Under review as a conference paper at ICLR 2025

SCHEDULERS FOR SCHEDULE-FREE: THEORETICALLY
INSPIRED HYPERPARAMETERS

Anonymous authors
Paper under double-blind review

ABSTRACT

The recently proposed schedule-free method has been shown to achieve strong
performance when hyperparameter tuning is limited. The current theory for
schedule-free only supports a constant learning rate, where-as the implemen-
tation used in practice uses a warm-up schedule. We show how to extend the
last-iterate convergence theory of schedule-free to allow for any scheduler,
and how the averaging parameter has to be updated as a function of the learn-
ing rate. We then perform experiments showing how our convergence theory has
some predictive power with regards to practical executions on deep neural net-
works, despite that this theory relies on assuming convexity. When applied to the
warmup-stable-decay (wsd) schedule, our theory shows the optimal convergence
rate of O(1/+/T). We then use convexity to design a new adaptive Polyak learning
rate schedule for schedule-free. We prove an optimal anytime last-iterate con-
vergence for our new Polyak schedule, and show that it performs well compared
to a number of baselines on a black-box model distillation task.

1 INTRODUCTION

The recently introduced schedule-free method (Defazio et al., 2024) achieves state-of-the-art perfor-
mance over a range of deep learning problems, as proven by its winning entry for the MLCommons
2024 AlgoPerf Algorithmic Efficiency Challenge Self-Tuning track'.

The efficacy of schedule-free on these highly non-convex deep learning problems is remarkable
considered that it was designed for convex losses. Indeed, schedule-free achieves the optimal
O(DG /V/T) convergence rate on the class of convex G-Lipschitz losses, for D := |zg — x|,
where x(and x, are the first and optimal parameters, respectively.

—— Decay € [0.257, 0,57, 0.75T) =
— J 20

S
2, - l g L/y/m
5 = — ’
2 1 L

0.
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Iteration T' Iteration T Tteration T Iteration T'

Vi@

Figure 1: Our theory (Theorem 2.1) is good at predicting the behavior of the training loss: The
plots show the theoretical bound and the training loss of ResNet-20/Cifarl0 when using wsd
schedules with base learning rate v = 10 and three different cooldown lengths. The gradient norm
over the iteration is shown on the rightmost figure for reference. The red color denotes the warmup
period, the gray color denotes the constant period, and the blue color denotes the cooldown period.

We first extend the theory of schedule-free to allow for any learning rate scheduler. This is
important because the current theory for schedule-free in (Defazio et al., 2024) only supports
constant learning schedules, where-as in practice schedule-free method is applied with a warmup
schedule. Although Defazio et al. (2024) has a bound that holds for arbitrary schedules (see Theorem

"https://mlcommons.orqg/2024/08/mlc-algoperf-benchmark-competition/

https://mlcommons.org/2024/08/mlc-algoperf-benchmark-competition/

Under review as a conference paper at ICLR 2025

2 in (Defazio et al., 2024)), this bound does not prove convergence. To transform this bound into
a convergence theorem, an additional constraint that ties together the learning rates and averaging
parameters is required, as we show in Theorem 3.2. When using this new setting for averaging
parameters, we refer to the resulting method as schedulet. We then specialize our theory to the
wsd (warmup-stable-decay) schedule and show that schedulet achieves the optimal convergence
rate of O(DG /+/T). We then confirm that our resulting convergence theorem, despite having been
established for convex losses, is remarkably good at predicting the behavior of schedulet on deep
learning tasks. See Figure 1 for a comparison between our theoretical prediction of the loss curve
and the empircal loss curve for training a ResNet-20.

Second, we propose a new adaptive learning rate for schedule-free based on the Polyak step-
size, which we call schedulep. We establish the last-iterate convergence of schedulep, which
achieves an any-time (meaning that the total number of iterations is not known in advance) optimal
convergence rate of O(GD/+/t) for every t for the convex and G-Lipschitz setting. The downside
to schedulep is that it requires access to the batch loss on the optimal parameters. Fortunately
this optimal loss can be reasonably approximated in either the interpolation setting, or the black-box
model distillation setting, in which the student (a smaller model) is trained on one of the tasks that
the teacher (a larger model) is pretrained. Under this setting, we can obtain an approximation of
optimal batch loss of the student by querying the teacher’s loss.

1.1 scHEDULE-FREE SGD

Consider the stochastic optimization problem

min f(x) :=E x)|,

min f(2) = Ep [f()

where D is some data distribution over R?, ¢ € R? is sampled data from D, and f¢ : R — R
is our loss function. We assume that f: R? — R is convex, G-Lipschitz and that the problem is
well-posed, in the sense that a minimizer «, € argmincpa f(x) exists.

The schedule-free has three sets of iterates, the primal averaging iterates vy, the offline averaging
iterates x;, and accumulate gradient iterates z;. At iteration ¢ (for t = 0,1,...,7 — 1), we draw
a batch of data ¢; and evaluate the stochastic gradient® V f(y;, ;) at y;. At each iteration t, this
stochastic gradient is used in the schedule-free update as follows

yr = (1 — B)ze—1 + Pracy (1
zi =21 — %V [(Ys,Ct))
Tip1 = (1 — cpp1)@e + coq1 2, 3)

where 8, € [0, 1] is the momentum parameter, -y, > 0 is the learning rate, and ¢;11 € [0, 1] is the
averaging parameter over x; and z;. In practice, the method would be implemented with only one
additional sequence given by substituting out y; as follows

zi = zi1 — vV (1= Be)zi—1 + Bz, Gr) “4)
T = (1 — cpp1)@e + oy 2 @)

The momentum parameter 3; interpolates between Polyak-Ruppert averaging when 5; = 0 and
Primal averaging when 3; = 1. Defazio et al. (2024) suggests that the momentum parameter 3; =
B =~ 0.9 works best in practice.

1.2 CONTRIBUTIONS AND BACKGROUND

Schedule-free theory. Defazio et al. (2024) showed schedule-free achieves the optimal
O(DG/V/T) convergence rate for a fixed horizon T in the convex and G-Lipschitz setting with
a constant learning rate ¢ = -y and averaging parameters ¢; = 1/t fort = 1,...,T. Though De-
fazio et al. (2024) present a more general result in their Theorem 2 that does hold for every c; and
schedule ;, their result does not guarantee convergence.

*Formally Vf(y:,¢:) is a subgradient, since we assumed f(y,¢) is convex in y, but not necessarily
smooth. But for the sake of simplicity we omit this technical detail.

Under review as a conference paper at ICLR 2025

The schedule-free method is also closely related to the AC-SA algorithm, which also converges
at the optimal rate of O(1/+/T') (Lan, 2012, Corollary 1).

Recently, Brown (2025) proved the convergence of schedule-free in smooth nonconvex setting.
In all of the cases, the author only discussed the momentum parameter being /3; = 1, which reduces
to the primal averaging. Also, the author considered a constant learning rate v, = - (or an increasing
learning rate ; = o (t + 1)) with different choices of ¢; fort = 1, ..., T, and established the best-
iterate (in hindsight) convergence to a stationary point.

Contributions. We provide a convergence theorem for schedule-free in the convex Lipschitz
setting that admits any learning rate schedule in Theorem 3.2. To establish this theorem, we require
setting the averaging parameter ¢; based on the learning rate via ¢; = 7/ 2221 vk In the special
case that ; is constant, this recovers the ¢; = 1/t from Defazio et al. (2024). Our theory can
be applied to the wsd schedule, which yields the optimal convergence rate of O(DG/ \/T), see
Corollary 2.3.

Momentum for Non-smooth Convex Optimization. Both Tao et al. (2018) and Defazio &

Gower (2021) established that SGD with momentum achieves the optimal last-iterate O(1/+/T') con-
vergence rate in the convex and Lipschitz setting with a constant step size.

Contributions. Because primal averaging is a special case of schedule-free when 3; = 1, and
primal averaging itself is equivalent to Momentum (see Sebbouh et al. (2021)), our Theorem 3.2 and
subsequent Corollary 2.3 for wsd schedules includes Momentum as a special case. Thus we have
extended the convergence of Momentum from constant schedules to any schedule.

Convex Theory for Deep Learning. Surprisingly, convex optimization theory has been shown to
produce practical methods for training large language models. For example, Adagrad was developed
based on non-smooth convex analysis and became widely used in deep learning until RMSprop
and Adam improved upon it (Duchi et al., 2011). Furthermore, a recent work by Schaipp et al.
(2025) has shown that non-smooth convex analysis for SGD can effectively predict the performance
in deep learning. In particular (Schaipp et al., 2025) found that the empirical convergence of AdamW
with a wsd schedule for large language model training behave similarly to an optimal last-iterate
convergence bound for SGD in non-smooth convex setting (Defazio et al., 2023).

Contributions. Taking inspiration from Schaipp et al. (2025), we compare our new last-iterate con-
vergence theory of schedule-free to the practical convergence on a Resnet-20 for CIFARI1O.
Our comparison shows that the theory can predict which schedules will converge, which schedules
will produce spikes with remarkable accuracy, and even when divergence will occur.

Warmup, stable, decay schedule. The wsd schedule consists of three phases: warmup, constant
and cooldown, and hence is also known as the trapezoidal schedule (Zhai et al., 2022). The experi-
ments by Higele et al. (2024) found that wsd performed as good as or even better than the cosine
schedule with the cooldown phase. Furthermore, wsd is better suited for training foundation models,
where the cooldown phase can be used for finetuning (Hégele et al., 2024).

Contributions. As a special case of our main theorem, we show that, the schedule-free SGD
method, applied with the wsd schedule, can achieve an optimal convergence rate of O(1/+/T).

