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ABSTRACT
Clinical trial outcome prediction aims to predict the success proba-
bility of a clinical trial that reaches its desirable endpoint. Most of
the effort focuses on developing machine learning models for mak-
ing accurate predictions with diverse data sources, including clinical
trial descriptions, drug molecules, and target disease conditions. Ac-
curate trial outcome prediction helps trial planning and asset port-
folio prioritization. Previous works have focused on small-molecule
drugs; however, biologics are a quickly growing intervention type
that lacks information that is traditionally known for drugs, like
molecular properties. Additionally, traditional methods like graph
neural networks are much more difficult to apply to biologics data
which are a fast-growing type of drug. To address these points, we
propose an LLM-based Interaction Network (LINT), a novel method
for trial outcome prediction using only free-text descriptions. We
validate the effectiveness of LINTwith thorough experiments across
three trial phases. Specifically, LINT obtains 0.770, 0.740, and 0.748
ROC-AUC scores on phase I, II, and III, respectively, for clinical
trials with biologic interventions.
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1 INTRODUCTION
Accurate estimation of a clinical trial’s success probability is essen-
tial for stakeholders such as researchers, biopharma investors, and
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others, informing their scientific and investment decisions. Inaccu-
rate risk evaluation can lead to grave mistakes in drug development
choices [52]. Moreover, given the high costs and generally low suc-
cess rates of trials, it is crucial to prioritize correctly. For example,
approval rates for oncology drugs that enter clinical development
are estimated to be as low as 3.4-19.4%, 8.7-25.5% for Cardiovascular,
8.2-15% for Central Nervous System, etc [4, 10, 52, 53].

Drug research usually involves two phases: drug discovery and
drug development. The goal of drug discovery is to design diverse
and novel drug molecular structures with desirable pharmaceutical
properties, while the goal of drug development is to evaluate the
effectiveness and safety of the drug on human bodies via clinical
trials.

A drug needs to pass three phases of clinical trials to be approved
and enter the medical market. Specifically, Phase I trials mainly
focus on the safety and dosage of the drug molecules to human
bodies (20 to 80 participants, several months, 70% of drugs pass
this phase), Phase II focuses on efficacy and side-effects (100 to 300
participants, could take several months to 2 years, 33% of drugs
pass this phase), and Phase III focuses on efficacy and monitoring of
adverse reactions on broader population in treating disease (200 to
3,000 participants, 1 to 4 years, 25-30% of drugs pass this phase) [8].

From a financial perspective, creating a novel drug-based treat-
ment typically requires around 13–15 years and more than 2 billion
dollars in research and development [3, 11, 33, 42]. From 2009 to
2018, the FDA approved 355 new drugs and biologics. As a concrete
example to see the scale of the cost it takes to bring a drug to market:
to treat heart failure, Novartis sponsored phase III of Entresto (a
small-molecule drug), which recruited 4822 patients and spanned
five years (2014-2019) which eventually yielded results that benefi-
cial, but not statistically significant effects 1 [23, 29, 44, 45, 47]. If
machine learning models can predict the approval rate of a clinical
trial before it starts, we could circumvent running high-risk trials
that are likely to fail, which would save a significant amount of
time and resources.

Some of the main challenges for building accurate machine learn-
ing models for predicting trial outcomes are 1) limited training
data and 2) diverse trial types. Although clinical trial summaries
are publicly available on clinicaltrials.gov, the limited number of
labeled trials (success and failure) may be insufficient for train-
ing sophisticated machine learning models. Additionally, clinical
trial descriptions vary significantly, with biologics often lacking

1https://clinicaltrials.gov/ct2/show/study/NCT01920711
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typical molecular property information compared to conventional
small-molecule drugs.

Despite these limitations, there are numerous opportunities for
machine learning in this space. For example, a plethora of unstruc-
tured text is available that describes the various aspects of the
trial and the drugs. Additionally, there also exists literature that
describes the pharmaceutical properties of drug molecules (Absorp-
tion, Toxicity, etc).

In recent years, there have been numerous breakthroughs in the
natural language processing (NLP) community for clinical appli-
cations. For example, models can learn semantic knowledge from
massive unlabeled data [27], classify unstructured medical text with
no human labels [17], process clinical trial tabular data [48, 49], and
more [46]. Inspired by recent trends in the NLP space, we propose
a novel methodology: LLM-based Interaction Network (LINT). Our
model builds on pretrained language models (PLM) to predict trial
outcomes by jointly considering the text descriptions of the trial,
its associated drugs, and the corresponding medical codes.

