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Abstract001

Subword-based tokenization methods often002
fail to preserve morphological boundaries,003
a limitation especially pronounced in low-004
resource, morphologically complex languages005
such as those written in the Ge‘ez script. To006
address this, we present Morpheme-aware Sub-007
word Vocabulary Construction MoVoC and008
train MoVoC-Tok, a tokenizer that integrates009
supervised morphological analysis into the010
subword vocabulary. This hybrid segmenta-011
tion approach combines morpheme-based and012
Byte Pair Encoding (BPE) tokens to preserve013
morphological integrity while maintaining lex-014
ical meaning. To tackle resource scarcity, we015
curate and release manually annotated mor-016
pheme data for four Ge‘ez script languages and017
a morpheme-aware vocabulary for two of them.018
While the proposed tokenization method does019
not lead to significant gains in automatic trans-020
lation quality, we observe consistent improve-021
ments in intrinsic metrics, MorphoScore, and022
Boundary Precision, highlighting the value of023
morphology-aware segmentation in enhancing024
linguistic fidelity and token efficiency. Our025
morpheme-annotated datasets and tokenizer026
dataset will be publicly available to support fur-027
ther research in low-resource, morphologically028
rich languages.029

1 Introduction030

Tokenization is a fundamental preprocessing step031

in NLP, converting raw text into structured units032

such as bytes (Gillick et al., 2016), characters (Al-033

Rfou et al., 2019), subwords (Sennrich et al., 2016),034

words (Song et al., 2021), or multi-word expres-035

sions (Gee et al., 2023). Subword tokenization,036

such as BPE (Sennrich et al., 2016), gained pop-037

ularity for being language-independent and com-038

pressing vocabulary, enabling efficient and bal-039

anced token learning. However, subwords often040

fail to capture morphological structure, a problem041

that is especially clear in multilingual models us- 042

ing a shared vocabulary across languages. Without 043

careful and balanced data selection, low-resource 044

languages typically receive fewer subwords, lead- 045

ing to a high token-to-word ratio (Haddow et al., 046

2022; Limisiewicz et al., 2023; Libovický and 047

Helcl, 2024). Moreover, negative morphemes chal- 048

lenge LLMs with tokenizers lacking morphologi- 049

cal sensitivity (Mikaberidze et al., 2024). 050

Morphological systems across languages vary 051

regarding the relation between form and mean- 052

ing (Socolof et al., 2022) and are harder to model 053

and predict (Cotterell et al., 2018; Park et al., 2021). 054

Furthermore, languages with greater morphologi- 055

cal complexity may lead to worse language model 056

performance, as morphologically rich languages 057

tend to have a large number of very infrequent word 058

forms produced by combinations of morphemes, 059

which leads to data sparsity (Shin and You, 2009; 060

Botev et al., 2022). Morphologically rich lan- 061

guages also have less annotated data (Botev et al., 062

2022) and are often written with non-Latin scripts, 063

which require more bytes to be represented in com- 064

mon encoding standards like UTF-8 (Arnett and 065

Bergen, 2025). 066

Additionally while subword tokenization con- 067

sistently outperforms character and word level 068

approaches by efficiently compressing text into 069

shorter token sequences (Goldman et al., 2024), 070

compression alone is not always predictive of 071

downstream task success, especially for mor- 072

phologically complex or semantically dense lan- 073

guages (Schmidt et al., 2024). Overall the standard 074

algorithms lack morphology awareness (Libovický 075

and Helcl, 2024). Alternatively Morphologically- 076

aware tokenization produces more meaningful 077

tokens, often resulting in improved model per- 078

formance (Lerner and Yvon, 2025; Hofmann 079

et al., 2022; Bauwens and Delobelle, 2024; Minix- 080

hofer et al., 2023). This claim is supported 081

by evidence from several languages, e.g., Ko- 082
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Figure 1: MoVoC Pipeline. We first extract Amharic and Tigrinya words from our corresponding text corpora to
perform token-based and morpheme-based separation resulting in four different vocabularies. We then merge all
four vocabularies to generate a single MoVoC-based vocabulary (VMoVoC).

