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ABSTRACT

The recently proposed schedule-free method has been shown to achieve strong
performance when hyperparameter tuning is limited. The current theory for
schedule-free only supports a constant learning rate, where-as the implemen-
tation used in practice uses a warm-up schedule. We show how to extend the
last-iterate convergence theory of schedule-free to allow for any scheduler,
and how the averaging parameter has to be updated as a function of the learn-
ing rate. We then perform experiments showing how our convergence theory has
some predictive power with regards to practical executions on deep neural net-
works, despite that this theory relies on assuming convexity. When applied to the
warmup-stable-decay (wsd) schedule, our theory shows the optimal convergence
rate of O(1/

√
T ). We then use convexity to design a new adaptive Polyak learning

rate schedule for schedule-free. We prove an optimal anytime last-iterate con-
vergence for our new Polyak schedule, and show that it performs well compared
to a number of baselines on a black-box model distillation task.

1 INTRODUCTION

The recently introduced schedule-free method (Defazio et al., 2024) achieves state-of-the-art perfor-
mance over a range of deep learning problems, as proven by its winning entry for the MLCommons
2024 AlgoPerf Algorithmic Efficiency Challenge Self-Tuning track1.

The efficacy of schedule-free on these highly non-convex deep learning problems is remarkable
considered that it was designed for convex losses. Indeed, schedule-free achieves the optimal
O(DG/

√
T ) convergence rate on the class of convex G–Lipschitz losses, for D := ∥x0 − x⋆∥,

where x0 and x⋆ are the first and optimal parameters, respectively.
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Figure 1: Our theory (Theorem 2.1) is good at predicting the behavior of the training loss: The
plots show the theoretical bound and the training loss of ResNet-20/Cifar10 when using wsd
schedules with base learning rate γ = 10 and three different cooldown lengths. The gradient norm
over the iteration is shown on the rightmost figure for reference. The red color denotes the warmup
period, the gray color denotes the constant period, and the blue color denotes the cooldown period.

We first extend the theory of schedule-free to allow for any learning rate scheduler. This is
important because the current theory for schedule-free in (Defazio et al., 2024) only supports
constant learning schedules, where-as in practice schedule-free method is applied with a warmup
schedule. Although Defazio et al. (2024) has a bound that holds for arbitrary schedules (see Theorem

1https://mlcommons.org/2024/08/mlc-algoperf-benchmark-competition/

1

https://mlcommons.org/2024/08/mlc-algoperf-benchmark-competition/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 in (Defazio et al., 2024)), this bound does not prove convergence. To transform this bound into
a convergence theorem, an additional constraint that ties together the learning rates and averaging
parameters is required, as we show in Theorem 3.2. When using this new setting for averaging
parameters, we refer to the resulting method as schedulet. We then specialize our theory to the
wsd (warmup-stable-decay) schedule and show that schedulet achieves the optimal convergence
rate of O(DG/

√
T ). We then confirm that our resulting convergence theorem, despite having been

established for convex losses, is remarkably good at predicting the behavior of schedulet on deep
learning tasks. See Figure 1 for a comparison between our theoretical prediction of the loss curve
and the empircal loss curve for training a ResNet-20.

Second, we propose a new adaptive learning rate for schedule-free based on the Polyak step-
size, which we call schedulep. We establish the last-iterate convergence of schedulep, which
achieves an any-time (meaning that the total number of iterations is not known in advance) optimal
convergence rate of O(GD/

√
t) for every t for the convex and G-Lipschitz setting. The downside

to schedulep is that it requires access to the batch loss on the optimal parameters. Fortunately
this optimal loss can be reasonably approximated in either the interpolation setting, or the black-box
model distillation setting, in which the student (a smaller model) is trained on one of the tasks that
the teacher (a larger model) is pretrained. Under this setting, we can obtain an approximation of
optimal batch loss of the student by querying the teacher’s loss.

1.1 schedule-free SGD

Consider the stochastic optimization problem

min
x∈Rd

f(x) := ED [fζ(x)] ,

where D is some data distribution over Rq , ζ ∈ Rq is sampled data from D, and fζ : Rd → R
is our loss function. We assume that f : Rd → R is convex, G–Lipschitz and that the problem is
well-posed, in the sense that a minimizer x⋆ ∈ argminx∈Rd f(x) exists.

The schedule-free has three sets of iterates, the primal averaging iterates yt, the offline averaging
iterates xt, and accumulate gradient iterates zt. At iteration t (for t = 0, 1, . . . , T − 1), we draw
a batch of data ζt and evaluate the stochastic gradient2 ∇f(yt, ζt) at yt. At each iteration t, this
stochastic gradient is used in the schedule-free update as follows

yt = (1− βt)zt−1 + βtxt (1)
zt = zt−1 − γt∇f(yt, ζt) (2)

xt+1 = (1− ct+1)xt + ct+1zt, (3)

where βt ∈ [0, 1] is the momentum parameter, γt > 0 is the learning rate, and ct+1 ∈ [0, 1] is the
averaging parameter over xt and zt. In practice, the method would be implemented with only one
additional sequence given by substituting out yt as follows

zt = zt−1 − γt∇f((1− βt)zt−1 + βtxt, ζt) (4)
xt+1 = (1− ct+1)xt + ct+1zt. (5)

The momentum parameter βt interpolates between Polyak-Ruppert averaging when βt = 0 and
Primal averaging when βt = 1. Defazio et al. (2024) suggests that the momentum parameter βt ≡
β ≈ 0.9 works best in practice.

1.2 CONTRIBUTIONS AND BACKGROUND

Schedule-free theory. Defazio et al. (2024) showed schedule-free achieves the optimal
O(DG/

√
T ) convergence rate for a fixed horizon T in the convex and G-Lipschitz setting with

a constant learning rate γt ≡ γ and averaging parameters ct = 1/t for t = 1, . . . , T . Though De-
fazio et al. (2024) present a more general result in their Theorem 2 that does hold for every ct and
schedule γt, their result does not guarantee convergence.

2Formally ∇f(yt, ζt) is a subgradient, since we assumed f(y, ζ) is convex in y, but not necessarily
smooth. But for the sake of simplicity we omit this technical detail.
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The schedule-free method is also closely related to the AC-SA algorithm, which also converges
at the optimal rate of O(1/

√
T ) (Lan, 2012, Corollary 1).

Recently, Brown (2025) proved the convergence of schedule-free in smooth nonconvex setting.
In all of the cases, the author only discussed the momentum parameter being βt ≡ 1, which reduces
to the primal averaging. Also, the author considered a constant learning rate γt ≡ γ (or an increasing
learning rate γt = γ0(t+ 1)) with different choices of ct for t = 1, . . . , T , and established the best-
iterate (in hindsight) convergence to a stationary point.

Contributions. We provide a convergence theorem for schedule-free in the convex Lipschitz
setting that admits any learning rate schedule in Theorem 3.2. To establish this theorem, we require
setting the averaging parameter ct based on the learning rate via ct = γt/

∑t
k=1 γk. In the special

case that γt is constant, this recovers the ct = 1/t from Defazio et al. (2024). Our theory can
be applied to the wsd schedule, which yields the optimal convergence rate of O(DG/

√
T ), see

Corollary 2.3.

Momentum for Non-smooth Convex Optimization. Both Tao et al. (2018) and Defazio &
Gower (2021) established that SGD with momentum achieves the optimal last-iterate O(1/

√
T ) con-

vergence rate in the convex and Lipschitz setting with a constant step size.

Contributions. Because primal averaging is a special case of schedule-free when βt ≡ 1, and
primal averaging itself is equivalent to Momentum (see Sebbouh et al. (2021)), our Theorem 3.2 and
subsequent Corollary 2.3 for wsd schedules includes Momentum as a special case. Thus we have
extended the convergence of Momentum from constant schedules to any schedule.

Convex Theory for Deep Learning. Surprisingly, convex optimization theory has been shown to
produce practical methods for training large language models. For example, Adagradwas developed
based on non-smooth convex analysis and became widely used in deep learning until RMSprop
and Adam improved upon it (Duchi et al., 2011). Furthermore, a recent work by Schaipp et al.
(2025) has shown that non-smooth convex analysis for SGD can effectively predict the performance
in deep learning. In particular (Schaipp et al., 2025) found that the empirical convergence of AdamW
with a wsd schedule for large language model training behave similarly to an optimal last-iterate
convergence bound for SGD in non-smooth convex setting (Defazio et al., 2023).

Contributions. Taking inspiration from Schaipp et al. (2025), we compare our new last-iterate con-
vergence theory of schedule-free to the practical convergence on a Resnet-20 for CIFAR10.
Our comparison shows that the theory can predict which schedules will converge, which schedules
will produce spikes with remarkable accuracy, and even when divergence will occur.

Warmup, stable, decay schedule. The wsd schedule consists of three phases: warmup, constant
and cooldown, and hence is also known as the trapezoidal schedule (Zhai et al., 2022). The experi-
ments by Hägele et al. (2024) found that wsd performed as good as or even better than the cosine
schedule with the cooldown phase. Furthermore, wsd is better suited for training foundation models,
where the cooldown phase can be used for finetuning (Hägele et al., 2024).

Contributions. As a special case of our main theorem, we show that, the schedule-free SGD
method, applied with the wsd schedule, can achieve an optimal convergence rate of O(1/

√
T ).

Polyak Stepsize. The Polyak stepsize was first introduced by Polyak (1987) in the deterministic
setting, where the convergence was proved for the non-smooth and convex setting. Hazan & Kakade
(2019) revisited the Polyak stepsize for the class of gradient descent methods and showed that Polyak
stepsize has near-optimal convergence rate in the Lipschitz, smooth, and strongly convex setting
without accessing to any of the Lipschitz, smoothness or strong convexity parameters.

