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Abstract
Active clustering aims to boost the clustering per-
formance by integrating human-annotated pair-
wise constraints through strategic querying. Con-
ventional approaches with semi-supervised clus-
tering schemes encounter high query costs when
applied to large datasets with numerous classes.
To address these limitations, we propose a novel
Adaptive Active Aggregation and Splitting (A3S)
framework, falling within the cluster-adjustment
scheme in active clustering. A3S features strate-
gic active clustering adjustment on the initial clus-
ter result, which is obtained by an adaptive clus-
tering algorithm. In particular, our cluster adjust-
ment is inspired by the quantitative analysis of
Normalized mutual information gain under the
information theory framework and can provably
improve the clustering quality. The proposed
A3S framework significantly elevates the perfor-
mance and scalability of active clustering. In
extensive experiments across diverse real-world
datasets, A3S achieves desired results with sig-
nificantly fewer human queries compared with
existing methods.

1. Introduction
In the realm of data science, clustering algorithms have
emerged as a cornerstone technology within the domain of
unsupervised learning (Khanum et al., 2015; Celebi & Ay-
din, 2016). By automatically grouping similar data objects
based on inherent structures and patterns within datasets,
clustering provides an efficacious means to condense and
structure complex information and is widely applied in im-
age classification (Caron et al., 2020), social network analy-
sis (He et al., 2022), etc. However, conventional clustering
techniques often rely on static parameter settings and one-off
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computations, rendering them less adaptable to strange or
expanding data environments (See Section 2.3.3). This con-
text highlights the growing importance of human-computer
collaborative active clustering approaches.

Active clustering refers to a paradigm that actively selects
side information (Anand et al., 2014), in the form of pair-
wise constraints, to maximally improve the clustering perfor-
mance. Extensive work (González-Almagro et al., 2023) has
explored the combination of the strategic selection of pair-
wise constraints and semi-supervised clustering (SSC) (Basu
et al., 2002), and attains much lower query complexity com-
pared to its semi-supervised counterpart (Bilenko et al.,
2004). Despite the practicality, current active clustering
methods often suffer from high computational and query
costs when the number of classes is large.

SSC-based active clustering methods primarily assess the
uncertainty of all pairwise constraints, and iteratively choose
the most uncertain ones for expert queries. This manner,
while systematic, faces notable challenges: it potentially
relies on the assumption that a small set of initial pairwise
constraints will rapidly cover most real classes. This as-
sumption becomes increasingly unreliable in scenarios with
large sample numbers N and class numbers K. There-
fore, some active clustering methods (Van Craenendonck
et al., 2017; Shi et al., 2020) shift from SSC to a cluster-
adjustment scheme. This scheme involves over-clustering
data into k clusters via a specific clustering method (where
k is greater than K), and subsequently aggregates the re-
sulting small clusters into larger ones based on pairwise
constraints. However, it requires a proper cluster number
k as an input parameter, which is hard to determine in real
applications. Moreover, the human query may be mislead-
ing when the selected samples are outliers, as they do not
represent the majority sample of a cluster.

This work aims to overcome the drawbacks of existing
cluster adjustment schemes. We first present a theoretical
result that identifies conditions where aggregating two
clusters does not reduce the normalized mutual information
(NMI) between the resulting clustering and the real
clustering. Here, NMI measures the overlap between
two clustering results, with larger values indicating better
performance (see Definition 2.3). In addition, to guide
active human queries, we quantify the impact of merging
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two clusters on the expected NMI value difference from the
theoretical side. This characterization enables us to actively
select cluster pairs that maximize the NMI gain.

Building upon these theoretical results, we propose Adap-
tive Active Aggregation and Splitting (A3S), a generic clus-
ter adjustment framework for active clustering. A3S oper-
ates in two stages: the adaptive initialization stage and the
active aggregation and splitting stage. The first stage au-
tonomously identifies an appropriate cluster number and pro-
duces initial clustering results using a designated clustering
algorithm (e.g., K-means and hierarchical clustering). In the
latter stage, A3S proactively identifies the cluster pair that is
expected to enhance the NMI value mostly. Afterward, it as-
sesses whether the majority of samples in a cluster are of the
same class (i.e., cluster purity in Definition 2.4), then merges
pure clusters queried to be in the same class by oracles, and
divides impure clusters into pure subclusters and outliers.
This stage will be repeated a few times to ensure conver-
gence, where no more aggregation and splitting will happen.

Our contributions are summarized as follows:

• We introduce A3S, a general active clustering algorithm
that improves the quality of clustering by optimizing the
NMI value. A3S strategically selects cluster pairs for
aggregation, aiming to maximize the expected NMI im-
provement within a limited query cost. The quantification
of NMI gain is guided by our information-theoretical
analysis (Theorem 2.4). Additionally, A3S implements
precise splitting on clusters that fail purity tests, ensuring
the correction of outlier samples.

• Regarding implementation superiority, A3S can reveal
the underlying ground truth clustering structure with sub-
stantially fewer human queries compared to traditional
methods, especially when prior dataset knowledge is un-
known. In addition, A3S locally adjusts the cluster labels,
offering a more efficient alternative to rerunning semi-
supervised clustering algorithms, and remains feasible for
large datasets.

• In terms of practical performance, by conducting com-
prehensive evaluations on various real-world datasets, we
demonstrate that A3S consistently surpasses all baseline
models. Notably, baseline methods typically require more
than 4000 queries to achieve high-quality clustering re-
sults for datasets containing thousands of samples. In
contrast, A3S achieves this performance with only a few
hundred queries.

2. Methodology
2.1. Notation and Definition

Definition 2.1 (Active Clustering). We denote the true
classes of N samples X = {x1, · · · , xN} by Y =

{y1, · · · , yN}, where yi ∈ {1, · · · ,K} and K is the num-
ber of classes. Let the ground truth clustering of X as
C = {c1, · · · , cK}, and the initial clustering result as
Ω = {w1, · · · , wk}, where X = ∪K

i=1ci = ∪k
i=1wi and

ci ∩ cj = ∅, wi ∩ wj = ∅,∀i, j. Active Clustering strate-
gically selects sample pairs (xi, xj), and requires the ora-
cle to judge if yi = yj (two samples are must-linked) or
yi ̸= yj (two samples are cannot-linked). It then updates
the clustering result Ω with the queried pairwise constraints
accordingly. Active Clustering aims to utilize the queried
constraints to maximally reduce the difference between C
and Ω, which is measured by the normalized mutual infor-
mation (NMI) (Kvalseth, 1987; Vinh et al., 2009).

Definition 2.2 (Cluster Adjustment Scheme). We define a
cluster adjustment scheme as a label update strategy em-
ployed by active clustering algorithms. Specifically, it en-
tails the algorithm’s process of either locally aggregating
small clusters into larger ones or splitting impure clusters
into several subclusters, guided by pairwise constraints.
Definition 2.3 (NMI). NMI is a measure of how much
common information two clustering results share. Given N
samples and their two clusterings Ω = {w1, · · · , wk} and
Ω′ = {w′

1, · · · , w′
k}, we define the NMI value as

n =
2I(Ω;Ω′)

H(Ω) +H(Ω′)
=

2I(ζ; ζ′)
H(ζ) +H(ζ′)

,

where ζ = (|w1|/N, · · · , |wk|/N) and ζ ′ =
(|w′

1|/N, · · · , |w′
k′ |/N) are two distributions induced

by Ω and Ω′, respectively. Here, I(·; ·) denotes mutual
information, and H(·) denotes entropy.

