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Abstract

Subword-based tokenization methods often
fail to preserve morphological boundaries,
a limitation especially pronounced in low-
resource, morphologically complex languages
such as those written in the Ge‘ez script. To
address this, we present Morpheme-aware Sub-
word Vocabulary Construction MoVoC and
train MoVoC-Tok, a tokenizer that integrates
supervised morphological analysis into the
subword vocabulary. This hybrid segmenta-
tion approach combines morpheme-based and
Byte Pair Encoding (BPE) tokens to preserve
morphological integrity while maintaining lex-
ical meaning. To tackle resource scarcity, we
curate and release manually annotated mor-
pheme data for four Ge ‘ez script languages and
a morpheme-aware vocabulary for two of them.
While the proposed tokenization method does
not lead to significant gains in automatic trans-
lation quality, we observe consistent improve-
ments in intrinsic metrics, MorphoScore, and
Boundary Precision, highlighting the value of
morphology-aware segmentation in enhancing
linguistic fidelity and token efficiency. Our
morpheme-annotated datasets and tokenizer
dataset will be publicly available to support fur-
ther research in low-resource, morphologically
rich languages.

1 Introduction

Tokenization is a fundamental preprocessing step
in NLP, converting raw text into structured units
such as bytes (Gillick et al., 2016), characters (Al-
Rfouetal., 2019), subwords (Sennrich et al., 2016),
words (Song et al., 2021), or multi-word expres-
sions (Gee et al., 2023). Subword tokenization,
such as BPE (Sennrich et al., 2016), gained pop-
ularity for being language-independent and com-
pressing vocabulary, enabling efficient and bal-
anced token learning. However, subwords often
fail to capture morphological structure, a problem

that is especially clear in multilingual models us-
ing a shared vocabulary across languages. Without
careful and balanced data selection, low-resource
languages typically receive fewer subwords, lead-
ing to a high token-to-word ratio (Haddow et al.,
2022; Limisiewicz et al., 2023; Libovicky and
Helcl, 2024). Moreover, negative morphemes chal-
lenge LLMs with tokenizers lacking morphologi-
cal sensitivity (Mikaberidze et al., 2024).

Morphological systems across languages vary
regarding the relation between form and mean-
ing (Socolof et al., 2022) and are harder to model
and predict (Cotterell et al., 2018; Park et al., 2021).
Furthermore, languages with greater morphologi-
cal complexity may lead to worse language model
performance, as morphologically rich languages
tend to have a large number of very infrequent word
forms produced by combinations of morphemes,
which leads to data sparsity (Shin and You, 2009;
Botev et al.,, 2022). Morphologically rich lan-
guages also have less annotated data (Botev et al.,
2022) and are often written with non-Latin scripts,
which require more bytes to be represented in com-
mon encoding standards like UTF-8 (Arnett and
Bergen, 2025).

Additionally while subword tokenization con-
sistently outperforms character and word level
approaches by efficiently compressing text into
shorter token sequences (Goldman et al., 2024),
compression alone is not always predictive of
downstream task success, especially for mor-
phologically complex or semantically dense lan-
guages (Schmidt et al., 2024). Overall the standard
algorithms lack morphology awareness (Libovicky
and Helcl, 2024). Alternatively Morphologically-
aware tokenization produces more meaningful
tokens, often resulting in improved model per-
formance (Lerner and Yvon, 2025; Hofmann
et al., 2022; Bauwens and Delobelle, 2024; Minix-
hofer et al., 2023). This claim is supported
by evidence from several languages, e.g., Ko-
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Figure 1: MoVoC Pipeline. We first extract Amharic and Tigrinya words from our corresponding text corpora to
perform token-based and morpheme-based separation resulting in four different vocabularies. We then merge all
four vocabularies to generate a single MoVoC-based vocabulary (Viovoc).

rean (Lee et al., 2024), Arabic (Tawfik et al., 2019),
Japanese (Bostrom and Durrett, 2020), and He-
brew (Gueta et al., 2023). However, such efforts
are constrained by the limited availability of mor-
phologically annotated datasets, mostly found in
high-resource languages (Minixhofer et al., 2023).
Moreover, even with sufficient morphological an-
notations, relying solely on morpheme-based to-
kenization is suboptimal. As noted by Bauwens
and Delobelle (2024), approaches that disregard
subword tokenization struggle to leverage shared
statistical information across related word forms,
result in longer input sequences, and generally
perform worse than hybrid methods that integrate
morphological information with subword tokeniza-
tion. Accordingly, based on the three-stage tok-
enization framework proposed by Schmidt et al.
(2024) and Libovicky and Helcl (2024), we adopt
a tokenization process comprising three distinct
phases: pre-tokenization, vocabulary construction,
and segmentation.