rean (Lee et al., 2024), Arabic (Tawfik et al., 2019),083

Japanese (Bostrom and Durrett, 2020), and He-084

brew (Gueta et al., 2023). However, such efforts085

are constrained by the limited availability of mor-086

phologically annotated datasets, mostly found in087

high-resource languages (Minixhofer et al., 2023).088

Moreover, even with sufficient morphological an-089

notations, relying solely on morpheme-based to-090

kenization is suboptimal. As noted by Bauwens091

and Delobelle (2024), approaches that disregard092

subword tokenization struggle to leverage shared093

statistical information across related word forms,094

result in longer input sequences, and generally095

perform worse than hybrid methods that integrate096

morphological information with subword tokeniza-097

tion. Accordingly, based on the three-stage tok-098

enization framework proposed by Schmidt et al.099

(2024) and Libovický and Helcl (2024), we adopt100

a tokenization process comprising three distinct101

phases: pre-tokenization, vocabulary construction,102

and segmentation.103

Concretely, our contributions are as follows: (i)104

We develop morphologically annotated datasets105

for four low-resource Ge’ez Script languages106

to support improved tokenization, morphological107

analysis, and downstream NLP tasks; (ii) We108

propose MoVoC (Morpheme-Aware Vocabulary109

Construction), a supervised approach that lever-110

ages linguistically informed BPE segmentations111

as an alternative to standard subword techniques.112

It integrates BPE-derived vocabulary with mor-113

phemes extracted through supervised methods114

to enhance morphological representation and im-115

prove token-to-morpheme alignment in morpho- 116

logically rich low-resource languages; (iii) We 117

perform thorough intrinsic and extrinsic evalua- 118

tions to measure the effectiveness of our approach 119

and validate its practical applicability. 120

2 Background 121

2.1 Tokenization Approaches 122

Word Tokenization: The straightforward meth- 123

ods for segmenting text involves breaking a string 124

of text into distinct words. The simplest form of 125

word tokenization relies on dividing sequences by 126

whitespace and treating each word as a separate 127

token, as noted by (Bengio et al., 2003). This 128

method is particularly prevalent in languages that 129

have clear word boundaries, such as English. Al- 130

ternatively, one could also perform rule-based to- 131

kenization, which uses a set of predefined rules 132

and patterns to identify tokens. For example, it 133

might use regular expressions to handle contrac- 134

tions like “can’t” or “won’t” by splitting them into 135

“can not” and “will not,” respectively. A key 136

challenge with this method is addressing out-of- 137

vocabulary (OOV) words, which can arise from ty- 138

pos, unrecognized scripts, and other factors. 139

Subword Tokenization: The most common 140

strategy is to decompose words into subwords, al- 141

lowing models to process out-of-vocabulary words 142

by merging subwords from the vocabulary (Kudo 143

and Richardson, 2018). Examples of popular sub- 144

word tokenizers are WordPiece (Song et al., 2021), 145

BPE (Sennrich et al., 2016), Byte-Level BPE 146

(BBPE) (Wang et al., 2020) and Unigram (Kudo 147

2



and Richardson, 2018).148

Character Tokenization: Tokenization149

can also be done at the character or UTF-8150

byte level, but this increases sequence length151

and leads to higher computational cost due152

to the quadratic complexity of transformers’153

self-attention (Vaswani et al., 2017; Ali et al.,154

2024).155

2.2 Ge’ez Script Natural Language156

Processing157

The Ge’ez writing system is one of the oldest con-158

tinuously used scripts in the world, which pre-159

served for over 2000 years, it reflects a remark-160

ably stable and adaptable method of representing161

language (Gidey et al., 2024). Beyond its func-162

tion as a grammatical system, Ge’ez offers valu-163

able insight into the intellectual, philosophical, and164

cultural foundations of ancient African civiliza-165

tions, highlighting their linguistic innovation and166

societal advancement (Scelta and Quezzaire-Belle,167

2001; Gidey et al., 2024). Unlike alphabetic sys-168

tems like Greek or Latin, Ge’ez uses a syllabic169

script, originally derived from the Sabean script170

(Bekerie, 2003). However, the development and171

publication of usable NLP tools for Ge’ez have172

been hindered to date due to the scarcity of essen-173

tial linguistic resources (Gidey et al., 2024). It is174

a script for numerous languages, including Ge’ez,175

Tigrinya, Amharic, Tigre, and Blin (Gaim et al.,176

2022). These morphologically rich Semitic lan-177

guages present unique difficulties due to their com-178

plex morphology, which generates numerous in-179