Polyak Stepsize. The Polyak stepsize was first introduced by Polyak (1987) in the deterministic
setting, where the convergence was proved for the non-smooth and convex setting. Hazan & Kakade
(2019) revisited the Polyak stepsize for the class of gradient descent methods and showed that Polyak
stepsize has near-optimal convergence rate in the Lipschitz, smooth, and strongly convex setting
without accessing to any of the Lipschitz, smoothness or strong convexity parameters.

Recently, there have been many proposals of a stochastic Polyak stepsize in machine learning; see
(Berrada et al., 2020; Loizou et al., 2021). Assuming access to fg(w*), the SPS* by Gower et al.
(2025) achieves the best known rates across several classes of convex functions. Moreover, Gower
et al. (2025) proposed an adaptive Polyak stochastic stepsize, called IAM (Iterate Averaging Adap-
tive method), for the momentum method. Other variants of stochastic Polyak with momentum in-
clude (Oikonomou & Loizou, 2024; Wang et al., 2023; Orvieto & Xiao, 2024).

Under review as a conference paper at ICLR 2025

Contributions. We suggest a Polyak stepsize for schedule-free. With an arbitrary choice of the
momentum parameter 3; = 3 € [0, 1), we prove an optimal anytime last-iterate convergence bound
of O(GD/+/t) for every t for the non-smooth convex setting in Theorem 3.2. We then consider
the application black-box model distillation setting proposed by Gower et al. (2025), and show
that our new Polyak stepsize for schedule-free achieves strong performance compared to several
benchmark methods on both the TinyShakespeare and fineweblB data set.

2 CONVERGENCE ANALYSIS AND IMPLICATIONS

The schedule-free algorithm was designed to per-

4 form well without the need to tune additional hyper-
£ parameters beyond momentum. For convex and Lip-
schitz objectives, it achieves the optimal convergence
guarantees with a constant step size. Despite this,
schedule-free is used with a linear warmup sched-

(
10000 20000 0 10000 20000

Heration T Teration T ule, which the authors note is necessary for competi-
tive performance. This added benefit over a constant
Figure 2: Training loss for schedule is demonstrated in Figure 2 for a small deep

schedule-free on ResNet-20 learning model. This indicates a gap between theory
/Cifarl0 with a constant learning and practice, which motivates a natural question: Does
rate schedule (gray), warmup-stable (red- schedule-free remain optimal with a non-constant
gray), and wsd schedule (red-gray-blue). schedule, in the convex setting?

We begin by stating our convergence result for the schedule-free SGD method with a general,
non-constant learning rate in Theorem 2.1. The proof of the theorem is deferred to Appendix A.

Theorem 2.1. Let f: R? — R be convex and G-Lipschitz continuous. Let {x;, y;, 2; } be gener-
ated from (1), (2), (3). Suppose that

Tt
= (0)
Zzzo Yi
fort =1,...,T. Initializing z_; = xy, we then have
1 2 T 1,2~2
slleo — x| + v0(f(z0) — f(@x 3% G
E[f(ar) - f(e.)] < D0 ZAT 00U @0) 2 J@)) 57 23C
D=0Vt =0 2t=0 Tt

Our theory shows a last-iterate convergence bound for the schedule-free SGD method with gen-
eral learning rates. First, for D := ||@p — x,||, we can see that by choosing v; = GL\;T for all ¢,

we recover the optimal O(DG///T) convergence rate given in Theorem 1 in Defazio et al. (2024).
Moreover, for non-constant learning rates, Theorem 2.1 suggests a theoretically well-motivated av-

eraging parameter c; that is set based on all the past learning rates {~, ..., ~:}. This choice of ¢;
2
in (6) is similar to the heuristic choice of ¢; 41 = ﬁ suggested by Defazio et al. (2024, equation
i=0 T4

(23)). This heuristic choice is the default setting in the code base? for schedule-free.

A natural question is, why should we care about this theoretical convergence theory which holds only
for convex functions, where-as schedule-free is a method for non-convex deep learning? Towards
answering this question, we perform several experiments comparing the predicted convergence of
this theorem, to the practical convergence for training a neural network in the following section.

2.1 SURPRISING PREDICTIVE POWER FOR DEEP LEARNING

Inspired by Schaipp et al. (2025), we compute our last-iterate convergence bound from Theorem 2.1
and compare it to the empirical performance of schedule-free on ResNet-20/Cifarl0 for
wsd schedule with cooldown starting at {0.257",0.57,0.757} where T is the training horizon. We
outline the experiment setup and present a comparison using the cosine schedule in Appendix E.

*https://github.com/facebookresearch/schedule_free

https://github.com/facebookresearch/schedule_free

Under review as a conference paper at ICLR 2025

0.014 10
— Decay € [0.25T, 0.5, 0.75T) T8 8) m 1T
0.012 3 5 e [,

| 0.010

)

£ 0.008

und of E[f(ar) - f

|V £(x)]|

20.006

3 0.004

Upper bou

0.002

e

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Iteration T Iteration T Tteration T Iteration T

0.

Figure 3: Using wsd schedules with three different cooldown periods and with base learning rate
v = 0.01, our plots compare the theoretical convergence (Theorem 2.1) to the empirical convergence
of ResNet-20/Cifarl0, with the gradient norm shown for reference. The red color denotes the
warmup period, the gray color denotes the constant period, and the blue color denotes the cooldown
period.

We take @, to be the iterate with the smallest loss f(x,) during training. In Figures 1 and 3, we use
the wsd schedule with a large (v = 10) and small (v = 0.01) base learning rate, respectively.

For a small base learning rate, the theory predicts the convergence seen in practice across all three
cooldown schedules, see Figure 3. For a large base learning rate, the theory predicts the transient
spikes in the loss regardless whether it occurs before or after the cooldown period, see Figure 1.
One possible explanation is that, the spikes are caused by the spikes in the gradient norm (see the
rightmost figure in Figure 1). Yet, one should also note that our theory predicts the convergence in
Figure 3 even with the blowup of the gradient norms. Finally, in Figure 4, using a constant-then-
diverging schedule, our theory also predicts all spikes in the loss, and whether and when the training
diverges.

These experiments show a striking similarity between the convex theory bounds and the loss curves
observed in the non-convex setting. Having established that our theory has some predictive power
for deep learning , we now specialize our theory to the wsd schedule.

2.2 APPLICATION TO wsD SCHEDULE

The wsd schedule (warmup-stable-decay), a trapezoidal shape learning rate schedule, has
been shown to be very useful for training large language models (Hégele et al., 2024).

For this section we divide the learning rate into 10 100
1072 |
V=Y N
0.6 —~

where v > 0 is the base learning rate, which is the € oa 9 107 ‘W
parameter that is tuned, and 7); is the schedule. For 0 AN
wsd there are three phases of the schedule: first, a oo 1070 practical
warmup period, then a constant period, and at last, a 8 10800 20600 8 1000 20600
cooldown period. Formally, for 0 < T;, < T, < T,
the wsd schedule is given by: Figure 5: The averaging parameter c¢; when

applied with the wsd schedule where blue

t+1 : . .
Twt1’ if0 <t <Ty, is our proposed ¢; = 1/ ZZ’:O 7, gray is
N =< 1, itT, <t<T,, (8) ¢ = 1/t, and the orange is the practical
%, ifT, <t <T. heuristic ¢; = 77/ S r_o 77

Substituting the wsd schedule (8) into (6), we can obtain a sequence of averaging parameters.

Lemma 2.2. Let 0 < T, < T. < T and v > 0. Suppose that {1, }_, follows the wsd schedule
given in (8). We can determine {c; }7_, by

= if0<t<T,,
&= X S if T, <t<T,)
AT ~t+1) T, <t <T.

(T—To+1) (2Te—To+2)+@T—To—t+1)(t—T%)

Under review as a conference paper at ICLR 2025

1201 —— Diverge € [0.25T, 05T, 0.757]

5000 10000 13000 20000 0
Iteration T

0.
5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Iteration T Tteration T Iteration T

Figure 4: Using schedules with three three different diverging periods, we compare the theoretical
convergence given by Theorem 2.1 to the empirical convergence of ResNet-20/Cifar10. The
gray color denotes the constant period and the red color denotes the diverging period.

To illustrate the results in Lemma 2.2, Figure 5 plots the resulting averaging parameters c; when
applied a wsd schedule. The blue line, the gray dashed line, and the orange dashed line depict

our proposed ¢; in (9), the theoretical ¢; = 1/¢, and the practical default ¢;1 1 = —+— for
1=0 1
schedule-free (Defazio et al., 2024, Algorithm 1), respectively. As can be seen, our theoretically
motivated choice is close to the default practical choice proposed in Defazio et al. (2024), particu-
larly as ¢ grows. Using the wsd schedule 7, defined in (8) and the weights c; given in (9), we obtain

the convergence result in Corollary 2.3.

Corollary 2.3 shows that, the schedule-free SGD with the wsd schedule achieves an optimal
convergence rate of O(1/+/T) as long as the base learning rate is well-chosen.

Corollary 2.3. Let D = ||xg — @, ||. Using the wsd parameters (ct, 7;) given in (9) and (8), with
a base learning rate of vy = —, we have the convergence

D
Gy Ef:o uh

. 20 (f (o) — f(x)) 2/306 DG
Elfter) —inff] < =0 m 7, 2 *m‘d) 1o

VT

3 POLYAK LEARNING RATE

Having seen that using convexity as an assumption can result in theory with some predictive power
on neural network experiments, in this section, we use convexity to design an adaptive learning
rate schedule, which we call schedulep, see Algorithm 1 for the pseudo-code. Here, we denote
()% = (()4)%ie., (@)2 =a?ifa > 0and (a)? = 0 otherwise.

To derive this adaptive stepsizes, we make use of the following Interpolation assumption.