We formally define LINT, a deep learning framework for clinical
trial outcome prediction that can predict outcomes on both small
molecule drugs and biologics on Phase I, II, and III clinical trials
taken from the largest labeled trial dataset. It leverages text fea-
tures and International Classification of Diseases (ICD) Codes to
accurately predict the approval of interventional trials with both
small-molecule drugs and biologics. These text features include
trial eligibility criteria, trial design specifications, drug property
descriptions, and implicit PLM knowledge. In short, LINT learns a
function on a weighted combination of pretrained large language
model (LLM) embeddings to predict clinical trial outcomes.

• Experimental results. The proposed method achieves state-of-
the-art performance and beats traditional models. Specifically,
LINT obtains ROC-AUC scores of 0.723, 0.702, 0.770 (and F1 scores
of 0.643, 0.654, and 0.740) on phase I, II, and III, respectively for
clinical trials with biologics interventions, which are significantly
better than other baselines (Section 3).

• Open Source Code. LINT is an open-source, flexible framework
that is built on top of pretrained language models (PLM); thus, it
is easily adapted when a novel PLM is released. The code will be
publicly available at https://github.com/chufangao/LINT

• Interpretability and Validation. Although LINT is a deep neu-
ral network, we may use Shapley values (a measure of feature
importance based on the average contribution of that word to
the final prediction probability) to interpret its decisions and
visualize which portions of the input text are the most signifi-
cant [20]. Furthermore, we will show in later sections that LINT’s
predicted score generally corresponds to the actual approval rate
(see Section 3.2).

1.1 Related Work on Trial Outcome Prediction
Existing works often focus on predicting individual patient out-
comes in a trial instead of a general prediction about the overall trial
success. They usually leverage expert, hand-crafted features. Previ-
ous work has taken advantage of many aspects of the trial-related
features [18, 21, 28, 39, 43, 54, 55].

Deep learning techniques have also seen widespread usage in
learning representations from clinical trial data to support down-
stream tasks such as drug repurposing [2, 14–16, 57], patient re-
trieval [12, 19, 41] and enrollment [1, 56]. Still, none have fully
integrated the textual features along with the tabular trial informa-
tion (such as allocation, primary purpose, and more) in a natural
way.

Additionally, unlike previous work, the dataset used to train and
test our proposed model is much larger than before, including both
small molecule trials and biologic trials, extending the previous
dataset used by Fu et al. [12, 13]. Also, these works generally opti-
mize the representation learning for a single component in a trial,
whereas LINT models a diverse set of trial text and tabular data
jointly. Furthermore, previous methods will not work for biologics,
which lack information that small-molecule drugs generally pos-
sess. [30] enhance the accuracy of [13] by quantifying uncertainty
of prediction.
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Figure 1: Structure of proposed LINT model. The input is a
series of free texts corresponding to the clinical trials as
well as their associated drug / biologics interventions. All
the text is encoded by the pretrained LLM, and the resulting
embeddings are further processed by a transformer encoder.
𝑛𝑐 is the number of eligibility criteria, 𝑛𝑚 is the number of
molecules, and 𝑛𝑑 is the number of ICD codes for the re-
spective input trial. We treat the tabular data as additional
sentences for the LLM model. See Section 2 for details. The
ICD codes associated with the clinical trials are encoded by
GRAM (Graph-based Attention Model for Healthcare Repre-
sentation Learning), a hierarchical, attention-based method.
Finally, the final feedforward neural network performs the
classification task.

https://github.com/chufangao/LINT
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2 METHODOLOGY
2.1 Formulation and Data Featurization
In this section, we formulate the clinical trial outcome prediction
problem into a binary classification problem. Additionally, we re-
view all the data features, including trial eligibility criteria, drug
descriptions, and disease codes.