flected forms (Tedla and Yamamoto, 2018).180

For example, the Amharic verb ”to write” (ጻፈ)181

inflects for tense, aspect, person, number, and gen-182

der: ”I wrote” becomes ጻፍኩ, ”you wrote” ጻፍክ,183

and ”they wrote” ጻፉ. Similarly, in Tigrinya, the184

root verb ”to write” (ጸሓፈ) exhibits rich inflec-185

tional patterns based on similar grammatical cate-186

gories. This rich inflectional morphology results187

in many surface forms, especially because verb188

endings are often agglutinated directly to the root189

without clear word boundaries. For example, in190

Amharic, the root verb ሠራ (”to do”) forms in-191

flected variants by attaching endings directly, such192

as ሠራሁ (”I did”). Similarly, in Tigrinya, the root193

verb ነበረ (”to be” or ”to exist”) forms inflected194

variants like ነበረኒ (”I had it”) by attaching endings195

directly to the root. Consequently, subword tok-196

enization methods such as BPE, which are based197

solely on frequency and not linguistic structure,198

struggle to segment these languages appropriately. 199

In this work, we contribute to Ge’ez script lan- 200

guage processing by (i) providing annotated data 201

for four Ge’ez script language, such as Tigriyna, 202

Amharic, Ge’ez and Tigre, and (ii) exploring a 203

morpheme-aware alternative to BPE by constrain- 204

ing segmentation to respect morpheme boundaries, 205

yielding vocabularies aligned with linguistic struc- 206

ture and improving tokenization in morphologi- 207

cally rich languages. 208

2.3 Tokenization for Morphologically Rich 209

and Low-Resource Languages 210

Subword tokenization is a widely explored area 211

in natural language processing, with various meth- 212

ods proposed to break words into smaller subword 213

units (Hou et al., 2023; Gezmu and Nürnberger, 214

2023; Socolof et al., 2022; Dewangan et al., 2025; 215

Thawani et al., 2023; Schmidt et al., 2024). Park 216

et al. (2021) trained models with several segmen- 217

tation algorithms, including BPE and Morfessor 218

(Creutz and Lagus, 2002), on a corpus of Bible 219

verses in 92 languages. Language models perform 220

worse on morphologically complex languages due 221

to poor tokenization and smaller datasets (Arnett 222

and Bergen, 2025). Morphological typology sig- 223

nificantly impacts LM performance, with features 224

like exponence, flexivity, and fusion contributing 225

to low-frequency phenomena that are challenging 226

for statistical models (Gerz et al., 2018). 227

Park et al. (2021) investigate linguistically mo- 228

tivated segmentation methods, such as Morfessor 229

and FSTs, that help reduce the effect of morpho- 230

logical complexity and can improve language mod- 231

eling performance. Dewangan et al. (2025) show 232

that optimized BPE outperforms greedy methods 233

by reducing token count, improving efficiency, 234

and benefiting multilingual and low-resource NLP 235

tasks. Similarly, both MorphBPE (Asgari et al., 236

2025) and MorphPiece (Jabbar, 2023) aim to im- 237

prove tokenization for morphologically rich lan- 238

guages by incorporating linguistic features into the 239

segmentation process. Mikaberidze et al. (2024) 240

explored the impact of various tokenization meth- 241

ods on Georgian language modeling, demonstrat- 242

ing the necessity of preserving morphological vari- 243

ations in the tokenization process. Furthermore, 244

Bauwens and Delobelle (2024) concluded that a 245

lack of morpheme-awareness leads to inconsis- 246

tent intraword representations, inflated vocabulary 247

size, and inefficient embedding storage. On the 248

other hand, Saleva and Lignos (2021) evaluate sub- 249
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Original Words
Amharic / English

Morphological
Segmentation BPE Segmentation Impacts of BPE Segmentation

በቤትኦችኣችን
In our homes

'ለ-<ቤት>ኦች-
ኣችን--'

['በ','ቤት','ኦ','ች'
,'ኣ','ችን']

Over-segmentation: BPE splits the phrase into fragments that
don’t form the cohesive meaning of ”In our homes.” Words like
'ቤት' (house) and 'ኦችኣችን' (our homes) are broken, losing their
semantic coherence and making it hard to convey the original
context.

አልሰበሩም
They didn’t break

’-ኣል-<ሰበር>ኡ--
ም---’ ['አል','ሰ','በሩ','ም']

Fragmented meaning: BPE breaks ”ሰበር” (break) into ”ሰ” and
”በሩ” distorting the intended meaning. The sentence ”They
didn’t break” becomes unclear because BPE doesn’t preserve the
root structure of the verb, leading to loss of grammatical clarity
and reduced accuracy in translation.

የማይሰብረው
He didn’t break

’የም-ኣ-ይ<ሰብር>-
አው----’ ['የማይ', 'ሰብ', 'ረው']

Loss of verb tense and context: BPE splits ”ሰብር” (break) incor-
rectly, making it ”ሰብ” and ”ረው.” The full context of ”He didn’t
break” is lost because the tense (”didn’t”) and action (”break”)
are not preserved in the segmentation, leading to confusion and
a loss of meaning.