Recently, there have been many proposals of a stochastic Polyak stepsize in machine learning; see
(Berrada et al., 2020; Loizou et al., 2021). Assuming access to fζ(x⋆), the SPS* by Gower et al.
(2025) achieves the best known rates across several classes of convex functions. Moreover, Gower
et al. (2025) proposed an adaptive Polyak stochastic stepsize, called IAM (Iterate Averaging Adap-
tive method), for the momentum method. Other variants of stochastic Polyak with momentum in-
clude (Oikonomou & Loizou, 2024; Wang et al., 2023; Orvieto & Xiao, 2024).
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Contributions. We suggest a Polyak stepsize for schedule-free. With an arbitrary choice of the
momentum parameter βt ≡ β ∈ [0, 1), we prove an optimal anytime last-iterate convergence bound
of O(GD/

√
t) for every t for the non-smooth convex setting in Theorem 3.2. We then consider

the application black-box model distillation setting proposed by Gower et al. (2025), and show
that our new Polyak stepsize for schedule-free achieves strong performance compared to several
benchmark methods on both the TinyShakespeare and fineweb1B data set.

2 CONVERGENCE ANALYSIS AND IMPLICATIONS
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Figure 2: Training loss for
schedule-free on ResNet-20
/Cifar10 with a constant learning
rate schedule (gray), warmup-stable (red-
gray), and wsd schedule (red-gray-blue).

The schedule-free algorithm was designed to per-
form well without the need to tune additional hyper-
parameters beyond momentum. For convex and Lip-
schitz objectives, it achieves the optimal convergence
guarantees with a constant step size. Despite this,
schedule-free is used with a linear warmup sched-
ule, which the authors note is necessary for competi-
tive performance. This added benefit over a constant
schedule is demonstrated in Figure 2 for a small deep
learning model. This indicates a gap between theory
and practice, which motivates a natural question: Does
schedule-free remain optimal with a non-constant
schedule, in the convex setting?

We begin by stating our convergence result for the schedule-free SGD method with a general,
non-constant learning rate in Theorem 2.1. The proof of the theorem is deferred to Appendix A.

Theorem 2.1. Let f : Rd → R be convex and G-Lipschitz continuous. Let {xt,yt, zt} be gener-
ated from (1), (2), (3). Suppose that

ct =
γt∑t
i=0 γi

(6)

for t = 1, . . . , T . Initializing z−1 = x0, we then have

E [f(xT )− f(x⋆)] ≤
1
2∥x0 − x⋆∥2 + γ0(f(x0)− f(x⋆))∑T

t=0 γt
+

T∑
t=0

1
2γ

2
tG

2∑T
t=0 γt

. (7)

Our theory shows a last-iterate convergence bound for the schedule-free SGD method with gen-
eral learning rates. First, for D := ∥x0 − x⋆∥, we can see that by choosing γt ≡ D

G
√
T

for all t,

we recover the optimal O(DG/
√
T ) convergence rate given in Theorem 1 in Defazio et al. (2024).

Moreover, for non-constant learning rates, Theorem 2.1 suggests a theoretically well-motivated av-
eraging parameter ct that is set based on all the past learning rates {γ0, . . . , γt}. This choice of ct
in (6) is similar to the heuristic choice of ct+1 =

γ2
t∑t

i=0 γ2
i

suggested by Defazio et al. (2024, equation

(23)). This heuristic choice is the default setting in the code base3 for schedule-free.

A natural question is, why should we care about this theoretical convergence theory which holds only
for convex functions, where-as schedule-free is a method for non-convex deep learning? Towards
answering this question, we perform several experiments comparing the predicted convergence of
this theorem, to the practical convergence for training a neural network in the following section.

2.1 SURPRISING PREDICTIVE POWER FOR DEEP LEARNING

Inspired by Schaipp et al. (2025), we compute our last-iterate convergence bound from Theorem 2.1
and compare it to the empirical performance of schedule-free on ResNet-20/Cifar10 for
wsd schedule with cooldown starting at {0.25T, 0.5T, 0.75T} where T is the training horizon. We
outline the experiment setup and present a comparison using the cosine schedule in Appendix E.

3https://github.com/facebookresearch/schedule_free
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Figure 3: Using wsd schedules with three different cooldown periods and with base learning rate
γ = 0.01, our plots compare the theoretical convergence (Theorem 2.1) to the empirical convergence
of ResNet-20/Cifar10, with the gradient norm shown for reference. The red color denotes the
warmup period, the gray color denotes the constant period, and the blue color denotes the cooldown
period.

We take x⋆ to be the iterate with the smallest loss f(x⋆) during training. In Figures 1 and 3, we use
the wsd schedule with a large (γ = 10) and small (γ = 0.01) base learning rate, respectively.

For a small base learning rate, the theory predicts the convergence seen in practice across all three
cooldown schedules, see Figure 3. For a large base learning rate, the theory predicts the transient
spikes in the loss regardless whether it occurs before or after the cooldown period, see Figure 1.
One possible explanation is that, the spikes are caused by the spikes in the gradient norm (see the
rightmost figure in Figure 1). Yet, one should also note that our theory predicts the convergence in
Figure 3 even with the blowup of the gradient norms. Finally, in Figure 4, using a constant-then-
diverging schedule, our theory also predicts all spikes in the loss, and whether and when the training
diverges.

These experiments show a striking similarity between the convex theory bounds and the loss curves
observed in the non-convex setting. Having established that our theory has some predictive power
for deep learning , we now specialize our theory to the wsd schedule.

2.2 APPLICATION TO WSD SCHEDULE

The wsd schedule (warmup-stable-decay), a trapezoidal shape learning rate schedule, has
been shown to be very useful for training large language models (Hägele et al., 2024).
For this section we divide the learning rate into

γt = γ ηt

where γ > 0 is the base learning rate, which is the
parameter that is tuned, and ηt is the schedule. For
wsd there are three phases of the schedule: first, a
warmup period, then a constant period, and at last, a
cooldown period. Formally, for 0 ≤ Tw ≤ Tc ≤ T ,
the wsd schedule is given by:

ηt =


t+1

Tw+1 , if 0 ≤ t ≤ Tw,

1, if Tw < t ≤ Tc,
T−t+1
T−Tc+1 , if Tc < t ≤ T.

(8)
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Figure 5: The averaging parameter ct when
applied with the wsd schedule where blue
is our proposed ct = ηt/

∑t
i=0 ηi, gray is

ct = 1/t, and the orange is the practical
heuristic ct = η2t /

∑t
i=0 η

2
i .

Substituting the wsd schedule (8) into (6), we can obtain a sequence of averaging parameters.

Lemma 2.2. Let 0 ≤ Tw ≤ Tc ≤ T and γ > 0. Suppose that {ηt}Tt=0 follows the wsd schedule
given in (8). We can determine {ct}Tt=0 by

ct =


2

t+2 , if 0 ≤ t ≤ Tw,
2

2t−Tw+2 , if Tw < t ≤ Tc,
2(T−t+1)

(T−Tc+1)(2Tc−Tw+2)+(2T−Tc−t+1)(t−Tc)
, if Tc < t ≤ T.

(9)
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Figure 4: Using schedules with three three different diverging periods, we compare the theoretical
convergence given by Theorem 2.1 to the empirical convergence of ResNet-20/Cifar10. The
gray color denotes the constant period and the red color denotes the diverging period.

To illustrate the results in Lemma 2.2, Figure 5 plots the resulting averaging parameters ct when
applied a wsd schedule. The blue line, the gray dashed line, and the orange dashed line depict
our proposed ct in (9), the theoretical ct = 1/t, and the practical default ct+1 =

γ2
t∑t

i=0 γ2
i

for
schedule-free (Defazio et al., 2024, Algorithm 1), respectively. As can be seen, our theoretically
motivated choice is close to the default practical choice proposed in Defazio et al. (2024), particu-
larly as t grows. Using the wsd schedule ηt defined in (8) and the weights ct given in (9), we obtain
the convergence result in Corollary 2.3.

Corollary 2.3 shows that, the schedule-free SGD with the wsd schedule achieves an optimal
convergence rate of O(1/

√
T ) as long as the base learning rate is well-chosen.

Corollary 2.3. Let D = ∥x0 − x⋆∥. Using the wsd parameters (ct, ηt) given in (9) and (8), with
a base learning rate of γ = D

G
√∑T

t=0 η2
t

, we have the convergence

E [f(xT )− inf f ] ≤ 2η0(f(x0)− f(x⋆))

T + Tc − Tw + 2
+

2
√

2
3DG

√
T + Tc − Tw + 2

≃ O
(
DG√
T

)
. (10)

3 POLYAK LEARNING RATE

Having seen that using convexity as an assumption can result in theory with some predictive power
on neural network experiments, in this section, we use convexity to design an adaptive learning
rate schedule, which we call schedulep, see Algorithm 1 for the pseudo-code. Here, we denote
(·)2+ = ((·)+)2; i.e., (a)2+ = a2 if a > 0 and (a)2+ = 0 otherwise.

To derive this adaptive stepsizes, we make use of the following Interpolation assumption.

Assumption 3.1 (Interpolation). For every ζ, we have access to fζ(x⋆) where x⋆ ∈
argmin
x∈Rd

f(x).

We call this the interpolation assump-
tion, because it holds for models that
interpolate the data, in which case
fζ(x⋆) = 0 since every data point has
a perfect fit, and thus zero loss (Ma
et al., 2018; Liu et al., 2022; Gower
et al., 2021). Many vision models in-
terpolate the data, unlike language mod-
els which have a strictly positive en-
tropy rate: the next word in a sequence
is never perfectly predictable (Shannon,
1948; Cover & King, 1978). Though
one can still approximate fζ(x⋆) for
language models, see Section 4.2.