Let the set of drug or biological interventions be denoted as:

𝑀 = {𝑚1,𝑚2, . . . ,𝑚𝑁𝑀
},

where 𝑁𝑀 is the total number of distinct interventions.
Each drug 𝑚𝑖 = {description, pharmacodynamics, toxicity, me-

tabolism, absorption} also has plain text information regarding the
ADMET properties and more (retrieved via DrugBank [50, 56])2:

• description: Brief summary about the drug–primary use cases,
symptoms it treats;

• pharmacodynamics: Description of how the drug works at a clin-
ical or physiological level;

• toxicity: Lethal dose (LD50) values from test animals, description
of side effects and toxic effects seen in humans;

• metabolism: Mechanism by which or organ location where the
drug is neutralized;

• absorption: Description of how much of the drug or how readily
the drug is taken up by the body;

Let the set of disease codes be denoted as

𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑁𝐷
},

where 𝑁𝐷 is the total number of distinct diseases, and each 𝑑𝑖 is an
ICD code.

Let each trial be represented as

𝑇 = {𝑐𝑖 , . . . , 𝑐𝑛𝑐 , 𝑠𝑢𝑚,𝑑𝑖 , . . . 𝑑𝑛𝑑 ,𝑚𝑖 , . . . ,𝑚𝑛𝑚 , x},

where 𝑐𝑖 is the 𝑖𝑡ℎ inclusion/exclusion criterion sentence, 𝑠𝑢𝑚 is
the text summary of the trial, 𝑑𝑖 is the 𝑖𝑡ℎ associated ICD code,𝑚𝑖

is the 𝑖𝑡ℎ associated drug/biologic intervention, and
x = {ec_gender, ec_min_age, ec_max_age, allocation,

intervention_model, primary_purpose, masking, sponsors, continent}
represents a feature vector of tabular features in the trial, de-

scribed in the following section.
Tabular Trial Data: Specifically, input is a list of text. First, each
sentence 𝑐𝑖 is separated out in the trial criteria {𝑐𝑖 , . . . , 𝑐𝑁𝑐

} by split-
ting into new lines in the raw trial criteria text; these sentences are
added to the list. Next, the brief summary information is appended
to the list. Finally, additional tabular table information is processed
and combined with the previous list (details in Appendix A.5).

Note that each of the categorical variables also has an addi-
tional value for missing values. Finally, each of these categori-
cal features is converted into text by the simple function tem-
plate linearization(x) = “[feature_name] [feature_value]; . . . ; [fea-
ture_name] [feature_value]“.
Data Processing for ICD Codes: To obtain a list of relevant ICD
Codes, we use the API provided by https://clinicaltables.nlm.nih.
gov/ by inputting the conditions associated with each trial.

2https://dev.drugbank.com/guides/fields/drugs

2.2 Neural Architecture
LINT learns a classifier 𝑦 = 𝑓𝜃 (𝑇 ), where 𝑇 is the trial with the as-
sociated drug intervention information as above. More specifically,
LINT has 2 main modules, the transformer module, and the GRAM
module.

𝑓𝜃 (𝑇 ) = 𝑓𝜃 ′ (𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑡𝑒𝑥𝑡 , ℎ𝐺𝑅𝐴𝑀 )),
where 𝑓𝜃 ′ is a classifier trained on the output of LINT’s inner com-
ponents, a transformer model that obtains embeddings

ℎ𝑡𝑒𝑥𝑡 = 𝑓𝜃𝑡𝑒𝑥𝑡 (𝑐𝑖 , . . . , 𝑐𝑛𝑐 , 𝑠𝑢𝑚,𝑚𝑖 , . . . ,𝑚𝑛𝑚 , 𝑥)

and a GRAM model that obtains embeddings respectively

ℎ𝐺𝑅𝐴𝑀 =
1
𝑛𝑑

𝑛𝑑∑︁
𝑖=1

𝐺𝑅𝐴𝑀 (𝑑𝑖 )

for a specific trial. Note that indexes for the arbitrary number of
codes, eligibility criteria, and interventions are omitted.
LINT Encoder: Text Data: This module handles all the text infor-
mation in our input data and outputs embedding ℎ𝑡𝑒𝑥𝑡 . We use a
pretrained BERT model to extract the text features. BERT (Bidirec-
tional Encoder Representations from Transformers) is a pretraining
technique that captures language semantics and exhibits state-of-
the-art performance in various NLP tasks [9]. Specifically, we use
BioBERT [27] as implemented in the HuggingFace library [51].
BioBERT is pretrained on biomedical corpora–namely–PubMed
abstracts and PubMed Central (PMC) full-text articles. This offers
higher performance on domain-specific tasks such as biomedical
relation extraction.

Due to the small number of trials, we use the transformer encoder
to obtain a weighted mean over the original BioBERT embeddings.
This allows LINT to take advantage of the powerful PLM while
adding an additional layer of attention.