We also introduce the notion of clustering purity (González-
Almagro et al., 2023).

Definition 2.4 (Purity). We define the dominant class of
a cluster wi as argmaxj |wi ∩ cj |. We label the sample in
a cluster that does not belong to its dominant class or the
sample that is a single cluster itself as an outlier. Then, the
purity of wi is maxj

|wi∩cj |
|wi| , and the purity of the clustering

result Ω is quantified by
∑

i maxj |wi∩cj |
N .

2.2. Theoretical Analysis

Active clustering that adopts the cluster-adjustment scheme
does not rely on semi-supervised clustering for updating
clustering results. Instead, it emphasizes the use of must-
link and cannot-link constraints as indicators to merge or
split clusters (Van Craenendonck et al., 2018). This greedy
strategy may, however, jeopardize the quality of clustering
outcomes for several reasons. For example, the queried
samples could be outliers, or the purity of a cluster might
not be sufficiently high. In light of this, we introduce a
pivotal theorem that offers clear guidance for aggregation
actions. This is achieved through an evaluation of the NMI.
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Figure 1. The workflow of A3S which consists of the adaptive clustering stage and active aggregation and splitting stage.

Theorem 2.5 (Guarantee for Cluster Aggregation). Denote
the clustering of N samples as Ω, the ground truth cluster-
ing as C, and the NMI value of Ω with respect to C as n1.
For any two clusters in Ω, say w1 and w2, suppose they have
a common dominant class c1 with purities t1 and t2 respec-
tively, where t1, t2 ∈ [p, 1]. By aggregating w1 and w2 into
a new cluster w1,2 = w1 ∪ w2, we arrive at a new cluster-
ing Ω⋆ = {w1,2, w3, · · · , wk} with NMI value of n2. This
aggregation positively impacts clustering performance (i.e.,
n2 ≥ n1) if p ≥ 0.7 and n1 ≥ 2 · (1.0586−min{t1, t2}).

Theorem 2.5 delineates the conditions for non-deteriorating
cluster aggregation, and the detailed proof is in Ap-
pendix A.1. Specifically, merging two clusters can achieve
provable benefits when their purity is at least 0.7 and preced-
ing NMI exceeds 2 · (1.0586−min{t1, t2}). This finding is
important as it suggests that the purity requirement for clus-
ter aggregation is relatively mild, allowing for the inclusion
of a small number of outliers within each cluster without
compromising the overall clustering performance.

We take a step further by formulating the expected gain in
NMI value when we decide to query a sample pair from a
cluster pair. This involves aggregating clusters if the query
result is “must-link” and keeping them separated if the result
is “cannot-link”.

Definition 2.6 (Expected NMI Gain). Suppose the dominant
class of clusters wi and wj is cm and cn respectively, which
remain unknown before querying. Let n1 and n2 represent
the NMI values of the clustering result before and after
aggregating the two clusters. We denote P(cm = cn) as
the probability that the oracle observes a ‘must-link’ result.
Then, we define the expected NMI gain from this query as
follows:

E[∆NMI | wi, wj ] = P(cm = cn) · (n2 − n1), (1)

In what follows, we present how to estimate P(cm = cn)
and (n2 − n1).

We use est = 1/0 to signify if ys equals yt or not, and
denote the posterior pairwise probability as P(est = 1).
We estimate the pairwise probability following previous
probability clustering methods (e.g., Liu et al., 2022), and

discuss the estimation details in Appendix B.1. Then we can
express the aggregation probability P(cm = cn) as follows:

P(cm = cn) =

∏
s∈wi,t∈wj

P(est = 1)∏
s∈wi,t∈wj

P(est = 1) +
∏

s∈wi,t∈wj

P(est = 0)
,

(2)
The detailed derivation of Eq. (2) is in Appendix A.2.

Moving forward, we focus on formulating n2 − n1. In
line with the notations used in Theorem 2.5, we define
∆h = H(Ω)−H(Ω∗) and proceed with the following result:

n2 =
2I(Ω⋆;C)

H(Ω⋆) +H(C)
≈ 2I(Ω;C)

H(Ω) +H(C)−∆h
,

where we use the fact that I(Ω∗;C) ≈ I(Ω, C) when the
purity of wi and wj is sufficiently large. Moreover, when
the sizes of clusters wi and wj are significantly smaller
than the sample size N , the direct calculation gives that
∆h ≪ H(Ω) + H(C) (refer to Appendix A.3 for verifica-
tion). Hence, we have

n2 − n1 ≈ 2I(Ω;C)∆h

(H(Ω) +H(C))2
∝ ∆h, (3)

Combing Eq. (1), Eq. (2), and Eq. (3), we obtain our
estimators of E[∆NMI | wi, wj ] as follows:

E[∆NMI | wi, wj ] ∝ RHS of Eq. (2) ·∆h. (4)

where RHS denotes the right-hand side.

2.3. Adaptive Active Aggregation and Splitting

Building on the analysis of cluster aggregation and ex-
pected query impact, we detail our Adaptive Active Ag-
gregation and Splitting framework, which comprises two
distinct stages. First, the Adaptive Clustering stage is intro-
duced in Section 2.3.1, where we describe the generation
of initial clustering results. Second, in Section 2.3.2, we
discuss selecting pairwise constraints and updating cluster-
ing during the Active Aggregation and Splitting stage. The
A3S workflow is illustrated in Figure 1, and the steps are
summarized in Algorithm 1.
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Figure 2. Case study for A3S. In iteration 1, the cluster w6 does not pass the purity test and the oracle invests 12 queries to split it into two
pure subclusters. In iteration 2, the query result for the two central samples is must-link and they are merged into one cluster.

2.3.1. INITIALIZATION VIA ADAPTIVE CLUSTERING

Current active clustering methods often necessitate manu-
ally setting initial cluster numbers, a challenging task when
the number of classes is unknown. In response, we propose
using adaptive clustering methods to determine an appropri-
ate cluster number for initialization. An adaptive clustering
method organizes data based on local density, revealing
the dataset’s inherent structure. It handles noise by isolat-
ing each noisy sample into a separate cluster (i.e., outlier),
avoiding unsuitable data grouping. This approach ensures a
more natural and purer clustering outcome. Classic adaptive
clustering methods include Probabilistic Clustering (Liu
et al., 2022), density-based clustering (Zhang et al., 2021;
Khan et al., 2018), among others. Additionally, the qual-
ity of adaptive clustering can be significantly enhanced in
multi-view clustering scenarios (Liu et al., 2023). In this
process, we aim to obtain a suitable reference for the num-
ber of clusters (typically larger than real class numbers),
rather than the optimal clustering, hence do not require a
precise hyper-parameter search. Once the adaptive cluster
number is established, we can employ the desired clustering
algorithm to produce the initial clustering result.

