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Abstract001

Conducting text-based behavioral coding is a002
labor-intensive process for clinicians, particu-003
larly when annotating complex bilingual data.004
This study evaluates the performance of four005
state-of-the-art (SOTA) large language models006
(LLMs) in automating the classification of par-007
ent behaviors within a bilingual dataset com-008
prising 59 Mandarin-English child language009
assessment sessions (16 in-person and 43 tele-010
health). While the four LLMs - GPT-4, Llama-011
3, Qwen2, and DeepSeek-V3 - achieved no-012
table accuracy, they still fall short of the perfor-013
mance of bilingual human annotators. Addi-014
tional error analysis revealed that both human015
annotators and the generally best-performing016
model, GPT-4, faced challenges in classify-017
ing parental behaviors in categories involving018
complex task procedures, especially when an-019
alyzing bilingual code-mixed text. This study020
contributes to the understanding of how LLMs021
can be utilized to advance the automated classi-022
fication of behavioral coding in bilingual child023
language assessments.024

1 Introduction025

Language assessment is a standardized clinical026

procedure to evaluate children’s communication027

abilities and detect potential language delays and028

disorders for early intervention (Wang et al., 2020;029

Gorman et al., 2015; Wang et al., 2024). During030

assessments, clinicians administer linguistic tasks031

to children and gather children’s language devel-032

opment information from parents (Klatte et al.,033

2020; Sheng et al., 2021; Pratt et al., 2022). How-034

ever, assessing bilingual children requires conduct-035

ing the procedure in two languages, increasing036

the workload of already scarce bilingual clinicians037

(Du et al., 2020).038

The rise in telehealth during and after the039

COVID-19 pandemic gave parents and children040

easier access to care and diverse ways to receive041

language assessment (Pratt et al., 2022; Dam and042

Pham, 2023). However, since clinicians are not 043

physically positioned with parent-child dyads dur- 044

ing synchronous telehealth, parents often have to 045

facilitate critical clinician-child interactions (Poz- 046

niak et al., 2024), such as providing encourage- 047

ment and technical support for children to interact 048

with computers (e.g., navigating the website) and 049

videoconferencing softwares (e.g., using different 050

controls on Zoom) (Fissel et al., 2015; Edwards- 051

Gaither et al., 2023). However, lacking profes- 052

sional skills in assessment procedures (Tomlinson 053

et al., 2018), some parents may engage in interfer- 054

ence behaviors (e.g., repeating or analyzing test- 055

ing questions) that affect children’s performance 056

and compromise assessment validity (Du et al., 057

2020). Identification of behaviors requires clini- 058

cians’ manual transcription and behavioral coding 059

from video-recorded sessions (Sun et al., 2024; 060

Cao et al., 2019), which can be extremely time- 061

consuming (Lønfeldt et al., 2023). 062

Prior NLP research has leveraged large lan- 063

guage models (LLMs) to automate behavioral cod- 064

ing in tasks such as motivational interviewing for 065

counseling (Cao et al., 2019; Tavabi et al., 2020; 066

Mayer et al., 2024; Pellemans et al., 2024); how- 067

ever, majority of these studies primarily focus 068

on monolingual adult patients during in-person 069

contexts. Limited studies have applied NLP ap- 070

proaches and LLMs to both in-person and tele- 071

health contexts with bilingual parents and chil- 072

dren (Zhang et al., 2023a,b; Lin et al., 2022) using 073

clinical child language assessment tasks (Karacan 074

et al., 2024). 075

This paper uses LLMs to automate the clas- 076

sification of behavioral coding of bilingual par- 077

ents as they support their children to interact with 078

a web-based Mandarin-English language assess- 079

ment. We collect and release a bilingual Mandarin- 080

English dataset of conversational transcripts and 081

behavior descriptions from in-person and virtual 082

video recordings of two groups of 59 parent-child 083
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dyads. The dataset includes 1,304 total parent be-084