Specifically, 𝑓𝜃𝑡𝑒𝑥𝑡 is consists of a PLM 𝐿𝐿𝑀 () and a transformer
encoder 𝐸𝑁𝐶𝑂𝐷𝐸𝑅(). 𝐿𝐿𝑀 () simply takes in a varying-length text
input and outputs a 768-dimensional embedding. 𝐸𝑁𝐶𝑂𝐷𝐸𝑅() is
a transformer encoder3 combined with a simple Linear layer that
takes in a varying-length list of 768-dimensional inputs and outputs
a scalar attention weight for all inputs, i.e.,

𝐸 = 𝐿𝐿𝑀 (𝑐𝑖 , . . . , 𝑐𝑛𝑐 , 𝑠𝑢𝑚,𝑚𝑖 , . . . ,𝑚𝑛𝑚 , 𝑥)

𝑊 = 𝐸𝑁𝐶𝑂𝐷𝐸𝑅(𝐸)
𝑓𝜃𝑡𝑒𝑥𝑡 = 𝐸 ·𝑊,

where 𝐸 ∈ 𝑅𝐵×𝑛,𝑊 ∈ 𝑅𝑛 . 𝐵 is 768 in this case, and 𝑛 = 𝑛𝑐 + 1 +
𝑛𝑚 + 𝑙𝑒𝑛(𝑥), i.e., the total length of the list of text inputs where
𝑛𝑐 is the number of eligibility criteria, 1 represents the summary
embedding, 𝑛𝑚 is the number of molecules, and 𝑙𝑒𝑛(𝑥) the length
of the tabular data of the specific trial.
GRAM Encoder: Disease Code Representation: This module
handles all the ICD code information in our input data outputs
embedding ℎ𝐺𝑅𝐴𝑀 .

Disease codes are typically hierarchically organized in a directed
tree. For example, ICD-10 [36, 53] codes consist of three to seven
characters. The beginning 3 characters represent the category to
which the code belongs to: e.g., the range of A00-B99 consists of
"Certain Infectious and Parasitic Diseases". The latter characters
3https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
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represent the specific condition: e.g., A15.0 represents "Tuberculosis
of lung".

We leverage graph attention-based model (GRAM) [7] to repre-
sent disease code. Specifically, suppose 𝑑 is the disease code of inter-
est, the ancestors of𝑑 areD. Then, GRAMyields an embedding for a
given ICD code by the formulation:𝐺𝑅𝐴𝑀 (𝑑) = ∑

𝑑 𝑗 ∈D∪{𝑑 } 𝛼 𝑗𝑑 𝑗 ,
where 𝛼 𝑗 are the learned attention weights for each level of ICD
code.

Cross entropy loss is leveraged to guide the training
𝐿 =

∑𝑁
𝑖=1 −𝑦 log𝑦, where 𝑦 ∈ {0, 1} and 𝑦 ∈ (0, 1) denote

groundtruth and prediction, respectively.
LINT Classification: Finally, the outputs of the 2 previous sub-

sections are concatenated and input to a multilayer perceptron
(MLP) for binary classification. Because our data is imbalanced,
we use a weighted binary-cross-entropy loss, where the weight
is calculated based on the label distribution in the training data.
ℓ (𝑥,𝑦) = −∑2

𝑐=1𝑤𝑐 log𝑦𝑐𝑦𝑐 Where 𝑦𝑖 is the predicted probability
of class 𝑖 and𝑤𝑖 is the class weight of 𝑖 .

3 EXPERIMENTS
In this section, we present the experimental results. We start by
describing the experimental setup, including dataset and splitting
(Section 3.1). Finally, we present the trial outcome prediction results
and analysis (Section 3.2).

3.1 Data
All the historical clinical trial records can be downloaded from
https://clinicaltrials.gov/. The trial success information is based on
the benchmark from Fu et al. [13]4.

Table 1: A breakdown of the trials after preprocessing of
the 426,368 found on clinicaltrials.gov. No Label indicates
the lack of success or failure label found. Non-Biological or
Small-Molecule indicates that the drug does not have either
of these interventions (i.e., those clinical trials may involve
medical devices and behavioral interventions). We follow the
labels and data splits provided by Fu et al. [13]. A further
breakdown of the labeled data is shown in Table 2.