2.3.2. ACTIVE AGGREGATION AND SPLITTING

Query Strategy. To ensure a high success rate in establish-
ing ‘must-link’ connections among selected cluster pairs,
We employ a two-step query strategy. The first step involves
filtering out low-quality cluster pairs, focusing on those with
aggregation probabilities at the top. In the second step, we
utilize Eq. (4) to calculate the expected NMI gain for these
cluster pairs. Then we choose the pair with the highest NMI
gain. By Theorem 2.5, it is necessary to evaluate the pu-

rity of the two chosen clusters and select one representative
sample (i.e., it belongs to the dominant class of this cluster)
from each cluster to form a sample pair. This pair will then
be subjected to queries by oracles. To facilitate this process,
we specially designed a purity test.
Purity Test. For convenience, we employ the sphere struc-
ture to depict a cluster, where the centroid sample of a cluster
is denoted as j0. The other samples in the cluster are marked
as ji,ρ, indicating that a sphere centered on sample i with a
radius of d(i, ji,ρ) includes ρ percent of the samples in the
cluster. Considering that outlier samples typically reside in
the outer regions of a cluster, and samples within impure
clusters tend to be more sparsely distributed, we bifurcate
the task of purity testing into two consecutive judgments.

First, we evaluate how densely the samples are concentrated
within a cluster. This assessment is formalized as the density
test for a cluster w, expressed in Eq. (5), where τ represents
a pre-set threshold that determines the level of strictness in
this density test, and 1(·) denotes the indicator function.

DT (w) = 1
(∑

i∈w,j∈w(i) P(eij = 1)∑
i∈w |w(i)|

> τ
)
, (5)

w(i) = {j | j ∈ w,P(eij = 1) < P(eiji,0.5 = 1)}

If a cluster fails in the density test, we select a sample
pair as (j0, jj0,0.7), and require oracles to judge P(w) =
1(yj0 = yjj0,0.7

). It estimates whether the purity of this
cluster is higher than 0.7 (i.e., satisfying the conditions in
Theorem 2.5). Overall, the purity test is as follows:

PT (w) = DT (w) if DT (w) else P(w). (6)

Clustering Update. In response to different outcomes in
the purity test, we adopt the following strategies to update
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the clustering: (i) The purity test yields a result of 1 for both
clusters, and we require the oracle to query their central
samples. Should the query yield a must-link result, we will
merge the clusters; if not, we will retain them as separate
clusters. (2) The purity test yields 0 for at least one cluster,
indicating a need for refinement, we proceed to split it into
multiple subclusters with enhanced purity. Given the proven
effectiveness of sample-based active clustering in managing
small-scale datasets, as noted by Basu et al. (2004), we
apply this approach for the splitting task, and the detail is
described in Algorithm 2.

Transitive Inference. The must-link and cannot-
link constraints possess the transitivity property (e.g.,
(x1, x2), (x2, x3) are must-linked, then (x1, x3) is must-
linked). To store the constraints, we define a state matrix
as S = {sij}N×N , sij ∈ {−1, 0, 1}. Here, 1/-1 denotes
must-link/cannot-link, and 0 indicates an unqueried state.
To avoid unnecessary queries, we need to augment the
constraints set each time a new constraint is added. We
assert that this expansion is only relevant to the preced-
ing constraints that share a common sample with the new
constraint, and propose a Fast Transitive Inference (Algo-
rithm 3) method to update the constraints. The correctness
of this assertion and algorithm is proved in Appendix A.4.

2.3.3. DISCUSSION.

Complexity Analysis. The computational complexity of
the A3S algorithm comprises three distinct components.
During the pairwise probability estimation, the complexity
is O(NM), where M denotes the number of neighbors
considered for each sample. This is due to the need to
only account for the neighboring clusters in each query.
In the adaptive clustering process, the complexity depends
on the specific algorithm, which we mark as O(A). The
complexity of the query strategy is less than O(k2 + kL2),
where k is the initial cluster number and L2 denotes the
iteration number for A3S. Because there are k2 cluster pairs
at the beginning, and we only need to re-calculate k cluster
pairs in each iteration. Consequently, the computational
complexity of A3S is at most O(NM +A+ k2 + kL2).

Application of A3S. A3S excels in two key scenarios: First,
in clustering tasks lacking prior data information (strange
environment), like the number of classes or sample distribu-
tion, where traditional methods falter or require extensive
human queries. Second, in ongoing real-world applications
needing regular data aggregation (expanding environment),
such as weekly updates. Here, A3S adeptly merges new
with existing clusters, efficiently managing redundancy. It’s
particularly suitable when each period’s data is already high-
quality, naturally meeting purity constraints.

3. Experiments
We organize the experiments as follows: we explain the ex-
perimental setup in Section 3.1; we compare A3S with state-
of-the-art active clustering methods and present the detailed
results in Section 3.2; then we compare the performance
of A3S when applied to different clustering algorithms in
Section 3.3; lastly, we explore the influence of components
in A3S in Section 3.4 to 3.5.

3.1. Experimental Setup

Datasets. We sampled six datasets from four real-world
image sources for the experiments: Market-1501 (Zheng
et al., 2015), which comprises human body images from
1501 individuals. We use two subsets: MK20 (351 images
from 20 people) and MK100 (1650 images from 100 peo-
ple); Humbi (Yu et al., 2020), a large multiview image
dataset focused on human expressions like faces, and we
extracted a subset Humbi-Face containing 5600 face im-
ages from 100 different people; Handwritten (Dua et al.,
2017), a collection containing 2000 samples of handwrit-
ten digits from ‘0’ to ‘9’. We use the Fourier coefficient
features in the experiments. (4) MS1M (Guo et al., 2016), a
substantial benchmark dataset commonly used in face recog-
nition tasks, and we sampled two large subsets: MS1M-10k,
MS1M-100k. The details of these datasets are shown in
Table 1. Regarding the commonly used benchmarks in pre-
vious constrained clustering methods (e.g., UCI datasets
(Asuncion & Newman, 2007)), they are not appropriate for
our problems due to the very small sample and class sizes.
Consequently, we have not evaluated the performance on
those benchmarks. We seek to demonstrate that our method
is generally workable for different types of data/applications
with a wide range of cluster numbers and sample numbers.

Baselines. To validate the performance of our methods, a
set of baselines and state-of-the-art algorithms are compared.
Random (Basu et al., 2003) randomly selects pairwise con-
straints. FFQS (Basu et al., 2004) uses the farthest-first
scheme to acquire diversified samples and pairwise con-
straints. NPU (Xiong et al., 2013) uses the classic entropy-
based principle to select informative samples to construct
pairwise constraints. We use PCKMeans (Basu et al., 2003)
as the semi-supervised clustering algorithm for these three
methods, because PCKMeans best suits the pairwise con-
straints manner, and is suitable for large data sets with sparse
high-dimensional data (Cai et al., 2023). URASC (Xiong
et al., 2016) aims to iteratively query pairwise constraints
that can maximally reduce the uncertainty of spectral clus-
tering. COBRA over-cluster a dataset with K-means, then
iteratively selects the closest cluster pairs for querying.