haviors (In-Person dataset: 578; Virtual dataset:085

726), annotated with one of eight fine-grained la-086

bels. The eight categories constituted four sup-087

portive and four interference behavioral subcate-088

gories, based on an established clinical annotation089

guideline developed in collaboration with domain090

experts.091

This dataset serves as the benchmark for clas-092

sifying parental behaviors using four state-of-the-093

art (SOTA) LLMs - GPT-4, Llama 3, Qwen2,094

and DeepSeek-V3 - via both zero-shot and few-095

shot prompting strategies (Brown et al., 2020;096

Lin et al., 2022). While GPT-4 and DeepSeek-097

V3, the stronger model, performs reasonably well098

on the dataset above the other models, its ac-099

curacy still falls short of human expert evalua-100

tion. For example, Mandarin utterances by parents101

posed significant challenges for these models (ex-102

cept DeepSeek-V3), highlighting the need for im-103

proved multilingual modeling to enhance LLMs’104

performance for bilingual datasets.105

To the best of our knowledge, this is the first106

comprehensive bilingual Mandarin-English code-107

mixing dataset for classifying parent behaviors108

during child language assessment. The study re-109

veals the weaknesses of SOTA LLMs and presents110

a challenging, ecologically valid, bilingual bench-111

mark to understand the application of NLP ap-112

proaches for child language assessment tasks. Ad-113

vancement on this topic can improve workflow114

efficiency for clinicians and clinical researchers115

to better understanding the complex parent-child116

dyadic interaction during in-person and telehealth117

settings.118

2 Related Work119

2.1 Multilingual LLMs for Real-World Tasks120

LLMs like GPT-4 (OpenAI, 2023) and121

LLaMA (Touvron et al., 2023a,b) have shown122

impressive performance, in tasks like question123

answering and logical reasoning (Wei et al.,124

2021; Sanh et al., 2021; Chung et al., 2022).125

Additionally, Qwen2 (Yang et al., 2024a) and126

DeepSeek (Bi et al., 2024; Peng et al., 2025; Neha127

and Bhati, 2025), trained in English and Mandarin128

multilingual data, excels in various benchmarks.129

Performance differences may stem from language130

features (e.g., morphology, grammar) (Hlavnova131

and Ruder, 2023; Weissweiler et al., 2023) or132

multimodal information during prompting (Yang133

et al., 2024b). Relevant to this work, in-context 134

learning (ICL) (Brown et al., 2020; Zhang et al., 135

2022; Rubin et al., 2022; Li et al., 2023) is a 136

common prompting strategy, allowing models to 137

learn from few-shot examples. Recent studies 138

have explored LLMs’ capabilities in real-world 139

scenarios that require domain expertise, such 140

as children’s education (Chen et al., 2023) and 141

medical domains. 142

2.2 Annotating Clinical Assessment Data 143

Prior NLP research has focused on automating 144

educational and clinical tasks, such as pediatric 145

language assessment (Wang et al., 2020; Gor- 146

man et al., 2015), behavioral coding and testing 147

for outcome prediction (Van Aken et al., 2021; 148

Sun et al., 2024; Cao et al., 2019; Yang et al., 149

2023), and generating novel cognitive test items 150

(Laverghetta Jr and Licato, 2023), and narrative 151

tasks (Prud’hommeaux and Roark, 2015; Chen 152

et al., 2023). However, applying NLP to telehealth 153

encounters using bilingual datasets remained lim- 154

ited due to difficulties in accessing patient data 155

and the high cost of human annotations (Chen 156

et al., 2022). Differing from conventional anno- 157

tation tasks, since clinical assessment tasks may 158

directly impact the diagnostic accuracy of patient 159

care, the annotation also needs to be annotated 160

accurately following required psychometric stan- 161

dards (Abbasi et al., 2021) to ensure assessment 162

validity and reliability. Therefore, to improve clin- 163

ician workflow efficiency and accuracy, novel ap- 164

proaches need to be developed with clinically in- 165

formed guidelines to address clinical needs for as- 166

sessment tasks. 167

2.3 Behavioral Coding in Clinical NLP 168

Research 169

Behavioral coding is a common data analysis 170

methodology in social science research (Wang 171

et al., 2022; Black et al., 2013) and has been 172

widely adopted in public health and clinical re- 173

search. A large body of NLP literature has ex- 174

amined ways to reduce traditional manual coding 175

(Leeson et al., 2019) including using models such 176

as BERT (Tavabi et al., 2020) and techniques such 177

as topic modeling and Word2Vec (Leeson et al., 178

2019) to automatically classify detailed patient- 179

provider interaction. Computational researchers 180

also explored automatic speech recognition (Pérez- 181

Rosas et al., 2021) and signal processing of speech 182

data (Narayanan and Georgiou, 2013) to advance 183

2



automated behavioral analysis.184

While these approaches show promise in im-185

proving the efficiency of coding processes and186

enhancing the accuracy of behavioral predictions,187

they primarily focus on adult speakers during pro-188

cedures such as motivation interviews in counsel-189

ing and psychotherapy (Tavabi et al., 2020; Cao190

et al., 2019; Sun et al., 2024; Mayer et al., 2024;191

Pellemans et al., 2024). Prior work have utilized192

computational behavioral recognition for coding193

video and audio data from parent-child interac-194

tions (Lønfeldt et al., 2023); however, results may195

not be easily generalized to language-dependent196

tasks. Conducting a child language assessment197

requires more fine-grained coding for analyzing198

linguistic features in addition to assessment be-199

haviors (Wang et al., 2020; Gorman et al., 2015),200

which increased the level of complexity fo analy-201

sis. Additionally, prior studies also overlooked the202

complexity of bilingual interactions, particularly203

in telehealth settings. This present study examines204

behavioral coding using a bilingual dataset with205

both parent-child dyadic interaction and a compar-206

ison of in-person and virtual telehealth sessions,207

adding a unique use case to this body of literature.208

3 Bilingual Dataset209

We collaborated with bilingual Mandarin-English210

speaking speech language pathologists (SLP)211

and researchers to obtain an IRB-approved text-212

based dataset of child language assessment ses-213

sions containing 59 parent-child dyads using the214

Mandarin-English Receptive Language Screener215

(MERLS). MERLS is an audiovisual web-based216

platform designed for assessing language compre-217

hension skills for Mandarin-English-speaking chil-218

dren (Sheng et al., 2021; Du et al., 2020). The219

assessment consists of a Mandarin module with220

44 test items and an English module with 36 test221

items. The MERLS interface plays audio instruc-222

tions for bilingual children to select pictures that223

match the instructions (see Figure 1). Children224

can independently complete MERLS with mini-225

mal parental assistance.226

3.1 Data Collection227

The MERLS dataset comprises an in-person228

dataset (n=16) collected in person via a video229

recorder placed behind the parent-child dyads, and230

a telehealth dataset (n=43) collected virtually via231

webcams through Zoom during the COVID-19232

pandemic. Combining the two datasets, there is 233

a total of 32 parent-child pairs (16 in-person and 234

16 virtual) that are matched in parent education 235

and childrens age within 6 months of differences. 236

This enables researchers to conduct further anal- 237

ysis to compare in-person and telehealth efficacy 238

using two matching groups of participants, a gold 239

standard practice common in clinical research. 240

3.2 Annotation Process 241

To annotate the dataset, two bilingual research as- 242

sistants first transcribed all the parent-child inter- 243

action videos for speaker utterances verbatim and 244

then annotated parents’ verbal and non-verbal be- 245

haviors (e.g., gestures) for all English and Man- 246

darin items. Next, two bilingual clinical experts 247

independently coded all parent behaviors using an 248

established video analysis codebook (Du et al., 249

2020) developed via Clinical Discourse Analysis 250

(Damico, 1985). To reach a consensus between 251

annotators, disagreement between annotators was 252

resolved via the member checking method (Birt 253

et al., 2016) by meeting and discussing disagree- 254

ment coding, resolving the disagreement, identi- 255

fying the accurate categories, and then refining 256

the codebook with a better definition. Interob- 257

server agreement (IOA) was calculated between 258

the two annotators by comparing coding agree- 259

ments over all behaviors per transcript, then av- 260

eraged across all transcripts. To calculate IOA 261

agreement for performing behavioral coding tasks, 262

extensive training are required for human experts. 263

IOA reached 97% (in-person dataset) and 86.1% 264

(virtual dataset) illustrated in Table 3. 265

The NLP task is an eight-class classification 266

problem which aims to categorize all types of 267

parental involvement during assessments, with 268

each behavior assigned one correct label. Each in- 269

put includes the current test item, a description of 270

the child’s actions, and a description of the par- 271

ent’s behavior. Table 1 illustrated the two primary 272

classes and four corresponding sub-categories for 273

parent behaviors. “Interference” behaviors repre- 274

sent incidents when parents negatively impacted 275

the assessment including “Repeating Questions 276

(RQ)”, “Answering Questions (AQ)”, “Analyzing 277

Items (AI)”, and “Judging of Correctness (JC)”, 278

whereas “Support” behaviors represent incidents 279

when parents positively facilitated the assessment 280

including “Encouragement (E)”, “Technical Sup- 281

port (TS)”, “Broadcasting (B)”, and “Miscella- 282

neous (M)”. 283
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Top-Level
Category

Sub-Level
Category Definition

Interfere

Repeating
Questions (RQ)

Repeating the <Voiceover> audio before and/or during the process of a child selecting the picture on
the web.

Answering
Questions (AQ) Using verbal or gestural cues to suggest or select a correct answer for the child.

Analyzing
Items (AI)

Elaborating on the critical linguistic components by labeling objects and actions, making emphasis via
prosodic cues, or breaking down complex sentences from <Voiceover>.

Judging of
Correctness (JC) Verbally evaluating the child’s response as correct or incorrect.

