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Abstract

We present ImplicitMeshNet1, an end-to-end approach for anatomical shape estimation
from volumetric images using deep implicit neural representations. Our neural network
directly reconstructs shapes as 3D meshes and is trained on voxel-based segmentation
maps by utilizing a deep signed distance field transform, eliminating the need for explicit
ground truth meshes. Evaluated on cardiac CT scans from the MMWHS challenge dataset,
our method achieves a Dice score of 0.92 for the extraction of the left atrium and ventricle,
while maintaining anatomical fidelity. This enables more accurate cardiac modeling for
visualization and downstream analysis in clinical settings.
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1. Introduction

Many clinical applications require anatomical shapes represented as 3D surface meshes,
including reconstructive surgery (Bauermeister et al., 2016), inter-operative visualization
(Wang et al., 2021), patient-specific implant design (Mobbs et al., 2017; Chethan et al.,
2019), or vascular flow simulation (Taylor et al., 2023; Saber et al., 2003). Shape estimation
can be achieved by segmenting the structure of interest with deep learning techniques,
followed by surface extraction using marching cubes (MC) (Lorensen and Cline, 1987).
However, the resulting meshes often contain staircase artifacts, require considerable post-
processing that can degrade accuracy, and are limited by the resolution of the voxel grid.
This has motivated research into more direct shape estimation methods that bypass these
limitations. Recent works have presented deep learning methods that directly estimate
meshes from volumetric images using hybrid architectures combining a voxel encoder and
a mesh decoder (Wickramasinghe et al., 2020; Kong et al., 2021). These methods rely on
target meshes during training, which are typically derived from ground truth segmentation
maps using MC. As MC meshes have varying topology without point correspondences to
the estimated meshes, a costly and ill-posed nearest neighbor search has to be performed in
every training iteration. This process is not differentiable and prevents end-to-end training

1. Link to public code github.com/ImFusionGmbH/ImplicitMeshNet
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Figure 1: Overview of the proposed ImplicitMeshNet for end-to-end shape estimation.

with ground truth annotations in voxel space, for which a differentiable voxel representation
of the estimated shape is needed.

To close the gap between mesh vertices and voxel images, implicit neural representations
have been investigated. Methods such as Occupancy Networks (Mescheder et al., 2019) or
DeepSDF (Park et al., 2019) learn to represent 3D geometry as continuous volumetric fields,
such as a signed distance field (SDF), that map any point in 3D space to a scalar indicating
whether this point is inside or outside of the shape. However, these methods are trained on
single shapes and have to be evaluated on every coordinate in a discretized grid to derive a
voxel representation, preventing their use in an end-to-end training.

2. Methods

We present a novel end-to-end way of training anatomical shape estimation networks on
volumetric images without target meshes. Our framework consists of two parts (see Fig. 1):
(1) A shape estimation network using a hybrid voxel-encoder/mesh-decoder and (2) a deep
representation network mapping estimated shapes to discretized SDF on a voxel grid.

The shape estimation network fθ : (I, T0) → T transforms the vertices V of a template
mesh T0 = (V0, F ) using features extracted from the input image I. The mesh topology
defined by the set of faces F is kept constant. Our network architecture is similar to
Kong et al. (2021), which uses a 3D U-Net encoder and a graph convolutional decoder
with Chebyshev convolutions. Vertex features are sampled from the U-Net feature maps at
corresponding non-integer voxel locations using trilinear interpolation.

Our deep representation network gϕ : T → D outputs a discretized signed distance field
D for arbitrarily transformed mesh templates. Its mesh encoder consists of repeated residual
blocks using graph convolutions with ReLU activation. The decoder consists of repeated
residual blocks with 3D convolutions, where each block is followed by an upsampling layer.
A final residual block outputs an SDF with the same dimensions as I. The features from
each block of the mesh encoder are projected onto the voxel grid at corresponding vertex
locations using trilinear interpolation. This grid feature projection can be seen as the inverse
operation of the vertex feature sampling in the shape estimation network.
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The framework is trained as follows. First, we pretrain gϕ on randomly distorted tem-
plate meshes T using affine and elastic deformations until convergence. For each T , a
discrete SDF DGT is computed by a non-differentiable raytracing algorithm. The parame-
ters ϕ are trained by minimizing the mean-squared error LMSE(D,DGT) with higher weight
at the zero-level set of the ground truth SDF. Next, both fθ and gϕ are trained jointly in
an end-to-end fashion using a dataset of volumetric images I with corresponding binary
voxel segmentations SGT. The estimated mesh fϕ(I, T0) = T is transformed into an SDF
representation gϕ(T ) = D, from which a label map S is derived by soft binarization with a
sharpened sigmoid σ(−τ−1D) = S using a low value for temperature τ . The parameters θ
are optimized by minimizing the binary cross entropy LBCE(S, SGT).