Assumption 3.1 (Interpolation). For every ¢, we have access to fc(az*) where x, €

argmin f(x).
xR

We call this the interpolation assump-

tion, because it holds for models that Algorithm 1 Schedulep: Schedule-free Polyak
interpolate the data, in which case
fe(zs) = 0 since every data point has L:
a perfect fit, and thus zero loss (Ma 2:

et al,, 2018; Liu et al, 2022; Gower 3 % = (1~ fzisd fee :
et al.,, 2021). Many vision models in- 4 7y = JaW)=fe ml*‘vfﬂ(ytét?)’ﬁ;m’z"_l_mt t
5
6
7

Input: z_; = 29 € R4, 8 €0, 1], ¢; > 0, Ymax > 0.
fort =0toT — 1do

terpolate the data, unlike language mod-
els which have a strictly positive en-
tropy rate: the next word in a sequence ze = z—1 — %V (Y, Ct)

is never perfectly predictable (Shannon, 7: g1 = (I —coqp1)®s +cor12e
1948; Cover & King, 1978). Though 8: end for
one can still approximate f¢(x,) for 9: Return: zr
language models, see Section 4.2.

Yt = NN | Ymax, Tt

Under review as a conference paper at ICLR 2025

We derive our adaptive learning rate by choosing v, that will bring iterate z; closer to the solution
x,. For this note from (2) (or equivalently line 1 in Algorithm 1), the iterate z; explicitly depends
on the learning rate ;. Consequently we can write z;(y;) = z;. We then derive an upper bound
on ||z¢(yt) — .|| that only depends on known quantities and f¢, () by assuming that the loss
function is convex. Minimizing this upper bound in 7, gives our adaptive learning rate on line 1 in
Algorithm 1. We call our resulting algorithm schedulep (schedule-free with a Polyak learning
rate), since this is a generalization of the Polyak learning rate to schedule-free. We include this
additional cap of ypyax on line 1 in Algorithm 1 to improve stability, specially in the case where
fe,(x) is misspecified. This is a common safe-guard used in stochastic Polyak methods (Loizou
et al., 2020).

Next we prove the convergence of our schedulep method.

Theorem 3.2. Consider the iterates of Algorithm 1 with ¢, = 1/(¢t + 1), 8 € [0, 1) and Yax =
oo. Let f¢: R? — R be a convex function for every ¢. Let

B = {z : |-z < |20 — |} CR?, (11)
G? = max Ec[|Vf(z, Q)| (12)

With the initialization z_; = x, the suboptimality gap of the last iterate x; converges at a 1/+/t
rate according to
Gllzo — |

E[f(z:) — f(zs)] < N

13)

The resulting rate of convergence of schedulep in (13) is exactly the optimal rate for the class of
convex and G-Lipschitz functions. Furthermore, this convergence has two additional benefits. First,
it is an anytime result, in that (13) achieves the optimal rate for every ¢, where-as previous results
for schedule-free only achieve the optimal O(1/+/T') with the known stopping time 7'. Second,
we do not need to assume that the loss is globally Lipschitz. Rather, that it is Lipschitz in the closed
ball given in (11). Thus we are also able to weaken the global Lipschitz assumption.

4 EXPERIMENTS

Our theory suggests a new choice of ¢;, which we evaluate against the practical heuristic ¢;4; =
2/ 25:1 72 and that of the previous theory, ¢; = 1/t. We run experiments from small- to
large-scale across domains (vision and language) and learning tasks (regression, classification,
and knowledge distillation). For regression and image classification, we use the SGD variant of
schedule-free; for distillation in language modeling, we use the AdamW-schedulefree variant
in Defazio et al. (2024). We use the momentum parameter 5 = 0.9 throughout our experiments.

4.1 IMAGE CLASSIFICATION

We test schedulet on image classification with Wide Resnet (16-8) on CIFAR10 and
DenseNet on CIFAR100. Hyperparameter settings follow that of Defazio et al. (2024), with
exact settings listed in Appendix E and Table 1. We compare the performance of schedule-free
with schedulet, the practical heuristic ¢;11 = 77/ 22:1 v2, ¢, = 1/t from previous theory,
and SGD-m (stochstic gradient descent with momentum). We apply the warmup-stable schedule for
schedule-free with the practical heuristic averaging parameters and the wsd schedule otherwise.
We use a 5% warmup for all schedules, and set the cooldown in wsd to 25% in smaller models and
5% for larger models. For each model, we sweep the learning rate over a grid for all optimizers,
tuning each method using the validation loss as a proxy for generalization ability of the optimizer.

As mentioned in Defazio et al. (2024), Schedule-free requires batch statistics computed from the
x sequence (i.e. Equation 3) for models using BatchNorm layers. We avoid this complication by
using GroupNorm layers for all models, which does not significantly effect the performance and
training dynamics of these relatively smaller models.

Under review as a conference paper at ICLR 2025

10°

10°

Training loss
=
)
L
Training Loss

1072 107

1072 107t 10° 10t
Learning Rate

1.0

08
0.8 /

~
N
A

[
g 0.6 g
So.
@ S
< <
2 c ‘/
® S
hed © 0.4
5 0.4 E
> K
>
0.2 0.2 sgd-mir=1 ——— Theoretical ¢; Ir = 10
—— Theoretical ¢; —— schedulet
— Practical ¢ sgd-m —— Practical ¢t Ir = 10 schedulet Ir = 10
0.0 0.0
1072 107t 10° 10! 0 10 20 30 40 50
Learning rate Epoch

Figure 6: Training a Wide ResNet (16-8) model onthe CIFAR1O data set.

The results in Figure 6 show that, although the practical heuristic averaging parameter generally
achieves a smaller training loss than schedulet across different learning rates, their performance
are similar in terms of generalization. Moreover, we see that schedule-free with different aver-
aging parameters is robust across different learning rates in terms of validation score. When consid-
ering the best tuned learning rate (y = 1 for SGD-m and v = 10 for schedule-free), we see that
schedule-free with the practical heristic ¢; performs slightly better than schedulet in terms of
training loss, but as well with respect to validation score. Yet, they both outperform the choice of
¢; = 1/t from previous theory. When training larger models, our experiments show that schedulet
has similar performance as the practical heuristic parameter; see Figure 10 in Appendix E.1.2.

4.2 MODEL DISTILLATION

Here we test Schedulep in Algorithm 1 on black-box model distillation, where we have only access
to the teacher’s loss over a given batch. We will use the teacher’s loss as an approximation of the
optimal student’s loss. That is, let fé and fcS () denote the teacher’s loss and the student’s loss with
weights x, respectively, for a given batch {. We will choose a teacher that has been trained on a
large corpora, such that fé ~ fE (z,), where x, are the optimal parameters for the student model.

Our setup is based on the experiments by Gower et al. (2025). As a baseline, we used
SGD-m, AdamW (Kingma & Ba, 2014), (AdamW-)ScheduleFree (Defazio et al., 2024), and
IAMS(-Adam) (Gower et al., 2025). We also test the AdamW version of Schedulep called
AdamW-Schedulep, see Appendix C and Algorithm 2 for details. For the distillation experiments,
we considered two settings:

Distilling tiny shakespeare. The teacher model employed was gpt2-medium (345 mil-
lion parameters), a pre-trained transformer model from the Hugging Face library (Radford et al.,
2019). We used a student model with 67.7 million parameters, see Table 2 in Appendix E.2 for
details. The results in Figure 7 show that our AdamW-Schedulep achieves the best loss for a tuned

Under review as a conference paper at ICLR 2025

10

— ?ams-adam —— iams-adam Ir=0.0010
iams iams Ir=0.3000
—— sgd-schedulefree —— sgd-schedulefree Ir=0.3000

. sgd-m T 5gd-mIr=0.0500

2 84 —— sgd-schedulep 7.004 —— sgd-schedulep Ir=0.3000

é g adamw adamw Ir=0.0010

2 71 . == adamw-schedulefree 6.75 == adamw-schedulefree Ir=0.0005
é“ B o adamw-schedulep g — = adamw-schedulep Ir=0.1000
< Na—-" — teacher —~ 6.50

g

i

T T T T . . - - - -
1074 1073 1072 107? 0.0 0.1 0.2 0.3 0.4 0.5
Learning Rate Epochs

Figure 7: Training a smaller student model on the tiny_shakespeare data set, using
gpt2-medium as the teacher.

10

== adamw-schedulep RS == adamw-schedulep Ir=0.0010
94 == adamw-schedulefree 4.8 “ \\ —— adamw-schedulefree Ir=0.0010
—— iams-adam VN —— iams-adam Ir=0.0010
8 adamw 261 N, adamw Ir=0.0050

—— teacher

Final Validation Loss

1074 1073 1072 10°? 0.0 0.2 0.4 0.6 0.8 1.0
Learning Rate Epochs

Figure 8: Training a nanoGPT student model on the fineweblB data set, using
EleutherAI/gpt—j-6B as the teacher.

learning rate 7y, but it is not quite as robust as the TAMS-Adam method is to the choice of learning
rate.

Distilling fineweblB. The teacher model employed was EleutherAI/gpt—-j—-6B, a 6-
billion parameter transformer model pre-trained on diverse datasets (Wang & Komatsuzaki, 2021).
We used a nanoGPT model with 124 million parameters as the student, see Table 2 in Appendix E.2
for details, and Figure 8 shows AdamW-Schedulep is now the most robust method with respect to
different choices of learning rate y,,,x, but the best loss is achieved by tuning AdamW or TAMS-Adam.

5 CONCLUSION AND LIMITATIONS

We developed the last-iterate convergence theory for schedule-free that works for general non-
constant schedule in the convex Lipschitz setting. The theory requires the averaging parameter to be
a function of the learning rate schedule, which we called schedulet. We showed that our theory is
good at predicting the empirical behavior of schedulet. We also obtained the optimal convergence
O(GD/ VT) from the theory when specialized to wsd schedule. Next, assuming convexity and in-
terpolation, we developed a Polyak stepsize for schedule-free, called schedulep. We proved an
any-time convergence O(GD/+/t) for schedulep and demonstrated its strong performance com-
pared to several benchmark methods under the black-box distillation model setting.