Concretely, our contributions are as follows: ()
We develop morphologically annotated datasets
for four low-resource Ge’ez Script languages
to support improved tokenization, morphological
analysis, and downstream NLP tasks; (ii) We
propose MoVoC (Morpheme-Aware Vocabulary
Construction), a supervised approach that lever-
ages linguistically informed BPE segmentations
as an alternative to standard subword techniques.
It integrates BPE-derived vocabulary with mor-
phemes extracted through supervised methods
to enhance morphological representation and im-

prove token-to-morpheme alignment in morpho-
logically rich low-resource languages; (iii) We
perform thorough intrinsic and extrinsic evalua-
tions to measure the effectiveness of our approach
and validate its practical applicability.

2 Background

2.1 Tokenization Approaches

Word Tokenization: The straightforward meth-
ods for segmenting text involves breaking a string
of text into distinct words. The simplest form of
word tokenization relies on dividing sequences by
whitespace and treating each word as a separate
token, as noted by (Bengio et al., 2003). This
method is particularly prevalent in languages that
have clear word boundaries, such as English. Al-
ternatively, one could also perform rule-based to-
kenization, which uses a set of predefined rules
and patterns to identify tokens. For example, it
might use regular expressions to handle contrac-
tions like “can’t” or “won’t” by splitting them into
“can not” and “will not,” respectively. A key
challenge with this method is addressing out-of-
vocabulary (OOV) words, which can arise from ty-
pos, unrecognized scripts, and other factors.
Subword Tokenization: The most common
strategy is to decompose words into subwords, al-
lowing models to process out-of-vocabulary words
by merging subwords from the vocabulary (Kudo
and Richardson, 2018). Examples of popular sub-
word tokenizers are WordPiece (Song et al., 2021),
BPE (Sennrich et al.,, 2016), Byte-Level BPE
(BBPE) (Wang et al., 2020) and Unigram (Kudo



and Richardson, 2018).

Character Tokenization: Tokenization
can also be done at the character or UTF-8
byte level, but this increases sequence length
and leads to higher computational cost due
to the quadratic complexity of transformers’
self-attention (Vaswani et al., 2017; Ali et al.,
2024).

2.2 Ge’ez Script Natural Language
Processing

The Ge’ez writing system is one of the oldest con-
tinuously used scripts in the world, which pre-
served for over 2000 years, it reflects a remark-
ably stable and adaptable method of representing
language (Gidey et al., 2024). Beyond its func-
tion as a grammatical system, Ge’ez offers valu-
able insight into the intellectual, philosophical, and
cultural foundations of ancient African civiliza-
tions, highlighting their linguistic innovation and
societal advancement (Scelta and Quezzaire-Belle,
2001; Gidey et al., 2024). Unlike alphabetic sys-
tems like Greek or Latin, Ge’ez uses a syllabic
script, originally derived from the Sabean script
(Bekerie, 2003). However, the development and
publication of usable NLP tools for Ge’ez have
been hindered to date due to the scarcity of essen-
tial linguistic resources (Gidey et al., 2024). It is
a script for numerous languages, including Ge’ez,
Tigrinya, Amharic, Tigre, and Blin (Gaim et al.,
2022). These morphologically rich Semitic lan-
guages present unique difficulties due to their com-
plex morphology, which generates numerous in-
flected forms (Tedla and Yamamoto, 2018).