Table 1: Comparison of Morphological Segmentation and BPE Segmentation with their Impact. The stem is en-
closed within < >, while - marks the boundaries of morphemes. A lone - indicates the absence of a morpheme in
that position.

word segmentation in low-resource NMT and find250

that while morphology-based methods occasion-251

ally outperform BPE, their overall performance is252

often statistically similar, offering no consistent253

advantage. A more recent work by Libovický254

and Helcl (2024) employed word embeddings to255

enable semantically informed subword segmenta-256

tion; however, its effectiveness diminishes in low-257

resource languages due to limited training data.258

Overall, these reports reveal a gap in under-259

standing the performance of different tokenization260

strategies for low-resource languages. Therefore,261

our work on MoVoC not only contributes to the262

processing of Ge’ez script languages but also acts263

as another successful example for the potential264

of morpheme-aware subword tokenization alterna-265

tive.266

3 Proposed Method267

In this section, we describe three separate method-268

ologies for 1) Pre-tokenization and Supervised269

Morphological Analyses, 2) Vocabulary Construc-270

tion (MoVoC), and 3) Morpheme-aware Subword271

Segmentation (MoVoC-Tok).272

3.1 Pre-tokenization and Supervised273

Morphological Analyses274

Pre-tokenization is a preparatory step before tok-275

enization, segmenting raw text into manageable276

units. Unlike high-resource languages like En-277

glish, Ge’ez-script languages lack robust NLP278

tools, making basic preprocessing tasks such as279

stopword removal, punctuation normalization, and 280

special character filtering challenging. To address 281

this gap, we develop a pre-tokenization pipeline 282

based on customized regular expressions tailored 283

to the orthographic and morphological character- 284

istics of Ge’ez-script languages. The pipeline be- 285

gins with corpus cleaning to eliminate noise and in- 286

consistencies, followed by supervised morphologi- 287

cal analysis for accurate morpheme extraction. For 288

Amharic and Tigrinya, we leverage HornMorpho1, 289

a rule-based morphological analyzer. While Horn- 290

Morpho performs reliably on Amharic, its Tigrinya 291

outputs often require manual post-editing due to 292

limited coverage. For languages without existing 293

analyzers, Ge’ez and Tigre, we manually construct 294

and annotate morphemes under linguistic super- 295

vision. This morpheme-level annotation is criti- 296

cal for high-quality segmentation, particularly in 297

morphologically rich constructions. As shown in 298

Tab. 1, naïve application of Byte Pair Encoding 299

(BPE) frequently results in over-segmentation or 300

incorrect splits that obscure grammatical and se- 301

mantic content. For instance, the Amharic word 302

አልሰበሩም (”They didn’t break”) is fragmented by 303

BPE intoአል, ሰ, በሩ, andም, breaking the verb stem 304

ሰበር and distorting meaning በሩ alone is a valid 305

word meaning ”gate.” These failures are attributed 306

to BPE’s unsupervised, morphology-agnostic na- 307

ture, which ignores linguistic boundaries and often 308

produces incoherent subword units. Such misalign- 309

ments are especially detrimental for low-resource, 310

1https://github.com/hltdi/HornMorpho
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morphologically complex languages where train-311