Algorithm 1 Schedulep: Schedule-free Polyak

1: Input: z−1 = x0 ∈ Rd, β ∈ [0, 1], ct > 0, γmax > 0.
2: for t = 0 to T − 1 do
3: yt = (1− β)zt−1 + βxt

4: τt =
[fζt (yt)−fζt (x⋆)+β⟨∇f(yt,ζt),zt−1−xt⟩]+

∥∇f(yt,ζt)∥2

5: γt = min
{
γmax, τt

}
6: zt = zt−1 − γt∇f(yt, ζt)
7: xt+1 = (1− ct+1)xt + ct+1zt
8: end for
9: Return: xT

6
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We derive our adaptive learning rate by choosing γt that will bring iterate zt closer to the solution
x⋆. For this note from (2) (or equivalently line 1 in Algorithm 1), the iterate zt explicitly depends
on the learning rate γt. Consequently we can write zt(γt) ≡ zt. We then derive an upper bound
on ∥zt(γt) − x⋆∥2 that only depends on known quantities and fζt

(x⋆) by assuming that the loss
function is convex. Minimizing this upper bound in γt gives our adaptive learning rate on line 1 in
Algorithm 1. We call our resulting algorithm schedulep (schedule-free with a Polyak learning
rate), since this is a generalization of the Polyak learning rate to schedule-free. We include this
additional cap of γmax on line 1 in Algorithm 1 to improve stability, specially in the case where
fζt(x⋆) is misspecified. This is a common safe-guard used in stochastic Polyak methods (Loizou
et al., 2020).

Next we prove the convergence of our schedulep method.

Theorem 3.2. Consider the iterates of Algorithm 1 with ct = 1/(t+ 1), β ∈ [0, 1) and γmax =
∞. Let fζ : Rd → R be a convex function for every ζ. Let

B := {x : ∥x− x⋆∥ ≤ ∥x0 − x⋆∥} ⊂ Rd, (11)

G2 := max
x∈B

Eζ∥∇f(x, ζ)∥2. (12)

With the initialization z−1 = x0, the suboptimality gap of the last iterate xt converges at a 1/
√
t

rate according to

E [f(xt)− f(x⋆)] ≤ G∥x0 − x⋆∥√
t+ 1

. (13)

The resulting rate of convergence of schedulep in (13) is exactly the optimal rate for the class of
convex and G–Lipschitz functions. Furthermore, this convergence has two additional benefits. First,
it is an anytime result, in that (13) achieves the optimal rate for every t, where-as previous results
for schedule-free only achieve the optimal O(1/

√
T ) with the known stopping time T . Second,

we do not need to assume that the loss is globally Lipschitz. Rather, that it is Lipschitz in the closed
ball given in (11). Thus we are also able to weaken the global Lipschitz assumption.

4 EXPERIMENTS

Our theory suggests a new choice of ct, which we evaluate against the practical heuristic ct+1 =

γ2
t /
∑t

i=1 γ
2
i and that of the previous theory, ct = 1/t. We run experiments from small- to

large-scale across domains (vision and language) and learning tasks (regression, classification,
and knowledge distillation). For regression and image classification, we use the SGD variant of
schedule-free; for distillation in language modeling, we use the AdamW-schedulefree variant
in Defazio et al. (2024). We use the momentum parameter β = 0.9 throughout our experiments.

4.1 IMAGE CLASSIFICATION

We test schedulet on image classification with Wide Resnet (16-8) on CIFAR10 and
DenseNet on CIFAR100. Hyperparameter settings follow that of Defazio et al. (2024), with
exact settings listed in Appendix E and Table 1. We compare the performance of schedule-free
with schedulet, the practical heuristic ct+1 = γ2

t /
∑t

i=1 γ
2
i , ct = 1/t from previous theory,

and SGD-m (stochstic gradient descent with momentum). We apply the warmup-stable schedule for
schedule-free with the practical heuristic averaging parameters and the wsd schedule otherwise.
We use a 5% warmup for all schedules, and set the cooldown in wsd to 25% in smaller models and
5% for larger models. For each model, we sweep the learning rate over a grid for all optimizers,
tuning each method using the validation loss as a proxy for generalization ability of the optimizer.

As mentioned in Defazio et al. (2024), Schedule-free requires batch statistics computed from the
x sequence (i.e. Equation 3) for models using BatchNorm layers. We avoid this complication by
using GroupNorm layers for all models, which does not significantly effect the performance and
training dynamics of these relatively smaller models.
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Figure 6: Training a Wide ResNet (16-8) model on the CIFAR10 data set.

The results in Figure 6 show that, although the practical heuristic averaging parameter generally
achieves a smaller training loss than schedulet across different learning rates, their performance
are similar in terms of generalization. Moreover, we see that schedule-free with different aver-
aging parameters is robust across different learning rates in terms of validation score. When consid-
ering the best tuned learning rate (γ = 1 for SGD-m and γ = 10 for schedule-free), we see that
schedule-free with the practical heristic ct performs slightly better than schedulet in terms of
training loss, but as well with respect to validation score. Yet, they both outperform the choice of
ct = 1/t from previous theory. When training larger models, our experiments show that schedulet
has similar performance as the practical heuristic parameter; see Figure 10 in Appendix E.1.2.

4.2 MODEL DISTILLATION

Here we test Schedulep in Algorithm 1 on black-box model distillation, where we have only access
to the teacher’s loss over a given batch. We will use the teacher’s loss as an approximation of the
optimal student’s loss. That is, let f t

ζ and fs
ζ (x) denote the teacher’s loss and the student’s loss with

weights x, respectively, for a given batch ζ. We will choose a teacher that has been trained on a
large corpora, such that f t

ζ ≈ fs
ζ (x⋆), where x⋆ are the optimal parameters for the student model.

Our setup is based on the experiments by Gower et al. (2025). As a baseline, we used
SGD-m, AdamW (Kingma & Ba, 2014), (AdamW-)ScheduleFree (Defazio et al., 2024), and
IAMS(-Adam) (Gower et al., 2025). We also test the AdamW version of Schedulep called
AdamW-Schedulep, see Appendix C and Algorithm 2 for details. For the distillation experiments,
we considered two settings:

Distilling tiny shakespeare. The teacher model employed was gpt2-medium (345 mil-
lion parameters), a pre-trained transformer model from the Hugging Face library (Radford et al.,
2019). We used a student model with 67.7 million parameters, see Table 2 in Appendix E.2 for
details. The results in Figure 7 show that our AdamW-Schedulep achieves the best loss for a tuned

8
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Figure 7: Training a smaller student model on the tiny shakespeare data set, using
gpt2-medium as the teacher.
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Figure 8: Training a nanoGPT student model on the fineweb1B data set, using
EleutherAI/gpt-j-6B as the teacher.

learning rate γmax, but it is not quite as robust as the IAMS-Adam method is to the choice of learning
rate.

Distilling fineweb1B. The teacher model employed was EleutherAI/gpt-j-6B, a 6-
billion parameter transformer model pre-trained on diverse datasets (Wang & Komatsuzaki, 2021).
We used a nanoGPT model with 124 million parameters as the student, see Table 2 in Appendix E.2
for details, and Figure 8 shows AdamW-Schedulep is now the most robust method with respect to
different choices of learning rate γmax, but the best loss is achieved by tuning AdamW or IAMS-Adam.

5 CONCLUSION AND LIMITATIONS

We developed the last-iterate convergence theory for schedule-free that works for general non-
constant schedule in the convex Lipschitz setting. The theory requires the averaging parameter to be
a function of the learning rate schedule, which we called schedulet. We showed that our theory is
good at predicting the empirical behavior of schedulet. We also obtained the optimal convergence
O(GD/

√
T ) from the theory when specialized to wsd schedule. Next, assuming convexity and in-

terpolation, we developed a Polyak stepsize for schedule-free, called schedulep. We proved an
any-time convergence O(GD/

√
t) for schedulep and demonstrated its strong performance com-

pared to several benchmark methods under the black-box distillation model setting.

The limitation of our work is that, our theory only applies for general learning rate schedule with
schedulet, so it does not give any convergence bounds for the averaging parameter used in practice.
In fact, our suggested averaging parameter schedule does not improve the training performance in
practice. Moreover, our comparison between the convergence theory and the empirical performance
is via visual inspection but not a quantitative analysis. For the Polyak stepsize schedulep, it can
only be applied to models that nearly interpolate the data or under the black-box model distillation
setting.
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Reproducibility Statement. To ensure reproducibility, we provide our open-source repository
built upon publicly available implementations of common vision and language models, optimiz-
ers, and training frameworks. We extend the open-source framework step-back4 to incorpo-
rate Schedule-free5, Wide ResNet6 and DenseNet7 architectures with GroupNorm layers.
Complete training specifications, architectures, and hyperparameters are detailed in Tables 1–2 and
Appendix E.
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Lemma A.1. Let {xt,yt, zt} be generated from (1), (2), (3). For t = 0, 1, . . . , T − 1, we have
the following inequality holds:

1

ct+1
f(xt+1)−

(
1

ct+1
− 1

)
f(xt)− f(x⋆) ≤ ⟨∇f(yt+1), zt − x⋆⟩ (14)

Proof. Dividing both sides of (3) by ct+1 and rearranging terms, we have(
1

ct+1
− 1

)
(xt+1 − xt) = zt − xt+1; (15)

and also (1) implies

zt − yt+1 =
βt+1

1− βt+1
(yt+1 − xt+1), (16)

for t = 0, 1, . . . , T − 1. Applying (15) and (16) and the fact that f is convex, we then obtain