Flag Number of trials

No Label 149,091
Non-Biological or Small-Molecule 155,353

Non Interventional 96,538
Labeled Trials 25,386

Trial data preprocessing: Data preprocessing pared down the
original total of 426,368 clinical trials to 23,519 valid trials for con-
sideration. We focused on interventional trials, excluding observa-
tional ones, and further narrowed the scope to biological or drug
interventions. Trials with efficacy concerns or lacking outcome
labels were also omitted. The final breakdown comprised of (4437
Phase I, 11214 Phase II, and 7868 Phase III trials). See Table 1 for a
detailed account of the number of trials post-preprocessing.

4https://github.com/futianfan/clinical-trial-outcome-prediction

Table 2: Table showcasing data partitions according to modal-
ity and phase. The final two columns provide the total quan-
tity of training data for training and testing, and the per-
centage of successful trials—in parentheses—of all trials. Bio.
refers to biologics, Drugs to small-molecule drug candidates,
and Both to a combined set of biologic and small-molecule
trials.

Mode Phase # Train (Pos. %) # Test (Pos. %)

Bio.
1 505 (71.29%) 441 (71.88%)
2 973 (59.61%) 571 (55.52%)
3 692 (78.03%) 366 (74.32%)

Drugs
1 2032 (59.45%) 1681 (59.79%)
2 6401 (48.68%) 3873 (54.40%)
3 4745 (65.99%) 2388 (67.63%)

Both
1 2418 (62.57%) 2019 (62.95%)
2 6999 (50.49%) 4215 (55.26%)
3 5249 (67.96%) 2619 (69.19%)

Table 3: Phase 3 baseline comparisons on TOP test set. Drugs∗

denotes small-molecule drugs. Combined indicates the com-
bined set of biologics and small molecule drugs.

Mode Model PR-AUC ROC-AUC F1 Acc

Bio.

LR 0.846 ± 0.029 0.697 ± 0.043 0.859 ± 0.015 0.777 ± 0.022
SVM 0.867 ± 0.019 0.692 ± 0.035 0.872 ± 0.014 0.785 ± 0.022
DT 0.797 ± 0.019 0.622 ± 0.028 0.799 ± 0.016 0.704 ± 0.022
AB 0.857 ± 0.022 0.705 ± 0.036 0.855 ± 0.010 0.767 ± 0.014
RF 0.863 ± 0.016 0.731 ± 0.022 0.844 ± 0.012 0.755 ± 0.017

LINT 0.882 ± 0.016 0.770 ± 0.028 0.879 ± 0.010 0.817 ± 0.016

Drugs∗

LR 0.831 ± 0.011 0.703 ± 0.010 0.781 ± 0.010 0.691 ± 0.011
SVM 0.811 ± 0.011 0.681 ± 0.012 0.797 ± 0.009 0.692 ± 0.012
DT 0.717 ± 0.010 0.573 ± 0.010 0.717 ± 0.008 0.621 ± 0.009
AB 0.814 ± 0.012 0.692 ± 0.013 0.794 ± 0.007 0.700 ± 0.009
RF 0.760 ± 0.013 0.635 ± 0.011 0.756 ± 0.009 0.658 ± 0.010

HINT 0.733 ± 0.009 0.691 ± 0.014 0.792 ± 0.007 0.695 ± 0.008
LINT 0.854 ± 0.010 0.740 ± 0.011 0.820 ± 0.008 0.726 ± 0.011

Both

LR 0.856 ± 0.009 0.732 ± 0.010 0.806 ± 0.007 0.717 ± 0.008
SVM 0.833 ± 0.007 0.699 ± 0.012 0.808 ± 0.005 0.705 ± 0.007
DT 0.724 ± 0.010 0.563 ± 0.013 0.720 ± 0.009 0.619 ± 0.011
AB 0.832 ± 0.009 0.704 ± 0.010 0.800 ± 0.007 0.705 ± 0.009
RF 0.781 ± 0.011 0.647 ± 0.013 0.769 ± 0.006 0.670 ± 0.007

LINT 0.860 ± 0.009 0.748 ± 0.009 0.826 ± 0.005 0.737 ± 0.007

Table 4: Results of LINT on the different data splits on the
TOP test set. Drugs∗ denotes small-molecule drugs.

Mode Phase PR-AUC ROC-AUC F1 Acc.