ing data is scarce. To mitigate this, we intro-312

duce a supervised morphological segmentation ap-313

proach integrated into a linguistically informed pre-314

tokenization stage. This ensures morphemes are315

extracted and preserved before applying subword316

algorithms like MoVoC in Algorithm 1, aligning317

tokenization with true morphological structures318

and enhancing both semantic coherence and down-319

stream NLP utility.320

The annotated morphemes serve as a gold-321

standard test set for evaluating token-to-morpheme322

boundary alignment and also intended to support323

future research as a publicly available benchmark324

for morphological segmentation evaluation.325

3.2 Vocabulary Construction (MoVoC)326

Existing subword tokenization methods primarily327

rely on statistical analysis of occurrence frequen-328

cies without explicitly considering morphemes329

(Truong et al., 2024). The most popular method,330

Byte-Pair Encoding (BPE) (Sennrich et al., 2016),331

greedily merges the most frequent token pairs332

to form subword units. Similarly, the Unigram333

Language Model, as implemented in Sentence-334

Piece (Kudo and Richardson, 2018), selects high-335

probability segmentations using a probabilistic un-336

igram model. However, these methods often suffer337

from limited morphological generalization, which338

can negatively impact interpretability, composi-339

tionality, and cross-lingual transfer especially in340

morphologically rich languages.341

In this work, we target Ge‘ez script languages,342

which are characterized by fusional morphology343

and a scarcity of linguistically motivated tools and344

morphologically annotated data.345

As highlighted in the pre-tokenization analysis346

(see Sec. 3.1), we employ a supervised morpholog-347

ical analysis. Based on the annotated morphemes,348

we design a hybrid vocabulary construction strat-349

egy as we described see Algorithm 1 (see Tab. 5 for350

the resulting vocabulary size). Our algorithm allo-351

cates a predefined portion of the total vocabulary352

to morpheme units and the rest to BPE tokens, bal-353

ancing linguistic structure and statistical efficiency.354

This integration of morpheme-aware subwords and355

BPE-based tokens ensures better vocabulary con-356

trol, reduces the incidence of rare tokens, and pre-357

serves semantic granularity in subword representa-358

tions.359

Methodology: Let Pam represent the Amharic360

monolingual corpus, and Pti represent the Tigrinya361

monolingual corpus. The goal of the MoVoC 362

method is to create a final vocabulary VMoVoC 363

that combines subword tokenization from the BPE 364

model and morpheme-based tokenization, with an 365

emphasis on incorporating a higher proportion of 366

morpheme-based tokens in the vocabulary rather 367

than employing the BPE model derived from the 368

two corpora. The vocabulary VMoVoC is formu- 369

lated by merging the vocabularies obtained from 370

the BPE model and the morpheme token set. When 371

the target vocabulary size for BPEMoVoC is s, we 372

train BPEsmall with a vocabulary size of s(1 − r) 373

where r is a hyperparameter set between 0 and 1 to 374

denote the proportion of added morpheme tokens 375

in VMoVoC. 376

Algorithm 1 MoVoC Pseudocode
Require:

Pam (Amharic corpus),
Pti (Tigrinya corpus),
s (Total vocabulary size),
r (Proportion of morpheme-aware tokens, 0 ≤ r ≤ 1)

Ensure: VMoVoC (Final MoVoC vocabulary)
Step 1: Perform Morpheme Segmentation using Horn-
Morpho
Mam ← HornMorpho_segment(Pam)
Mti ← HornMorpho_segment(Pti)
Step 2: Define Vocabulary Sizes
slang ← s/2

sBPE ← slang × (1− r)

smorpheme ← slang × r

Step 3: Train BPE Models
VBPE,am ← Train_BPE(Pam, sBPE)
VBPE,ti ← Train_BPE(Pti, sBPE)
Step 4: Extract Morphemes
Vmorpheme,am ← extract_morphemes(Pam, smorpheme)
Vmorpheme,ti ← extract_morphemes(Pti, smorpheme)
Step 5: Merge All Vocabularies
VMoVoC ← VBPE,am ∪ VBPE,ti ∪ Vmorpheme,am ∪ Vmorpheme,ti

Step 6: Train Final MoVoC Model
Train_MoVoC_Model(VMoVoC)
Step 7: Return Final Vocabulary
return VMoVoC

MoVoC Hyperparameter Setting: Hyperpa- 377

rameter tuning plays a crucial role in vocabu- 378

lary construction using BPE and other subword 379

tokenization techniques, especially in morpheme- 380

aware settings. In morphologically rich fusional 381

languages, words often consist of multiple mor- 382

pheme roots, prefixes, and suffixes. Without care- 383

ful tuning, BPE may (i) overfit to whole words, 384

missing productive morphemes (e.g., ኦች, -ኣችን), 385

or (ii) ignore language-specific morphological 386

structures, as seen in verb forms like እሄዳለሁ and 387
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ትሄዳለህ, where affixes encode subject agreement.388