1

ct+1
f(xt+1)−

(
1

ct+1
− 1

)
f(xt)− f(x⋆)

=

(
1

ct+1
− 1

)
(f(xt+1)− f(xt)) + (f(xt+1)− f(x⋆))

≤
(

1

ct+1
− 1

)
⟨∇f(xt+1),xt+1 − xt⟩+ (f(xt+1)− f(x⋆))

(15)
= ⟨∇f(xt+1), zt − xt+1⟩+ (f(xt+1)− f(yt+1)) + (f(yt+1)− f(x⋆))

≤ ⟨∇f(xt+1), zt − xt+1⟩+ ⟨∇f(xt+1),xt+1 − yt+1⟩+ ⟨∇f(yt+1),yt+1 − x⋆⟩
= ⟨∇f(xt+1)−∇f(yt+1), zt − yt+1⟩+ ⟨∇f(yt+1), zt − x⋆⟩
(16)
=

βt+1

1 + βt+1
⟨∇f(xt+1)−∇f(yt+1),yt+1 − xt+1⟩+ ⟨∇f(yt+1), zt − x⋆⟩, (17)

where the third and the fifth lines have applied the convexity of f . Now, because of the convexity of
f , observe that for any a, b ∈ Rd,

f(a) ≥ f(b) + ⟨∇f(b), a− b⟩
f(b) ≥ f(a) + ⟨∇f(a), b− a⟩.

Summing together the two above inequalities gives

⟨∇f(a)−∇f(b), b− a⟩ ≤ 0

and thus the first term of (17) is negative. This then completes the proof of the lemma.

Lemma A.2. Let {xt,yt, zt} be generated from (1), (2), (3). Suppose that

ct =
γt∑t
i=0 γi

. (18)

Initializing z−1 = x0, we then have

T∑
t=0

γt(f(xT )− f(x⋆)) ≤ γ0(f(x0)− f(x⋆)) +

T∑
t=0

γt⟨∇f(yt), zt−1 − x⋆⟩. (19)

Proof. Applying Lemma A.1 and multiplying (14) by γt+1,

γt+1

ct+1
f(xt+1)− γt+1

(
1

ct+1
− 1

)
f(xt)− γt+1f(x⋆) ≤ γt+1⟨∇f(yt+1), zt − x⋆⟩. (20)
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Summing of the left-hand side of (20) from t = 0 to T − 1 gives
T−1∑
t=0

(
γt+1

ct+1
f(xt+1)− γt+1

(
1

ct+1
− 1

)
f(xt)− γt+1f(x⋆)

)

=
γT
cT

f(xT )− γ1

(
1

c1
− 1

)
f(x0)−

T∑
t=1

γtf(x⋆) +

T−1∑
t=1

(
γt
ct

− γt+1

(
1

ct+1
− 1

))
f(xt).

(21)

Using (18) we have that the right most term is zero since

γt
ct

− γt+1

(
1

ct+1
− 1

)
=

t∑
i=0

γi −
(

t+1∑
i=0

γi − γt+1

)
= 0.

We chose the ct coefficients given in (18) so that the above would be zero. Indeed, instead of
plugging in (18), if we set the above to zero, and unroll the recurrence in ct we get:

γt+1

ct+1
= γt+1 +

γt
ct

= γt+1 + γt +
γt−1

ct−1

= · · ·

=

t+1∑
i=1

γi +
γ0
c0

,

which gives
ct+1 =

γt+1∑t+1
i=0 γi

where we have chosen c0 = 1. Thus we arrive at the same recurrence. Similarly,

γ1

(
1

c1
− 1

)
=

γ0
c0

= γ0

and
γT
cT

=

T∑
i=0

γi.

Consequently (21) can be written as
T−1∑
t=0

γt+1

ct+1
f(xt+1)− γt+1

(
1

ct+1
− 1

)
f(xt)− γt+1f(x⋆)

=

T∑
t=0

γtf(xT )− γ0f(x0)−
T∑

t=1

γtf(x⋆)

=

T∑
t=0

γt(f(xT )− f(x⋆))− γ0(f(x0)− f(x⋆)). (22)

Putting this back to (20), we can write
T∑

t=1

γt(f(xT )− f(x⋆)) ≤ γ0(f(x0)− f(x⋆)) +

T−1∑
t=0

γt+1⟨∇f(yt+1), zt − x⋆⟩

= γ0(f(x0)− f(x⋆)) +

T∑
t=1

γt⟨∇f(yt), zt−1 − x⋆⟩.

Because of the convexity of f , we know that

⟨∇f(x0),x0 − x⋆⟩ ≥ 0.
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Also because we initialize z−1 = x0, we have

⟨∇f(y0), z−1 − x⋆⟩ ≥ 0.

Therefore, with γ0 ≥ 0, we obtain
T∑

t=1

γt(f(xT )− f(x⋆)) ≤ γ0(f(x0)− f(x⋆)) +

T∑
t=0

γt⟨∇f(yt), zt−1 − x⋆⟩.

A.2 PROOF OF THEOREM 2.1

Theorem 2.1. Let f : Rd → R be convex and G-Lipschitz continuous. Let {xt,yt, zt} be gener-
ated from (1), (2), (3). Suppose that

ct =
γt∑t
i=0 γi

(6)

for t = 1, . . . , T . Initializing z−1 = x0, we then have

E [f(xT )− f(x⋆)] ≤
1
2∥x0 − x⋆∥2 + γ0(f(x0)− f(x⋆))∑T

t=0 γt
+

T∑
t=0

1
2γ

2
tG

2∑T
t=0 γt

. (7)

Proof. Having Lemma A.2 established, it remains to bound the last term of (19). Write gt =
∇f(yt, ζt). Using the updating rule (2), we see that, for t = 0, 1, . . . , T − 1,

∥zt − x⋆∥2 = ∥zt−1 − γtgt − x⋆∥2

= ∥zt−1 − x⋆∥2 − 2γt⟨gt, zt−1 − x⋆⟩+ γ2
t ∥gt∥2.

Rearranging terms, we have

⟨gt, zt−1 − x⋆⟩ =
1

2γt
∥zt−1 − x⋆∥2 −

1

2γt
∥zt − x⋆∥2 +

γt
2
∥gt∥2. (23)

Taking expectation conditioned on zt−1, and noting that Et−1 [gt] = ∇f(yt) gives

⟨∇f(yt), zt−1 − x⋆⟩ =
1

2γt
∥zt−1 − x⋆∥2 −

1

2γt
Et−1

[
∥zt − x⋆∥2

]
+

γt
2
Et−1

[
∥gt∥2

]
. (24)

Taking full expectation and using the law of total expectation gives

E ⟨∇f(yt), zt−1 − x⋆⟩ =
1

2γt
E ∥zt−1 − x⋆∥2 −

1

2γt
E ∥zt − x⋆∥2 +

γt
2
E ∥gt∥2.

Multiplying by γt and summing it up from t = 0 to T , we have
T∑

t=0

γtE ⟨∇f(yt), zt−1 − x⋆⟩ =
T∑

t=0

(
1

2
E ∥zt−1 − x⋆∥2 −

1

2
E ∥zt − x⋆∥2 +

γ2
t

2
E ∥gt∥2

)

=
1

2
∥z−1 − x⋆∥2 −

1

2
E ∥zT − x⋆∥2 +

T∑
t=0

γ2
t

2
E ∥gt∥2

=
1

2
∥x0 − x⋆∥2 −

1

2
E ∥zT − x⋆∥2 +

T∑
t=0

γ2
t

2
E ∥gt∥2. (25)

Dropping the negative − 1
2E ∥zT − x⋆∥2 term, and using the above in (19) we have that

T∑
t=0

γtE [f(xT )− f(x⋆)] ≤ γ0(f(x0)− f(x⋆)) +

T∑
t=0

γtE ⟨∇f(yt), zt−1 − x⋆⟩

≤ γ0(f(x0)− f(x⋆)) +
1

2
∥x0 − x⋆∥2 +

T∑
t=0

γ2
t

2
E ∥gt∥2.

Finally dividing through by
∑T

t=0 γt gives the result.
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A.3 PROOF OF LEMMA 2.2

Lemma 2.2. Let 0 ≤ Tw ≤ Tc ≤ T and γ > 0. Suppose that {ηt}Tt=0 follows the wsd schedule
given in (8). We can determine {ct}Tt=0 by

ct =


2

t+2 , if 0 ≤ t ≤ Tw,
2

2t−Tw+2 , if Tw < t ≤ Tc,
2(T−t+1)

(T−Tc+1)(2Tc−Tw+2)+(2T−Tc−t+1)(t−Tc)
, if Tc < t ≤ T.

(9)

Proof. Recall from (6) is given by

ct =
ηt∑t
i=0 ηi

. (26)

for some scheduler {ηt}Tt=0. Now, we are ready to obtain {ct}Tt=0 by substituting the wsd scheduler
{ηt}Tt=0 and applying the arithmetic formula. Specifically, for 0 ≤ t ≤ Tw,

ct =
t+1

Tw+1∑t
i=0(i+1)

Tw+1

=
t+ 1

(t+1)(t+2)
2

=
2

t+ 2
.

Since
Tw∑
i=0

ηi =

Tw∑
i=0

t+ 1

Tw + 1
=

(Tw+1)(Tw+2)
2

Tw + 1
=

Tw + 2

2
, (27)

we obtain, for Tw < t ≤ Tc,

ct =
1∑Tw

i=0 ηi +
∑t

i=Tw+1 ηi
=

1
Tw+2

2 + (t− Tw)
=

2

2t− Tw + 2
.