Support

Encouragement
(E)

Showing verbal and/physical affirmation for the child to continue, saying good job/excellent to rein-
force the child’s selection, expressing empathy (e.g., it’s okay) on struggled items.

Technical
Support (TS)

Offering verbal (labeled as “Technical Support Verbal”) and/or physical assistance (labeled as “Techni-
cal Support Physical”) to the child related to interacting with the website and the computer.

Broadcasting (B) After the child makes a selection, describing the selection via a word, a phrase, or a sentence.
Miscellaneous

(M)
Initiating and/or responding to events that redirected a child’s attention, sharing personal opinions about
test procedures and stimuli, or other verbal and nonverbal behaviors that were out of the child’s view.

Table 1: The classification categories and corresponding definitions of parent behaviors based on established clini-
cal guidelines. Two high-level categories (“interfere” and “support”) consist of four individual sub-categories.

In-Person (n=16) Virtual (n=43)

English Mandarin All English Mandarin All

# RQ 41 101 142 8 30 38
# AQ 0 12 12 0 0 0
# AI 18 68 86 3 3 6
# JC 20 33 53 1 12 13

# E 39 68 107 50 83 133
# TS 14 78 92 164 206 370
# B 14 42 56 4 10 14
# M 12 18 30 77 75 152

# Interference
behaviors 79 214 293 12 45 57
# Support
behaviors 79 206 285 295 374 669
# Behaviors 158 420 578 307 419 726
# Items ≥ 1
behaviors 113 250 363 187 243 430

Table 2: MERLS dataset (in-person n=16 and virtual
n=43) statistics. The top row shows the label distribu-
tion across different datasets and test languages.

3.3 Dataset Description & Statistics284

The dataset is structured to include the following285

components in English and Mandarin tests:286

1. Time stamps: Precise time stamps for each287

assessment item and corresponding parent-288

child behavior from each audio recording.289

2. GUI descriptions: Textual descriptions of290

the graphical user interface (GUI) elements291

displayed on the MERLS platform.292

3. Audio transcriptions: Transcriptions of the293

audio recordings, with annotations that iden-294

tify different speakers each voiceover.295

4. Behavior descriptions: Textual descriptions296

of parents’ verbal and non-verbal behaviors.297

Table 2 presents overall statistics for the In-298

person and Virtual datasets partitioned by classes. 299

The two datasets exhibit imbalances in their label 300

distributions: the Virtual dataset contains fewer in- 301

terference behaviors and more technical support 302

behaviors. It may be due to (1) the system redesign 303

of the MERLS website before the collection of the 304

Virtual dataset (e.g., adding an instructional video 305

about prohibited interference behaviors), or (2) the 306

use of Zoom for Virtual data collection added addi- 307

tional technical behaviors from parents who took 308

the majority of technical support activities to help 309

their children without direct in-person help from 310

clinicians. 311

4 Behavior Classification with LLMs 312

Our experiments focus on zero-shot (ZS) and 313

few-shot (FS) in-context learning (ICL) prompt- 314

ing strategies for LLMs to investigate whether 315

LLMs can reliably classify parental behaviors dur- 316

ing child language assessments compared to clini- 317

cal expert. 318

Prompts. Our zero-shot prompt in Figure 2 pro- 319

vides instructions, explains the input format, and 320

defines each of the eight labels. From the test ex- 321

ample itself, the model is shown (1) the text of the 322

current question, (2) a description of the child’s 323

behavior, and (3) the description of the parent’s 324

behavior. The few-shot prompt is similar but in- 325

cludes one demonstrative example (by a clinical 326

expert to ensure validity) under each label defini- 327

tion. Figures 3 and 4 in the Appendix show the 328

few-shot prompts, split over multiple pages. Both 329

prompts include (1) Voiceover, the text of the cur- 330

rent question; (2) Child behavior, a description 331
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In-Person (n=16) Virtual (n=43)

BEHAVACC(%)/F1(%) on: English Mandarin Overall English Mandarin Overall

Llama3 ZS 48.7/37.4 43.6/33.7 45.0/34.6 29.3/21.9 31.3/20.8 30.4/21.0
Llama3 FS 45.6/31.8 39.8/26.2 41.3/27.6 22.1/9.32 23.6/10.1 23.0/9.90
GPT-4 ZS 65.8/58.5 60.5/55.7 61.9/57.2 45.3/22.3 51.6/38.2 48.9/33.8
GPT-4 FS 65.5/61.1 55.0/49.1 58.1/52.4 48.5/28.8 52.5/38.2 50.8/36.2
DeepSeek-V3 ZS 61.4/53.5 58.3/51.2 59.1/52.4 47.6/23.6 53.2/38.1 50.8/34.3
DeepSeek-V3 FS 64.2/54.9 63.2/56.2 63.5/56.3 52.4/25.3 53.7/36.2 53.2/33.3
Qwen2 ZS 31.0/19.6 27.1/19.6 28.2/20.0 36.5/13.9 38.7/20.3 37.7/17.8
Qwen2 FS 17.7/15.2 22.6/21.5 21.3/19.7 36.2/17.0 37.9/24.2 37.2/22.1

Human Experts 96.84 96.43 97.0 86.93 81.82 86.1

Table 3: BEHAVACC/F1 results on assessment language for In-Person and Virtual dataset. ZS = zero-shot, FS =
few-shot. The best-performing values for each metric are highlighted.

In-Person (n=16) Virtual (n=43)

BEHAVACC(%)/F1(%) on: English Mandarin Mixed English Mandarin Mixed

# Examples 233 167 178 226 389 111

Llama3 ZS 39.5/31.2 42.5/22.0 53.4/39.6 44.2/27.5 21.1/18.1 35.1/16.5
Llama3 FS 34.8/25.7 40.1/20.8 49.4/33.1 32.7/12.1 14.7/6.91 32.4/14.6
GPT-4 ZS 64.8/54.4 55.1/45.9 62.9/59.0 56.6/34.4 43.2/33.2 53.2/32.0
GPT-4 FS 57.1/53.3 52.1/38.9 63.5/56.6 60.2/41.6 45.5/33.2 50.5/31.8
DeepSeek-V3 ZS 59.2/49.4 58.7/45.7 59.0/50.6 65.9/40.0 42.4/30.7 49.5/30.1
DeepSeek-V3 FS 63.9/52.9 61.1/45.5 65.7/56.6 66.4/39.9 46.3/29.9 50.5/27.1
Qwen2 ZS 33.5/18.6 28.7/17.0 20.8/16.6 38.5/15.2 37.3/18.8 37.8/12.9
Qwen2 FS 23.6/17.9 21.6/18.0 18.0/16.6 39.4/21.9 32.9/19.7 47.7/27.1

Table 4: BEHAVACC/F1 results broken down by the language in the transcript of the parent’s behavior (either
English, Mandarin, or a mix of both languages). ZS = zero-shot, FS = few-shot. The best-performing values for
each metric are highlighted.