Implementation. For the baseline methods, we maintain
the same hyperparameter settings as reported in their origi-
nal papers to ensure fairness in the comparison. Note that
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Algorithm 1 Adaptive Active Aggregation and Splitting
Input: Data X , query limit Qmax, index q = 0, clustering algo-
rithm A
Initialization: Using A to generate initial clustering Ω
for iter in 1 : L2 do

Get a batch of k candidate cluster pairs whose aggregation prob-
ability ranks top-k as C = {(wi, wj)|wi, wj ∈ Ω}
Use Eq. (4) to measure cluster pairs in C and choose the top pair
if q < Qmax then

Implement Purity Test on w1 and w2 with Eq. (6)
if Both clusters pass the test then

Select their central samples as x1 and x2

Require oracle to query (x1, x2)
Aggregate w1 and w2 if (x1, x2) is must-linked

else
Split w1 or/and w2 with Algorithm 2

end if
Update constraints set with Algorithm 3
Update q by adding the newly invested number of queries

else
Terminate and return the result

end if
end for

Algorithm 2 Subcluster Partition
Input: Cluster w; subcluster lists N = {}
Sort samples in w in ascending order by their distance to the centroid
for i in w do

Select one sample from each subcluster in N , and get S
Query i with sample in S till a must-link is reached or all samples
in S have been queried
if i is must-linked to j in S then

Move i from w to the subcluster Nu, j ∈ Nu

else
Move i from w to an empty subcluster, and add the new
subcluster Ni = {i} to N

end if
end for

Algorithm 3 Fast Transitive Inference
Input: State matrix S, new constraints (s, t).
for i in (s, t) do

Get ML = {j|S[i, j] = 1}
Get CL = {j|S[i, j] = −1}
Let S[p, q] = 1, for p, q ∈ ML
Let S[p, q] = −1, for p ∈ ML, q ∈ CL

end for

Table 1. Statistical information about six datasets. N , K, and D
represent the sample numbers, class numbers, and the dimension
of features. b indicates whether the sample quantities between
different classes are balanced.

MK20 MK100 Handwritten Humbi-Face MS1M-10k MS1M-100k

N 351 1650 2000 5600 10000 100000
K 20 100 10 100 146 1469
D 256 256 76 256 512 512
b % % ! ! % %

these baseline methods require the real cluster number as
input, which is provided in our experiments. In many clus-
tering applications, however, this number is typically not
known beforehand, thus they are at an advantage. For the
initialization of A3S1, we use isotonic regression to learn
pairwise probability and utilize Fast Probabilistic Clustering
(FPC) (Liu et al., 2022) as the adaptive clustering method.
Here, we choose FPC because it only requires the pairwise
probability for automatic data grouping, which is easy to
implement. COBRA cannot assign a proper initial clus-
ter number itself, so we use the same k as A3S for a fair
comparison. More details are presented in Appendix B.

Evaluation. As discussed in Vinh et al. (2009), NMI can
exhibit bias towards fine-grained clustering. Therefore,
in addition to NMI, we employ the Adjusted Rand Index
(ARI) (Hubert & Arabie, 1985) to evaluate the performance.
NMI and ARI fall within the range of (0,1] and [-1,1] re-
spectively, with larger values indicating superior clustering
performance. To further investigate whether A3S effectively
resolves the category fission and recover the real clustering
structure, we introduce two supplementary metrics: (1) the
Fission Rate (Υ = k

K ), where K is the real class number

1The code is available at https://github.com/xiangtanshi/A3S.

and k is the resulting cluster number; and (2) the entropy
ratio between resulting clusters (Ω) and real class partitions
(C), r = H(Ω)

H(C) . When Υ and r approaches 1, we conclude
that A3S has effectively mitigated the category fission prob-
lem, and successfully recovered the true structure of C.

3.2. Comparison with SOTA Active Clustering Methods

We compare A3S and five baseline methods on four datasets
with different numbers of queries in terms of both NMI and
ARI. The results are shown in Figure 3. Overall, A3S has
higher NMI and ARI values than other methods on these
data sets when setting the same number of queries, and
A3S requires only a small amount of queries to improve
the NMI and ARI values significantly. In addition, we ob-
serve that both A3S and COBRA (cluster-based methods)
improve steadily with the increase of queries, while Ran-
dom, FFQS, NPU and URASC (semi-supervised clustering
based methods) show fluctuations on all data sets. This is
because genuine supervisory information can sometimes
be detrimental to clustering, as it may introduce violations
(e.g., (xi, xj) is cannot-linked, but their similarity to xk is
both very high). This problem also exists for the latest semi-
supervised clustering methods such as PCSKM (Vouros &
Vasilaki, 2021). However, it does not mean that this line of
work is not applicable. One common advantage of them is
that they can ultimately improve the NMI and ARI value to
1.0 if enough queries can be provided (typically less than
N × log(N)). They are a good choice when the target is to
reveal the cluster identity for all samples accurately, or only
low-quality features are available and the NMI of the initial
clustering is lower than 0.2.

The detailed running result of A3S is in Table 2. A3S
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Figure 3. Comparing the performance of A3S and baselines on four datasets in terms of query count. More queries are invested for
baselines to illustrate their characteristics.

significantly reduces the fission rate and the entropy ratio to
almost 1.0 on all datasets, with a high clustering purity. This
validates that A3S can effectively reveal the true clustering
structure of data. It’s important to highlight that these results
are obtained without any prior knowledge about the number
of classes or class distribution. Additionally, A3S exhibits
robustness to the choice of adaptive cluster number. As
detailed in Appendix C, increasing the adaptive number
does not significantly alter the number of queries needed to
obtain the desired result.

Next, we delineate the distinctions in the results yielded by
A3S and COBRA. Although COBRA quickly improves
the NMI and ARI values, it cannot further enhance the
clustering even when more queries are invested (all must-
link clusters have already been discovered), leading to a
performance ceiling dictated by cluster purities. Recent
methods like COBRAS (Van Craenendonck et al., 2018)
and AQM+MEE (Deng et al., 2023b) also encounter simi-
lar issues. In contrast, A3S not only delivers high-quality
clusters but also identifies a subset of outlier samples. This
approach enables continued augmentation of the NMI and
ARI values through strategic querying of these outliers in
combination with existing clusters. For instance, A3S and
COBRA reach NMI values of 0.93 and 0.90 on MK100 sep-
arately, but the overall clustering purity of A3S is 0.9752,
far surpassing COBRA that is 0.8509. Further, by querying
the outlier samples of A3S with their neighbor clusters until
‘must-link’ is observed and they are aggregated to the corre-
sponding clusters, A3S can reach an NMI of 0.99 with less
than 500 more queries.

Table 2. Detailed results of A3S in Figure 3: the total running time
(seconds), initial and ending fission rate (Υ) and entropy ratio (r),
and the final clustering purity.

Time Υinit Υend rinit rend purity
MK20 0.93 2.05 0.95 1.25 1.01 0.9886
MK100 5.58 2.83 0.94 1.30 1.08 0.9752

Handwritten 6.39 8.6 1.00 1.55 1.00 0.9165
Humbi-Face 37.62 3.48 1.01 1.19 1.0 0.9745
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Figure 4. Performance of A3S on MK100 and Humbi-Face
when utilizing different clustering algorithms to generate the initial
clustering result.

3.3. A3S for Different Clustering Algorithms

To assess the compatibility of A3S on different clustering
algorithms, we additionally use three classic clustering al-
gorithms to generate the initial clustering (adaptive cluster
number is provided by FPC): K-means clustering (Choo
et al., 2020), Spectral clustering (Von Luxburg, 2007) and
Agglomerative Clustering (Murtagh & Legendre, 2014). We
test these versions of A3S on MK100 and Humbi-Face,
and the results are shown in Figure 4. Besides, we quan-
tify the difference between these initial clustering results
with their mutual ARI value in Table 3. We have two obser-
vations: first, the initial clustering outcomes derived from
different algorithms exhibit substantial variability (mutual
ARI value is typically lower than 0.6); second, A3S demon-
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Table 3. The ARI value between the clustering results of different
clustering algorithms. We use F, K, S, and A to represent Fast
Probabilistic Clustering, K-means Clustering, Spectral Clustering,
and Agglomerative Clustering.