For example, the Amharic verb "to write” (4.)
inflects for tense, aspect, person, number, and gen-
der: I wrote” becomes &4, "you wrote” a4H,
and “they wrote” 44-. Similarly, in Tigrinya, the
root verb “to write” (&-d.) exhibits rich inflec-
tional patterns based on similar grammatical cate-
gories. This rich inflectional morphology results
in many surface forms, especially because verb
endings are often agglutinated directly to the root
without clear word boundaries. For example, in
Ambharic, the root verb wé- (to do”) forms in-
flected variants by attaching endings directly, such
as wé-U- (P did”). Similarly, in Tigrinya, the root
verb 114 (to be” or "to exist”) forms inflected
variants like 104% (T had it”) by attaching endings
directly to the root. Consequently, subword tok-
enization methods such as BPE, which are based
solely on frequency and not linguistic structure,

struggle to segment these languages appropriately.
In this work, we contribute to Ge’ez script lan-
guage processing by (i) providing annotated data
for four Ge’ez script language, such as Tigriyna,
Ambharic, Ge’ez and Tigre, and (ii) exploring a
morpheme-aware alternative to BPE by constrain-
ing segmentation to respect morpheme boundaries,
yielding vocabularies aligned with linguistic struc-
ture and improving tokenization in morphologi-
cally rich languages.

2.3 Tokenization for Morphologically Rich
and Low-Resource Languages

Subword tokenization is a widely explored area
in natural language processing, with various meth-
ods proposed to break words into smaller subword
units (Hou et al., 2023; Gezmu and Niirnberger,
2023; Socolof et al., 2022; Dewangan et al., 2025;
Thawani et al., 2023; Schmidt et al., 2024). Park
et al. (2021) trained models with several segmen-
tation algorithms, including BPE and Morfessor
(Creutz and Lagus, 2002), on a corpus of Bible
verses in 92 languages. Language models perform
worse on morphologically complex languages due
to poor tokenization and smaller datasets (Arnett
and Bergen, 2025). Morphological typology sig-
nificantly impacts LM performance, with features
like exponence, flexivity, and fusion contributing
to low-frequency phenomena that are challenging
for statistical models (Gerz et al., 2018).

Park et al. (2021) investigate linguistically mo-
tivated segmentation methods, such as Morfessor
and FSTs, that help reduce the effect of morpho-
logical complexity and can improve language mod-
eling performance. Dewangan et al. (2025) show
that optimized BPE outperforms greedy methods
by reducing token count, improving efficiency,
and benefiting multilingual and low-resource NLP
tasks. Similarly, both MorphBPE (Asgari et al.,
2025) and MorphPiece (Jabbar, 2023) aim to im-
prove tokenization for morphologically rich lan-
guages by incorporating linguistic features into the
segmentation process. Mikaberidze et al. (2024)
explored the impact of various tokenization meth-
ods on Georgian language modeling, demonstrat-
ing the necessity of preserving morphological vari-
ations in the tokenization process. Furthermore,
Bauwens and Delobelle (2024) concluded that a
lack of morpheme-awareness leads to inconsis-
tent intraword representations, inflated vocabulary
size, and inefficient embedding storage. On the
other hand, Saleva and Lignos (2021) evaluate sub-



Impacts of BPE Segmentation

Original Words Morphological .
Amharic / English Segmentation BPE Segmentation
N0ARTATT  'A-<OF>ATF- a0, K
In our homes RF7-- SR
ANONSGT° ,‘;\A'<n“C>h‘" 1 [NF.AN] 1 1go
They didn’t break 9°---’ [ha,'a, 0%, 9]
o120 LD+ P-A-L<ONC>- At
He didn’t break ~ A®+----’ [eere’, "o, em-]

Over-segmentation: BPE splits the phrase into fragments that
don’t form the cohesive meaning of ”’In our homes.” Words like
"0+ (house) and 'AFA%7 (our homes) are broken, losing their
semantic coherence and making it hard to convey the original
context.

Fragmented meaning: BPE breaks “A0C” (break) into ”A” and
”04” distorting the intended meaning. The sentence “They
didn’t break” becomes unclear because BPE doesn’t preserve the
root structure of the verb, leading to loss of grammatical clarity
and reduced accuracy in translation.

Loss of verb tense and context: BPE splits "A-C” (break) incor-
rectly, making it "A1” and "4 @-.” The full context of "He didn’t
break” is lost because the tense (’didn’t”) and action ("break”™)
are not preserved in the segmentation, leading to confusion and
a loss of meaning.

Table 1: Comparison of Morphological Segmentation and BPE Segmentation with their Impact. The stem is en-
closed within < >, while - marks the boundaries of morphemes. A lone - indicates the absence of a morpheme in

that position.

word segmentation in low-resource NMT and find
that while morphology-based methods occasion-
ally outperform BPE, their overall performance is
often statistically similar, offering no consistent
advantage. A more recent work by Libovicky
and Helcl (2024) employed word embeddings to
enable semantically informed subword segmenta-
tion; however, its effectiveness diminishes in low-
resource languages due to limited training data.

