computing, 40(6):1662—1714, 2011.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Tobias Gerstenberg and Joshua B Tenenbaum. Intuitive theories. 2017.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 8(5-6):359-483, 2015.

Sertan Girgin, Faruk Polat, and Reda Alhajj. State similarity based approach for improving perfor-
mance in rl. In IJCAI, volume 7, pp. 817-822, 2007.

10



Under review as a conference paper at ICLR 2026

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial intelligence, 147(1-2):163-223, 2003.

Thomas L Griffiths and Joshua B Tenenbaum. Structure and strength in causal induction. Cognitive
psychology, 51(4):334-384, 2005.

Thomas L Griffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B Tenenbaum. Proba-
bilistic models of cognition: Exploring representations and inductive biases. Trends in cognitive
sciences, 14(8):357-364, 2010.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey Levine. Q-prop:
Sample-efficient policy gradient with an off-policy critic. arXiv preprint arXiv:1611.02247,2016.

Shixiang Shane Gu, Timothy Lillicrap, Richard E Turner, Zoubin Ghahramani, Bernhard Scholkopf,
and Sergey Levine. Interpolated policy gradient: Merging on-policy and off-policy gradient esti-
mation for deep reinforcement learning. Advances in neural information processing systems, 30,
2017.

Xingrui Gu, Zhixuan Wang, Irisa Jin, and Zekun Wu. Advancing pain recognition through sta-
tistical correlation-driven multimodal fusion. In 2024 12th International Conference on Affective
Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 281-289. IEEE, 2024.

Xingrui Gu, Chuyi Jiang, Erte Wang, Zekun Wu, Qiang Cui, Leimin Tian, Lianlong Wu, Siyang
Song, and Chuang Yu. Causkelnet: Causal representation learning for human behaviour analysis.
In 2025 IEEE 19th International Conference on Automatic Face and Gesture Recognition (FG),
pp. 1-13. IEEE, 2025.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Qianyue Hao, Sibo Li, Jian Yuan, and Yong Li. RI of thoughts: Navigating llm reasoning with
inference-time reinforcement learning. arXiv preprint arXiv:2505.14140, 2025.

Amogh Joshi, Adarsh Kosta, and Kaushik Roy. Shire: Enhancing sample efficiency using human
intuition in reinforcement learning. In 2025 IEEE International Conference on Robotics and
Automation (ICRA), pp. 13399-13405. IEEE, 2025.

Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. Proceedings of the
National Academy of Sciences, 105(31):10687-10692, 2008.

Mehdi Keramati, Amir Dezfouli, and Payam Piray. Speed/accuracy trade-off between the habitual
and the goal-directed processes. PLoS computational biology, 7(5):¢1002055, 2011.

Jung-Hyun Kim, Yong-Hoon Choi, You-Rak Choi, Jae-Hyeok Jeong, and Min-Suk Kim. Extended
maximum actor—critic framework based on policy gradient reinforcement for system optimization.
Applied Sciences, 15(4):1828, 2025.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
transactions on intelligent transportation systems, 23(6):4909—4926, 2021.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332-1338, 2015.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:¢253, 2017.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction
for mdps. AI&M, 1(2):3, 2006.

11



Under review as a conference paper at ICLR 2026

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Wenzhang Liu, Wenzhe Cai, Kun Jiang, Guangran Cheng, Yuanda Wang, Jiawei Wang, Jingyu
Cao, Lele Xu, Chaoxu Mu, and Changyin Sun. Xuance: A comprehensive and unified deep
reinforcement learning library. arXiv preprint arXiv:2312.16248, 2023.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129-137, 1982.

Mingwei Ma, Jizhou Liu, Samuel Sokota, Max Kleiman-Weiner, and Jakob Nicolaus Foerster.
Learning to coordinate with humans using action features. CoRR, abs/2201.12658, 2022.

Francisco S Melo. Convergence of g-learning: A simple proof. Institute Of Systems and Robotics,
Tech. Rep, pp. 1-4, 2001.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Vihang Patil, Markus Hofmarcher, Elisabeth Rumetshofer, and Sepp Hochreiter. Contrastive ab-
straction for reinforcement learning. arXiv preprint arXiv:2410.00704, 2024.

Brahma Pavse and Josiah Hanna. State-action similarity-based representations for off-policy evalu-
ation. Advances in Neural Information Processing Systems, 36:42298-42329, 2023.

Shaohui Peng, Xing Hu, Rui Zhang, Jiaming Guo, Qi Yi, Ruizhi Chen, Zidong Du, Ling Li, Qi Guo,
and Yunji Chen. Conceptual reinforcement learning for language-conditioned tasks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 9426-9434, 2023.

Cameron R Peterson and Lee Roy Beach. Man as an intuitive statistician. Psychological bulletin,
68(1):29, 1967.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
conference on machine learning, pp. 2827-2836. PMLR, 2017.

Balaraman Ravindran. Smdp homomorphisms: An algebraic approach to abstraction in semi markov
decision processes. 2003.

Balaraman Ravindran. An algebraic approach to abstraction in reinforcement learning. 2004.
Eleanor Rosch. Principles of categorization. Cognition and categorization/Erlbaum, 1978.

Stéphane Ross and Joelle Pineau. Model-based bayesian reinforcement learning in large structured
domains. In Uncertainty in artificial intelligence: proceedings of the... conference. Conference
on Uncertainty in Artificial Intelligence, volume 2008, pp. 476, 2008.

12



Under review as a conference paper at ICLR 2026

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver and Richard S Sutton. Welcome to the era of experience. Google Al, 1, 2025.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387-395. Pmlr, 2014.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic applica-
tions: a comprehensive survey. Artificial Intelligence Review, 55(2):945-990, 2022.

Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvari. Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine learning, 38:287-308, 2000.

Zihao Sun, Bao Pang, Xianfeng Yuan, Xiaolong Xu, Yong Song, Rui Song, and Yibin Li. Hi-
erarchical reinforcement learning with curriculum demonstrations and goal-guided policies for
sequential robotic manipulation. Engineering Applications of Artificial Intelligence, 153:110866,
2025.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Joshua B Tenenbaum and Thomas L Griffiths. Generalization, similarity, and bayesian inference.
Behavioral and brain sciences, 24(4):629-640, 2001.

Joshua B Tenenbaum, Thomas L Griffiths, and Charles Kemp. Theory-based bayesian models of
inductive learning and reasoning. Trends in cognitive sciences, 10(7):309-318, 2006.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow a
mind: Statistics, structure, and abstraction. science, 331(6022):1279-1285, 2011.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995-2003. PMLR, 2016.

Watkins, Christopher JCH, Dayan, and Peter. Q-learning. Machine learning, 8:279-292, 1992.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476-25488, 2021.

Kaiyan Zhao, Yiming Wang, Yuyang Chen, Yan Li, Xiaoguang Niu, et al. Efficient diversity-based
experience replay for deep reinforcement learning. arXiv preprint arXiv:2410.20487, 2024.

13