MK100 Humbi-Face
F K S A F K S A

F 1.000 0.581 0.187 0.597 1.000 0.600 0.272 0.805
K 0.581 1.000 0.140 0.408 0.600 1.000 0.178 0.573
S 0.187 0.140 1.000 0.249 0.272 0.178 1.000 0.276
A 0.597 0.408 0.249 1.000 0.805 0.573 0.276 1.000
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Figure 5. Performance of A3S on Handwritten when 1, 2, or 4
views of the feature are used.

strates a consistent ability to enhance the clustering perfor-
mance across various algorithms. The results validate that
A3S is robust to the initial clustering results, and can be
effectively applied to other clustering algorithms without
modification. In contrast, previous active clustering methods
are typically designed and applicable to a specific clustering
algorithm like DBSCAN (Mai et al., 2013) and Spectral
Clustering (Xiong et al., 2016).

3.4. Influence of Estimated Pairwise Probability Quality

Better pairwise probability can lead to improved cluster-
ing performance, but its impact on A3S is unexplored.
Multi-view clustering (Yang & Wang, 2018) is the major
approach in this domain, and we utilize Handwritten
to investigate this aspect. The complete Handwritten
dataset comprises four distinct feature types for each sam-
ple. Following the setup in Liu et al. (2022), we ini-
tially learn the pairwise probabilities using features from
each view. Subsequently, pairwise probabilities are aggre-
gated across V different views employing the following
formula (Liu et al., 2022): P(eij = 1|d1ij , · · · , dVij) =∏V

m=1 P(eij=1|dm
ij )∏V

m=1 P(eij=1|dm
ij )+

∏V
m=1 P(eij=0|dm

ij )
, where dmij is the pair-

wise distance in the m-th view.

In the investigation of A3S’s performance with varying
views (one/two/four) as illustrated in Figure 5, we observed
that employing multi-view clustering slightly improves the
initial clustering performance, but significantly boosts A3S’s
overall effectiveness. This approach leads to quicker con-
vergence and nearly perfect NMI and ARI values. The
improvement is largely attributed to multi-view aggregated
pairwise probabilities, which make outlier samples distin-
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Figure 6. Left: performance of A3S on MS1M-10k and
MS1M-100k. Right: trade-off between initial clustering qual-
ity and initial clustering purity for COBRA on Handwritten.

guishable from neighbor samples that are from different
classes, thereby preventing them from being in one cluster
during initial clustering. Empirically, In four-view scenar-
ios, despite a higher initial fission rate of 10.1, the initial
clustering purity improves from 0.916 to 0.989.

3.5. Performance of A3S on Large datasets.

We further test A3S on two large datasets MS1M-10k and
MS1M-100k, where the initial cluster number is deter-
mined by FPC for both A3S and COBRA. The result is
in Figure 6. We have two observations: (1) A3S can reach
near-optimal ARI value (0.995) with only 3100 queries for
MS1M-100k in 8581.86 seconds, which validates that it is
scalable to large datasets. As far as we know, this is the
largest dataset ever used in active clustering research. (2)
COBRA is sensitive to the initial cluster number and can
waste too many queries to get a bad clustering result.

3.6. Case Study for A3S

We present a case study in Figure 2 to demonstrate A3S’s
mechanism using a two-class dataset. Initially, data points
are clustered into seven groups, including two outlier clus-
ters. In the first iteration, clusters w6 and w7 are selected for
their largest expected impact on the NMI value. During the
purity test, w6 fails the density test, leading to a subsequent
query between its central sample (j0) and the margin sam-
ple (jj0,0.7) of the sphere that is centered at j0 and contains
70% samples of w6. The cannot-link result indicates w6

fails the purity test, so it is split into two sub-clusters using
Algorithm 2, which costs 12 queries. In the second iteration,
clusters w9 and w7 are selected, both passing the purity test.
Their central samples are queried, and they are merged into
w10 following the must-link result.

A3S addresses outlier detection through purity tests and
subcluster partitioning. However, the purity test can
discover most but not all low-quality clusters whose
purity is lower than 0.7. As a remedy, we could resort to
multi-view features which can significantly improve the
clustering purity and reduce the number of outliers, as
shown in Section 3.4. We remark that when multi-view

8



A3S: A General Active Clustering Method with Pairwise Constraints

data is available, the purity test and subcluster partition of
A3S can be omitted, streamlining the procedure. In contrast,
COBRA attempts to mitigate outlier issues by opting
for a larger cluster number to enhance initial clustering
purity, which is inefficient as depicted in the right image
of Figure 6 (the clustering purity increases very slowly).

4. Related Work
Query Strategy in Active Clustering. Recent Active clus-
tering methods have embraced a trend of incorporating sam-
ple uncertainty into their query strategies. These methods
frequently utilize entropy to quantify uncertainty (Abin,
2016; Xiong et al., 2016; Shi et al., 2020). A common task
involves estimating the probability of a sample belonging
to different clusters or neighborhoods (Xiong et al., 2013).
Additionally, alternative criteria such as maximum expected
error reduction (Wang & Davidson, 2010) and maximum
expected clustering change (Biswas & Jacobs, 2014) have
been proposed to assess the stability of clustering results
when perturbing the similarity values between two samples.

Constraints in Semi-supervised Clustering. When us-
ing the must-link and cannot-link constraints to perform
SSC, two aspects are usually taken into consideration: the
transitive inference of constraints and the combination of
constraints to specific clustering algorithms. A few stud-
ies (Lutz et al., 2021) address transitive inference with graph-
based techniques instead of a brute-force manner. In addi-
tion, recent studies that optimize clustering results with con-
straints in SSC have explored various approaches, Vouros &
Vasilaki (2021) explores Kmeans clustering for high dimen-
sional data; Yang et al. (2022) attempts to correctly infer
the number of clusters for hierarchical clustering; Ren et al.
(2018) tries to utilize prior knowledge to determine a proper
cluster number for density-based clustering; Chen & Zhong
(2022) develops a graph-based SSC that is robust to noise,
but is not suitable for large datasets. However, there remains
a relatively unexplored potential in integrating these modern
SSC approaches with active clustering, which presents a
promising avenue for future research.

5. Conclusion
This paper studies the cluster-adjustment scheme in ac-
tive clustering, offering theoretical guidance for non-
deteriorating cluster aggregation and quantifying the impact
of human queries and aggregation operations. We then pro-
pose A3S, a general framework that does not rely on the
dataset prior. Through extensive testing, A3S demonstrates
its effectiveness on diverse real-world datasets with varying
class numbers and distributions. We will explore the appli-
cation of A3S on more complex multi-view datasets and
gigantic datasets at the million level in the future.
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A. Proofs
A.1. Proof of Theorem 2.5

Proof of Theorem 2.5. Let p and q denote the sizes of w1 and w2, respectively. We further assume that the class index of
these outliers is ij ∈ {1, 2, · · · ,K}, where j ∈ {1, 2, · · · , (1− t1)p+ (1− t2)q}. For ease of presentation, for any class
index i ∈ {1, 2, · · · ,K}, we use si to denote the class size, i.e., |ci| = si. Without loss generality, we assume that q ≥ p
throughout this proof.