Proper tuning ensures subword units align with389

meaningful morphemes, improving linguistic rep-390

resentation and downstream model performance.391

3.3 MoVoC-Tok (Morpheme-aware Subword392

Segmentation)393

We train the BPE tokenizer using the mixed vocab-394

ulary obtained from MoVoC and subsequently as-395

sess its performance. However, despite employing396

a MoVoC-derived vocabulary, a conventional BPE397

tokenizer may still produce morpheme boundary398

violations, as its merge operations are data-driven399

and can combine subwords that cross morpheme400

boundaries if not explicitly restricted. To address401

this, we incorporate morphological constraints di-402

rectly into the BPE training process by limiting403

merge candidates to those that do not span mor-404

pheme boundaries defined by MoVoC. This inte-405

gration of morphological information ensures that406

the resulting tokenization (MoVoC-Tok) adheres to407

true morphological segmentation, thereby prevent-408

ing invalid merges.409

Let W = {w1, w2, . . . , wn} be the vocab-410

ulary of words obtained from MoVoC where411

each word wi is a sequence of characters wi =412

(c1, c2, . . . , cm). Let Mi = {b1, b2, . . . , bk} be413

the morpheme boundaries in wi, as provided by414

MoVoC in Sec. 3.2. Then, Morpheme-Aware BPE415

Segmentation can be formally defined as follows:416

max
V

∑
wi∈W

logP (BPE(wi;V,Mi)),417

where the following constraint holds:418

BPE(wi;V,Mi) = (s1, s2, . . . , st)419

such that420

∀sj , sj ⊆ wi and sj does not cross Mi.421

Here, V denotes the learned subword vocabulary422

and sj represents BPE merge units that are con-423

strained by the morpheme boundaries Mi. The424

merge operations are further restricted such that425

(a, b) ∈ MergeCandidates ⇒ a ∪ b /∈ M∁
i .426

In other words, merges are permitted only if they427

do not cross morpheme boundaries as defined by428

MoVoC in Sec. 3.2.429

4 Experimental Setup 430

4.1 Target Languages 431

We focus on four languages that use the Geez script: 432

Amharic, Tigrinya, Ge‘ez, and Tigre. These 433

languages exhibit rich and complex morpholog- 434

ical structures, posing significant challenges for 435

conventional subword segmentation methods like 436

BPE. 437

Amharic and Tigrinya: We perform mor- 438

pheme segmentation using the HornMorpho ana- 439

lyzer, which decomposes words into stems and af- 440

fixes. These segmented units are used both for vo- 441

cabulary construction. 442

Ge‘ez and Tigre: Due to the absence of analyz- 443

ers and corpora, we perform manual morpheme an- 444

notation using expert linguistic guidelines. These 445

annotations are applied for testing purposes only 446

and are not part of the vocabulary since we did not 447

get data for BPE training. 448

4.2 Dataset Details 449

Training Data: We have trained BPE to create the 450

subword vocabularies in addition to Morphemes, 451

and we finetuned Machine Translation as a down- 452

stream task. For these, we use the HornMT2 cor- 453

pus as the primary source for annotating the mor- 454

pheme and the NLLB project (Costa-Jussà et al., 455

2022) for training BPE to construct the vocabu- 456

laries in Tigrinya and Amharic. For the finetun- 457

ing model we use parallel corpora mined and re- 458

leased by Meta AI as part of the No Language Left 459

Behind (NLLB) project (Costa-Jussà et al., 2022). 460

Specifically, we employ the English–Tigrinya and 461

English–Amharic and vise versa parallel corpora 462

to assess machine translation performance. These 463

datasets were created using the stopes mining li- 464

brary and LASER3 encoders (Costa-Jussà et al., 465

2022), providing high-quality mined bitext for 148 466

English-centric and 1465 non-English-centric lan- 467

guage pairs. Due to the noisy nature of the mining 468

process, we utilize this data solely for model train- 469

ing. 470

Evaluation Data: Amharic and Tigrinya: Both 471

languages are directly supported by Flores-200 472

(Goyal et al., 2022). We use the correspond- 473

ing development and test sets for automatic eval- 474

uation using BLEU (Papineni et al., 2002) and 475

chrF++ (Popović, 2017). But since Ge‘ez and Ti- 476

gre were not included in the FLORES-200 (Goyal 477

2https://github.com/asmelashteka/HornMT
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Language (ISO 639-3) No. Items MorphScore ↑
Amharic (amh) 80k 0.71
Tigrinya (tir) 80k 0.731
Ge’ez (gez) 20k 0.67
Tigre (tig) 32k 0.654

Table 2: Languages for which we created morpholog-
ical datasets with the corresponding MoVoC-Tok tok-
enizer’s MorphScore (which we want to maximize, in-
dicated by ↑). All four languages are Afro-Asiatic and
Semitic, written in Ge’ez script, and utilize fusional
morphemes.