The limitation of our work is that, our theory only applies for general learning rate schedule with
schedulet, so it does not give any convergence bounds for the averaging parameter used in practice.
In fact, our suggested averaging parameter schedule does not improve the training performance in
practice. Moreover, our comparison between the convergence theory and the empirical performance
is via visual inspection but not a quantitative analysis. For the Polyak stepsize schedulep, it can
only be applied to models that nearly interpolate the data or under the black-box model distillation
setting.

Under review as a conference paper at ICLR 2025

Reproducibility Statement. To ensure reproducibility, we provide our open-source repository
built upon publicly available implementations of common vision and language models, optimiz-
ers, and training frameworks. We extend the open-source framework step-back” to incorpo-
rate Schedule-free’, Wide ResNet® and DenseNet’ architectures with GroupNorm layers.
Complete training specifications, architectures, and hyperparameters are detailed in Tables 1-2 and
Appendix E.

REFERENCES

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by
interpolation. In International conference on machine learning, pp. 799-809. PMLR, 2020.

Connor Brown. Analysis of schedule-free nonconvex optimization. arXiv preprint
arXiv:2508.06743, 2025.

Thomas M. Cover and Joy A. King. A convergent gambling estimate of the entropy of english. IEEE
Transactions on Information Theory, 24(4):413-421, 1978.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré€. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Advances in Neural Information Process-
ing Systems, 2022.

Aaron Defazio and Robert M Gower. The power of factorial powers: New parameter settings for
(stochastic) optimization. In Asian Conference on Machine Learning, pp. 49-64. PMLR, 2021.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements, 2023. URL https://arxiv.org/abs/
2310.07831. arXiv preprint.

Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
Cutkosky. The road less scheduled. Advances in Neural Information Processing Systems, 37:
9974-10007, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Robert Gower, Othmane Sebbouh, and Nicolas Loizou. SGD for structured nonconvex functions:
Learning rates, minibatching and interpolation. In Proceedings of The 24th International Con-
ference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pp. 1315-1323. PMLR, 13-15 Apr 2021.

Robert M. Gower, Guillaume Garrigos, Nicolas Loizou, Dimitris Oikonomou, Konstantin
Mishchenko, and Fabian Schaipp. Analysis of an idealized stochastic polyak method and its
application to black-box model distillation, 2025. URL https://arxiv.org/abs/2504.
01898.

Alex Higele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, et al. Scaling laws
and compute-optimal training beyond fixed training durations. Advances in Neural Information
Processing Systems, 37:76232-76264, 2024.

Elad Hazan and Sham Kakade. Revisiting the polyak step size. arXiv preprint arXiv:1905.00313,
2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

*nttps://github.com/fabian-sp/step-back

Shttps://github.com/facebookresearch/schedule_free/tree/main

*https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.
py

"https://github.com/weiaicunzai/pytorch-cifarl100/blob/master/models/
densenet .py

10

https://arxiv.org/abs/2310.07831
https://arxiv.org/abs/2310.07831
https://arxiv.org/abs/2504.01898
https://arxiv.org/abs/2504.01898
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://github.com/fabian-sp/step-back
https://github.com/facebookresearch/schedule_free/tree/main
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/densenet.py
https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/densenet.py

Under review as a conference paper at ICLR 2025

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365-397, 2012.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85-116, 2022.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak step-
size for sgd: An adaptive learning rate for fast convergence. arXiv:2002.10542, 2020.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pp. 1306-1314. PMLR, 2021.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effec-
tiveness of SGD in modern over-parametrized learning. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
3325-3334. PMLR, 10-15 Jul 2018.

Dimitris Oikonomou and Nicolas Loizou. Stochastic Polyak step-sizes and momentum: Conver-
gence guarantees and practical performance. arXiv preprint arXiv:2406.04142, 2024.

Antonio Orvieto and Lin Xiao. An adaptive stochastic gradient method with non-negative Gauss-
Newton stepsizes, 2024.

Boris T Polyak. Introduction to optimization. New York, Optimization Software, 1987.

Alec Radford, Jeffrey Wu, Dario Amodei, Jack Clark, et al. Language models are unsupervised
multitask learners. OpenAl Blog, 2019.

Fabian Schaipp, Alexander Hégele, Adrien Taylor, Umut Simsekli, and Francis Bach. The sur-
prising agreement between convex optimization theory and learning-rate scheduling for large
model training. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=b836TGkRSw.

Othmane Sebbouh, Robert M Gower, and Aaron Defazio. Almost sure convergence rates for stochas-
tic gradient descent and stochastic heavy ball. In Mikhail Belkin and Samory Kpotufe (eds.),
Proceedings of Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of
Machine Learning Research, pp. 3935-3971. PMLR, 15-19 Aug 2021.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27
(3):379-423, 1948.

Wei Tao, Zhisong Pan, Gaowei Wu, and Qing Tao. Primal averaging: A new gradient evaluation step
to attain the optimal individual convergence. IEEE transactions on cybernetics, 50(2):835-845,
2018.

Ben Wang and Aran Komatsuzaki. Gpt-j: An open-source 6b parameter lan-
guage model. EleutherAl, 2021. URL https://github.com/kingoflolz/
mesh-transformer-jax.

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized Polyak step size for first order
optimization with momentum. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 35836-35863. PMLR,
23-29 Jul 2023.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104-12113, 2022.

11

https://openreview.net/forum?id=b836TGkRSw
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction
1.1 schedule-freeSGD
1.2 Contributions and Background

2 Convergence Analysis and Implications
2.1 Surprising Predictive Power for Deep Learning

2.2 Applicationtowsd Schedule oo
3 Polyak learning rate

4 Experiments
4.1 TImage Classification. o e

42 Model Distillation

5 Conclusion and Limitations

A Convergence Theory for schedule-free SGD
A.l Auxiliary Lemmas
A2 Proofof Theorem 2.1
A3 Proofof Lemma2.2
A4 ProofofCorollary 2.3 e e
A.5 Comments on the Weights ¢; in Defazioetal. (2024)

B Proofs for Polyak Stepsize
B.1 Derivation of the schedulep learningrate
B.2 Auxiliary Lemmas

B.3 Proofof Theorem 3.2 e
C Practical & Adam Versions of Schedulep
D Implications to Momentum Method

E Experiments: Supplementary Material
E.1 Image Classification.
E.1.1 Predictive Power for Deep Learning
E.1.2 Stability Analysis
E.2 Black-Box Distillationdetails

A CONVERGENCE THEORY FOR SCHEDULE-FREE SGD

A.1 AUXILIARY LEMMAS

12

12
12
15
16
16
18

19
19
20
22

23

24

Under review as a conference paper at ICLR 2025

Lemma A.1. Let {x, y:, 2:} be generated from (1), (2), (3). Fort = 0,1, ...
the following inequality holds:

,,T'— 1, we have

1f®w0—<1—%>f@0—f@QS<Vﬂ%HL%—wQ (14)

Ct4+1 Ct+1

Proof. Dividing both sides of (3) by ¢, and rearranging terms, we have

1
(- 1) ($t+1 - wt) = 2t — L4135 (15)
Ct41
and also (1) implies
Br
2t~ Y1 = ﬁ(ytﬂ — 1), (16)

fort =0,1,...,7 — 1. Applying (15) and (16) and the fact that f is convex, we then obtain

o) - (- 1) flen - @)

Ct+1 Ct41

—4>U@Hﬁ—ﬂ%D+U@HD—ﬂMD

Q(VﬂwHHJM1—w0+Lﬂ%+ﬂ—f@0)

Ct+1

(s
(1

IIJ.

Vf(fﬂtﬂ) 2zt — xep1) + (f(@er1) = f(Yer1)) + (f(Yeg1) — fzs))
S (Vf(@ir1), 20 — 1) H(VF(@e11), Tepr — Y1) + (VI (Y1), Y1 — T4)
= (Vf(@i+1) = VI (Y1), 2t = Y1) + (VY1) 20 — x4)

©@ AWJC(%H) =V (Y1), Yer1 — Teg1) + (VF(Yir1), 20 — T4), (17)
14+ Bt

where the third and the fifth lines have applied the convexity of f. Now, because of the convexity of
f, observe that for any a,b € R,

F(a) = F(b) + (V£(b),a—b)
f(0) = f(a) +(V[(a),b—a).
Summing together the two above inequalities gives
(Vf(a) =V f(b),b—a) <0

and thus the first term of (17) is negative. This then completes the proof of the lemma. O

Lemma A.2. Let {z+, y:, z:} be generated from (1), (2), (3). Suppose that
Vi

= .
Zz‘:o Vi

Ct =

(18)

Initializing z_; = x(, we then have

T T
D n(f(@r) = f(=@2)) < v0(f(@o) — f(®) + D (VI (W), ze1 —ms). (19
t=0 t=0

Proof. Applying Lemma A.1 and multiplying (14) by ~v;+1,

Jeit f(®iq1) = vera (

ot - 1) F(@e) = ver1 f (@) < Y1V (Yg1), 20 — o) (20)

Ct+1

13

Under review as a conference paper at ICLR 2025

Summing of the left-hand side of (20) from ¢ = 0to T — 1 gives

Ti:l (%H f(@i1) =y <C1 - 1) fae) — %+1f(x*)>

i—o \Ct+1 t+1
=0T o) - <1—1>f(w)—§T: f(:v)+Tzl<%— (= -1)) ste
= T ! o 0 2 Tt * 2\ Yt+1 Cort t)

2n

Using (18) we have that the right most term is zero since

y 1 ¢ t+1

t

— = Vt+1 -1 =§ Vi — E Yi = Yes1 | = 0.
€t " (ct“) i=0 Z <i—0 z t+>

We chose the c¢; coefficients given in (18) so that the above would be zero. Indeed, instead of
plugging in (18), if we set the above to zero, and unroll the recurrence in ¢; we get:

Y41 Yt
= V41 + —
Ct+1 Ct

Yt—1
Ct—1

=M+1+ %+

t+1

70
Z Yi + D)
i=1 o

which gives
!
Ct+1 = g1

Zi:o Vi

where we have chosen ¢y = 1. Thus we arrive at the same recurrence. Similarly,
1 Yo
n(=-1)=2=
C1 Co

T
N/ _

and

Consequently (21) can be written as
T-1

5 2 flarsn) e (1) S@) = e fle)

C
=0 t+1 t+1

T

T
> eflxr) — o f(@o) = > wf(@.)
t=0

t=1

I
[M]=

Y (f(2r) — f(2s)) — 0 (f(20) — f(24))- (22)

~
I
<)

Putting this back to (20), we can write

T T—1
Z’Yt(f(‘PT) — f(®+)) < 0(f(mo) — flzs)) + Z Y+ 1V f(Yr41), 2t — T4)
t=1 t=0

T
=0(f (o) — f(z.)) + Z%(Vf(yt), Zi—1— Ty).