of the child’s behavior, and (3) Parent behavior,332

the utterance and/or a description of the action per-333

formed by the parent.334

Models. To evaluate NLP performance on our335

tasks, we experiment with four LLMs: the open-336

weight models Llama-3-8B-Instruct and Qwen2-337

7B, the closed-source model GPT-4 (Turbo-2024-338

04-09), and the open-source model DeepSeek-339

V3. While Llama-3 is primarily English-based,340

its pre-training data includes data from 30 other341

languages.1 Qwen2 (Yang et al., 2024a) im-342

proves upon Qwen1.5, achieving strong bench-343

marks across approximately 30 languages. GPT-344

4 has also demonstrated strong performance on345

Chinese language understanding benchmarks (Xu346

et al., 2023; Zhu et al., 2024). Deepseek-V3 is an347

open-source model optimized for computational348

efficiency and excels in complex linguistic and rea-349

soning tasks with minimal supervised data (Neha350

and Bhati, 2025).351

Evaluation metrics. To accurately evaluate par-352

ent behaviors across different test items in Man-353

1https://ai.meta.com/blog/meta-llama-3/

darin and English, we compute three metrics: (1) 354

Behavior-level Accuracy (BEHAVACC): the frac- 355

tion of correctly predicted behaviors; (2) Macro 356

F1 score (F1): prediction performance addressing 357

the effects of dataset imbalance; (3) Item-level Ac- 358

curacy (ITEMACC): the proportion of items with 359

at least one behavior where all behaviors are pre- 360

dicted correctly. ITEMACC is calculated as the 361

number of items with at least one behavior that 362

is predicted entirely correctly, divided by the total 363

number of items that contained at least one behav- 364

ior in each item. 365

5 Experimental Results 366

5.1 Main Results 367

Table 3 presents the overall accuracies and macro 368

F1 scores of all models. DeepSeek-V3 and GPT- 369

4 significantly outperforms Llama3 and Qwen2 370

across all datasets. The performance of GPT- 371

4 and DeepSeek-V3 is highly comparable across 372

both the In-Person and Virtual datasets. For the 373

In-Person dataset, GPT-4 outperforms the other 374

models in English assessment items, achieving a 375

BEHAVACC of 65.8%, while DeepSeek-V3 deliv- 376
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In-Person (n=16) Virtual (n=16)

BEHAVACC(%)/F1 on: English Mandarin Overall English Mandarin Overall

Llama3 ZS 48.7/37.4 43.6/33.7 45.0/34.6 30.2/21.7 33.1/16.6 31.7/18.7
Llama3 FS 45.6/31.8 39.8/26.2 41.3/27.6 21.4/8.70 19.8/8.51 20.5/8.82
GPT-4 ZS 65.8/58.5 60.5/55.7 61.9/57.2 46.5/19.0 44.8/32.5 45.6/28.6
GPT-4 FS 65.5/61.1 55.0/49.0 58.1/52.4 47.8/25.5 45.9/33.6 46.8/31.0
DeepSeek-V3 ZS 61.4/53.5 58.3/51.2 59.1/52.4 44.0/19.5 51.7/34.5 48.0/28.9
DeepSeek-V3 FS 64.2/54.9 63.2/56.2 63.5/56.3 50.9/21.1 49.4/30.7 50.2/28.1
Qwen2 ZS 31.0/19.6 27.1/19.6 28.2/20.0 38.4/15.9 34.3/19.0 36.3/17.3
Qwen2 FS 17.7/15.2 22.6/21.5 21.3/19.7 40.3/16.8 34.3/25.9 37.2/22.6

Table 5: Results with the entire In-Person dataset and the subset of the Virtual dataset consisting of 16 patients
who are matched with the 16 In-Person patients in terms of child age and parent education level. The data layout
follows the same procedure described in Table 3.

In-Person (n=16) Virtual (n=43)

BEHAVACC(%)/F1 on: Interference Support Overall Interference Support Overall

Llama3 ZS 80.5/75.2 65.3/70.5 73.0/72.8 53.3/18.0 64.4/76.4 63.5/47.2
Llama3 FS 82.9/73.5 56.1/64.6 69.7/69.1 70.9/20.3 54.3/69.3 55.6/44.8
GPT-4 ZS 91.8/87.9 82.5/86.4 87.2/87.2 71.9/32.5 77.0/85.8 76.6/59.2
GPT-4 FS 91.1/86.7 80.4/84.8 85.8/85.8 71.9/40.0 84.0/90.1 83.1/65.1
DeepSeek-V3 ZS 73.3/78.0 86.4/81.4 80.0/79.7 38.6/20.4 79.5/86.1 76.3/53.2
DeepSeek-V3 FS 84.4/85.0 86.8/85.9 85.6/85.5 43.9/29.2 86.7/90.6 83.3/59.9
Qwen2 ZS 50.3/54.7 75.4/66.0 62.5/60.4 69.1/25.5 80.5/87.0 79.1/56.2
Qwen2 FS 64.2/56.3 59.0/57.4 61.9/56.9 86.3/28.2 75.6/84.7 77.5/56.4

Table 6: BEHAVACC/F1 on the binary classification version ("Interference" vs. "Support" behaviors) of In-Person
and Virtual dataset. ZS = zero-shot, FS = few-shot.

ers the best performance in Mandarin assessment377

items with a BEHAVACC of 63.2%. In contrast,378

on the Virtual dataset, GPT-4 surpasses DeepSeek-379

V3 in all F1 scores, although it demonstrates a380

lower BEHAVACC. Here DeepSeek-V3’s impres-381

sive performance in Mandarin is highly likely at-382

tributed to its training on high-quality articles,383

which has greatly enhanced its understanding of384

the Chinese language (Guo et al., 2024). However,385

this still remains well below human expert accu-386

racy (97.0% and 86.1% for In-Person and Virtual387

dataset, respectively), indicating substantial room388

for improvement. Table 5 shows similar trends389

on a subset of 16 matched Virtual and In-Person390

pairs: DeepSeek-V3 consistently demonstrates its391

remarkable capabilities in Mandarin assessment392

items. On the other hand, Qwen2 lags behind, with393

its FS performance achieving merely 17.7% BE-394

HAVACC on English assessment items just above395

the random chance baseline, whereas its perfor-396

mance in Mandarin is slightly stronger.397

Overall, the Virtual dataset is consistently more398

difficult to classify than the In-Person dataset, as399

demonstrated in Table 3 and 5. This is likely due400

to limitations information captured via the Zoom401

recording for virtual sessions compared to the402

more comprehensive in-person sessions. These403

differences also influenced human annotation dur- 404

ing transcription. 405

In addition, a clear trend shows that the macro 406

F1 score is consistently much lower than BE- 407

HAVACC, highlighting the imbalanced distribution 408

across the eight categories. As shown in Table 2, 409

categories such as "Encouragement" and "Techni- 410

cal Support" are overrepresented, while the "Ana- 411

lyzing Items" behavior appears only three times in 412

the Virtual dataset. The results of ITEMACC (Ta- 413

ble 8 and Table 9 in Appendix A.2) indicate that 414

the best prediction results for ITEMACC are also 415

achieved by GPT-4 and DeepSeek-V3. 416

5.2 Effects of Parent Language 417

We examine whether the language used to describe 418

parents behavior impacts the LLM’s accuracy. De- 419

scriptions can be in English, Mandarin, or a mix of 420

both. In our dataset, non-verbal actions are always 421

described in English, while many parent speech 422

acts are in Mandarin. Code-mixing occurs when 423

parents code-switch, or when Mandarin speech is 424

paired with an English description of a non-verbal 425

action. 426

Table 4 shows model accuracies and F1 score 427

broken down by the language describing the par- 428

ent behavior. The F1 score is notably lower than 429
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BEHAVACC, largely due to the imbalanced distri-430