Overall, these reports reveal a gap in under-
standing the performance of different tokenization
strategies for low-resource languages. Therefore,
our work on MoVoC not only contributes to the
processing of Ge’ez script languages but also acts
as another successful example for the potential
of morpheme-aware subword tokenization alterna-
tive.

3 Proposed Method

In this section, we describe three separate method-
ologies for 1) Pre-tokenization and Supervised
Morphological Analyses, 2) Vocabulary Construc-
tion (MoVoC), and 3) Morpheme-aware Subword
Segmentation (MoVoC-Tok).

3.1 Pre-tokenization and Supervised
Morphological Analyses

Pre-tokenization is a preparatory step before tok-
enization, segmenting raw text into manageable
units. Unlike high-resource languages like En-
glish, Ge’ez-script languages lack robust NLP
tools, making basic preprocessing tasks such as

stopword removal, punctuation normalization, and
special character filtering challenging. To address
this gap, we develop a pre-tokenization pipeline
based on customized regular expressions tailored
to the orthographic and morphological character-
istics of Ge’ez-script languages. The pipeline be-
gins with corpus cleaning to eliminate noise and in-
consistencies, followed by supervised morphologi-
cal analysis for accurate morpheme extraction. For
Ambharic and Tigrinya, we leverage HornMorpho!,
a rule-based morphological analyzer. While Horn-
Morpho performs reliably on Ambharic, its Tigrinya
outputs often require manual post-editing due to
limited coverage. For languages without existing
analyzers, Ge’ez and Tigre, we manually construct
and annotate morphemes under linguistic super-
vision. This morpheme-level annotation is criti-
cal for high-quality segmentation, particularly in
morphologically rich constructions. As shown in
Tab. 1, naive application of Byte Pair Encoding
(BPE) frequently results in over-segmentation or
incorrect splits that obscure grammatical and se-
mantic content. For instance, the Amharic word
AANN4E9® (They didn’t break™) is fragmented by
BPE into AA, 0, 0%, and 9°, breaking the verb stem
ANC and distorting meaning N4 alone is a valid
word meaning “gate.” These failures are attributed
to BPE’s unsupervised, morphology-agnostic na-
ture, which ignores linguistic boundaries and often
produces incoherent subword units. Such misalign-
ments are especially detrimental for low-resource,

"https://github.com/hltdi/HornMorpho
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morphologically complex languages where train-
ing data is scarce. To mitigate this, we intro-
duce a supervised morphological segmentation ap-
proach integrated into a linguistically informed pre-
tokenization stage. This ensures morphemes are
extracted and preserved before applying subword
algorithms like MoVoC in Algorithm 1, aligning
tokenization with true morphological structures
and enhancing both semantic coherence and down-
stream NLP utility.

The annotated morphemes serve as a gold-
standard fest set for evaluating token-to-morpheme
boundary alignment and also intended to support
future research as a publicly available benchmark
for morphological segmentation evaluation.

3.2 Vocabulary Construction (MoVoC)

Existing subword tokenization methods primarily
rely on statistical analysis of occurrence frequen-
cies without explicitly considering morphemes
(Truong et al., 2024). The most popular method,
Byte-Pair Encoding (BPE) (Sennrich et al., 2016),
greedily merges the most frequent token pairs
to form subword units. Similarly, the Unigram
Language Model, as implemented in Sentence-
Piece (Kudo and Richardson, 2018), selects high-
probability segmentations using a probabilistic un-
igram model. However, these methods often suffer
from limited morphological generalization, which
can negatively impact interpretability, composi-
tionality, and cross-lingual transfer especially in
morphologically rich languages.

In this work, we target Ge‘ez script languages,
which are characterized by fusional morphology
and a scarcity of linguistically motivated tools and
morphologically annotated data.