By the definition of mutual information, we have

I(Ω∗;C) = I(Ω;C) +

K∑
τ=1

P(w1,2 ∩ cτ ) log
P(w1,2 ∩ cτ )

P(w1,2)P(cτ )
−

K∑
τ=1

P(w1 ∩ cτ ) log
P(w1 ∩ cτ )

P(w1)P(cτ )

−
K∑

τ=1

P(w2 ∩ cτ ) log
P(w2 ∩ cτ )

P(w2)P(cτ )

= I(Ω;C) +

K∑
τ=1

|w1,2 ∩ cτ |
N

log
N · |w1,2 ∩ cτ |
|w1,2| · |cτ |︸ ︷︷ ︸

(I)

−
K∑

τ=1

|w1 ∩ cτ |
N

log
N · |w1 ∩ cτ |
|w1| · |cτ |︸ ︷︷ ︸

(II)

−
K∑

τ=1

|w2 ∩ cτ |
N

log
N · |w2 ∩ cτ |
|w2| · |cτ |︸ ︷︷ ︸

(III)

. (7)

Then we bound these three terms respectively. For Term (I), we have

(I) =
|w1,2 ∩ c1|

N
log

N · |w1,2 ∩ c1|
|w1,2| · |c1|

+

K∑
τ=2

|w1,2 ∩ cτ |
N

log
N · |w1,2 ∩ cτ |
|w1,2| · |cτ |

=
t1p+ t2q

N
log

N(t1p+ t2q)

(p+ q)s1
+

(1−t1)p+(1−t2)q∑
j=1

1

N
log

N · |w1,2 ∩ cij |
(p+ q)sij

. (8)

Similarly, we have

(II) =
|w1 ∩ c1|

N
log

N · |w1 ∩ c1|
|w1| · |c1|

+
K∑

τ=2

|w1 ∩ cτ |
N

log
N · |w1 ∩ cτ |
|w1| · |cτ |

=
t1p

N
log

Nt1
s1

+

(1−t1)p∑
j=1

1

N
log

N · |w1 ∩ cij |
psij

, (9)

and

(III) =
|w2 ∩ c1|

N
log

N · |w2 ∩ c1|
|w2| · |c1|

+

K∑
τ=2

|w2 ∩ cτ |
N

log
N · |w2 ∩ cτ |
|w2| · |cτ |

=
t2q

N
log

Nt2
s2

+

(1−t2)q∑
j=1

1

N
log

N · |w2 ∩ cij |
qsij

. (10)

Plugging Eq. (8), Eq. (9), and Eq. (10) into Eq. (7), together with the fact that

|w1,2 ∩ cij | ≥ max{|w1 ∩ cij |, |w2 ∩ cij |}, ∀j ∈ {1, 2, · · · , (1− t1)p+ (1− t2)q},
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we obtain that

I(Ω∗;C) ≥ I(Ω;C) +
t1p

N
log

t1p+ t2q

t1(p+ q)
+

t2q

N
log

t1p+ t2q

t2(p+ q)︸ ︷︷ ︸
(IV)

(11)

−
( (1− t1)p+ (1− t2)q

N
log(p+ q)− (1− t1)p

N
log p− (1− t2)q

N
log q

)
︸ ︷︷ ︸

(V)

. (12)

For Term (IV) in Eq. (11), by the Taylor expansion

log(1 + x) =

∞∑
u=1

(−1)u−1

u
· xu,

we have

(IV) =
t1p

N

∞∑
u=1

(−1)u−1

u
·
( (t2 − t1)q

t1(p+ q)

)u

+
t2q

N

∞∑
u=1

(−1)u−1

u
·
[ (t1 − t2)p

t2(p+ q)

]u
=

∞∑
v=1

1

2v − 1
·
[ t1p
N

·
( (t2 − t1)q

t1(p+ q)

)2v−1

+
t2q

N

( (t1 − t2)p

t2(p+ q)

)2v−1]
−

∞∑
v=1

1

2v
·
[ t1p
N

·
( (t2 − t1)q

t1(p+ q)

)2v

+
t2q

N

( (t1 − t2)p

t2(p+ q)

)2v]
. (13)

For ease of presentation, we denote m = q/p ≥ 1. Then for any v ≥ 1, we have

∞∑
v=1

1

2v
·
[ t1p
N

·
( (t2 − t1)q

t1(p+ q)

)2v

+
t2q

N

( (t1 − t2)p

t2(p+ q)

)2v]
=

∞∑
v=1

pq(t1 − t2)
2v

2vN(p+ q)2v
·
[q2v−1

t2v−1
1

+
p2v−1

t2v−1
2

]
≤

∞∑
v=1

mp2(3/10)2v

2vNp2v(1 +m)2v
· (1 +m2v−1) ·

(10p
7

)2v−1

≤ 3p

20N

∞∑
v=1

1

v
·
(3
7

)2v−1

≤ 0.0716p

N
, (14)

where the first inequality uses m = q/p and the assumption that t1, t2 ∈ [0.7, 1], the second inequality follows the fact that
m(1 +m2v−1) ≤ (1 +m)2v , and the last inequality follows that

∞∑
v=1

1

v
·
(3
7

)2v−1

≤ 3

7
+

∞∑
v=2

1

2
·
(3
7

)2v−1

=
267

560

and simple calculations.

On the other hand, for any v ≥ 1, we have
∞∑
v=1

1

2v − 1
·
[ t1p
N

·
( (t2 − t1)q

t1(p+ q)

)2v−1

+
t2q

N

( (t1 − t2)p

t2(p+ q)

)2v−1]
=

∞∑
v=1

pq(t1 − t2)
2v−1

(2v − 1)N(p+ q)2v−1
·
[p2v−2

t2v−2
2

− q2v−2

t2v−2
1

]
=

∞∑
v=1

pq(t1 − t2)
2v+1

(2v + 1)N(p+ q)2v+1
·
[p2v
t2v2

− q2v

t2v1

]
. (15)
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Furthermore, we have
∞∑
v=1

pq(t1 − t2)
2v+1

(2v + 1)(p+ q)2v+1
·
[p2v
t2v2

− q2v

t2v1

]
≥ −

∞∑
v=1

pq|t1 − t2|2v+1

(2v + 1)N(p+ q)2v+1
·
[p2v
t2v2

+
q2v

t2v1

]
≥ − p

N

∞∑
v=1

1

2v + 1
·
( 3

10

)2v+1

≥ −0.0096p

N
, (16)

where the second inequality uses the facts that (p + q)2v+1 ≥ q2v+1 + qp2v and t1, t2 ∈ [0.7, 1], and the last inequality
follows that

∞∑
v=1

1

2v + 1

( 3

10

)2v+1

≤ 9

1000
+

1

5

∞∑
v=2

( 3

10

)2v+1

=
9

1000
+

243

455000
< 0.0096.