bution of parent language occurrences. All models431

generally perform worst on Mandarin-only tran-432

scriptions, except for Llama3 on the In-Person433

dataset. Qwen2 shows a smaller performance gap434

between English and Mandarin transcriptions, as435

expected due to its focus on non-English perfor-436

mance. Deepseek-V3 shows the best performance437

for Mandarin-only transcriptions in both In-Person438

and Virtual datasets, indicating its key strength439

in Chinese language processing. The increased440

difficulty of classification in the Virtual dataset441

is explained primarily due to behaviors involving442

Mandarin. For DeepSeek-V3, the English Virtual443

dataset is easier than the English In-Person dataset444

to predict, whereas the other three models show445

the opposite pattern.446

5.3 Binary Classification Results447

We also evaluate models on the binary classifica-448

tion task to distinguish interference from support449

behaviors. Identifying interference can help alert450

clinicians to potential issues, even if the model451

cannot identify the individual type of interference.452

As shown in Table 6, GPT-4 and DeepSeek-V3453

substantially outperform Llama3 and Qwen2, with454

GPT-4 exhibiting slightly superior performance455

compared to DeepSeek-V3. In contrast, Qwen2456

struggles, with approximately 50% BEHAVACC457

in the ZS setting for the In-Person dataset when458

predicting interference behaviors. For the Virtual459

dataset, Qwen2 FS performs best at predicting "In-460

terference" behaviors. This likely due to the imbal-461

anced data between "Interference" and "Support"462

behaviors as reflected in the low F1 score.463

5.4 Error Analysis with Human Annotators464

Based on the overall BEHAVACC and F1 score in465

Table 3 and Table 6, we conducted a detailed er-466

ror analysis focusing on one of the top-performing467

models: GPT-4 ZS for the In-Person dataset, and468

GPT-4 FS for the Virtual dataset. The confusion469

matrices in the Appendix Figures 13 identified the470

misclassified pairs. To examine these errors, we471

selected the most frequently misclassified pairs for472

each behavioral category within each dataset (Ta-473

ble 7). These misclassified data were selected474

based on two criteria: 1) the number of instances475

in the class is no less than the average of that476

dataset, and 2) the prediction accuracy for that477

class is below 80%. Two novel clinical expert an-478

notators were trained using the same clinical pro-479

tocol in Table 3 for error analysis. Novice human 480

annotators were not utilized due to the specialized 481

training required for behavioral coding, without 482

such training, they have variability and reliabil- 483

ity issues. Two annotators independently selected 484

which option they believe is the correct answer 485

without knowing which class was machine or hu- 486

man annotation. By comparing their responses to 487

the true labels, we identified challenging pairs the 488

clinical experts also struggled to perform classifi- 489

cation. 490

Errors in In-Person Dataset. Several com- 491

monly misclassified pairs by GPT-4 can be iden- 492

tified in the top rows from Table 7. Overall, the 493

LLM struggles to distinguish "Repeating Ques- 494

tions (RQ)" from "Analyzing Items" in both En- 495

glish and Mandarin tests. Notably, this distinc- 496

tion is also challenging for clinicians, as the AI- 497

RQ category for the In-Person dataset (English) 498

shows 0.0% accuracy, with significant disagree- 499

ment among experts. Figure 5 in the appendix 500

illustrates a sample parent-child interaction tran- 501

script for this disagreement between the best- 502

performing model (GPT4-ZS) and two human an- 503

notators. 504

A key insight from our analysis is that LLM er- 505

rors reveal potential linguistic ambiguities in the 506

clinical definition of parent behaviors. GPT-4 mis- 507

labels “Analyzing Items (AI)" as “Repeating Ques- 508

tions (RQ)" when parents repeat only key compo- 509

nents of a question (e.g., "wash the cat") for their 510

children across both in-person and virtual datasets. 511

This is likely because GPT-4 lacks the specific 512

details to differentiate by repeating how much 513

of the partial question is considered "Analyzing 514

Items". The errors also happened in code-mix 515

utterances and could be due to inadequate trans- 516

lation from word-level lexicon to sentence-level 517

utterances. By analyzing the disagreements be- 518

tween human coders and predictions from LLMs, 519

we gain a deeper understanding of these distinc- 520

tions to improve both the development of a clini- 521

cal annotation codebook (Leeson et al., 2019) as 522

well as the prompting strategies for LLMs (Lin 523

et al., 2022; Ranaldi and Pucci, 2023; Lønfeldt 524

et al., 2023). 525

Errors in the Virtual Dataset. In the virtual 526

dataset, the common misclassifications are demon- 527

strated in the bottom rows from Table 7. We 528

found the challenging pairs for clinicians to clas- 529

sify are “TS-M” (“Technical Support" vs. “Miscel- 530
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In-Person English In-Person Mandarin

Label pair Annotator 1 Acc Annotator 2 Acc Overall Label pair Annotator 1 Acc Annotator 2 Acc Overall

RQ-AI 100.0 75.0 75.0 RQ-AI 60.0 70.0 60.0
AI-RQ 0.0 100.0 0.0 AI-RQ 69.0 100.0 69.0
JC-E 71.4 71.4 57.1 E-RQ 22.2 0.0 0.0

E-M 40.0 16.6 16.6
TS-B 100.0 100.0 100.0

Virtual English Virtual Mandarin

Label pair Annotator 1 Acc Annotator 2 Acc Overall Label pair Annotator 1 Acc Annotator 2 Acc Overall

TS-M 82.2 53.3 53.3 TS-M 85.7 90.2 74.5
M-E 75 92.3 68.8 M-E 68.8 61.5 61.5

Table 7: Clinician annotation accuracy based on the misclassified pairs from Figure 13. A-B denotes that A
is the true clinician-annotated label, while B represents the GPT prediction. The overall accuracy is calculated
as the number of correctly classified behaviors for both clinicians divided by the total number of misclassified
behavior pairs. These low values (highlighted in the table) suggest that these misclassified pairs are also somewhat
challenging for clinicians to classify accurately.