As highlighted in the pre-tokenization analysis
(see Sec. 3.1), we employ a supervised morpholog-
ical analysis. Based on the annotated morphemes,
we design a hybrid vocabulary construction strat-
egy as we described see Algorithm 1 (see Tab. 5 for
the resulting vocabulary size). Our algorithm allo-
cates a predefined portion of the total vocabulary
to morpheme units and the rest to BPE tokens, bal-
ancing linguistic structure and statistical efficiency.
This integration of morpheme-aware subwords and
BPE-based tokens ensures better vocabulary con-
trol, reduces the incidence of rare tokens, and pre-
serves semantic granularity in subword representa-
tions.

Methodology: Let P, represent the Amharic
monolingual corpus, and P; represent the Tigrinya

monolingual corpus. The goal of the MoVoC
method is to create a final vocabulary Viovoc
that combines subword tokenization from the BPE
model and morpheme-based tokenization, with an
emphasis on incorporating a higher proportion of
morpheme-based tokens in the vocabulary rather
than employing the BPE model derived from the
two corpora. The vocabulary Vievoc is formu-
lated by merging the vocabularies obtained from
the BPE model and the morpheme token set. When
the target vocabulary size for BPEpovoc is s, we
train BPEgy,, With a vocabulary size of s(1 — r)
where 7 is a hyperparameter set between 0 and 1 to
denote the proportion of added morpheme tokens

in Vmovoc.

Algorithm 1 MoVoC Pseudocode
Require:

P, (Ambharic corpus),

P,; (Tigrinya corpus),

s (Total vocabulary size),

r (Proportion of morpheme-aware tokens, 0 < r < 1)
Ensure: Viyovoc (Final MoVoC vocabulary)

Step 1: Perform Morpheme Segmentation using Horn-

Morpho

M arm < HornMorpho_segment(Py.m,)

M;; < HornMorpho_segment(FP;;)

Step 2: Define Vocabulary Sizes

Stang <— S/2

SBPE < Slang X (1 — r)

Smorpheme <= Slang X T

Step 3: Train BPE Models

VBPE,am < Train_BPE(Pam, SBPE)

VBPE,M’ < Train_BPE(Pti, SBPE)

Step 4: Extract Morphemes

Vinorpheme,am <— extract_morphemes(Pam , Smorpheme)

Vinorpheme, ¢ <— extract_morphemes(P%;, Smorpheme)

Step 5: Merge All Vocabularies

WMovoc = VBPE,am U VBPE,ti U Vinorpheme,am U Vinorpheme, t

Step 6: Train Final MoVoC Model

Train_MoVoC_Model(Vimovoc)

Step 7: Return Final Vocabulary

return Wovoc

MoVoC Hyperparameter Setting: Hyperpa-
rameter tuning plays a crucial role in vocabu-
lary construction using BPE and other subword
tokenization techniques, especially in morpheme-
aware settings. In morphologically rich fusional
languages, words often consist of multiple mor-
pheme roots, prefixes, and suffixes. Without care-
ful tuning, BPE may (i) overfit to whole words,
missing productive morphemes (e.g., A7, -A¥7),
or (ii) ignore language-specific morphological
structures, as seen in verb forms like 4%44AU- and



%40V, where affixes encode subject agreement.
Proper tuning ensures subword units align with
meaningful morphemes, improving linguistic rep-
resentation and downstream model performance.

3.3 MoVoC-Tok (Morpheme-aware Subword
Segmentation)

We train the BPE tokenizer using the mixed vocab-
ulary obtained from MoVoC and subsequently as-
sess its performance. However, despite employing
a MoVoC-derived vocabulary, a conventional BPE
tokenizer may still produce morpheme boundary
violations, as its merge operations are data-driven
and can combine subwords that cross morpheme
boundaries if not explicitly restricted. To address
this, we incorporate morphological constraints di-
rectly into the BPE training process by limiting
merge candidates to those that do not span mor-
pheme boundaries defined by MoVoC. This inte-
gration of morphological information ensures that
the resulting tokenization (MoVoC-Tok) adheres to
true morphological segmentation, thereby prevent-
ing invalid merges.

Let W = {w;,wy,...,w,} be the vocab-
ulary of words obtained from MoVoC where
each word w; is a sequence of characters w; =
(01,62,...,CWJ. Let M; = {bl,bg,...,bk} be
the morpheme boundaries in w;, as provided by
MoVoC in Sec. 3.2. Then, Morpheme-Aware BPE
Segmentation can be formally defined as follows:

log P(BPE(w;; V, M;)),
m‘gxw% og P(BPE(w )

where the following constraint holds:

BPE(w;; V, M;) = (s1,52,...,5t)

such that
Vs;, s; C w; and s; does not cross M.