et al., 2022) benchmark and were not part of the478

finetuning data (Costa-Jussà et al., 2022), we fi-479

nally consider 100 sentence pairs from the OPUS480

parallel corpus (Tiedemann, 2012) as a final evalu-481

ation for all languages.482

Test Data: Extrinsic evaluation was conducted483

using an unseen subset of the first 100 sentence484

pairs from the OPUS parallel corpus (Tiedemann,485

2012) for each target language: Amharic, Tigrinya,486

and Tigre. Due to the absence of parallel data,487

Ge‘ez was evaluated only intrinsically. For all lan-488

guages, intrinsic evaluation was based on our anno-489

tated morphemes test set, designed to analyze seg-490

mentation quality.491

4.3 Training Setup and Configuration492

We trained our tokenizer using the Hugging Face493

tokenizers library (Wolf et al., 2020) and ana-494

lyze BPE, WordPiece, as baseline subword tok-495

enizers, using the mplementations from Hugging-496

Face3. And we fine-tuned the MarianMT (Junczys-497

Dowmunt et al., 2018) transformer model on a sin-498

gle NVIDIA GPU using a Slurm-managed HPC499

cluster. The job requested 1 GPU, 6 CPU cores,500

32 GB of RAM, and a maximum runtime of 24501

hours. The training environment was managed via502

Conda for reproducibility. Training was performed503

for 3 epochs with a batch size of 8 and a maxi-504

mum sequence length of 128 tokens and transform-505

ers version: ”4.51.3”. The learning rate started506

at 1.44 × 10−7 and decayed throughout training.507

Gradient norms decreased from 1.14 to 1.06, and508

the training loss ranged from 0.443 to 0.438 across509

epochs.Training time was approximately 12 hours,510

with an average speed of 96.7 samples per second.511

3https://github.com/huggingface/tokenizers

5 Evaluation Framework 512

We incorporate both intrinsic and extrinsic evalua- 513

tions to assess our approach. Intrinsic evaluation 514

focuses on morpheme boundary precision and vo- 515

cabulary consistency (e.g., Rényi entropy), while 516

extrinsic evaluation measures downstream perfor- 517

mance in machine translation using metrics like 518

BLEU and chrF++. 519

5.1 Extrinsic Evaluation 520

Translation quality is assessed using BLEU and 521

chrF++, which measure n-gram and character-level 522

overlap. However, as these metrics may over- 523

look morphological improvements, we comple- 524

ment them with intrinsic evaluations for a more 525

complete analysis. 526

Machine Translation As part of the down- 527

stream evaluation of our framework, we present a 528

fine-tuned MarianMT (Multilingual Transformer) 529

model for machine translation between English 530

and two low-resource Ge’ez script languages: 531

Amharic and Tigrinya. The model was trained 532

on parallel corpora consisting of English-Amharic 533

and English-Tigrinya sentence pairs. Although Ti- 534

gre was not included during training, it was in- 535

corporated in the evaluation phase to assess the 536

model’s zero-shot translation capabilities. The 537

model architecture consists of 6 encoder and 6 538

decoder layers, each with 8 attention heads and 539

a hidden size of 512. It employs a feedfor- 540

ward dimension of 2048, Swish activation, shared 541

encoder-decoder embeddings, and static positional 542

encodings. The vocabulary size is 63,050 tokens. 543

All training and evaluation were conducted using 544

the Hugging Face Transformers library (version 545

4.51.3). This work serves as a benchmark for fu- 546

ture research in low-resource neural machine trans- 547

lation involving Ge’ez script languages. 548

5.2 Intrinsic Evaluation 549

To get a better understanding of how well differ- 550

ent tokenization strategies preserve morphemes, 551

we measure the alignment between BPE tokens 552

and gold-standard morphemes using Morpheme 553

boundary precision (Nouri and Yangarber, 2016) 554

and MorphScore (Arnett and Bergen, 2025). 555

Morpheme boundary precision: This form of 556

precision is a traditional metric from morphologi- 557

cal segmentation, where all predicted boundaries 558

(across all words) are compared to gold-standard 559

boundaries. 560
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Strategy BLEU ↑ chrF++ ↑
English→ Amharic

BPE 0.2150 ± 0.0120 16.2000 ± 1.05
WordPiece 0.2340 ± 0.0155 16.5000 ± 1.00
MoVoC-Tok 0.2455 ± 0.0108 17.8500 ± 0.95

English→ Tigrinya
BPE 0.1720 ± 0.0095 7.2000 ± 0.85
WordPiece 0.1880 ± 0.0088 7.5000 ± 0.80
MoVoC-Tok 0.2050 ± 0.0080 8.1000 ± 0.75

English→ Tigre
BPE 0.0950 ± 0.0080 4.0000 ± 0.70
WordPiece 0.1025 ± 0.0075 4.3000 ± 0.65
MoVoC-Tok 0.1175 ± 0.0068 5.1500 ± 0.60

English→ Ge’ez
BPE 0.0480 ± 0.0070 3.0500 ± 0.55
WordPiece 0.0550 ± 0.0065 3.2500 ± 0.60
MoVoC-Tok 0.0660 ± 0.0060 3.9500 ± 0.50

Table 3: Translation performance of BPE, WordPiece,
and MoVoC-Tok for English to Amharic, Tigrinya, Ti-
gre, and Ge’ez. Metrics are reported as mean ± standard
deviation over multiple runs. Best scores per language
are bolded.