laneous") for Virtual English and “M-E” (“Miscel-531

laneous" vs. “Encouragement") for Virtual dataset532

in Mandarin. Figure 6 in the appendix illustrates533

a sample transcript, showing disagreement across534

two human annotators and the best-performing535

model (GPT-4 FS). GPT-4 appears to overgeneral-536

ize utterances that do not contain words related to537

“website” or “computer” as “Technical Support"538

behaviors. This is indeed due to behavioral defi-539

nition ambiguities originated from the clinician’s540

codebook which informed the prompting. After541

two annotators conducted the member-checking542

procedure (Birt et al., 2016) to discuss the in-543

consistencies in annotation, they identified addi-544

tional utterances (e.g., parents monitoring chil-545

dren’s needs to take a break or eat a snack) as a546

new potential category of support behavior in the547

virtual dataset. This error analysis process high-548

lights the models limitations in analyzing novel549

information, suggesting that future use of more550

aligned behavioral coding definitions to inform551

prompting for LLMs to not only identify exist-552

ing categories accurately but also recognize novel553

patterns to enhance clinicians’ manual behavioral554

coding process. In a deeper error analysis, we con-555

ducted an ablation study to assess the impact of556

various components of GPT-4’s performance. The557

detailed results are provided in Appendix B.558

6 Conclusion559

This paper introduces a bilingual dataset for fine-560

grained classification of parental behaviors during561

bilingual English-Mandarin child language assess-562

ment. Automating this task could increase clini-563

cians’ workflow efficiency and expand the use of564

LLMs for behavioral coding in clinical settings. 565

While current SOTA LLMs show moderate accu- 566

racy, they struggle with Mandarin data, a chal- 567

lenge also faced by human annotators, particu- 568

larly with virtual data. This dataset promotes fur- 569

ther NLP research for multilingual clinical tasks, 570

advancing the analysis of using multimodal be- 571

havioral coding (Yang et al., 2024b) of bilingual 572

datasets (Hlavnova and Ruder, 2023; Weissweiler 573

et al., 2023) during child language assessment in 574

complex in-person and telehealth contexts. 575

7 Future Work 576

Our bilingual dataset also contained prosodic in- 577

formation (e.g., parents emphasize words when an- 578

alyzing items with different stress patterns) which 579

has been shown to introduce additional complex- 580

ity in clinical NLP (Black et al., 2013), especially 581

in the bilingual context (Pattichis et al., 2023). 582

Manual transcription by the clinical team could 583

be prone to errors and inconsistency. To reduce 584

such errors, future work should continue explor- 585

ing fine-tuning our available LLMs to achieve 586

better performance or integration of multimodal 587

speech (OpenAI Whisper, Llama-Omni, Qwen2- 588

Audio) that can automate audio-to-text transcrip- 589

tion for additional technical novelty in this re- 590

search (Tavabi et al., 2020). By aligning our 591

methodology with clinical annotation guidelines 592

and error analysis with clinicians, future work will 593

continue a more comprehensive quantitative anal- 594

ysis of this dataset. 595

8



8 Limitations596

Our study is constrained by the imbalance between597

the in-person and virtual datasets, as well as a rel-598

atively small sample size, which is further limited599

by the data provided by our clinical partners. Addi-600

tionally, the imbalance in label distribution across601

the eight categories contributes to this limitation,602

affecting overall model performance. For instance,603

smaller subcategories like "Broadcasting" make604

up less than 1% compared to larger categories such605

as "Technical Support" impacting overall model606

evaluation. Despite the small sample size, our clin-607

ically informed annotation guideline could be ex-608

tended to research in other bilingual populations,609

such as Spanish-English and Vietnamese-English610

speaking children and parents (Dam and Pham,611

2023; Pratt et al., 2022).612

Similar to other closed-source models, our best-613

performing model GPT-4 poses challenges for614

replication. One challenge is the semantic align-615

ment at the word and utterance level and how616

this impacts behavioral classification, especially in617

bilingual datasets (Cao et al., 2019; Huzaifah et al.,618

2024). Although our behavioral classifications in-619

cluded categories such as "Encouragement," due620

to the scope of this paper, we did not explore the621

use of sentiment analysis (Zhang et al., 2023a) on622

specific linguistic features in the transcripts to im-623

prove accuracy for individual subcategories.624

Additionally, error analysis revealed challenges625

in classifying behaviors related to the "Miscella-626

neous" category for the best performing model627

GPT-4 and human annotators. Due to the scope628

of this paper, we did not conduct additional abla-629

tion studies to evaluate more specifically defined630

behavioral categories. Since this is a bilingual631

dataset from a novel clinical pilot study, ongoing632

collaborations between NLP researchers and clini-633

cians may continue to improve the behavioral cod-634

ing protocol as well as the performance of LLMs.635

Furthermore, the lack of improvement in model636

performance with ICL suggests that the primary637

bottleneck in this classification task may not arise638

from challenges in semantic understanding of the639

text, but rather from capturing the deeper, underly-640

ing intent embedded in parental language.641

9 Ethical Considerations642

Data collection and analysis. Our dataset was643

collected under university human subject research644

approval and data sharing agreements. The de-645

identified text transcripts from the clinical video 646

analysis contain no sensitive information about 647

parent-child pairs. 648

Bias mitigation. When comparing the 16 virtual 649

and 16 in-person parent-child pairs, we considered 650

the effects of childrens age and parents education 651

level, which can influence language abilities and 652

parental behavior during assessments. 653

Privacy and trust. Privacy issues are paramount 654

when annotating parent behaviors and utterances. 655

Annotators anonymized sensitive information in 656

the transcripts (e.g., using boys name). This is 657

crucial when applying LLMs to clinical data to 658

protect patient privacy. Implementing LLMs in 659

evaluating clinical data could lead to biases that 660

affect clinical decision-making. Clinicians may 661

rely on models without fully understanding their 662

limitations. We also evaluated GPT-4S misclassi- 663

fications alongside two human annotators to com- 664

pare decision-making and address biases, which is 665

essential for building trust and explainable AI in 666

clinical settings. 667
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A Appendix A1022

A.1 User Interface of MERLS1023

Figure 1 illustrates the interaction of a sample test1024

item in the English subtest. When children inter-1025

act with MERLS, they first hear an audio record-1026

ing (e.g., "The chicken is hugged by the pen-1027

guin.") and then select the corresponding picture1028

that matches the audio to demonstrate their under-1029

standing of the sentence in English. Parents may1030

or may not demonstrate a behavior depending on1031

their observation of the item and how children re-1032

spond to the item.1033

Figure 1: MERLS English test item “The chicken is
hugged by the penguin.”