Here, V' denotes the learned subword vocabulary
and s; represents BPE merge units that are con-
strained by the morpheme boundaries M;. The
merge operations are further restricted such that

(a,b) € MergeCandidates = a U b ¢ ME.
In other words, merges are permitted only if they

do not cross morpheme boundaries as defined by
MoVoC in Sec. 3.2.

4 Experimental Setup

4.1 Target Languages

We focus on four languages that use the Geez script:
Ambharic, Tigrinya, Ge‘ez, and Tigre. These
languages exhibit rich and complex morpholog-
ical structures, posing significant challenges for
conventional subword segmentation methods like
BPE.

Ambharic and Tigrinya: We perform mor-
pheme segmentation using the HornMorpho ana-
lyzer, which decomposes words into stems and af-
fixes. These segmented units are used both for vo-
cabulary construction.

Ge‘ez and Tigre: Due to the absence of analyz-
ers and corpora, we perform manual morpheme an-
notation using expert linguistic guidelines. These
annotations are applied for testing purposes only
and are not part of the vocabulary since we did not
get data for BPE training.

4.2 Dataset Details

Training Data: We have trained BPE to create the
subword vocabularies in addition to Morphemes,
and we finetuned Machine Translation as a down-
stream task. For these, we use the HornMT? cor-
pus as the primary source for annotating the mor-
pheme and the NLLB project (Costa-Jussa et al.,
2022) for training BPE to construct the vocabu-
laries in Tigrinya and Amharic. For the finetun-
ing model we use parallel corpora mined and re-
leased by Meta Al as part of the No Language Left
Behind (NLLB) project (Costa-Jussa et al., 2022).
Specifically, we employ the English-Tigrinya and
English—Ambharic and vise versa parallel corpora
to assess machine translation performance. These
datasets were created using the stopes mining li-
brary and LASER3 encoders (Costa-Jussa et al.,
2022), providing high-quality mined bitext for 148
English-centric and 1465 non-English-centric lan-
guage pairs. Due to the noisy nature of the mining
process, we utilize this data solely for model train-
ing.

Evaluation Data: Amharic and Tigrinya: Both
languages are directly supported by Flores-200
(Goyal et al., 2022). We use the correspond-
ing development and test sets for automatic eval-
vation using BLEU (Papineni et al., 2002) and
chrF++ (Popovi¢, 2017). But since Ge‘ez and Ti-
gre were not included in the FLORES-200 (Goyal

*https://github.com/asmelashteka/HornMT



Language (ISO 639-3) No. Items MorphScore 1
Ambharic (amh) 80k 0.71
Tigrinya (tir) 80k 0.731
Ge’ez (gez) 20k 0.67
Tigre (tig) 32k 0.654

Table 2: Languages for which we created morpholog-
ical datasets with the corresponding MoVoC-Tok tok-
enizer’s MorphScore (which we want to maximize, in-
dicated by 7). All four languages are Afro-Asiatic and
Semitic, written in Ge’ez script, and utilize fusional
morphemes.

et al., 2022) benchmark and were not part of the
finetuning data (Costa-Jussa et al., 2022), we fi-
nally consider 100 sentence pairs from the OPUS
parallel corpus (Tiedemann, 2012) as a final evalu-
ation for all languages.

Test Data: Extrinsic evaluation was conducted
using an unseen subset of the first 100 sentence
pairs from the OPUS parallel corpus (Tiedemann,
2012) for each target language: Amharic, Tigrinya,
and Tigre. Due to the absence of parallel data,
Ge ‘ez was evaluated only intrinsically. For all lan-
guages, intrinsic evaluation was based on our anno-
tated morphemes test set, designed to analyze seg-
mentation quality.