Applying (27) again and using
Tc∑

i=Tw+1

ηi = Tc − Tw,

we also have, for Tc < t ≤ T ,

ct =
T−t+1
T−Tc+1∑Tw

i=0 ηi +
∑Tc

i=Tw+1 ηi +
∑t

i=Tc+1
T−i+1
T−Tc+1

=
T−t+1
T−Tc+1

Tw+2
2 + (Tc − Tw) +

(2T−Tc−t+1)(t−Tc)
2(T−Tc+1)

=
2(T − t+ 1)

(T − Tc + 1)(2Tc − Tw + 2) + (2T − Tc − t+ 1)(t− Tc)
.

A.4 PROOF OF COROLLARY 2.3

Corollary 2.3. Let D = ∥x0 − x⋆∥. Using the wsd parameters (ct, ηt) given in (9) and (8), with
a base learning rate of γ = D

G
√∑T

t=0 η2
t

, we have the convergence

E [f(xT )− inf f ] ≤ 2η0(f(x0)− f(x⋆))

T + Tc − Tw + 2
+

2
√

2
3DG

√
T + Tc − Tw + 2

≃ O
(
DG√
T

)
. (10)
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Proof. Using the arithmetic sum formula, we can write

Tw−1∑
t=0

ηt =

∑Tw−1
t=0 (t+ 1)

Tw + 1
=

Tw +
∑Tw−1

t=0 t

Tw + 1
=

Tw + Tw(Tw−1)
2

Tw + 1
=

Tw

2
;

Tc−1∑
t=Tw

ηt = Tc − 1− Tw + 1 = Tc − Tw

T∑
t=Tc

ηt =

T∑
t=Tc

T − t+ 1

T − Tc + 1
=

(T + 1)(T − Tc + 1)

T − Tc + 1
−

∑T
t=Tc

t

T − Tc + 1

= T + 1− (Tc + T )(T − Tc + 1)

2(T − Tc + 1)
= T + 1− Tc + T

2
. (28)

Combining, we have

T∑
t=0

ηt =
Tw

2
+ Tc − Tw + T + 1− Tc + T

2
=

T + Tc − Tw + 2

2
. (29)

Also, using the fact that
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
, (30)

we can compute

Tw−1∑
t=0

η2t =

Tw−1∑
t=0

(t+ 1)2

(Tw + 1)2
=

∑Tw−1
t=0 t2 + 2

∑Tw−1
t=0 t+ Tw

(Tw + 1)2

=
Tw(Tw−1)(2Tw−1)

6 + 2Tw(Tw−1)
2 + Tw

(Tw + 1)2
=

Tw

Tw + 1
·

(Tw−1)(2Tw−1)
6 + Tw

Tw + 1

≤ 2T 2
w + 3Tw + 1

6(Tw + 1)
=

(2Tw + 1)(Tw + 1)

6(Tw + 1)
=

2Tw + 1

6
;

Tc−1∑
t=Tw

η2t = Tc − 1− Tw + 1 = Tc − Tw;

T∑
t=Tc

η2t =

∑T
t=Tc

(T − t+ 1)2

(T − Tc + 1)2
=

∑T−Tc+1
t=1 t2

(T − Tc + 1)2

=
(T − Tc + 1)(T − Tc + 2)(2T − 2Tc + 3)

6(T − Tc + 1)2

=
(T − Tc + 2)(2T − 2Tc + 3)

6(T − Tc + 1)

=
(T − Tc + 1)(2T − 2Tc + 3) + (2T − 2Tc + 3)

6(T − Tc + 1)

=
1

6

(
2T − 2Tc + 3 +

2T − 2Tc + 3

T − Tc + 1

)
=

1

6

(
2T − 2Tc + 3 +

2(T − Tc + 1) + 1

T − Tc + 1

)
=

1

6

(
2T − 2Tc + 3 + 2 +

1

T − Tc + 1

)
≤ 1

6
(2T − 2Tc + 3 + 2 + 1) =

T

3
− Tc

3
+ 1. (31)
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Combining, we have
T∑

t=0

η2t =
2Tw + 1

6
+ Tc − Tw +

T

3
− Tc

3
+ 1 =

T + 2Tc − 2Tw

3
+

7

6

≤ 2

3
(T + Tc − Tw + 2). (32)

Applying the results to Theorem 2.1 then establishes the corollary.

A.5 COMMENTS ON THE WEIGHTS ct IN DEFAZIO ET AL. (2024)

Defazio et al. (2024) suggested the convergence rate of O(1/
√
T ) as long as the averaging parameter

is in the form of ct = wt/
∑t

i=1 wi for any wt ∈ [0, 1] for t = 1, . . . , T . While the condition might
look slightly more general than our proposed ct in (6), we show that, after applying the standard
online convex optimization technique to (Defazio et al., 2024, Theorem 2), the averaging parameter
ct has to satisfy (6) in order to get a valid convergence bound.

To show this, let us first recall (Defazio et al., 2024, Theorem 2).

Theorem A.3 (Defazio et al. (2024, Theorem 2)). Let f : Rd → R be a convex function and
ζ1, . . . , ζT be an iid sequence. Let β1, . . . , βT and w1, . . . , wT be numbers in [0, 1] that are
independent of ζ1, . . . , ζT . Consider the iterates (xt,yt, zt) generated by the following:

xt =

(
1− wt∑t

i=1 wi

)
︸ ︷︷ ︸

=:1−ct

xt−1 +
wt∑t
i=1 wi︸ ︷︷ ︸
=:ct

zt (33)

yt = βtxt + (1− βt)zt (34)
zt+1 = zt − γtgt, gt := ∇f(yt, ζt). (35)

Then, we have that

E [f(xT )− f(x⋆)] ≤
E
[∑T

t=1 wt⟨gt, zt − x⋆⟩
]

∑T
i=1 wi

.

Before going into the proof, we would like to give a heads-up that the indices of zt in Defazio et al.
(2024) (as shown in (33)–(35)) is slightly different from our paper (given in (1)–(3)). In this part, we
will stick to the updating rule (33)–(35) to derive the condition on ct based on the results in Defazio
et al. (2024, Theorem 2).

From the updating rule (35), we know that

∥zt+1 − x⋆∥2 = ∥zt − γtgt − x⋆∥2

= ∥zt − x⋆∥2 − 2γt⟨gt, zt − x⋆⟩+ γ2
t ∥gt∥2,

which implies

⟨gt, zt − x⋆⟩ =
1

2γt
∥zt − x⋆∥2 −

1

2γt
∥zt+1 − x⋆∥2 +

γt
2
∥gt∥2.

Therefore, multiplying by wt, taking expectation, and summing it up from t = 1 to T would yield

E

[
T∑

t=1

wt⟨gt, zt − x⋆⟩
]
= E

[
T∑

t=1

(
wt

2γt
∥zt − x⋆∥2 −

wt

2γt
∥zt+1 − x⋆∥2 +

wtγt
2

∥gt∥2
)]

≤ w1

2γ1
∥z1 − x⋆∥2 +

T∑
t=2

E
[(

wt

2γt
− wt−1

2γt−1

)
∥zt − x⋆∥2

]
+

T∑
t=1

wtγt
2

E
[
∥gt∥2

]
.

Therefore, to obtain a last-iterate convergence bound, we want
wt

γt
=

wt−1

γt−1
(36)
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for t = 2, . . . , T such that the second term gets canceled out. Unrolling,

wt = wt−1 ·
γt

γt−1

= wt−2 ·
γt−1

γt−2
· γt
γt−1

= wt−2 ·
γt

γt−2

= · · ·
= γt ·

w1

γ1
. (37)

Therefore, the condition on ct is given by

ct =
wt∑t
i=1 wi

=
γt · w1

γ1∑t
i=1 γi · w1

γ1

=
γt∑t
i=1 γi

,

which is the same as our condition (6). Moreover, using (37) again, we have that
T∑

i=1

wi =
w1

γ1

T∑
i=1

γi,

and hence we have the convergence

E [f(xT )− f(x⋆)] ≤
E
[∑T

t=1 wt⟨gt, zt − x⋆⟩
]

∑T
i=1 wi

≤
w1

2γ1
∥z1 − x⋆∥2 +

∑T
t=1

wtγt

2 E
[
∥gt∥2

]∑T
i=1 wi

=
1
2∥z1 − x⋆∥2 + 1

2

∑T
t=1 γ

2
t E
[
∥gt∥2

]∑T
t=1 γt

,

which achieves the same bound as in Theorem 2.1.

B PROOFS FOR POLYAK STEPSIZE

B.1 DERIVATION OF THE schedulep LEARNING RATE

Starting by expanding the squares of the distance to the solution x⋆ we have
∥zt − x⋆∥2 = ∥zt−1 − x⋆∥2 − 2γt ⟨∇f(yt, ζt), zt−1 − x⋆⟩+ γ2

t ∥∇f(yt, ζt)∥2. (38)
We could now minimize the right hand side in γt, but then the solution would depend directly on the
unknown x⋆. So before minimizing in γt, we need to upper bound the right hand side with terms we
do know.

To simplify notation, let us consider βt ≡ β for all t. Re-arranging (1) gives

zt−1 =
1

1− β
yt −

(
1

1− β
− 1

)
xt = yt −

β

1− β
(xt − yt) (39)

Now the above in (38) gives
∥zt − x⋆∥2 = ∥zt−1 − x⋆∥2 + γ2

t ∥∇f(yt, ζt)∥2

− 2γt ⟨∇f(yt, ζt),yt − x⋆⟩+ 2γt
β

1− β
⟨∇f(yt, ζt),xt − yt⟩ .