Because of the convexity of f, we know that
(Vf(xg), o — x\) > 0.

14

Under review as a conference paper at ICLR 2025

Also because we initialize z_; = @, we have
(Vf(yo),z—1 —xx) > 0.
Therefore, with 5 > 0, we obtain
T

T
S lf(@r) = f@0) < v(f(@o) = F@0) + Y (VW) 21 — x).

t=0

A.2 PROOF OF THEOREM 2.1

Theorem 2.1. Let f: R? — R be convex and G-Lipschitz continuous. Let {x;, y;, 2; } be gener-
ated from (1), (2), (3). Suppose that

Tt
Ct = (6)
Z::O’Yi
fort =1,...,T. Initializing z_; = x(, we then have
Lilxzg — z,||2 + 70 (f(z0) — f(=x Tl’ysz
E[f(il:T)—f(il:*)] S 2” 0 *|| 0((0) (*)) +Z 2 It (7)

T 7 @
D=0Vt =0 Dut—0 Nt

Proof. Having Lemma A.2 established, it remains to bound the last term of (19). Write g; =
V f(y:, ¢;). Using the updating rule (2), we see that, fort =0,1,...,T — 1,
Izt — @[= l2e-1 — 9ge — @l
= llze-1 — @u|1? = 292 {ge 2e-1 — @) + 7 [l 9el

Rearranging terms, we have

1 1
(0201 = 2) = g llzes =@l = oz P+ (23)
Taking expectation conditioned on z;_1, and noting that E;_; [g:] = V f(y:) gives
1 1
(Vf(ye), ze-1 — T2) = s—lze-1 — @l|* — 5—Eeq [[l2e — 2|’ + g, llgell’] - @4
2 2m 2

Taking full expectation and using the law of total expectation gives

E(Vf(yr), 211 — @) = %

Multiplying by 7; and summing it up from ¢ = 0 to T, we have

1 Tt
Ellziq — x> — —FE |z, — x> + ZE 2,
lze—1 — .|| o, |zt — || + 5 llgell

T T
_ 1 o 1 2 ’Yt2 2
> 2B (V) st —) =3 (3Ele1 = @l = 31t -l + LE i)

1 9 1 2 a ’Yt2 2
:§Hz,1—:c*|| —§EHZT—-"U*H +§ ?EHgtH
t=0

T
1 1 ~2
= Sllzo — @l - SE 2z — w2+ Y LR gl @5)
t=0

Dropping the negative —3E [|27 — @, ||? term, and using the above in (19) we have that

T T
Y wElf(@r) = f@)] < v0(f(@o) = f(@2) + D HE(V (%), 201 — @)
t=0 t=0
1 r 2
< 0(f(@o) = f(@2)) + 5llwo — 2. + > 5 Elgell*.
t=0
Finally dividing through by ZtT:O ~¢ gives the result. O

15

Under review as a conference paper at ICLR 2025

A.3 PROOF OF LEMMA 2.2

Lemma 2.2. Let 0 < T,, < 7. < T and y > 0. Suppose that {n; }7_ follows the wsd schedule
given in (8). We can determine {c;}7_, by

2

oo if 0 <t <T,,
¢t = { wtoE if Ty <t < T, ©)
2(T—t41) .
(T—T.+1)(2Tc—Tw+2)+ 2T —Tc—t+1) (t—T¢) T, <t<T.

Proof. Recall from (6) is given by
Ui

7 .
Ei:o Ui

for some scheduler {1, }7_,. Now, we are ready to obtain {c; }7_, by substituting the wsd scheduler
{n¢}1_, and applying the arithmetic formula. Specifically, for 0 < t < T,

Ct =

(26)

_ et 2
S SN A B (S| ()
Tut1 2
Since
2T T, 1T T T, 2
we obtain, for T, < t < T,
1 1 2

Ct: =

Tw T2 T o _ :
2itomi+ ZZ:Terl i S+ (t-Tw) 26=Tw+2

Applying (27) again and using

Te
Z i :Tc_Tw7

i=Ty+1
we also have, for T, <t < T,
T—t+1
o — T—T.+1
t— STw T. t T—it+1
Do+ i, 1 M T D e 1 ToTogT
T—t+1
_ T—T.+1
T T,+2 (2T —T.—t+1)(t—T.)
5+ (TC - Tw) + 2(T—T.+1)
2(T —t+1)

(T-T.+1)2T, — Ty +2)+ 2T - T, —t+1)(t — T¢.)

A.4 PROOF OF COROLLARY 2.3

Corollary 2.3. Let D = ||z — «.||. Using the wsd parameters (c;, 7;) given in (9) and (8), with

: D
a base learning rate of Y = —==——, we have the convergence
Gy R

. 2n0(f (o) — f () 2,/30G (PG
EBlfler) —ifl < = r T v *m‘o(ﬁ) (1o

16

Under review as a conference paper at ICLR 2025

Proof. Using the arithmetic sum formula, we can write

Twz—l - 20—1(25_'_1) T+ZT _1t_Tw+Tw(T‘2w_1)_ﬂ.
2 T To+1 T,+1 2’
T.—1
Znt:TC_l_Tw+1:Tc_Tw
t=Ty
i _i T—t+1 (T+)T-T.+1) Yigt
pa "t’t: T—-T.+1 T-T,+1 T—T. +1
(T+T)(T-T. +1) T.+T
=T+1— =T+1—-—=—. 28
+ 2T —To+ 1) * 2 (28)

zT: T, T.+T T+T.—T,+2
m = 2 c w 2 — 2 .

Also, using the fact that

(29)

Z . n(n + 1)6(2n + 1)’ 30)
k=1

we can compute

Tilﬂ_ il (t+ 1) = T_1t2+22tw0 t+ Ty
= (T +1)2 (T +1)2

t=0 =0
Lulfu=DETu=1) | 9Tulfu=l) L @a"DETw-D) o

) 6
B (T +1)2 T T, +1 Tw+1
212 +3T,+1 (2T, +1)(Ty +1) 2T, +1
= 6(T+1) 6(Ty + 1) 6

i

e
i

ntQZTc_l_Tw"_l:Tc_Tw;

il
&

- 2 Zt:Tc(T —t+4+ 1)2 - Tc+1 2
Z‘nt* (T —T.+1)2 7(T Tc+1)

(T —T.+1)(T —T.+2)(2T — 2T, + 3)
B 6(T — T, +1)2
(T —T.+2)(2T — 2T. + 3)
B 6(T —T.+1)
(T-T.+1)2T —2T. +3) + (2T — 21, + 3)
B 6(T —T.+1)
2T — 2T, + 3
20T -T.+1)+1
T-T.+1)

o~
Il
o

<2T—2T +3+

D= D= O = Cm,_.

(2T2TC+3+

2T — 2T., P I —
(+3+ +T_TC+1>

T T,
(T -2l +3+2+1) =5 - F +1 31)

IN

17

Under review as a conference paper at ICLR 2025

Combining, we have

T
2T, +1 T T T+ 2T, — 2T, 7
2 w c c w
=—+T.-Ty+-—-—4+1l=—"7T—"""—+ -
2 6 N 3 5
t=0
2
§§(T+TC—Tw+2). (32)
Applying the results to Theorem 2.1 then establishes the corollary. O

A.5 COMMENTS ON THE WEIGHTS c¢; IN DEFAZIO ET AL. (2024)

Defazio et al. (2024) suggested the convergence rate of O(1/ \/T) as long as the averaging parameter
is in the form of ¢; = w;/ >.'_, w; for any w; € [0,1] fort = 1,...,T. While the condition might
look slightly more general than our proposed c; in (6), we show that, after applying the standard
online convex optimization technique to (Defazio et al., 2024, Theorem 2), the averaging parameter
¢; has to satisfy (6) in order to get a valid convergence bound.

To show this, let us first recall (Defazio et al., 2024, Theorem 2).

Theorem A.3 (Defazio et al. (2024, Theorem 2)). Let f: R — R be a convex function and

¢1y-.-,Cr be an iid sequence. Let fy,...,0r and wy,...,wr be numbers in [0,1] that are
independent of (1, . . ., (7. Consider the iterates (x;, y:, z;) generated by the following:
w w
wt=<1—t‘/>wt1+t’a (33)
Dim1 Wi Dim1 Wi
\—,_/ | S
=1—c =icy
Yi = Bz + (1 — Bt) 2 (34)
Zi+1 = 2t — NiGts 9t = Vf(Yr, Ct)- (35)

Then, we have that

E Zle wt<gt, Zt — $*>i|

E[f(xy) — f(x,)] < =
[f(zr) — f(2:)] ST

Before going into the proof, we would like to give a heads-up that the indices of z; in Defazio et al.
(2024) (as shown in (33)—(35)) is slightly different from our paper (given in (1)—(3)). In this part, we
will stick to the updating rule (33)—(35) to derive the condition on c; based on the results in Defazio
et al. (2024, Theorem 2).