4.3 Training Setup and Configuration

We trained our tokenizer using the Hugging Face
tokenizers library (Wolf et al., 2020) and ana-
lyze BPE, WordPiece, as baseline subword tok-
enizers, using the mplementations from Hugging-
Face®. And we fine-tuned the MarianMT (Junczys-
Dowmunt et al., 2018) transformer model on a sin-
gle NVIDIA GPU using a Slurm-managed HPC
cluster. The job requested 1 GPU, 6 CPU cores,
32 GB of RAM, and a maximum runtime of 24
hours. The training environment was managed via
Conda for reproducibility. Training was performed
for 3 epochs with a batch size of 8 and a maxi-
mum sequence length of 128 tokens and transform-
ers version: 74.51.3”. The learning rate started
at 1.44 x 10~7 and decayed throughout training.
Gradient norms decreased from 1.14 to 1.06, and
the training loss ranged from 0.443 to 0.438 across
epochs.Training time was approximately 12 hours,
with an average speed of 96.7 samples per second.

*https://github.com/huggingface/tokenizers

5 Evaluation Framework

We incorporate both intrinsic and extrinsic evalua-
tions to assess our approach. Intrinsic evaluation
focuses on morpheme boundary precision and vo-
cabulary consistency (e.g., Rényi entropy), while
extrinsic evaluation measures downstream perfor-
mance in machine translation using metrics like
BLEU and chrF++.

5.1 Extrinsic Evaluation

Translation quality is assessed using BLEU and
chrF++, which measure n-gram and character-level
overlap. However, as these metrics may over-
look morphological improvements, we comple-
ment them with intrinsic evaluations for a more
complete analysis.

Machine Translation As part of the down-
stream evaluation of our framework, we present a
fine-tuned MarianMT (Multilingual Transformer)
model for machine translation between English
and two low-resource Ge’ez script languages:
Ambharic and Tigrinya. The model was trained
on parallel corpora consisting of English-Ambharic
and English-Tigrinya sentence pairs. Although Ti-
gre was not included during training, it was in-
corporated in the evaluation phase to assess the
model’s zero-shot translation capabilities. The
model architecture consists of 6 encoder and 6
decoder layers, each with 8 attention heads and
a hidden size of 512. It employs a feedfor-
ward dimension of 2048, Swish activation, shared
encoder-decoder embeddings, and static positional
encodings. The vocabulary size is 63,050 tokens.
All training and evaluation were conducted using
the Hugging Face Transformers library (version
4.51.3). This work serves as a benchmark for fu-
ture research in low-resource neural machine trans-
lation involving Ge’ez script languages.

5.2 Intrinsic Evaluation

To get a better understanding of how well differ-
ent tokenization strategies preserve morphemes,
we measure the alignment between BPE tokens
and gold-standard morphemes using Morpheme
boundary precision (Nouri and Yangarber, 2016)
and MorphScore (Arnett and Bergen, 2025).

Morpheme boundary precision: This form of
precision is a traditional metric from morphologi-
cal segmentation, where all predicted boundaries
(across all words) are compared to gold-standard
boundaries.
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Strategy BLEU 1 chrF++ 1
English — Amharic
BPE 0.2150 £ 0.0120  16.2000 + 1.05
WordPiece 0.2340 £ 0.0155  16.5000 + 1.00
MoVoC-Tok  0.2455 + 0.0108 17.8500 + 0.95
English — Tigrinya
BPE 0.1720 £ 0.0095  7.2000 £ 0.85
WordPiece 0.1880 + 0.0088  7.5000 4 0.80
MoVoC-Tok  0.2050 & 0.0080  8.1000 + 0.75
English — Tigre
BPE 0.0950 + 0.0080  4.0000 £+ 0.70
WordPiece 0.1025 £ 0.0075  4.3000 £ 0.65
MoVoC-Tok  0.1175 + 0.0068  5.1500 + 0.60
English — Ge’ez
BPE 0.0480 £ 0.0070  3.0500 £ 0.55
WordPiece 0.0550 £+ 0.0065  3.2500 4+ 0.60
MoVoC-Tok  0.0660 & 0.0060  3.9500 + 0.50

Table 3: Translation performance of BPE, WordPiece,
and MoVoC-Tok for English to Amharic, Tigrinya, Ti-
gre, and Ge’ez. Metrics are reported as mean + standard
deviation over multiple runs. Best scores per language
are bolded.

MorphScore: We compute MorphScore by as-
signing 1 if a token boundary aligns with the gold
morpheme boundary, and O otherwise. Unseg-
mented words (i.e., full matches in the vocabulary)
are excluded. As you can see in Tab. 2, the final
MorphScore is the mean of these values across our
morpheme test set.