Now using convexity we have that
−⟨∇f(yt, ζt),yt − x⋆⟩ ≤ fζt

(x⋆)− fζt
(yt)

and using that yt − xt = (1− β)(zt−1 − xt) gives
∥zt − x⋆∥2 ≤ ∥zt−1 − x⋆∥2 + γ2

t ∥∇f(yt, ζt)∥2
− 2γt ((fζt(yt)− fζt(x⋆))− 2γtβ ⟨∇f(yt, ζt), zt−1 − xt⟩) . (40)

Minimizing over γt ≥ 0 gives

γt =
(fζt

(yt)− fζt
(x⋆) + β ⟨∇f(yt, ζt), zt−1 − xt⟩)+

∥∇f(yt, ζt)∥2
. (41)
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B.2 AUXILIARY LEMMAS

Lemma B.1 (Extended Titu’s Lemma). For any random variable X and positive-valued random
variable Y , it holds

E
[
(X)2+
Y

]
≥ (E [X])

2
+

E [Y ]
. (42)

In addition, for any numbers a0, . . . , ak and positive numbers b0, . . . , bk, we have

k∑
t=0

(at)
2
+

bt
≥

(∑k
t=0 at

)2
+∑k

t=0 bt
. (43)

Lemma B.2. If fζ is convex for every ζ, and we use the learning rate (41) we have that

∥zt − x⋆∥2 ≤ ∥zt−1 − x⋆∥2 −
(
fζt(yt)− fζt(x⋆) + β ⟨∇f(yt, ζt), zt−1 − xt⟩

)2
+

∥∇f(yt, ζt)∥2
. (44)

As a consequence we also have that ∥zt−x⋆∥, ∥xt−x⋆∥ and ∥yt−x⋆∥ are less than ∥x0−x⋆∥.
Furthermore, taking expectation we have that

E
[
∥zt − x⋆∥2

]
≤ E

[
∥zt−1 − x⋆∥2

]
−
(
E [f(yt)− f(x⋆) + β ⟨∇f(yt), zt−1 − xt⟩]

)2
+

E [∥∇f(yt, ζt)∥2]
.

(45)

Proof. Inserting (41) into (40) gives the first result, which also shows that ∥zt−x⋆∥ ≤ ∥z0−x⋆∥ =
∥x0 − x⋆∥. Since xt+1 is a convex combination of xt and zt, we have that

∥xt+1 − x⋆∥ ≤ (1− ct+1)∥xt − x⋆∥+ ct+1∥zt − x⋆∥
from which we can use induction to show ∥xt − x⋆∥ ≤ ∥x0 − x⋆∥. Furthermore, since yt is a
convex combination of zt−1 and xt, it also follows by induction that ∥yt − x⋆∥ ≤ ∥x0 − x⋆∥.
Taking conditional expectation over (44) given xt and zt−1 and using Lemma B.1 gives

Et[∥zt − x⋆∥2] ≤ ∥zt−1 − x⋆∥2 −
(
f(yt)− f(x⋆) + β⟨∇f(yt), zt−1 − xt⟩

)2
+

Et[∥∇f(yt, ζt)∥2]
. (46)

Finally, taking total expectation over (46), and using the law of total expectation and Lemma B.1
again, yields (45).

Next we develop the Bregman viewpoint of this method.

Lemma B.3. Let λ = β
1−β . It follows that

f(yt)− f(x⋆) + β ⟨∇f(yt), zt−1 − xt⟩ = (1 + λ)(f(yt)− f(x⋆))

− λ(f(xt)− f(x⋆))

+ λBf (xt,yt), (47)

where Bf (xt,yt) is the Bregman divergence of f that is

Bf (x,y) := f(x)− f(y)− ⟨∇f(y),x− y⟩ .

Proof. Using zt−1 − xt =
1

1−β (yt − xt) which follows from (1) gives

f(yt)− f(x⋆) + β ⟨∇f(yt), zt−1 − xt⟩ = f(yt)− f(x⋆)−
β

1− β
⟨∇f(yt),xt − yt⟩

= (1 + λ)(f(yt)− f(x⋆))− λ(f(xt)− f(x⋆))

+ λ
(
f(xt)− f(yt)− ⟨∇f(yt),xt − yt⟩

)
.
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Lemma B.4. Let ct = 1/(t+ 1). Initializing z−1 = x0, it follows that

E
[
∥zt − x⋆∥2

]
≤ ∥x0 − x⋆∥2 (48)

−
(
(t+ 1)E [f(xt)− f(x⋆)] + λ

∑t
k=0 E [Bf (xk,yk)]

)2
+∑t

k=0 E [∥∇f(yk, ζk)∥2]
.

Proof. Using (47) in (45) gives

E
[
∥zt − x⋆∥2

]
= E

[
∥zt−1 − x⋆∥2

]
−
(
E [(1 + λ)(f(yt)− f(x⋆))− λ(f(xt)− f(x⋆)) + λBf (xt,yt)]

)2
+

E [∥∇f(yt, ζt)∥2]
. (49)

Therefore, unrolling (49) gives

E
[
∥zt − x⋆∥2

]
≤ ∥z−1 − x⋆∥2 −

t∑
k=0

(
ak
)2
+

bk
,

where we define ak := E [(1 + λ)(f(yk)− f(x⋆))− λ(f(xk)− f(x⋆)) + λBf (xk,yk)] and
bk = E

[
∥∇f(yk, ζk)∥2

]
. From Lemma B.1, we know that

t∑
k=0

(ak)
2
+

bk
≥
(∑t

k=0 ak
)2
+∑t

k=0 bk
.

Therefore, we have that

E
[
∥zt − x⋆∥2

]
= ∥z−1 − x⋆∥2 (50)

−
(∑t

k=0 E [(1 + λ)(f(yk)− f(x⋆))− λ(f(xk)− f(x⋆)) + λBf (xk,yk)]
)2
+∑t

k=0 E [∥∇f(yk, ζk)∥]2
.

To finish the proof of convergence, we need to write yt as a combination of xt and xt−1 so that we
can telescope. To this end note that

zt−1 =
1

ct
xt +

(
1− 1

ct

)
xt−1.

Substituting this into the yt update (1) gives

yt = (1− β)

(
1

ct
xt +

(
1− 1

ct

)
xt−1

)
+ βxt

=

(
(1− β)

(
1

ct
− 1

)
+ 1

)
xt − (1− β)

(
1

ct
− 1

)
xt−1.

Let ρt := (1− β)
(

1
ct

− 1
)
. Isolating xt in the above we have that it can be expressed as a convex

combination between yt and xt−1 given by

xt =
1

1 + ρt
yt +

ρt
1 + ρt

xt−1. (51)

Using the convexity of f we have that

f(xt) ≤
1

1 + ρt
f(yt) +

ρt
1 + ρt

f(xt−1). (52)

Re-arranging and isolating f(yt) gives

f(yt) ≥ (1 + ρt)f(xt)− ρtf(xt−1). (53)
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Using the above we have that
(1 + λ)(f(yt)− f(x⋆))− λ(f(xt)− f(x⋆)) ≥ (1 + λ)(1 + ρt)(f(xt)− f(x⋆))

− (1 + λ)ρt(f(xt−1)− f(x⋆)))

− λ(f(xt)− f(x⋆))

= (1 + (1 + λ)ρt)(f(xt)− f(x⋆))

− (1 + λ)ρt(f(xt−1)− f(x⋆)))

Substituting back ρt := (1 − β)
(

1
ct

− 1
)

and 1 + λ = 1
1−β in the above and using that ct =

1/(t+ 1
c0
) gives

(1 + λ)(f(yt)− f(x⋆))− λ(f(xt)− f(x⋆))

≥
(
1

ct

)
(f(xt)− f(x⋆))−

(
1

ct
− 1

)
(f(xt−1)− f(x⋆))

=

(
t+

1

c0

)
(f(xt)− f(x⋆))−

(
t− 1 +

1

c0

)
(f(xt−1)− f(x⋆)).

Using the above we have that
t∑

k=0

(
(1 + λ)(f(yk)− f(x⋆))− λ(f(xk)− f(x⋆))

)
≥ f(x0)− f(x⋆) +

t∑
k=1

((
k +

1

c0

)
(f(xk)− f(x⋆))−

(
k − 1 +

1

c0

)
(f(xk−1)− f(x⋆))

)

= f(x0)− f(x⋆) +

(
t+

1

c0

)
(f(xt)− f(x⋆))−

1

c0
(f(x0)− f(x⋆))

= (t+ 1)(f(xt)− f(x⋆)).

Inserting this in (50), together with the monotonicity of the positive part and the initialization that
z−1 = x0, gives

E
[
∥zt − x⋆∥2

]
= ∥x0 − x⋆∥2 (54)

−
(
(t+ 1)E [f(xt)− f(x⋆)] + λ

∑t
k=0 E [Bf (xk,yk)]

)2
+∑t

k=0 E [∥∇f(yk, ζk)∥2]
.