From the updating rule (35), we know that
1Ze41 — 2]” = [zt — 729: — @]
= llze — @u]l? = 2796(gs, 20 — @) + 1|96l

which implies

1 1
@zrwg=%ﬂa—@W—§ﬂaﬂ—aW+%MW-

Therefore, multiplying by wy, taking expectation, and summing it up from ¢ = 1 to 7" would yield

T T
W W wt%
E lz wi(ge, 2 — CE*>] =E Z <2%||Zt — | - T%\\ztﬂ — x| + 5 |gt|2)]
t=1

t=1

T T
w1 2 Wt W1 2 WYt 2
< —|z1—@ + E (—) Zt — X :l + —FE .
2y 171~ 2l ZtZQ [2 o) I thl 5 Ellgl’]

Therefore, to obtain a last-iterate convergence bound, we want
Wi _ Wi

Vt - V-1

(36)

18

Under review as a conference paper at ICLR 2025

fort = 2,...,T such that the second term gets canceled out. Unrolling,
Mt
Wy = Wi—1 -
Yi—1
Tt-1 N Tt
= w2 - : = w2 -

Tt—2 Vt—1 ! Yt—2

w1
S (37)
71
Therefore, the condition on ¢; is given by
Wt Yt - % - Yt

Cr = = =
' 22:1 Wi 25:1 Vi oy i
which is the same as our condition (6). Moreover, using (37) again, we have that
T wy T
Z w; = — Z Yis
i=1 N4

and hence we have the convergence
B X0, wilge z —)]

Elf(zr) - f(=)] <

Z?:l wi
Pz — a2+ X 2 [llg:)]
B Zz‘T=1 Wy
3z — 2 + 3 30 2E [llge?]
- ZtT:1 Tt 7

which achieves the same bound as in Theorem 2.1.

B PROOFS FOR POLYAK STEPSIZE

B.1 DERIVATION OF THE SCHEDULEP LEARNING RATE

Starting by expanding the squares of the distance to the solution x, we have

lze = ul? = llze-1 = @ull? = 29 (VF (92, C0)s 2o — 20) +27 IV (e, O (38)
We could now minimize the right hand side in -4, but then the solution would depend directly on the
unknown . So before minimizing in ;, we need to upper bound the right hand side with terms we
do know.
To simplify notation, let us consider 5; = (3 for all ¢. Re-arranging (1) gives
1 1 Ié]
=y | —F -1 =y — —— (@ — 39
Ft-1 = 7 gy (15)wt Yt 1,ﬁ(wt Yi) (39)
Now the above in (38) gives
lze = @)1* = llze-1 — @l + 2721V f (e, €12

=27 (Vf(ys,Ct), Yt —) + 2%

Now using convexity we have that

—(Vf(Ye,Ce) ye — x) < fe, () — feo (Ye)
and using that y; — x; = (1 — 8)(2z¢—1 — @) gives

lze = @al? < llze-1 — @l + 271V f (ye, ¢

= 2% ((fe (ye) — fe,(®4)) = 2BV f (Y, i)y 2e—1 — T)) - (40)

Minimizing over ~; > 0 gives
. (Jee(ye) — fei(@e) + BV (e, &), 2e—1 — @)+ @n
' IV f(ye, o)l .

B
1-5

(VF(ye,Ct)s e — ys) -

19

Under review as a conference paper at ICLR 2025

B.2 AUXILIARY LEMMAS

Lemma B.1 (Extended Titu’s Lemma). For any random variable X and positive-valued random
variable Y, it holds

(X)3] . EX)DL
E > 42
5> 5 2
In addition, for any numbers ag, . . . , ax and positive numbers by, . . . , by, we have
S gar).
k 2 (t=0 at)
Z (at)+ > . i 43)
= b D i—obt
Lemma B.2. If f is convex for every ¢, and we use the learning rate (41) we have that
D
(fCt (yt) - fCt (12*) + 6 <vf(yta Ct)’ Zt—1 — $t>)
Izt — @ul* < llzem1 — a® - 4

IV f (s, Co)lI?

As a consequence we also have that || z; — x|, [[x: — x«|| and ||y; — x| are less than ||xo — x]|-
Furthermore, taking expectation we have that

(B [f () — flza) + B(VF(we), 21 — m)])
E[va(yt’Ct)HQ] .

E [z — 2.l*] <E[llze-1 — =] -
(45)

Proof. Inserting (41) into (40) gives the first result, which also shows that || z; — .|| < ||zo— x| =
o — .|| Since x;41 is a convex combination of x; and z;, we have that

i1 — x|l < (1= cop1)l|@e — 2ol + coprl|ze — 2|

from which we can use induction to show ||x; — x.|| < ||zg — @4||. Furthermore, since y; is a
convex combination of z;_; and x;, it also follows by induction that ||y; — x| < ||xo — .||

Taking conditional expectation over (44) given x; and z;_; and using Lemma B.1 gives

(F(we) = (@) + BV () 21 — 21)
Et[”vf(tht)HQ] .

Finally, taking total expectation over (46), and using the law of total expectation and Lemma B.1
again, yields (45). O

Eilllze — @] < ll2e—1 — @] — (46)

Next we develop the Bregman viewpoint of this method.

Lemma B.3. Let \ = % It follows that

@) = f(@) + BV (), 21 —) = (L+ N (f(ye) — f())
= Af (=) — f(=))
T)\Bf(.’l)t,yt)7 (47)

where B (¢, y;) is the Bregman divergence of f that is

By(z,y) = f(x) — f(y) —(Vf(y),z—vy).

Proof. Using z;—1 — ®; = 1=5(y; — @) which follows from (1) gives

) = $(@2) + 807 (o) 21 — 1) = Fln) — f() = 12 (Vi) —)

= 1+ N)(f(we) = f=@)) = A(f (@) — f(=))
+A(f (o) = fye) = (Vo) m—)).

20

Under review as a conference paper at ICLR 2025

O

Lemma B.4. Let ¢, = 1/(¢ + 1). Initializing z_; = @, it follows that
E [z — 2l"] < [leo — 2. (48)

(¢ + DE[f(@) = f@)] + A i E By (20, 0)))
ko ENIVF gk, G0)|?]
Proof. Using (47) in (45) gives
E[llz: —)] = E [lze-1 — @]

(B0) — f@)) - M) = S@) +AB oy

E[[IVf(ye, C)l?]
Therefore, unrolling (49) gives

E [llze — .’ < llz-1 - 2]? - Z

k=0

(ax)’,

b

where we define ar, = E[(1+N)(f(yr) — f(zs)) — A(f(xx) — f(xs)) + ABy(xk, yi)] and
bi, = E [|IV f(yx, C)||?]. From Lemma B.1, we know that

zt: (ar)3 Zk oak):

—0 bk - Zk 0l
Therefore, we have that
E [z — 2] = 2—1 — 2.2 (50)
(Shoo EI(L+ N (flww) — f(@2) = A(F (@) — f(@.)) + ABy (@, yi)])
- o E NIV (i G

To finish the proof of convergence, we need to write y; as a combination of x; and x;_1 so that we
can telescope. To this end note that

1 1
zi1=—x;+ |1 ——) zy_1.
Ct Ct

Substituting this into the y, update (1) gives

yr=(1-p) (Clt-’ﬂt‘i' (1 - Ct) $t1> + B
BTPYER T IS T

Letp; := (1 —5) (é — 1) . Isolating @, in the above we have that it can be expressed as a convex
combination between y; and x;_, given by

]. Pt
Ty = + Ti_1. 51
t 1+Ptyt 1+ pr t—1 (51

Using the convexity of f we have that

flze) < T flye) + Tf(mt 1)- (52)
Re-arranging and isolating f(y;) gives
f(ye) = 1+ pe) f(@e) — pef(@e-1). (53)

21

Under review as a conference paper at ICLR 2025

Using the above we have that

L+ NS (ye) = F(@e) = Af (@) = f(@0) = L+ M)A+ pe) (f () — f(24))
— (L +Npu(f (@) = f(24)))
= Af (=) — f(=))
=0+ 1+ Np)(f () — f ()
=+ N)pe(f(@1-1) = f ()

Substituting back p; := (1 —) (é — 1) and 1 + A = ﬁ in the above and using that ¢; =
1/(t+ %) gives

L+) (ye) = f(22) = A (@) — (=)

> (£) @0 - s - (£ 1) (o) - fla)

_ <t . 1) (f(@) — fl@.) - <t s 1) (f(@i-1) - f(@.)).

Co
Using the above we have that
t

D A+ N (yr) = (@) = A(f(mr) — f(2)))

k=0
> f(@o) ~ (@) + Y ((k o) (@) = F@) = (k=14 o) (Flan) - f(w*))>
k=1

— f(@o) — fla) + (t n 10) (o) — F2) — L (f(eo) — fla)

Co
= [+ D(f(xe) = (1))

Inserting this in (50), together with the monotonicity of the positive part and the initialization that

zZ_1 = xy, gives

E [[lz: — &.°] = [[®0 — 2. |? (54)
((t+ DE[f(@0) — f(@.)] + A ko E[Bs(@r, y0)])’
o E V£ (e, o)l

O
B.3 PROOF OF THEOREM 3.2
Theorem 3.2. Consider the iterates of Algorithm 1 with ¢; = 1/(t 4+ 1), 8 € [0, 1) and Ymax =
oo. Let fe: R? — R be a convex function for every ¢. Let
B = {z : ||z -2 < w0 — 2.} CRY, (11)
G? = meal)gi IECHVf(a:,C)H2 (12)

With the initialization z_; = x, the suboptimality gap of the last iterate x; converges at a 1/+/t
rate according to
Glleo — .||

E[f(w) ~ flm)] < e

13)

Proof. Since ||y —x.|| < ||@o — .|| we have that E [||V f (yx, Cx)||?] < G? and re-arranging (48)
gives
t
2
((t+ DE[f(a:) = f(@a)] + A Y E[By(ax,yx)]), < G2t + 1) (@0 — ul* — |20 — @.]%)
k=0
< Gt +1)||mo — |

22

Under review as a conference paper at ICLR 2025

Since the term on the left is always positive we can drop the positive part, taking square roots, and
dividing through by ¢ 4 1 gives
t

A GHwO_iL‘*H
E[f(z:) — flz)] + me:O]E[Bf(CBk,ykﬂ < T
Inserting back A = 3/(1 —) gives
E{f(e) — @) <E[f@) - f@)] + — b S BBy < 222l
t e ' ST p & RIS T

Finally, we can drop the positive terms given by the Bregman divergences E [By(x, yi)|, giving
the final desired result.