Rényi entropy: The Rényi entropy (Rényi,
1961) over token distributions quantifies subword
diversity and balance, where lower values indicate
sharper and more consistent segmentation, reflect-
ing clearer morpheme boundaries, while higher
values suggest ambiguity or uncertainty in token
boundary placement.

6 Result

Tokenization Quality. = MoVoC-Tok achieves
MorphScores for all four languages (see Tab. 2)
that are substantially higher than the mean
MorphScore reported for fusional languages in the
original paper of Arnett and Bergen (2025) (0.533).
While MoVoC-Tok does not score higher than all
SentencePiece tokenizer variants, this indicates
that our hybrid approach instills at least partial
morpheme awareness into the tokenization process.
Our intrinsic evaluation results (see Tab. 4) further
underscore this general result: generating tokens
via MoVoC-Tok yields both better Rényi Entropy

and Morpheme Boundary precision scores across
all four languages. While the effect for Amharic
and Tigrinya text is less pronounced, we can ob-
serve a clear performance boost when processing
the less-represented low-resource languages, Tigre
and Ge’ez.

Downstream Task Performance. To evalu-
ate the utility of our morpheme-aware tokenizer,
we investigated the machine translation (MT) per-
formance from English to our target languages,
Ambharic, Tigrinya, Tigre, and Ge’ez. Table 3
presents the results for the first 100 sentences
of the OPUS test set using the tokenizers BPE,
WordPiece, and MoVoC-Tok. Overall, we can ob-
serve that MoVoC-Tok consistently outperforms
the other tokenizers across all three translation
tasks.

oo . Rényi |
Language Tokenization Precision 1 Entropy
Ambharic MoVoC-Tok 85.5 0.40
BPE 85.3 0.41
Tigrinya MoVoC-Tok 88.3 0.39
BPE 83.9 0.40
Tigre MoVoC-Tok 83.9 0.44
BPE 74.6 0.49
Ge‘ez MoVoC-Tok 85.6 0.40
BPE 73.9 0.44

Table 4: Morpheme Boundary Precision and Rényi En-
tropy (o = 2) for 32k Vocabularies across tokenization
strategies. MoVoC-Tok shows improved precision and
reduced entropy, indicating more accurate and consis-
tent subword segmentation. 1 / | indicates that the met-
ric should be maximized/minimized.

7 Conclusion and Future Work

In this work, we extend the processing of Ge’ez
script languages by (i) releasing morphologically
annotated datasets for four languages, Tigrinya,
Ambaric, Ge’ez, and Tigre, and (ii) proposing a
morpheme-aware tokenization approach as an al-
ternative to conventional BPE. Our method con-
strains subword segmentation to align with mor-
pheme boundaries, resulting in vocabularies that
better reflect the underlying linguistic structure and
improve tokenization quality for morphologically
rich languages. The annotated data will further
serve for research and evolution in low-resource
language processing, supporting improved linguis-
tic analysis and more effective natural language
models.



8 Limitations and Ethical Considerations

8.1 Limitations

The proposed morphology-aware tokenization ap-
proach, while improving intrinsic metrics such
as MorphoScore and Boundary Precision, does
not yield significant gains in automatic transla-
tion quality. The curated morpheme-annotated
datasets and vocabulary are limited to a small set
of Ge‘ez script languages, which may affect the
generalizability of the method. Furthermore, the
increased complexity of the hybrid tokenization
approach may not translate to proportional perfor-
mance improvements in downstream NLP tasks.

8.2 Ethical Considerations and Use of
Resources

In this study, we utilized publicly available datasets
such as NLLB, OPUS, and HornMT for training
and evaluation purposes. For morphological seg-
mentation and analysis, we employed the Horn-
Morpho tool, a rule-based morphological analyzer
designed for Horn of Africa languages. All exter-
nal resources were used in alignment with their re-
spective licenses and intended research use.

Additionally, we created and will release manu-
ally morpheme-annotated datasets and morpheme-
aware vocabularies for four Ge’ez script languages:
Amharic, Tigrinya, Tigre, and Ge’ez. These arti-
facts are intended solely for research purposes and
will be made publicly available under open data
licenses to support further work on low-resource,
morphologically rich languages. We ensure that
our use and release of all resources comply with
ethical standards and usage constraints associated
with their original access conditions. To enhance
the readability of the manuscript, we used Chat-
GPT for paraphrasing and language editing.
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