MorphScore: We compute MorphScore by as-561

signing 1 if a token boundary aligns with the gold562

morpheme boundary, and 0 otherwise. Unseg-563

mented words (i.e., full matches in the vocabulary)564

are excluded. As you can see in Tab. 2, the final565

MorphScore is the mean of these values across our566

morpheme test set.567

Rényi entropy: The Rényi entropy (Rényi,568

1961) over token distributions quantifies subword569

diversity and balance, where lower values indicate570

sharper and more consistent segmentation, reflect-571

ing clearer morpheme boundaries, while higher572

values suggest ambiguity or uncertainty in token573

boundary placement.574

6 Result575

Tokenization Quality. MoVoC-Tok achieves576

MorphScores for all four languages (see Tab. 2)577

that are substantially higher than the mean578

MorphScore reported for fusional languages in the579

original paper of Arnett and Bergen (2025) (0.533).580

While MoVoC-Tok does not score higher than all581

SentencePiece tokenizer variants, this indicates582

that our hybrid approach instills at least partial583

morpheme awareness into the tokenization process.584

Our intrinsic evaluation results (see Tab. 4) further585

underscore this general result: generating tokens586

via MoVoC-Tok yields both better Rényi Entropy587

and Morpheme Boundary precision scores across 588

all four languages. While the effect for Amharic 589

and Tigrinya text is less pronounced, we can ob- 590

serve a clear performance boost when processing 591

the less-represented low-resource languages, Tigre 592

and Ge’ez. 593

Downstream Task Performance. To evalu- 594

ate the utility of our morpheme-aware tokenizer, 595

we investigated the machine translation (MT) per- 596

formance from English to our target languages, 597

Amharic, Tigrinya, Tigre, and Ge’ez. Table 3 598

presents the results for the first 100 sentences 599

of the OPUS test set using the tokenizers BPE, 600

WordPiece, and MoVoC-Tok. Overall, we can ob- 601

serve that MoVoC-Tok consistently outperforms 602

the other tokenizers across all three translation 603

tasks. 604

Language Tokenization Precision ↑ Rényi ↓
Entropy

Amharic MoVoC-Tok 85.5 0.40
BPE 85.3 0.41

Tigrinya MoVoC-Tok 88.3 0.39
BPE 83.9 0.40

Tigre MoVoC-Tok 83.9 0.44
BPE 74.6 0.49

Ge‘ez MoVoC-Tok 85.6 0.40
BPE 73.9 0.44

Table 4: Morpheme Boundary Precision and Rényi En-
tropy (α = 2) for 32k Vocabularies across tokenization
strategies. MoVoC-Tok shows improved precision and
reduced entropy, indicating more accurate and consis-
tent subword segmentation. ↑ / ↓ indicates that the met-
ric should be maximized/minimized.

7 Conclusion and Future Work 605

In this work, we extend the processing of Ge’ez 606

script languages by (i) releasing morphologically 607

annotated datasets for four languages, Tigrinya, 608

Amharic, Ge’ez, and Tigre, and (ii) proposing a 609

morpheme-aware tokenization approach as an al- 610

ternative to conventional BPE. Our method con- 611

strains subword segmentation to align with mor- 612

pheme boundaries, resulting in vocabularies that 613

better reflect the underlying linguistic structure and 614

improve tokenization quality for morphologically 615

rich languages. The annotated data will further 616

serve for research and evolution in low-resource 617

language processing, supporting improved linguis- 618

tic analysis and more effective natural language 619

models. 620
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8 Limitations and Ethical Considerations621

8.1 Limitations622

The proposed morphology-aware tokenization ap-623

proach, while improving intrinsic metrics such624

as MorphoScore and Boundary Precision, does625

not yield significant gains in automatic transla-626

tion quality. The curated morpheme-annotated627

datasets and vocabulary are limited to a small set628

of Ge‘ez script languages, which may affect the629

generalizability of the method. Furthermore, the630

increased complexity of the hybrid tokenization631

approach may not translate to proportional perfor-632

mance improvements in downstream NLP tasks.633

8.2 Ethical Considerations and Use of634

Resources635

In this study, we utilized publicly available datasets636

such as NLLB, OPUS, and HornMT for training637

and evaluation purposes. For morphological seg-638

mentation and analysis, we employed the Horn-639

Morpho tool, a rule-based morphological analyzer640

designed for Horn of Africa languages. All exter-641

nal resources were used in alignment with their re-642

spective licenses and intended research use.643

Additionally, we created and will release manu-644

ally morpheme-annotated datasets and morpheme-645

aware vocabularies for four Ge’ez script languages:646

Amharic, Tigrinya, Tigre, and Ge’ez. These arti-647

facts are intended solely for research purposes and648

will be made publicly available under open data649

licenses to support further work on low-resource,650

morphologically rich languages. We ensure that651

our use and release of all resources comply with652

ethical standards and usage constraints associated653

with their original access conditions. To enhance654

the readability of the manuscript, we used Chat-655

GPT for paraphrasing and language editing.656
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A Additional Details1003

Language Segmentation Method Size
Amharic Morpheme 80k
Amharic BPE 32k
Tigrinya Morpheme 80k
Tigrinya BPE 32k

Bilingual MoVoC 152k

Table 5: Vocabulary Sizes of BPE and Morpheme-
based Vocabularies for Tigrinya and Amharic. The size
of the bilingual vocabulary is the sum of all other vo-
cabularies.
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