Bio.
1 0.860 ± 0.026 0.723 ± 0.029 0.778 ± 0.015 0.694 ± 0.018
2 0.758 ± 0.022 0.702 ± 0.011 0.687 ± 0.016 0.651 ± 0.011
3 0.882 ± 0.016 0.770 ± 0.028 0.879 ± 0.010 0.817 ± 0.016

Drugs∗
1 0.728 ± 0.014 0.643 ± 0.014 0.698 ± 0.008 0.615 ± 0.009
2 0.696 ± 0.010 0.654 ± 0.007 0.678 ± 0.008 0.606 ± 0.008
3 0.854 ± 0.010 0.740 ± 0.011 0.820 ± 0.008 0.726 ± 0.011

Both
1 0.770 ± 0.015 0.667 ± 0.013 0.716 ± 0.010 0.637 ± 0.010
2 0.699 ± 0.010 0.650 ± 0.006 0.706 ± 0.006 0.585 ± 0.007
3 0.860 ± 0.009 0.748 ± 0.009 0.826 ± 0.005 0.737 ± 0.007

Prediction by trial phase: Predictions are reported by trial phase,
reflecting the distinct objectives of each phase. Phase I primarily de-
termines the safe maximum dosage, focusing on potential adverse

https://clinicaltrials.gov/
clinicaltrials.gov
https://github.com/futianfan/clinical-trial-outcome-prediction
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effects. Phase II examines the efficacy, using metrics tailored to the
intervention’s aim - such as tumor size, survival rate, or quality of
life. This phase typically experiences the most noise, given the com-
plex task of defining success. Phase III compares the new drug with
existing treatments, often employing double-blind methodologies
involving multiple treatment arms.
Train/Test Split: To split the data into train, test, and validation
sets, we manually chose the year 2015 as the cutoff date (specifically,
January 1, 2015), following the methodology of [5, 13, 14]. This split
strategy is to circumvent the information leakage because later
trials are typically relying on the knowledge from the earlier trials.
All trials whose completion date is confirmed to be before the cutoff
are considered training and validation data; otherwise, they are
considered test data.

Finally, we also split by Phase and Intervention Type. We con-
sider predicting trial outcomes from phases 1, 2, and 3. There are
3 interventions that we consider: only small molecule drugs, only
biologics, or both. Table 2 shows the full information regarding
splits based on drug type and phase.

Information regarding baselines–Logistic Regression (LR), Sup-
port Vector Machine (SVM), Decision Tree (DT), AdaBoost (AB),
Random Forest (RF), and HINT–are shown in Appendix A.4.3.

3.2 Results & Analysis
In this section, we present and analyze the experimental results.
Table 4 reveals that LINT excels at Phase 3 prediction, garnering
Test AUC scores of 0.770, 0.740, and 0.745 for biologic, drugs, and
combined predictions, respectively. While the model delivers a solid
performance in Phase 1 prediction, its overall performance dips
in Phase 2. This downturn is expected, given that Phase 2 has the
highest trial volume and is generally the most challenging task.

Table 3 comparison reveals LINT surpasses all baseline models in
all metrics. The simple Logistic Regression with our BERT embed-
ding input, the second-best model, achieves Phase 3 Test F1 scores
of 0.865, 0.800, and 0.806, which still lags considerably behind LINT.
Note that HINT is solely applicable in Drugs mode, as it doesn’t
cater to Biologics.
Model Calibration:

From Figure 2, we can visualize the probability of actual success
vs. model-predicted success for phase 3, and from Figure 6 we see
the number of predictions by probability. Most of the predictions
have higher scores (which makes sense as there are more positive
true labels). We generally see a positive correlation between the
predicted vs. actual success probability, which confirms that our
model is well-calibrated, evenwithout explicit tuning for calibration.
One notable exception can be seen with the predictions greater
than 0.9. This is because there are very few predictions for biologics
that have normalized probabilities larger than 0.9, as shown in
Figure 6 (exactly one trial). This could be because of the noise level
in the combined labels of all drugs and biologics; regardless, further
work should aim to factor in calibration as a metric for model
performance to improve human trust. Additionally, we observe
that model predictions below 0.4, 0.2, and 0.4 yields entirely true
negative predictions.
Performance Breakdown by Disease Type: Table 6 shows the
top 5 most common ICD categories for each of the three modes (by
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Figure 2: Phase 3 Predictions of success vs actual success. This
can be interpreted as LINT’s predicted probability of success
in the X-axis (e.g., X=0.1 contains all success probability pre-
dictions in the range [0.1,0.2)), versus the actual probability
of successful trials among the predicted successful trial on
the Y-axis (given the predictions ). Combined refers to the
combined.