Combining Eq. (13), Eq. (14), Eq. (15), and Eq. (16), we obtain that

(IV) ≥ −0.0812p

N
. (17)

Term (V) in Eq. (12). For Term (V) in Eq. (12), we have

(V) =
(1− t1)p+ (1− t2)q

N
log(p+ q)− (1− t1)p

N
log p− (1− t2)q

N
log q

=
(1− t1)p

N
log

p+ q

p
+

(1− t2)q

N
log

p+ q

q
. (18)

Furthermore, we have

(1− t1)p

N
log

p+ q

p
+

(1− t2)q

N
log

p+ q

q
(19)

≤ (1−min{t1, t2})p
N

log
p+ q

p
+

(1−min{t1, t2})q
N

log
p+ q

q

=
(1−min{t1, t2})

N
·
[
p log

p+ q

p
+ q log

p+ q

q

]
. (20)

Let

∆h =
1

N
·
[
p log

p+ q

p
+ q log

p+ q

q

]
. (21)

Combining Eq. (18), Eq. (19), and Eq. (21), we obtain

(V) ≤ (1−min{t1, t2}) ·∆h. (22)

Putting Together. When t1, t2 ≥ 0.7, plugging Eq. (17) and Eq. (22) into Eq. (11) and Eq. (12), we have

I(Ω∗;C) ≥ I(Ω;C)− 0.0812p

N
− (1−min{t1, t2}) ·∆h. (23)

Recall that the ∆h defined in Eq. (21) takes the form

∆h =
1

N
·
[
p log

p+ q

p
+ q log

p+ q

q

]
=

p

N
·
(
log(1 +m) +m log

(
1 +

1

m

))
≥ 2 log 2 · p

N
, (24)
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where the second equality uses m = q/p, the last inequality uses m ≥ 1. Putting Eq. (23) and Eq. (24) together, we have

I(Ω∗;C) ≥ I(Ω;C)− (1.0586−min{t1, t2}) ·∆h. (25)

Then, we calculate the entropy after fusion.

H(Ω∗) = H(Ω)− p+ q

N
log

p+ q

N
+

p

N
log

p

N
+

q

N
log

q

N

= H(Ω)− p+ q

N
log(p+ q) +

p

N
log p+

q

N
log q

= H(Ω)−∆h (26)

Recall that

n1 =
2I(Ω;C)

H(Ω) +H(C)
, n2 =

2I(Ω∗;C)

H(Ω∗) +H(C)
.

By Eq. (25) and Eq. (26), we know that the sufficient condition of n2 ≥ n1 is

2[I(Ω;C)− (1.0586−min{t1, t2}) ·∆h]

H(Ω) +H(C)−∆h
≥ 2I(Ω;C)

H(Ω) +H(C)
,

which is equivalent to

n1 =
2I(Ω;C)

H(Ω) +H(C)
≥ 2 · (1.0586−min{t1, t2}),

which concludes the proof of Theorem 2.5.

A.2. Derivation of Eq. (2)

Derivation of Eq. (2). We consider the queried result of “must-link” (cm = cn ) between wi and wj as a conditional event,
which is expressed by {∀s ∈ wi,∀t ∈ wj , est = 1 | ∀(s, t) ∈ wi or wj , est = 1}. Here the condition implies that samples
within a cluster are assigned to the same class. Further, we follow the setup in probabilistic clustering (Lu & Leen, 2004; Liu
et al., 2022) that models the distribution of clustering based on the pairwise probability. Then, the joint probability density
of a clustering π = [z1, z2, · · · , zm] for m samples is expressed as P(π) = 1

α

∏
s,t∈[1,2,··· ,m] P(est = 1)I(zs=zt) ×P(est =

0)I(zs ̸=zt), where I(·) is the indicator function, and α is the normalization factor.

Under the condition of ∀(s, t) ∈ wi or wj , est = 1, the two events {∀s ∈ wi,∀t ∈ wj , est = 1} and {∀s ∈ wi,∀t ∈
wj , est = 0} are mutually exclusive. And we denote them as y(wi) = y(wj) and y(wi) ̸= y(wj) for simplicity. Therefore,
by the formula of conditional probability, we can obtain:

P(cm = cn) = P(∀s ∈ wi,∀t ∈ wj , est = 1 | ∀(s, t) ∈ wi or wj , est = 1)

=
P(y(wi) = y(wj),∀(s, t) ∈ wi or wj , est = 1)

P(∀(s, t) ∈ wi or wj , est = 1))

=
P(y(wi) = y(wj),∀(s, t) ∈ wi or wj , est = 1))

P(y(wi) = y(wj),∀(s, t) ∈ wi or wj , est = 1)) + P(y(wi) ̸= y(wj),∀(s, t) ∈ wi or wj , est = 1))

=

1
A

∏
s∈wi,t∈wj

P(est = 1)
∏

s,t∈wi,s,t∈wj
P(est = 1)

1
A [
∏

s∈wi,t∈wj
P(est = 1) +

∏
s∈wi,t∈wj

P(est = 0)]
∏

s,t∈wi,s,t∈wj
P(est = 1)

=

∏
s∈wi,t∈wj

P(est = 1)∏
s∈wi,t∈wj

P(est = 1) +
∏

s∈wi,t∈wj
P(est = 0)

,

where A is the normalization factor of the joint probability density for samples in {wi, wj}.
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Remark on the condition. The assignment of classes for samples is subject to clustering. For instance, to categorize a
group of sheep, various attributes like gender, age, health, and weight can be the basis for clustering. In our scenario to
measure the likelihood of “must-link”, what we indeed care about is the probability that the two clusters should be merged
during the clustering, rather than the actual classes of these samples (this is the mission of oracles). After all, each class
assignment corresponds to a specific meaning in real applications.

Remark on the aggregation probability. Previous studies often evaluate the likelihood of cm = cn with heuristic strategies.
Common strategies include using the distance between the central samples of two clusters or the closest distance between
the clusters themselves to determine which cluster pairs to query. However, these methods that focus on a single sample
from a cluster, may become less effective for clusters with irregular shapes, and Eq. (2) provides a better estimation that
takes into account the influence of all samples.

Remark on the query style. A3S requires oracles to provide pairwise comparison results for each selected sample pair,
which demands minimal domain-specific knowledge and is easier to implement (Xiong et al., 2016), especially when the
number of classes is large. In contrast, traditional active learning necessitates that the oracle assigns specific labels to the
selected samples or annotates them according to predefined rules (Deng et al., 2023a), causing much heavier costs during
the annotation process.

A.3. Justification of Approximation

Regarding the Approximation of Entropy. If (p+ q) ≪ N , then

∆h =
p+ q

N
log(p+ q)− p

N
log p− q

N
log q

<
p+ q

N
log(p+ q)

<
p+ q

N
log

N

p+ q
.

Note that H(Ω) =
∑

s
s
N log N

s , where s is the cluster size like p and q. Together with p+ q ≪ N , we have

∆h ≪ H(Ω) < H(Ω) +H(C).

Regarding the Mutual Information. If the purity of w1 and w2 is 1, and they belong to the same class cτ , then we have

P(w1 ∩ cτ ) = P(w1), P(w2 ∩ cτ ) = P(w2), P(w1,2 ∩ cτ ) = P(w1,2) = P(w1) + P(w2).

Hence, and we have I(Ω∗;C) = I(Ω;C). This is because

I(Ω∗;C) = I(Ω;C) + P(w1,2 ∩ cτ ) log
P(w1,2 ∩ cτ )

P(w1,2)P(cτ )

− P(w1 ∩ cτ ) log
P(w1 ∩ cτ )

P(w1)P(cτ )
− P(w2 ∩ cτ ) log

P(w2 ∩ cτ )

P(w2)P(cτ )

= I(Ω;C) + P(w1,2) log
1

P(cτ )
− P(w1) log

1

P(cτ )
− P(w2) log

1

P(cτ )
= I(Ω;C).