Since our approach does not employ supervision with explicit target meshes, we apply
Laplacian regularization to preserve geometric consistency and ensure well-formed mesh out-
puts. The Laplacian loss is defined as LLap = ∥LV ∥2F where L is the symmetric normalized
graph Laplacian matrix. This regularization promotes surface smoothness by penalizing
vertices that deviate from the weighted average of their neighbors. As this is more relevant
in the beginning of the training, we phase out its influence by a cosine annealed loss weight.

3. Results

LA LV

Voxel2Mesh2 0.748 0.669
MeshDeformNet2 0.926 0.931
3D U-Net2 0.916 0.914
ImplicitMeshNet (ours) 0.924 0.921

Table 1: Dice scores on MMWHS test set.

We train our models on MMWHS (Zhuang,
2019), a public dataset containing 20 car-
diac CT scans, until convergence of LBCE.
Two separate shape estimation networks
are trained for left atrium (LA) and left ven-
tricle (LV) segmentation, respectively. A
unit sphere per structure at the center of the
input image is used as template T0. Affine
and elastic deformations are used to augment the dataset. Tab. 1 shows mean Dice scores
obtained from the 40 CT scans of the MMWHS test set. Qualitative results can be found in
Appendix A. ImplicitMeshNet outperforms Voxel2Mesh (Wickramasinghe et al., 2020) and
a 3D U-Net, while achieving comparable results to MeshDeformNet (Kong et al., 2021).

4. Conclusion

We presented ImplicitMeshNet, a novel end-to-end framework for anatomical shape estima-
tion that leverages deep implicit neural representations to bridge the gap between voxel-
based segmentations and surface meshes. Our approach eliminates the need for ground truth
meshes during training by utilizing a deep representation network that enables direct su-
pervision in voxel space. Initial results suggest comparable performance to state-of-the-art
methods, making ImplicitMeshNet a promising alternative to existing approaches.

Future work will explore multi-organ shape estimation and extensively evaluate the
method using a variety of different modalities and tasks, including more difficult shapes. The
proposed framework represents a step toward more accessible and accurate high resolution
vertex-based segmentation in physical space that is not limited by voxel resolution.

2. As reported by Kong et al. (2021)
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Appendix A. Additional Results
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min 0.848 0.831
max 0.958 0.968

Figure 2: MMWHS test set: (Left) Box plots of Dice scores. (Right) Descriptive statistics.

Figure 3: Qualitative results showing axial and sagittal CT views from the MMWHS test
set. (Top row) Case 2001. (Bottom row) Case 2023. Slight mesh intersection can
be observed as the meshes were produced by two independently trained networks.
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Appendix B. Implementation Details

PyTorch 2.6.0 (Paszke et al., 2019) and PyTorch Geometric 2.6.1 (Fey and Lenssen, 2019)
were used to implement and train the networks. To ensure reproducibility, all code and
hyperparameters that were used to generate the reported results are publicly available2.

B.1. Pretraining of DeepRepresentationNetwork

The mesh encoder of the deep representation network uses an initial graph convolution layer
(Kipf and Welling, 2016) mapping the three-dimensional mesh vertices to a C-dimensional
feature vector. This is followed by repeated residual blocks, which consists of two graph
convolutions with ReLU activation layers. Dropout is used between the two convolutions
to reduce overfitting. The output of each block is connected with the corresponding block
of the voxel decoder using grid feature projection, where the vertex features are placed into
corresponding locations on the voxel grid using trilinear interpolation (see §B.3).