occurrence in the clinical trial data). Note that the most common
categories are naturally different for each modality. However, we
can see that LINT generally performs well and achieves high accu-
racy and ROC-AUC over most categories. It is interesting to see that
for Biologics interventions for Neoplasms (cancer-related trials),
the F1 score is much lower than the accuracy. This indicates that
our model tends to predict true negative samples better than true
positives in the Neoplasm case. However, in most other categories,
both and the accuracy is high.

4 CONCLUSION
Clinical trial outcome prediction is vital for predicting the safety
of new drugs and biologics. In this paper, we focus on developing
a machine learning model to predict the outcome of clinical trial
that can account for biologics, a quickly growing intervention type.
Specifically, we propose an open-source, flexible framework that is
built on top of pretrained language models–LINT–a method that
supports the accurate prediction of success in clinical trials.

Thorough empirical studies are carried out to validate the effec-
tiveness of the proposed method, which achieves state-of-the-art
ROC-AUC scores on predicting approval of phase III trials, beating
many traditional and recent baselines. We validate the effective-
ness of LINT with thorough experiments across three trial phases.
Specifically, LINT obtains 0.770, 0.740, and 0.748 ROC-AUC scores
on phase I, II, and III, respectively for clinical trials with biologic
interventions. We also show that LINT is generally well calibrated
and demonstrated LINT’s performance on the top-5 most popular
categories of ICD codes. Additionally, using Shapley values, we
visualize the portions of the input text that are the most significant
for the prediction of success/failure.
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A APPENDIX
A.1 Future Work
Future Work: Future research should address the substantial lack
of clear outcome labels in clinical trial datasets, an issue currently
unaddressed, with potentially over 100,000+ unlabeled trials, as in-
dicated in Table 1. Unsupervised learning strategies, such as masked
language modeling, weak supervision, or semi-supervision, could
be instrumental in resolving this. It’s also crucial to improve label
quality, a challenging task due to the complex language in result
descriptions. Endeavors to identify human-interpretable automatic
labels could help expand the dataset. Interpretability is also key
for decision-makers. Understanding why a trial is predicted to fail
or succeed, rather than simply knowing the outcome, is valuable.
While LINT can be paired with Shapley values to highlight text
sections affecting prediction confidence, it doesn’t directly account
for human interpretability. Future research should focus on creating
interpretable models, which could optimize clinical trial design and
enhance success rates.

A.2 Notations
Table 5 shows relevant notation used in the paper.

A.3 Additional Tables
In this section, we provide additional Tables that are not featured in
the main text due to length limitations. For example, Table 6 shows
LINT performance on popular ICD categories.

A.4 Literature Review Extended
In this section, we briefly review the related literature. In recent
years, there have been several attempts to use machine learning to
predict clinical trial outcomes.

A.4.1 Traditional Machine Learning Methods. Lo et al. [28] applied
traditional machine-learning techniques (penalized logistic regres-
sion (PLR), random forests (RF), neural networks (NN), gradient
boosting trees (GBT), support vector machines (SVM) [37], and
decision trees C.50 [26]) to predict drug approvals using drug and
clinical trial data. Payvert et al. [21] introduced PrOCTOR, a ran-
dom forest-based model to predict drug toxicity using 10 molecular
properties, 34 target-based properties, and 4 drug-likeness rule
features. Hong et al. [24] designed an ensemble classifier based
on weighted least squares support vector regression (LS-SVR) to
predict the success/failure of clinical trials.

Wu et al. [54] developed a two-stage SVM classification method
to identify genes and genetic lesion statuses in clinical trials. Raj
et al. [39] used Gradient-Boosted Decision Trees (GBDT [55]) to
predict patients who responded to treatment on various depressive
symptoms utilizing pretreatment symptom scores and electroen-
cephalographic features. Siah et al. [43] created an open challenge
and compared over 3000 various machine learning models for clini-
cal trial outcome prediction. They found that the best-performing
model was an ensemble consisting of two XGBoost models [6] and
one Bayesian logistic regression (BLR) model [22].