O

C PRACTICAL & ADAM VERSIONS OF SCHEDULEP

We can also develop a version of Schedulep that makes use of any preconditioner, such as the
Adam preconditioner.

To derive a preconditioned version of Schedulep , let D; € R%*? be our positive definite sym-
metric preconditioner, and let || 2|3, := (D, z, z) be the norm induced by this preconditioner. The
preconditioned version of Schedulefree is given by

yr = (1= B)ze—1 + s (55)
2= 2z-1 — D'V (s,) (56)
i1 = (1 — 1)@ + crp12 (57)

We can again upper bound the distance between z; and a solution x,, but now under the precondi-
tioned norm via

Izt — @D, = llze-1 — @ullD, — 27 (D 'V (ye, &), 21 — Ti)p, + '71&2||Vf(ytaCt)||2D;1
= [lzio1 — ®llD, — 29 (VF (Y1, G1)s 201 —) JF%,ZHVf(yt,Ct)Hth—l- (58)

It only remains to bound the linear term (V f(y;), z:—1 — &) for which we follow the exact same
steps between (39) and (40) giving

lze = 2ullb, < llze-1— 2D, + 71V (e Gl (59)
= 2% ((fe, (ye) — fe,(®4)) = 287 AV f (Y1, Ct)s 2e—1 — 1)) -
Minimizing the above in v, > 0 gives

v = (fCt (yt) - fCt (SE*) + 6 <Vf(yta Ct)7 Zt—1 — wt>)+) (60)

||Vf(yt,Ct)||i)t_1

See Algorithm 2 for the complete pseudo-code.

Remark C.1 (Practical version). In our code we use a slightly different form given by

(fe.(ye) = fe, (@) + (Vf(Ye, Ct), 201 — i) +
||Vf(yt7Ct)H2 '

Ve = (61)

This follows from (41) by using that

T _1 +(1—1)z
t_ﬂyt 3 t—1

1 1
Zt—1 — Tt = Z2t—1 — ZYt-

B B

thus

23

Under review as a conference paper at ICLR 2025

Algorithm 2 Adam-Schedulep: Adam Schedule Free Polyak

1I: Input: z_; =xy € R, 3€ 0, 1], ¢, >0

2: fort =0toT — 1do

3 yi = (1—B)z + Py

by = [fe. () — fe, (x4) + BV (Y, Ct)s 20 — Te)]+
”vf(ytaCt)HQDt

5: zey1 = 20— D7V (g, &)

6: Tip1 = (1 —cep1)®e + cop12e41

7: end for

8: Return:

Thus finally
BAVF(ys,Ce), ze—1 — xe) = (Vf(ye,Ce), ze—1 — Ye) -

D IMPLICATIONS TO MOMENTUM METHOD

Since primal averaging is a special case of schedule-free when § = 1, and primal averaging
itself is equivalent to momentum, our convergence theory for the schedule-free method includes
Momentum as a special case. For example, the last-iterate convergence result in Corollary 2.3 applies
to the primal averaging method when /3 = 1. This is interesting because of the equivalence between
the primal averaging and momentum.

Algorithm 3 Momentum

: Input: g € R, m_; =0, a; >0, \; > 0.
:fort=0toT — 1do
my = ﬁmtq + ﬁvf(wt,@)
Lt41 = Lt — QM
end for
: Return:

AIANE A e

The equivalence of the momentum method and the primal averaging method is shown in the follow-
ing lemma.

Lemma D.1. If (x;):cy is generated by the Momentum Algorithm 3 from parameters (o, A¢),
then it verifies the primal averaging iterates by choosing any parameters (v, ¢;) satisfying

Qo

_ 62
C170 1+ on ()
and fort > 1,
1 14+ A _ 1
at_l(_1> T Ol = 1<_1>. (63)
Ct)\t Ct+1)\t Ct

Proof. For the primal averaging iterate, since z_1; = Xy,
z1 = (1 —e1)®o + c1(o — 70V f (o, Co))
=z — 17V f(%0, Co)-

For the momentum iterate, since m_; = 0,

Qo
=x9g— ——V .
T1 =@ — f(zo, <o)
Hence, they are equivalent when
— Qo
C170 = 1+)\0.

24

Under review as a conference paper at ICLR 2025

Suppose that the iterates of primal averaging and the momentum iterate are equivalent at (t — 1)-st
and ¢-th iteration for some ¢ > 1. Let us show that their iterates at the (¢ + 1)-st iteration are the
same; i.e.,

oment i
T =@y — aemy = (1 = cop1) Ty + crp120 = Ty
equivalently,
Qi
Zt =T — —— M. (64)
Ct+1

Indeed, by the induction hypothesis, we have
Qg1

Zi_1 =Ty — mi_y. (65)

Ct

By the updating rule of the primal averaging method and (65), we have
2zt = 2zi—1 — WV (@1, Cr)

oy
=T — tc Ymy oy — 3V (@, &)
¢
1
=Ty — oy (c - 1) my_1 — %V f(xe, Cr)
f

1 14+ M a1 (1
=z -1 | ——1 m; — — ——1 \Y% .
Ty — Q-1 (Ct) N t <% Y <Ct >) J(xe, Ce)

The last two lines follow from the updating rule of the momentum method. Hence, we have
shown (64) to hold when

1 14+ N oy a1 (1
a1 | ——1 =——, and v = ——=1].
Ct At Ct+1 At Ct

O

The above lemma shows that, as long as the hyperparameters for primal averaging and momentum
method satisfy (62) and (63), we have the momentum method equivalent to the primal averaging
method.

Since the primal averaging method is a special case of schedule-free (when 5; = § = 1),
the convergence result in Theorem 2.1 gives the convergence for the momentum method whenever
(g, A¢) in Algorithm 3 satisfies (6), (62), (63). To illustrate this, we start showing the convergence
of the momentum method when its stepsize {a; } 7 is given by some schedule.

Corollary D.2. Let {a;}7_, be given by some scheduler. Initializing Ao, Yo such that (1+Xg)yo—

o > 0, consider {fyt};":ol, {)\t}tT:_Ol such that y; = (Hﬁf)ﬁ >0andfort=1,..., 7T —1,
t—1 t
Qg At 2 =0 Vi
At = t721 Z% Ykl = S tt_zl: 0 : (66)
T o e (Zi:o ’Yz’) +n—oy
Suppose that
t—1
Uy
a; < ——1 <Z%> + Ve (67)
Y \iso
Then Algorithm 3 with parameters (ay, A¢) fort = 0,1...,7—1 would then give the convergence
Hlmo — 22 + 90 (f(x0) — f(=1)) | = 377G
E[f(zr) — f(z.)] < 2 = +Y 27— (63)
Dot 120 2t Nt
Proof. From (6), we know that
t t—1
1 1= 2oim0i 1= Dm0 i
Ct Tt Tt

25

Under review as a conference paper at ICLR 2025

Hence, putting (6) into (62) and (63), we have that

Y01 Qg
= , 69
Yo +M 14+ X (69)
t—1 t+1
. i1+ A
o DoicoYi L+ A _ Z%’ (70)

Yt At M+l
t—1

(Z %> : (71)
=0

(14 Xo)yom = o + aoms

72 !
;=
At

We see that (69) gives

which implies
_ a070
e (1+Xo)y0 —ao’
Since (1 + Ag)yo — a9 > 0, we have 1 > 0. Considert = 1,...,T — 1. Rearranging (71), we can
easily obtain

t—1
oy
M= (72)
Rt
For (70), we see that
_ 1 t
fo—é i L+ N ap o Qy
Q1= = i = vi | + . (73)
Ty At Yi+1 ;7 Vi1 ZZ:% '
Since (72) implies
1 1 2
e (74)
K K Q-1 (Zi:o %’)
(73) then gives
t—1 t
Q@
o+ gy =0 = — i |
Ve T+1 \i5)
and hence,

This is positive when

O

Given the stepsize «; of the momentum method, the lemma suggests the choice of the momentum
parameter {\;}/_,' such that the last-iterate convergence theory holds. The stepsize {c;}7., then

defines a set of parameters {~; }7_, which determines the convergence rate of momentum as shown
in (68).

On the other hand, if we set the stepsize {~;}7_ of the primal averaging following some schedule,
we can have a new set of hyperparameters for the momentum method that guarantees the theoretical
convergence.