The voxel decoder consists of residual blocks with 3D convolutions, group normaliza-
tion, and SiLU activation functions. It progressively upsamples features using trilinear
interpolation and produces multi-level predictions. During training, predictions from all
levels contribute to the loss, while at inference time only the final prediction is used. For
pretraining, we use synthetic data consisting of icospheres with radii ranging from 0.2 to
0.8, applying various augmentations to ensure model generalization. The augmentation
pipeline includes affine transformations (rotation, scaling, translation, shearing), advanced
deformations using control points with sinusoidal displacement fields, B-spline based smooth
deformations, and random noise perturbations. The model is trained to predict signed dis-
tance fields from mesh vertices using MSE loss with higher weights assigned to regions near
the surface. Optimization uses AdamW with weight decay and a cosine annealing learning
rate schedule. This pretraining enables the deep representation network to learn a rich
encoding of 3D shapes, capturing both local geometric details and global structure.

The model is trained with the following hyperparameters: learning rate of 1e-4 with
cosine annealing to 1e-8, weight decay of 1e-6, and batch size of 2 over 1000 epochs. The
network uses 128 hidden channels in each block with 4 stages of feature extraction and
upsampling. For the training data, we generate icospheres with 4 subdivisions at various
scales (0.2 – 0.8) within 1283 voxel volumes.

B.2. Training of ImplicitMeshNet

The ImplicitMeshNet architecture consists of two complementary networks: a shape defor-
mation network fθ that transforms a template mesh to match target anatomical structures,
and the deep representation network gϕ that projects meshes back into a voxel representa-
tion, such as an SDF. Following Kong et al. (2021), we incorporate a U-Net decoder during
training to provide additional segmentation supervision (Wickramasinghe et al., 2020).

The joint loss function for training the shape estimation network is:

Lf = αLBCE + βLLap + γLCE , (1)

2. github.com/ImFusionGmbH/ImplicitMeshNet
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where LBCE is the binary cross-entropy between the soft-binarized SDF and the ground
truth segmentation, LLap enforces mesh smoothness through graph Laplacian regularization,
LCE is the cross-entropy loss between the U-Net decoder output and the ground truth
segmentation.

We employ a cosine annealing schedule for the Laplacian regularization weight β, start-
ing at β0 = 1000 and decreasing to βend = 0.01 over training. These values were optimized
via grid search to minimize training loss. This encourages initial smooth deformations
while allowing more detailed surface adaptations in later epochs. The deep representation
network is simultaneously trained with a weighted MSE loss as above.

For shape estimation, we use an icosphere template with radius 0.5 and 2562 vertices. In-
put CT scans are windowed (width=1000, level=200), normalized and resampled to 1.3mm
isotropic spacing with size 1283 using center cropping or zero padding if necessary. Training
employs the AdamW optimizer with learning rates of 1e-4 for fθ and 3e-5 for gϕ, weight
decay of 1e-6, batch size of 2, loss weight α = 1.0, segmentation weight γ = 0.1, dropout
probability of 0.1, and sigmoid temperature τ = 1e-2 for SDF binarization. The model is
trained for 2000 epochs.

B.3. Grid Feature Projection

A critical component of ImplicitMeshNet is the grid feature projection layer, which maps
mesh vertices and their features back into voxel space. This bidirectional conversion between
mesh and volumetric representations enables end-to-end training and consistent gradient
flow through the entire network.

The grid feature projection performs trilinear interpolation of vertex features onto a
regular 3D grid. For each vertex with coordinates (x, y, z) ∈ [−1, 1]3 and associated feature
vector f , we:

1. Convert normalized vertex coordinates to voxel indices.

2. Identify the eight surrounding voxels by computing floor and ceiling indices.

3. Calculate interpolation weights based on the vertex position relative to these voxels.

4. Distribute the feature vector to each of the eight voxels, weighted by the trilinear
coefficients.

For a given voxel position p = (i, j, k) in the grid, the feature value F(p) is computed as

F(p) =
∑
v∈V

fv · w(p,xv) , (2)

where V is the set of all vertices, fv is the feature vector of vertex v, xv is the position of
vertex v, and w(p,xv) is the trilinear interpolation weight between voxel position p and
vertex position xv. The final voxel value is the accumulated sum of contributions from all
vertices in the mesh. This projection mechanism is essential for enabling the neural SDF
network to learn an accurate implicit representation of the deformed mesh surface.
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