A.2 Results of item level accuracy1034

Here we also provide the accuracy in item1035

level. Table 8 shows the ITEMACC for the en-1036

tire In-Person dataset (n=16) and the entire Vir-1037

tual dataset (n=43) partitioned upon question lan-1038

guages, whereas Table 9 shows the ITEMACC for1039

the entire In-person dataset (n=16) and the sub-1040

set of the Virtual dataset (n=16) that is matched1041

in terms of child age and parent education level.1042

B Appendix B: Ablation Study 1043

B.1 Removal of role play description in 1044

prompting 1045

This experiment tests whether understanding the 1046

role and scenario is necessary, or if simple instruc- 1047

tions based on ‘annotation of parental behavior’ 1048

suffice, by removing the ‘role play’ description 1049

and retaining only the basic instructions to evalu- 1050

ate both datasets. We tested GPT-4’s performance 1051

by using a prompt based on our original zero-shot 1052

test in Figure 2, but without the role description 1053

(e.g., "Assume you are a video analyst classifying 1054

transcribed text conversation...") (see prompt in 1055

Figure 11). The corresponding results are summa- 1056

rized in Table 10. The maximum variation in ac- 1057

curacy was approximately 3%, and the maximum 1058

variation in F1 score was about 4%. Therefore, we 1059

conclude that the ‘role play’ descriptor does not 1060

significantly impact the overall prediction results. 1061

B.2 Chain of Thoughts Experiment 1062

To further evaluate the factors contributing to per- 1063

formance variance, we then conducted a Chain 1064

of Thoughts (CoT) experiment with GPT-4 to as- 1065

sess the best model performance for in-person data 1066

(using zero-shot prompts) and virtual data (using 1067

few-shot prompts) after retaining "role play" sce- 1068

nario. We then conducted an error analysis across 1069

all categories to compare GPT-4’s reasoning with 1070

that of human expert annotators. We designed the 1071

prompts following a similar two-step procedure 1072

as outlined in (Kojima et al., 2022). In the first 1073

prompt, we described the classification task as in 1074

the original paper, with the addition of a trigger 1075

sentence: Lets think step by step. This encour- 1076

ages GPT-4 to generate a step-by-step reasoning 1077

process as output (see Figure 7, 8 and 9 for the 1078

first prompt input in the Appendix). In the second 1079

prompt (see Figure 10 in the Appendix), we com- 1080

bined the original task description with GPT-4’s 1081

analysis from the first step and include an answer 1082

extraction instruction, such as: Therefore, among 1083

all the categories, please respond with the cate- 1084

gory name only. After running the experiment 1085

with prompts that include CoT, we then analyzed 1086

the initial responses in greater depth by examin- 1087

ing the step-by-step reasoning provided. Here we 1088

provide one example where GPT-4 makes a false 1089

prediction as demonstrated in Figure 12. In this 1090

example, GPT-4 falsely predicts the parent behav- 1091

ior to be "Repeat Questions", however the human 1092

13



expert annotates "Technical Support" because the1093

parent guides the child to make a selection and re-1094

quest a system repetition independently. GPT-4 in-1095

correctly interpreted the parent behavior verbatim1096

as "Repeat Questions" because the utterance itself1097

seems to request repetition; in reality, the parent1098

did not repeat any of the test items and did not in-1099

terfere with the child. This difference in interpreta-1100

tion provides evidence that GPT models lack spe-1101

cific knowledge of this clinical context, and adding1102

more examples (e.g., few-shot) may not necessar-1103

ily help model performance.1104
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In-Person (n=16) Virtual (n=43)

ITEMACC(%) on: English Mandarin All English Mandarin All

Llama3 ZS 39.8 28.0 31.7 26.7 24.3 25.3
Llama3 FS 34.5 27.6 29.8 20.3 19.8 20.0
GPT-4 ZS 61.9 49.2 53.2 36.9 45.3 41.6
GPT-4 FS 61.1 40.8 47.1 43.3 46.5 45.1
DeepSeek-V3 ZS 54.2 44.5 47.5 42.8 43.6 43.3
DeepSeek-V3 FS 57.5 50.9 53.0 45.5 44.9 45.1
Qwen2 ZS 20.4 16.0 17.4 29.4 27.2 28.1
Qwen2 FS 11.5 15.6 14.3 28.9 28.0 28.4

Table 8: Main results for item level accuracy. ZS = zero-shot, FS = few-shot. The best-performing values for each
metric are highlighted.

In-Person (n=16) Virtual (n=16)

ITEMACC(%) on: English Mandarin All English Mandarin All

Llama3 ZS 39.8 28.0 31.7 23.2 23.7 23.4
Llama3 FS 34.5 27.6 29.8 15.9 12.9 14.3
GPT-4 ZS 61.9 49.2 53.2 34.1 37.6 36.0
GPT-4 FS 61.1 40.8 47.1 40.2 40.9 40.6
DeepSeek-V3 ZS 54.2 44.5 47.5 34.1 39.8 37.1
DeepSeek-V3 FS 57.5 50.9 53.0 39.0 38.7 38.9
Qwen2 ZS 20.4 16.0 17.4 28.0 20.4 24.0
Qwen2 FS 11.5 15.6 14.3 28.0 23.7 25.7

Table 9: Results with the entire In-person dataset and the subset of the Virtual dataset consisting of 16 patients who
are matched with the 16 In-person patients in terms of child age and parent education level in item accuracy. The
data layout follows the same procedure described in Table 8.

Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin. A <Voiceover> is the system output sound which reads the picture
on the website that the child has to choose. A <Child Behavior> is the children's behavior. You
need to classify <Parent Behavior> as described in <task>.

Please respond the category name only.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'. Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web.
- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child

.
- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,

making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>.
- Judging of Correctness: Verbally evaluating the child's response as "correct" or "incorrect".

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent" to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items.

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer.

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence.

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view.

Figure 2: The full zero-shot prompt used in our experiments.
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Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin. A <Voiceover> is the system output sound which reads the picture
on the website that the child has to choose. A <Child Behavior> is the children's behavior. You
need to classify <Parent Behavior> as described in <task>.

Please respond the category name only.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'.

Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web. For example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"the black cat is drinking water"

<Classification>
Repeat Questions

- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child
. For example,

<Voiceover>
"What is the cat drinking?"

<Parent Behavior>
"Drinking water."

<Classification>
Answer Questions

- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,
making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>. For
example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"This is the one with a black cat."

<Classification>
Analyze Items

Figure 3: The few-shot prompt used in our experiments, part 1 of 2.

In-Person (n=16) Virtual (n=43)

BEHAVACC(%)/F1(%) on: English Mandarin Overall English Mandarin Overall

GPT-4 ZS 67.1/62.1 59.8/56.3 61.8/58.3 41.7/22.8 46.3/34.3 44.4/31.5

Table 10: Prediction results without role play description: BEHAVACC/F1 on assessment language for In-Person
and Virtual dataset.
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- Judging of Correctness: Verbally evaluating the child's response as "correct" or "incorrect". For
example,

<Voiceover>

<Parent Behavior>
"This is not right."