26

Under review as a conference paper at ICLR 2025

Corollary D.3. Let {v;}_, be given by some scheduler. Initializing \g > 0 and ag =

M, consider the iterates generated by the momentum algorithm (Algorithm 3) with pa-

Yo+71
rameters (ay, \;) given by
t—1 t—1
A = Oét71zi;20%7 G — at717t+1 Z:J:r? Vi %ltlﬂ _ (75)
Vi Tt Zi:() Yi Zi:() Vi
fort =1,...,T. We then have the convergence
1 2 T 1,22
slleo — x4 ||” + xo) — f(x 57 G
D=0t =0 2at=0 Tt
Let D := ||xo — |- In particular for the constant learning rate v, = v = GL\;? gives the rate
f(xo) — f(=,)) DG
E[f(xr) — f(z.)] £ ——F77F + —. 77

Proof. Putting (6) into (62) and (63), we have (69), (70) and (71) hold. Simply by rearranging terms,
we obtain

Yo (14 Xo)

Q= ——+

(78)
Yo+m
andfort=1,...,7T —1,
—1 -1
B S _ Vet Soeo i L+ e
At = 1= 5 5 O =01 i1 .
Vi Tt Zi:o i At
Applying (74), we can simplify this as
t—1 -1
N\ Yio i _ Vel Doisg Vi | Vet
t= Q17— 5, =01 t+1 1
Vi Tt §3i=oW% E:izoﬁﬁ
O

Similarly, if we have {;}7_, given by some schedule, we can derive the stepsize a; and the momen-

tum parameter)\; for momenutm and obtain the convergence bound. Moreover, if vy = v = GL\;T’

we can obtain the optimal convergence O(GL&?) for momentum.

E EXPERIMENTS: SUPPLEMENTARY MATERIAL

E.1 IMAGE CLASSIFICATION

We conduct experiments on multiple vision models trained on CIFAR10 and CIFAR100, cov-
ering both small-scale (ResNet-20) and larger-scale architectures (Wide ResNet (16-8),
DenseNet). Full details of the architectures and training configurations are provided in Table 1. All
experiments are based on the open-source framework https://github.com/fabian-sp/
step-back, which we extend to include the Schedule-free optimizer and to support Group-
Norm normalization layers rather than BatchNorm for the ResNet 8 and DenseNet ° architec-
tures. As mentioned in Section 4, this is to avoid the complication of writing custom BatchNorm
code to approximate batch statistics of the sequence of Schedule-free.

E.1.1 PREDICTIVE POWER FOR DEEP LEARNING

We train a small ResNet-20 model on CIFAR10 and compute the theoretical bound in Theo-
rem 2.1. The norm of stochastic gradients is used as a proxy for the Lipschitz constant GG, while the

$https://github.com/akamaster/pytorch_resnet_cifarl0/blob/master/
resnet.py

‘https://github.com/weiaicunzai/pytorch-cifarl100/blob/master/models/
densenet .py

27

https://github.com/fabian-sp/step-back
https://github.com/fabian-sp/step-back
https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/densenet.py
https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/densenet.py

Under review as a conference paper at ICLR 2025

0.014:
—— Decay € [0.25T, 0.57,0.75T]

0

0.012:

=
3

| 0.010

0008

0.006-

0.004:

0.002:

-
i
)

0.
5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

0
Iteration T' Iteration T' Iteration T Iteration T

(a) Cosine schedule with base learning rate v = 0.01

—— Decay € [0.25T, 05T, 0.7

0

-
i
|

] 5000 10000 15000 20000 0 5000 10000 15000 20000
Tteration T Tteration T

5000 10000 15000 20000 0 5000 10000 15000 20000
Iteration T Tteration T

]

(b) Cosine schedule with base learning rate v = 0.1

—— Decay € (0257, 0.57,0.757]

0

i
i
-

0.
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Iteration T' Iteration T' Iteration T' Iteration T
(c) Cosine schedule with base learning rate v = 1
.
14

—— Decay € [0.25T, 05T, 0.757]

0

i
il
f

5000 10000 15000 20000 0 5000 10000 15000 20000) 5000 10000 15000 20000 0 5000 10000 15000 20000
Iteration T Iteration T Iteration T Iteration T'

0

(d) Cosine schedule with base learning rate v = 10

Figure 9: Comparison between the convex theory and the training loss for cosine schedule with
different cooldown periods and different base learning rates.

28

Under review as a conference paper at ICLR 2025

Experiment CIFARI1O CIFAR1OO0

Architectures ResNet-20 DenseNet
Wide ResNet (16-8)

Normalization Layer ~ Group Norm Group Norm

Epochs 50 100

GPUs 1 x A100 1 x A100

Batch size 128 64

Base Learning Rates [0.01, 0.1, 1, 10] [0.01, 0.1, 1, 10]

Weight Decay 0.0001 0.0002

Momentum 0.9 0.9

Warm-up fraction 0.05 0.05

Cooldown fraction 0.25 0.05

Table 1: Comparison of architecture and training setup for image classification on CIFAR10 and
CIFAR10O.

best parameters and loss during training are used to approximate x, and f(z,), respectively. We
compare our bound for the wsd and cosine schedules with different cooldown lengths where the
decay period begins at iteration {0.257",0.57",0.757'} and T is the training horizon. Figure 3 shows
the results for the wsd schedule with the base learning rate v € {0.01,10} and Figure 9 shows
the results for the cosine schedule with the base learning rate v € {0.01,0.1,1,10}. Figure 4
shows the performance of a constant-then-diverging schedule with the base learning rate v = 10
and varying diverging lengths.

Since we have discussed Figures 3 and 4 earlier in the paper, we will focus on the discussion over
Figure 9 here. In fact, it turns out that both the wsd and cosine schedules exhibit similar theo-
retical and empirical performance, so our discussion on the cosine schedule is also applicable to
wsd schedule.

When the base learning rate y is small (i.e., v € {0.01,0.1,1}), the theory predicts the convergence
of the cosine schedule well. A slight mismatch is that, earlier cooldown gives a slower empirical
convergence, while the theory behaves in the opposite way. We also see that the gradient norm is
more stable as v increases. When 7 is large (i.e., v = 10), the theory successfully predicts the spikes
in the training loss for different schedules, regardless of whether the spike occurs before or after the
cooldown begins. One possible explanation is that, the spikes in the gradient norms (which is used
to approximate the Lipschitz constant G in the theory) lead to the spikes in the theoretical bound.
Yet, one should also note that, when v = 0.01, the blowup in the gradient norm does not lead to the
divergence in the theoretical bound, and both the theoretical bound and the training loss converge.

E.1.2 STABILITY ANALYSIS

We compare the stability and the performance of Schedule-free variants and SGD-m. We evaluate
both training dynamics and generalization. Models follow the setup in Defazio et al. (2024) for
some of the tasks in AlgoPerf: aWwide ResNet (16-8) trained on CIFARIO (a smaller model)
and a DenseNet trained on CIFAR100 (a larger model). Hyperparameters and the setting details
are listed in Table 1. We use wsd schedule for SGD-m, schedulet and Schedule-free with
¢; = 1/t from previous theory, and use wamrup-stable schedule only for Schedule-free with

the heuristic parameters ¢; = 72/ Z§=1 V2.

Figure 6 shows the training performance (in terms of the training loss and the validation score)
against the learning rate or the number of epochs when training a Wide ResNet (16-8) model
on the CIFAR10 data set. We see that, when the learning rate is small, SGD-m has a better perfor-
mance over schedule-free, both in terms of the training loss and the validation score. When the
learning rate is large, SGD-m becomes unstable and Schedule-free outperforms SGD-m. However,
we see that schedule-free has a more stable performance in generalization across different learn-
ing rates, regardless of the choice of the averaging parameter. In general, schedulet has a similar
generalization performance as Schedule-free with the heuristic averaging parameter c;.

29

Under review as a conference paper at ICLR 2025

1[)0.

3‘3]
E @
& z
10 =
10°4
10° 2x 10" 3x10° 4 x 10° T T T y y T
. 0 20 40 60 80 100
Learning Rate Epoch
0.8

0.74 %

£0.67
= 0.5
sgd-m ——— Theoretical ¢
041 — Theoretical ¢; — schedulet |
— Practical ¢ spd-m 01 —— Practical ¢; schedulet
actical ¢; sgd-
0.3+ - 0.0+ T T T T T
100 2x 10 3% 10" 4 x 10 0 20 40 60 80 100
Learning rate Epoch

Figure 10: Training a DenseNet model on the CIFAR100 data set.

Figure 10 shows the training performance when training a DenseNet model on the CIFAR100
data set. In this case, Schedule-free performs remarkably better than SGD-m and is robust over
different learning rates. Different choices of averaging parameter ¢; have similar performance across
different learning rates.

E.2 BLACK-BOX DISTILLATION DETAILS

Mixed precision training was enabled using bfloat16 for efficiency. The student model utilized
flash attention (Dao et al., 2022).

Experiment tiny shakespeare fineweblB

Teacher model gpt2-medium EleutherAI/gpt—j-6B
Student hidden size 768 768

Student transformer layers 4 12

Student attention heads 8 12

Student vocabulary size 50257 50257

Batch size 4 32

Context length 512 tokens 1024 tokens

Tokens per training step 4096 262144

Learning rate schedule Warm-up — Constant — Linear Warm-up — Constant — Linear
Warm-up fraction 0.1 0.1

Cooldown fraction — 0.1

Table 2: Comparison of model configurations and training setups for distillation on
tiny_shakespeare and fineweblB.

30

	Introduction
	schedule-free SGD
	Contributions and Background

	Convergence Analysis and Implications
	Surprising Predictive Power for Deep Learning
	Application to wsd Schedule

	Polyak learning rate
	Experiments
	Image Classification
	Model Distillation

	Conclusion and Limitations
	Convergence Theory for schedule-free SGD
	Auxiliary Lemmas
	Proof of Theorem 2.1
	Proof of Lemma 2.2
	Proof of Corollary 2.3
	Comments on the Weights ct in DYK+24

	Proofs for Polyak Stepsize
	Derivation of the schedulep learning rate
	Auxiliary Lemmas
	Proof of Theorem 3.2

	Practical & Adam Versions of Schedulep
	Implications to Momentum Method
	Experiments: Supplementary Material
	Image Classification
	Predictive Power for Deep Learning
	Stability Analysis

	Black-Box Distillation details