B.3 PROOF OF THEOREM 3.2

Theorem 3.2. Consider the iterates of Algorithm 1 with ct = 1/(t+ 1), β ∈ [0, 1) and γmax =
∞. Let fζ : Rd → R be a convex function for every ζ. Let

B := {x : ∥x− x⋆∥ ≤ ∥x0 − x⋆∥} ⊂ Rd, (11)

G2 := max
x∈B

Eζ∥∇f(x, ζ)∥2. (12)

With the initialization z−1 = x0, the suboptimality gap of the last iterate xt converges at a 1/
√
t

rate according to

E [f(xt)− f(x⋆)] ≤ G∥x0 − x⋆∥√
t+ 1

. (13)

Proof. Since ∥yk−x⋆∥ ≤ ∥x0−x⋆∥ we have that E
[
∥∇f(yk, ζk)∥2

]
≤ G2 and re-arranging (48)

gives(
(t+ 1)E [f(xt)− f(x⋆)] + λ

t∑
k=0

E [Bf (xk,yk)]
)2
+
≤ G2(t+ 1)(∥x0 − x⋆∥2 − ∥zt − x⋆∥2)

≤ G2(t+ 1)∥x0 − x⋆∥2.
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Since the term on the left is always positive we can drop the positive part, taking square roots, and
dividing through by t+ 1 gives

E [f(xt)− f(x⋆)] +
λ

t+ 1

t∑
k=0

E [Bf (xk,yk)] ≤
G∥x0 − x⋆∥√

t+ 1
.

Inserting back λ = β/(1− β) gives

E [f(xt)− f(x⋆)] ≤ E [f(xt)− f(x⋆)] +
1

t+ 1

β

1− β

t∑
k=0

E [Bf (xk,yk)] ≤
G∥x0 − x⋆∥√

t+ 1
.

Finally, we can drop the positive terms given by the Bregman divergences E [Bf (xk,yk)], giving
the final desired result.

C PRACTICAL & ADAM VERSIONS OF SCHEDULEP

We can also develop a version of Schedulep that makes use of any preconditioner, such as the
Adam preconditioner.

To derive a preconditioned version of Schedulep , let Dt ∈ Rd×d be our positive definite sym-
metric preconditioner, and let ∥z∥2Dt

:= ⟨Dtz, z⟩ be the norm induced by this preconditioner. The
preconditioned version of Schedulefree is given by

yt = (1− β)zt−1 + βxt (55)

zt = zt−1 − γtD
−1
t ∇f(yt, ζt) (56)

xt+1 = (1− ct+1)xt + ct+1zt (57)

We can again upper bound the distance between zt and a solution x⋆, but now under the precondi-
tioned norm via

∥zt − x⋆∥2Dt
= ∥zt−1 − x⋆∥2Dt

− 2γt
〈
D−1

t ∇f(yt, ζt), zt−1 − x⋆

〉
Dt

+ γ2
t ∥∇f(yt, ζt)∥2D−1

t

= ∥zt−1 − x⋆∥2Dt
− 2γt ⟨∇f(yt, ζt), zt−1 − x⋆⟩+ γ2

t ∥∇f(yt, ζt)∥2D−1
t

. (58)

It only remains to bound the linear term ⟨∇f(yt), zt−1 − x⋆⟩ for which we follow the exact same
steps between (39) and (40) giving

∥zt − x⋆∥2Dt
≤ ∥zt−1 − x⋆∥2Dt

+ γ2
t ∥∇f(yt, ζt)∥2D−1

t
(59)

− 2γt ((fζt
(yt)− fζt

(x⋆))− 2βγt ⟨∇f(yt, ζt), zt−1 − xt⟩) .
Minimizing the above in γt ≥ 0 gives

γt =
(fζt

(yt)− fζt
(x⋆) + β ⟨∇f(yt, ζt), zt−1 − xt⟩)+
∥∇f(yt, ζt)∥2D−1

t

. (60)

See Algorithm 2 for the complete pseudo-code.

Remark C.1 (Practical version). In our code we use a slightly different form given by

γt =
(fζt

(yt)− fζt
(x⋆) + ⟨∇f(yt, ζt), zt−1 − yt⟩)+

∥∇f(yt, ζt)∥2
. (61)

This follows from (41) by using that

xt =
1

β
yt +

(
1− 1

β

)
zt−1

thus
zt−1 − xt =

1

β
zt−1 −

1

β
yt.
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Algorithm 2 Adam-Schedulep: Adam Schedule Free Polyak

1: Input: z−1 = x0 ∈ Rd, β ∈ [0, 1], ct > 0
2: for t = 0 to T − 1 do
3: yt = (1− β)zt + βxt

4: γt =
[fζt

(yt)− fζt
(x⋆) + β ⟨∇f(yt, ζt), zt − xt⟩]+
∥∇f(yt, ζt)∥2Dt

5: zt+1 = zt − γtD
−1
t ∇f(yt, ζt)

6: xt+1 = (1− ct+1)xt + ct+1zt+1

7: end for
8: Return: xT

Thus finally
β ⟨∇f(yt, ζt), zt−1 − xt⟩ = ⟨∇f(yt, ζt), zt−1 − yt⟩ .

D IMPLICATIONS TO MOMENTUM METHOD

Since primal averaging is a special case of schedule-free when β = 1, and primal averaging
itself is equivalent to momentum, our convergence theory for the schedule-free method includes
Momentum as a special case. For example, the last-iterate convergence result in Corollary 2.3 applies
to the primal averaging method when β = 1. This is interesting because of the equivalence between
the primal averaging and momentum.

Algorithm 3 Momentum

1: Input: x0 ∈ Rd, m−1 = 0, αt ≥ 0, λt ≥ 0.
2: for t = 0 to T − 1 do
3: mt =

λt

1+λt
mt−1 +

1
1+λt

∇f(xt, ζt)
4: xt+1 = xt − αtmt

5: end for
6: Return: xT

The equivalence of the momentum method and the primal averaging method is shown in the follow-
ing lemma.

Lemma D.1. If (xt)t∈N is generated by the Momentum Algorithm 3 from parameters (αt, λt),
then it verifies the primal averaging iterates by choosing any parameters (γt, ct) satisfying

c1γ0 =
α0

1 + λ0
, (62)

and for t ≥ 1,

αt−1

(
1

ct
− 1

)
1 + λt

λt
=

αt

ct+1
, and γt =

αt−1

λt

(
1

ct
− 1

)
. (63)

Proof. For the primal averaging iterate, since z−1 = x0,

x1 = (1− c1)x0 + c1(x0 − γ0∇f(x0, ζ0))

= x0 − c1γ0∇f(x0, ζ0).

For the momentum iterate, since m−1 = 0,

x1 = x0 −
α0

1 + λ0
∇f(x0, ζ0).

Hence, they are equivalent when
c1γ0 =

α0

1 + λ0
.
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Suppose that the iterates of primal averaging and the momentum iterate are equivalent at (t − 1)-st
and t-th iteration for some t ≥ 1. Let us show that their iterates at the (t + 1)-st iteration are the
same; i.e.,

xmomentum
t+1 = xt − αtmt = (1− ct+1)xt + ct+1zt = xPA

t+1,

equivalently,
zt = xt −

αt

ct+1
mt. (64)

Indeed, by the induction hypothesis, we have

zt−1 = xt−1 −
αt−1

ct
mt−1. (65)

By the updating rule of the primal averaging method and (65), we have

zt = zt−1 − γt∇f(xt, ζt)

= xt−1 −
αt−1

ct
mt−1 − γt∇f(xt, ζt)

= xt − αt−1

(
1

ct
− 1

)
mt−1 − γt∇f(xt, ζt)

= xt − αt−1

(
1

ct
− 1

)
1 + λt

λt
mt −

(
γt −

αt−1

λt

(
1

ct
− 1

))
∇f(xt, ζt).

The last two lines follow from the updating rule of the momentum method. Hence, we have
shown (64) to hold when

αt−1

(
1

ct
− 1

)
1 + λt

λt
=

αt

ct+1
, and γt =

αt−1

λt

(
1

ct
− 1

)
.

The above lemma shows that, as long as the hyperparameters for primal averaging and momentum
method satisfy (62) and (63), we have the momentum method equivalent to the primal averaging
method.

Since the primal averaging method is a special case of schedule-free (when βt ≡ β = 1),
the convergence result in Theorem 2.1 gives the convergence for the momentum method whenever
(αt, λt) in Algorithm 3 satisfies (6), (62), (63). To illustrate this, we start showing the convergence
of the momentum method when its stepsize {αt}Tt=0 is given by some schedule.

Corollary D.2. Let {αt}Tt=0 be given by some scheduler. Initializing λ0, γ0 such that (1+λ0)γ0−
α0 > 0, consider {γt}T−1

t=0 , {λt}T−1
t=0 such that γ1 = α0γ0

(1+λ0)γ0−α0
> 0 and for t = 1, . . . , T − 1,

λt =
αt−1

γ2
t

t−1∑
i=0

γi, γt+1 =
αt

∑t
i=0 γi

αt−1

γt

(∑t−1
i=0 γi

)
+ γt − αt

. (66)

Suppose that

αt <
αt−1

γt

(
t−1∑
i=0

γi

)
+ γt. (67)

Then Algorithm 3 with parameters (αt, λt) for t = 0, 1 . . . , T−1 would then give the convergence

E [f(xT )− f(x⋆)] ≤
1
2∥x0 − x⋆∥2 + γ0(f(x0)− f(x⋆))∑T

t=0 γt
+

T∑
t=0

1
2γ

2
tG

2∑T
t=0 γt

. (68)

Proof. From (6), we know that

1

ct
− 1 =

∑t
i=0 γi
γt

− 1 =

∑t−1
i=0 γi
γt

.
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Hence, putting (6) into (62) and (63), we have that
γ0γ1

γ0 + γ1
=

α0

1 + λ0
, (69)

αt−1

∑t−1
i=0 γi
γt

1 + λt

λt
=

αt

γt+1

t+1∑
i=0

γi, (70)

γ2
t =

αt−1

λt

(
t−1∑
i=0

γi

)
. (71)

We see that (69) gives
(1 + λ0)γ0γ1 = α0γ0 + α0γ1,

which implies
γ1 =

α0γ0
(1 + λ0)γ0 − α0

.