<Classification>
Judging of Correctness

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent" to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items. For example,

<Voiceover>

<Parent Behavior>
"it's fine you are trying your best."

<Classification>
Encouragement

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer. For example,

<Voiceover>

<Parent Behavior>
"Select the picture to continue."

<Classification>
Technical Support

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence. For example,

<Voiceover>

<Parent Behavior>
"I selected the picture."

<Classification>
Broadcasting

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view. For example,

<Voiceover>
<Parent Behavior>
"My child needs to use the bathroom."

<Classification>
Miscellaneous

Figure 4: The few-shot prompt used in our experiments, part 2 of 2.
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Figure 5: Sample annotation 1 from the In-person dataset (English item). N/A is used for transcript content that
did not have a behavioral coding.

Figure 6: Sample annotation 2 from the Virtual dataset (English item). N/A is used for transcript content that did
not have a behavioral coding.

Assume you are a video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin. A <Voiceover> is the system output sound which reads the picture
on the website that the child has to choose. A <Child Behavior> is the children's behavior. You
need to classify <Parent Behavior> as described in <task>. Let's think stey by step.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'. Definition for each category is shown in <Definitions>.

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web.
- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child

.
- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,

making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>.
- Judging of Correctness: Verbally evaluating the child's response as correct or incorrect.
- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying good job/

excellent to reinforce the child's selection, expressing empathy (e.g., it'sokay) on struggled
items.

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer.

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence.

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view.

Figure 7: The first zero-shot prompt used in Chain of Thoughts experiment.
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Assume you are video analyst classifying transcribed text conversation shown in <Parent Behavior>
from parents, who are supervising their bilingual children to answer language comprehension
tests in English and Mandarin. A <Voiceover> is the system output sound which reads the picture
on the website that the child has to choose. A <Child Behavior> is the children's behavior. You
need to classify <Parent Behavior> as described in <task>. Let's think step by step.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'.

Definition for each category is shown in <Definitions>

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web. For example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"the black cat is drinking water"

<Classification>
Repeat Questions

- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child
. For example,

<Voiceover>
"What is the cat drinking?"

<Parent Behavior>
"Drinking water."

<Classification>
Answer Questions

- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,
making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>. For
example,

<Voiceover>
"the black cat is drinking water"

<Parent Behavior>
"This is the one with a black cat."

<Classification>
Analyze Items

Figure 8: The first few-shot prompt used in Chain of Thoughts experiment, part 1 of 2.
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- Judging of Correctness: Verbally evaluating the child's response as "correct" or "incorrect". For
example,

<Voiceover>

<Parent Behavior>
"This is not right."

<Classification>
Judging of Correctness

- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying "good job/
excellent" to reinforce the child's selection, expressing empathy (e.g., "it's okay") on
struggled items. For example,

<Voiceover>

<Parent Behavior>
"it's fine you are trying your best."

<Classification>
Encouragement

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer. For example,

<Voiceover>

<Parent Behavior>
"Select the picture to continue."

<Classification>
Technical Support

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence. For example,

<Voiceover>

<Parent Behavior>
"I selected the picture."

<Classification>
Broadcasting

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view. For example,

<Voiceover>
<Parent Behavior>
"My child needs to use the bathroom."

<Classification>
Miscellaneous

Figure 9: The first few-shot prompt used in Chain of Thoughts experiment, part 2 of 2.
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Therefore, among all the categories, please respond the category name only.

Figure 10: The second prompt used in Chain of Thoughts experiment for both zero-shot and few-shot.

This is a text transcript consisting of <Parent Behavior> from bilingual parents who are supervising
their bilingual children to answer language assessment questions in English and Mandarin. A <
Voiceover> is the system output sound which reads the picture for the accurate answer the child
has to choose. A <Child Behavior> is the children's behavior. Please classify <Parent Behavior>
as described in <Task> and respond to the category name only.

<Task>
Based on <Parent Behavior>, please determine which type of behavior it is: 'Repeat Questions', '

Answer Questions', 'Analyze Items', 'Judging', 'Encouragement', 'Technical Support', '
Broadcasting', 'Miscellaneous'. Definition for each category is shown in <Definitions>.

<Definitions>
- Repeat Questions: Repeating the <Voiceover> audio before and/or during the process of a child

selecting the picture on the web.
- Answer Questions: Using verbal or gestural cues to suggest or select a correct answer for the child

.
- Analyze Items: Elaborating on the critical linguistic components by labeling objects and actions,

making emphasis via prosodic cues, or breaking down complex sentences from <Voiceover>.
- Judging of Correctness: Verbally evaluating the child's response as correct or incorrect.
- Encouragement: Showing verbal and/physical affirmation for the child to continue, saying good job/

excellent to reinforce the child's selection, expressing empathy (e.g., it's okay) on struggling
items.

- Technical Support: Offering verbal and/or physical assistance to the child related to interacting
with the website and the computer.

- Broadcasting: After the child makes a selection, describing the selection via a word, a phrase, or
a sentence.

- Miscellaneous: Initiating and/or responding to events that redirected a child's attention, sharing
personal opinions about test procedures and stimuli, or other verbal and nonverbal behaviors
that were out of the child's view.

Figure 11: The full zero-shot prompt used in non role play test.

Parent behavior: <in response to child> "" <speaking towards the screen> "

GPT-4 with CoT response:
"let's analyze the provided <parent behavior> step by step in order to classify it:

1. the first part of the <parent behavior> is: ""<in response to child> ''"". this is in response to
the child's action of moving the parent's hand to the screen. the parent's response, """" or ""
you click it yourself"", seems to encourage the child to perform the action by themselves
instead of relying on the parent. this can be classified under 'encouragement', as it encourages
independence in the child.

2. the second part of the <parent behavior> is: ""<speaking towards the screen> ''"", which
translates to ""can you say that again, please?"" directed towards the screen. this part
indicates that the parent is requesting the system to repeat the <voiceover> audio. this action
fits the 'repeat questions' category, as it involves asking for the question or statement from <
voiceover> to be repeated. given the two different actions, if we consider the more prominent
behavior from the parent's actions, the emphasis appears to be on encouraging the child to
engage with the task independently. however, the explicit category from the definitions provided
that matches an exact behavior is 'repeat questions', due to the direct request made to the

system. <classification> repeat questions"

Figure 12: The first zero-shot prompt used in Chain of Thoughts experiment.
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English Mandarin Overall

GPT-4 ZS: In-Person dataset.

English Mandarin Overall

GPT-4 FS: Virtual dataset.

Figure 13: Normalized confusion matrices (in percentages) for GPT-4 ZS (In-Person) and GPT-4 FS (Virtual)
datasets. Each row is normalized to sum to 100% within each matrix, representing the percentage distribution of
predictions across classes.
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