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1 Introduction

We address next-node prediction in Brussels’ urban mobility. Using a custom
simulator on the city’s road network, agents generate daily trips via five source-
target (s—t) models. We train LSTM, Transformer, and GNN models to evaluate
their ability to learn spatio-temporal mobility patterns for applications such as
transfer point estimation, dynamic car-pooling, or traffic forecasting.

2 Simulation and Prediction Framework

We simulate mobility on the Brussels road network G = (V, E) with |V| = 18,547
intersections and |E| = 40,890 segments. Agents travel at edge-specific speeds
affected by congestion, modeled via the Bureau of Public Roads (BPR) function
[1], with a minimum speed of 10% of normal. Trip initiation follows a 24-hour
pattern (6 AM-6 AM) with morning/evening peaks. Five s—¢ selection models re-
flect diverse behaviors: Random (uniform s—t), Activity-Based (home/work
patterns by agent type), Zone-Based (3x3 grid, 60% intra-zone, 40% inter-
zone [2]), Gravity (probability « centrality / distance), and Hub-and-Spoke
(70% via high-centrality hubs). We train three neural architectures for newt-
node prediction, i.e., given a fixed-length history of visited nodes, predict the
next: LSTM: 3-layer bidirectional (512 units/dir) with 256-dim embeddings,
dropout 0.3, softmax output. Transformer: 6-layer encoder, 8 heads, 512-dim
embeddings with sinusoidal positions, causal masking, pre-norm. GNN: 4-layer
GAT (4 heads) to learn 128-dim node embeddings, followed by 2-layer bidirec-
tional LSTM (256 units/dir). All use cross-entropy loss with 0.1 label smooth-
ing, AdamW with cosine annealing, early stopping (patience = 10), and gradient
clipping (maxnorm = 1.0). Hyperparameters: LSTM (batch = 64, lr = 0.001),
Transformer (batch = 32, Ir = 0.0001), GNN (batch = 48, Ir = 0.0005).

3 Results and Conclusion

The three prediction models were trained and evaluated independently using trip
data from the five s— selection models with 1000 agents simulated over a 24-hour
period. Each training instance consists of an input sequence of 10 consecutive
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road network nodes and the corresponding next node as output. Dataset sizes are
reported in Appendix [3] Table [[| reports the validation loss, the final validation
and the test accuracies for each model on each dataset.

Table 1. Validation accuracy, train loss, and final validation loss for each model on
five s-t selection datasets with 1000 agents over 24-hour simulation.

Dataset Model Train Loss Val. Loss Val. Accuracy (%)
Random LSTM 1.4619 1.626 92.77
Random Transformer 1.5143 1.6871 92.23
Random GNN 1.5247 1.6635 92.36
Activity-Based LSTM 1.4187 1.5357 93.97
Activity-Based Transformer 1.4549 1.5745 93.59
Activity-Based GNN 1.4673 1.562 93.71
Zone-Based LSTM 1.4746 1.7235 90.88
Zone-Based Transformer 0.1626 0.613 90.52
Zone-Based GNN 0.8477 0.9382 85.94
Gravity LSTM 1.4806 1.7403 90.74
Gravity Transformer 1.512 1.7933 90.35
Gravity GNN 1.5209 1.749 90.66
Hub-and-Spoke LSTM 1.4559 1.6092 93.04
Hub-and-Spoke Transformer 1.5023 1.6666 92.55
Hub-and-Spoke GNN 1.513 1.6439 92.67

Across all models, the Activity and Hub-and-Spoke datasets are the most
predictable, with validation accuracies between 92% and 94% and relatively low
losses, suggesting their s—t patterns are easier to learn. In contrast, the Zone
dataset proves most challenging, especially for GNNs, which drop to 85.94%,
likely due to its smaller size and complex spatial structure. Interestingly, dataset
size alone does not determine performance: the smaller Activity dataset consis-
tently outperforms the much larger Random dataset (= 92%), indicating that
complexity and pattern regularity have greater influence than the sample size.
Training losses are consistently below validation losses, showing mild overfitting,
but the small gap suggests models retain good generalization.

Future work will enhance the predictive setting by incorporating richer node
features, explicit spatial-temporal context, and real traffic conditions, aiming
to improve accuracy in more complex scenarios like the Zone dataset. More
robust evaluation through K-Fold cross-validation and model averaging is also
planned, though these were not feasible here due to the computational demands
of training.
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Appendix

Table 2. Dataset sizes used for training, evaluation and testing

Dataset Train. Size (60%) Val. Size (20%) Test Size (20%)

Random 348,885 116,295 116,294

Activity 330,516 110,171 110,171

Zone 952,849 84,282 84,282

Gravity 259,719 86,573 86,573

Hub-and-Spoke 342,494 114,164 114,164
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