Since (1 + λ0)γ0 − α0 > 0, we have γ1 > 0. Consider t = 1, . . . , T − 1. Rearranging (71), we can
easily obtain

λt =
αt−1

γ2
t

t−1∑
i=0

γi. (72)

For (70), we see that

αt−1

∑t−1
i=0 γi
γt

1 + λt

λt
=

αt

γt+1

t+1∑
i=0

γi =
αt

γt+1

(
t∑

i=0

γi

)
+ αt. (73)

Since (72) implies
1 + λt

λt
=

1

λt
+ 1 =

γ2
t

αt−1

(∑t−1
i=0 γi

) + 1, (74)

(73) then gives

γt + αt−1

∑t−1
i=0 γi
γt

− αt =
αt

γt+1

(
t∑

i=0

γi

)
,

and hence,

γt+1 =
αt

(∑t
i=0 γi

)
αt−1

∑t−1
i=0 γi

γt
+ γt − αt

.

This is positive when

αt < αt−1

∑t−1
i=0 γi
γt

+ γt.

Given the stepsize αt of the momentum method, the lemma suggests the choice of the momentum
parameter {λt}T−1

t=0 such that the last-iterate convergence theory holds. The stepsize {αt}Tt=0 then
defines a set of parameters {γt}Tt=0, which determines the convergence rate of momentum as shown
in (68).

On the other hand, if we set the stepsize {γt}Tt=0 of the primal averaging following some schedule,
we can have a new set of hyperparameters for the momentum method that guarantees the theoretical
convergence.
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Corollary D.3. Let {γt}Tt=0 be given by some scheduler. Initializing λ0 ≥ 0 and α0 =
γ0γ1(1+λ0)

γ0+γ1
, consider the iterates generated by the momentum algorithm (Algorithm 3) with pa-

rameters (αt, λt) given by

λt = αt−1

∑t−1
i=0 γi
γ2
t

, αt = αt−1
γt+1

γt

∑t−1
i=0 γi∑t+1
i=0 γi

+
γtγt+1∑t+1

i=0 γi
. (75)

for t = 1, . . . , T . We then have the convergence

E [f(xT )− f(x⋆)] ≤
1
2∥x0 − x⋆∥2 + γ0(f(x0)− f(x⋆))∑T

t=0 γt
+

T∑
t=0

1
2γ

2
tG

2∑T
t=0 γt

. (76)

Let D := ∥x0 − x⋆∥. In particular for the constant learning rate γt ≡ γ = D
G
√
T

gives the rate

E [f(xT )− f(x⋆)] ≤
f(x0)− f(x⋆))

T
+

DG√
T
. (77)

Proof. Putting (6) into (62) and (63), we have (69), (70) and (71) hold. Simply by rearranging terms,
we obtain

α0 =
γ0γ1(1 + λ0)

γ0 + γ1
, (78)

and for t = 1, . . . , T − 1,

λt = αt−1

∑t−1
i=0 γi
γ2
t

, αt = αt−1
γt+1

γt

∑t−1
i=0 γi∑t+1
i=0 γi

1 + λt

λt
.

Applying (74), we can simplify this as

λt = αt−1

∑t−1
i=0 γi
γ2
t

, αt = αt−1
γt+1

γt

∑t−1
i=0 γi∑t+1
i=0 γi

+
γtγt+1∑t+1

i=0 γi
.

Similarly, if we have {γt}Tt=0 given by some schedule, we can derive the stepsize αt and the momen-
tum parameter λt for momenutm and obtain the convergence bound. Moreover, if γt ≡ γ = D

G
√
T

,

we can obtain the optimal convergence O( D
G
√
T
) for momentum.

E EXPERIMENTS: SUPPLEMENTARY MATERIAL

E.1 IMAGE CLASSIFICATION

We conduct experiments on multiple vision models trained on CIFAR10 and CIFAR100, cov-
ering both small-scale (ResNet-20) and larger-scale architectures (Wide ResNet (16-8),
DenseNet). Full details of the architectures and training configurations are provided in Table 1. All
experiments are based on the open-source framework https://github.com/fabian-sp/
step-back, which we extend to include the Schedule-free optimizer and to support Group-
Norm normalization layers rather than BatchNorm for the ResNet 8 and DenseNet 9 architec-
tures. As mentioned in Section 4, this is to avoid the complication of writing custom BatchNorm
code to approximate batch statistics of the x sequence of Schedule-free.

E.1.1 PREDICTIVE POWER FOR DEEP LEARNING

We train a small ResNet-20 model on CIFAR10 and compute the theoretical bound in Theo-
rem 2.1. The norm of stochastic gradients is used as a proxy for the Lipschitz constant G, while the

8https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/
resnet.py

9https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/
densenet.py
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(a) Cosine schedule with base learning rate γ = 0.01
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(b) Cosine schedule with base learning rate γ = 0.1
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(c) Cosine schedule with base learning rate γ = 1
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(d) Cosine schedule with base learning rate γ = 10

Figure 9: Comparison between the convex theory and the training loss for cosine schedule with
different cooldown periods and different base learning rates.
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Experiment CIFAR10 CIFAR100

Architectures ResNet-20
Wide ResNet (16-8)

DenseNet

Normalization Layer Group Norm Group Norm
Epochs 50 100
GPUs 1 × A100 1 × A100
Batch size 128 64
Base Learning Rates [0.01, 0.1, 1, 10] [0.01, 0.1, 1, 10]
Weight Decay 0.0001 0.0002
Momentum 0.9 0.9
Warm-up fraction 0.05 0.05
Cooldown fraction 0.25 0.05

Table 1: Comparison of architecture and training setup for image classification on CIFAR10 and
CIFAR100.

best parameters and loss during training are used to approximate x⋆ and f(x⋆), respectively. We
compare our bound for the wsd and cosine schedules with different cooldown lengths where the
decay period begins at iteration {0.25T, 0.5T, 0.75T} and T is the training horizon. Figure 3 shows
the results for the wsd schedule with the base learning rate γ ∈ {0.01, 10} and Figure 9 shows
the results for the cosine schedule with the base learning rate γ ∈ {0.01, 0.1, 1, 10}. Figure 4
shows the performance of a constant-then-diverging schedule with the base learning rate γ = 10
and varying diverging lengths.

Since we have discussed Figures 3 and 4 earlier in the paper, we will focus on the discussion over
Figure 9 here. In fact, it turns out that both the wsd and cosine schedules exhibit similar theo-
retical and empirical performance, so our discussion on the cosine schedule is also applicable to
wsd schedule.

When the base learning rate γ is small (i.e., γ ∈ {0.01, 0.1, 1}), the theory predicts the convergence
of the cosine schedule well. A slight mismatch is that, earlier cooldown gives a slower empirical
convergence, while the theory behaves in the opposite way. We also see that the gradient norm is
more stable as γ increases. When γ is large (i.e., γ = 10), the theory successfully predicts the spikes
in the training loss for different schedules, regardless of whether the spike occurs before or after the
cooldown begins. One possible explanation is that, the spikes in the gradient norms (which is used
to approximate the Lipschitz constant G in the theory) lead to the spikes in the theoretical bound.
Yet, one should also note that, when γ = 0.01, the blowup in the gradient norm does not lead to the
divergence in the theoretical bound, and both the theoretical bound and the training loss converge.

E.1.2 STABILITY ANALYSIS

We compare the stability and the performance of Schedule-free variants and SGD-m. We evaluate
both training dynamics and generalization. Models follow the setup in Defazio et al. (2024) for
some of the tasks in AlgoPerf: a Wide ResNet (16-8) trained on CIFAR10 (a smaller model)
and a DenseNet trained on CIFAR100 (a larger model). Hyperparameters and the setting details
are listed in Table 1. We use wsd schedule for SGD-m, schedulet and Schedule-free with
ct = 1/t from previous theory, and use wamrup-stable schedule only for Schedule-free with
the heuristic parameters ct = γ2

t /
∑t

i=1 γ
2
i .

Figure 6 shows the training performance (in terms of the training loss and the validation score)
against the learning rate or the number of epochs when training a Wide ResNet (16-8) model
on the CIFAR10 data set. We see that, when the learning rate is small, SGD-m has a better perfor-
mance over schedule-free, both in terms of the training loss and the validation score. When the
learning rate is large, SGD-m becomes unstable and Schedule-free outperforms SGD-m. However,
we see that schedule-free has a more stable performance in generalization across different learn-
ing rates, regardless of the choice of the averaging parameter. In general, schedulet has a similar
generalization performance as Schedule-free with the heuristic averaging parameter ct.
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Figure 10: Training a DenseNet model on the CIFAR100 data set.

Figure 10 shows the training performance when training a DenseNet model on the CIFAR100
data set. In this case, Schedule-free performs remarkably better than SGD-m and is robust over
different learning rates. Different choices of averaging parameter ct have similar performance across
different learning rates.

E.2 BLACK-BOX DISTILLATION DETAILS

Mixed precision training was enabled using bfloat16 for efficiency. The student model utilized
flash attention (Dao et al., 2022).

Experiment tiny shakespeare fineweb1B

Teacher model gpt2-medium EleutherAI/gpt-j-6B
Student hidden size 768 768
Student transformer layers 4 12
Student attention heads 8 12
Student vocabulary size 50257 50257
Batch size 4 32
Context length 512 tokens 1024 tokens
Tokens per training step 4096 262144
Learning rate schedule Warm-up → Constant → Linear Warm-up → Constant → Linear
Warm-up fraction 0.1 0.1
Cooldown fraction — 0.1

Table 2: Comparison of model configurations and training setups for distillation on
tiny shakespeare and fineweb1B.
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