When the purity is less than 1.0, considering Eq. (25), and fact that ∆h ≪ min{H(Ω),H(C)}, we have

|I(Ω∗;C)− I(Ω;C)| < (1.0586−min{t1, t2}) ·∆h ≪ min{H(Ω),H(C)}. (27)

A.4. Fast Transitive Inference

FTI involves expanding the set of constraints based on the information within the original set. For example, if (x1, x2)
and (x2, x3) are must-link constraints, and (x1, x4) is a cannot-link constraint, it implies that (x1, x3) must be a must-link
constraint, while (x2, x4) and (x3, x4) must be cannot-link constraints.
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To facilitate the process, we present an efficient method, Fast Transitive Inference (FTI), which is designed to discover the
transitive closure for the constraint set in A3S. The implementation is shown in Algorithm 3.

The performance of FTI is guaranteed by Theorem A.1.

Theorem A.1 (Completeness of FTI). By executing the FTI algorithm every time a new human query is made, we can
always get the latest transitive closure.

Proof of Theorem A.1. Suppose the must-link sample sets with samples i and j are denoted as Gi and Gj , respectively. And
the sample sets that are cannot-link with i and j are denoted as gi and gj . When the constraints between i and j are queried,
only the constraints of sample pairs within {Gi, Gj , gi, gj} may change, as no must-link constraints are built between them
and the rest samples. We discuss the two cases where i and j are must-linked or cannot-linked:

1 (i, j) is must-linked. First, FTI updates the constraints for sample pairs related to i, then G′
i = Gi ∪ {j}, G′

j = Gj ∪Gi,
and g′j = gj ∪ gi. The constraints between i and Gj , gj have not yet been updated. Then, FTI updates the constraints for
sample pairs related to j, then we have G′

i = Gi ∪Gj and g′i = gi ∪ gj . And this means all ml constraints between Gi

and Gj , and cl constraints between {Gi, Gj} and {gi, gj} are updated and stored in the state matrix S.

2 (i, j) is cannot-linked. First, FTI updates the constraints for sample pairs related to i, then g′i = gi ∪{j} and g′j = gj ∪Gi.
Then FTI updates the constraints for sample pairs related to j, then we have g′i = gi∪Gj . And this means all cl constraints
between Gi and Gj are updated and stored in S.

Combining these two scenarios, we finish the proof of Theorem A.1

B. Implementation Details of A3S
B.1. Estimating Pairwise Probability

Following the setup in (Liu et al., 2022), we use isotonic regression to learn a regressor that estimates the pairwise posterior
probability P(eij = 1|dij), where dij is the Euclidean distance between samples i and j. The estimation encompasses three
steps:

(1) Since ground truth labels are unavailable, we employ K-means clustering to generate pseudo labels for the samples.
Alternatively, Fast Probabilistic Clustering (FPC) can also be used for this purpose, where similarity values between
samples serve as a rudimentary approximation of pairwise probabilities. In practical applications, cosine similarity is
particularly well-suited for FPC.

(2) Next, we generate the training data for isotonic regression. We utilize the k-nearest neighbors of each sample to form
sample pairs. The independent variable of isotonic regression is the Euclidean distance between two samples in the sample
pair. Each pair is labeled as 0 or 1, indicating whether the two samples in each pair share the same pseudo label. The label
serves as the dependent variable of isotonic regression.

(3) Finally, we conduct isotonic regression on the gathered data, learning a function that maps the Euclidean distance between
two samples to the pairwise probability, i.e., P(est = 1|dst).

Liu et al. (2022) also proposed Graph-context-aware refinement to enhance the quality of the posterior probability, but it is
not an essential component of A3S. Therefore, we did not include it in our experiments. However, incorporating them would
further enhance the performance of A3S, as they can improve the quality of the estimated merging probability between
cluster pairs.

B.2. Calculating Aggregation Probability

We derive the aggregation probability based on the condition that the purity of two clusters are 1.0. In practical applications,
the assumption that both clusters have a purity of 1.0 might not strictly hold. Specifically, the pairwise probability between
major samples and outlier samples from wi and wj will degrade the aggregation probability (i.e., making the result biased
towards 0). To deal with this issue, we propose a variant of P(cm = cn), denoted as Pknn(cm = cn). This variant considers
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only the sample pairs within the k-nearest neighbors. Assume that |wi| ≤ |wj |, the formulation is as follows:

Pknn(cm = cn) =

∏
s∈wit∈knnwj

(s)

P(est = 1)∏
s∈wit∈knnwj

(s)

P(est = 1) +
∏

s∈wit∈knnwj
(s)

P(est = 0)
, (28)

where knnwj
(s) denotes the nearest neighbors of s in wj . Empirical results show that A3S is not sensitive to the number of

neighbors, and we consider 4 neighbors for each sample in our experiments.

B.3. Feature Extraction

The facial characteristics in the Humbi-Face dataset are extracted using a face recognition model. Similarly, the
MK20 and MK100 datasets utilize a person re-identification model for body feature extraction (Liu et al., 2022). In the
case of MS1M-10k and MS1M-100k, facial features are extracted using the Arcface model (Deng et al., 2019). The
Handwritten dataset encompasses four types of features: average pixel features, Fourier coefficient features, Zernike
moments features, and Karhunen-Loève coefficient features.

B.4. Hyperparameter Setting

The implementation of A3S involves two hyperparameters: the threshold for density test and the number of neighbors
considered in Fast Probabilistic Clustering. We report our choice of these two parameters in Table 4. In particular, the
hyper-parameter τ is used to filter out the clusters with low density, and it is set to be slightly lower than the average density
among all clusters. For the selection of τ , we first compute density using the formula in Eq. (5) for all clusters, then calculate
the mean value as d, and set τ as d− 0.1. The final results of A3S are not sensitive to this value, and perturbing it to d or
d− 0.05 has a negligible impact on the final clustering result.

Table 4. Hyperparameter setting of A3S.
dataset MK20 MK100 Handwritten Humbi-Face MS1M-10k MS1M-100k

τ 0.5 0.8 0.8 0.5 0.5 0.5
neighbors 50 50 50 50 50 50

B.5. Computing Resources

We utilize a [GeForce RTX 3090 Ti] for feature extraction using DNN models. For the implementation of baseline methods
and A3S, we perform the experiments on a machine equipped with an Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz.

C. More Experiment Results
In our ablation study, we examine the impact of varying the adaptive cluster number on A3S. We define this number as r · k,
where k is the adaptive number determined by FPC and r is a ratio factor set to values in the set 1, 1.5, 2. Utilizing the
K-means algorithm, we generate initial clustering with the cluster number r · k, and present the corresponding results of
A3S in Figure 7. It’s observed that the performance of the initial clustering is relatively sensitive to the adaptive cluster
number. However, the selection of this adaptive number has a minimal effect on the number of queries required to achieve
the desired clustering outcome. This demonstrates A3S’s robustness to variations in the adaptive cluster number.
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Figure 7. The NMI and ARI performance of A3S when the adaptive cluster number is set as r · k, where k is the adaptive number
generated by FPC and r is the ratio factor.
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