Our proposed model LINT differs from the previously mentioned
methods in several ways. Most do not consider drug molecule
features and trial protocol information jointly, rather generally
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Table 5: Mathematical notations and their explanations.

Notations Explanations
𝑦 ∈ {0, 1} Groundtruth, binary label
𝑐1, · · · , inclusion/exclusion criterion sentence

x A feature vector of tabular data related to the trial
𝑠𝑢𝑚 Text summary of the trial

𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑁𝐷
} Set of ICD disease codes

𝑀 = {𝑚1,𝑚2, . . . ,𝑚𝑁𝑀
} Set of drug interventions

𝑇 = {𝑐1, . . . , 𝑐𝑛𝑐 , 𝑠𝑢𝑚,𝑑1, . . . 𝑑𝑛𝑑 ,𝑚1, . . . ,𝑚𝑛𝑚 , x)} A trial is a set of these variables
ℎ𝑡𝑒𝑥𝑡 = 𝑓𝜃𝑡𝑒𝑥𝑡 (𝑐𝑖 , . . . , 𝑐𝑛𝑐 , 𝑠𝑢𝑚,𝑚𝑖 , . . . ,𝑚𝑛𝑚 , x) Embedding obtained from transformer encoder
𝐸 = 𝐿𝐿𝑀 (𝑐𝑖 , . . . , 𝑐𝑛𝑐 , 𝑠𝑢𝑚,𝑚𝑖 , . . . ,𝑚𝑛𝑚 , x)) BERT encoder, maps text to embedding space 𝐸 ∈ 𝑅𝐵

𝑊 = 𝐸𝑁𝐶𝑂𝐷𝐸𝑅(𝐸) Transformer encoder, maps embeddings to attention 𝑅𝐵 → 𝑅

𝑓𝜃𝑡𝑒𝑥𝑡 = 𝐸 ·𝑊 Weighted mean of embeddings
ℎ𝐺𝑅𝐴𝑀 = 1

𝑛𝑑

∑𝑛𝑑
𝑖=1𝐺𝑅𝐴𝑀 (𝑑𝑖 ) Embedding obtained from GRAM model

𝑦 = 𝑓𝜃 (𝑇 ) = 𝑓𝜃 ′ (𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑡𝑒𝑥𝑡 , ℎ𝐺𝑅𝐴𝑀 )) Final LINT classifier

Table 6: A table of popular ICD categories (taken from the trial’s ICD code) for small molecule drugs, biologics, and both
combined. N represents the number of samples, and (Hist. App. %) represents the historical approval rate–the positive labels
indicating trial successes. All metrics are from LINT. (Note that the category “Factors influencing health status and contact with
health services” includes codes that represent HIV infection status, family and personal history of cancer, family and personal
history of diabetes, and cystic fibrosis carrier)

Mode Category N (Hist. App. %) Test PR-AUC Test ROC-AUC Test F1 Test Acc.

Biologics

Neoplasms 80 (37.50) 0.603 ± 0.090 0.722 ± 0.048 0.435 ± 0.075 0.713 ± 0.042
Certain infections and parasitic diseases 64 (84.38) 0.915 ± 0.049 0.674 ± 0.123 0.913 ± 0.032 0.848 ± 0.050
Factors influencing health status and

contact with health services 47 (72.34) 0.897 ± 0.061 0.870 ± 0.064 0.899 ± 0.039 0.855 ± 0.054

Diseases of the respiratory system 42 (83.33) 0.943 ± 0.025 0.761 ± 0.084 0.926 ± 0.029 0.877 ± 0.045
Diseases of the musculoskeletal
system and connective tissue 41 (78.05) 0.846 ± 0.077 0.603 ± 0.114 0.880 ± 0.046 0.801 ± 0.068

Small-
Molecule
Drugs

Neoplasms 568 (53.52) 0.719 ± 0.029 0.709 ± 0.027 0.703 ± 0.023 0.670 ± 0.022
Factors influencing health status and

contact with health services 373 (70.51) 0.900 ± 0.019 0.798 ± 0.024 0.847 ± 0.014 0.765 ± 0.017

Endocrine, nutritional and metabolic
diseases 345 (79.42) 0.934 ± 0.022 0.787 ± 0.044 0.893 ± 0.016 0.814 ± 0.025

Diseases of the nervous system 322 (62.11) 0.816 ± 0.022 0.723 ± 0.027 0.767 ± 0.016 0.648 ± 0.020
Certain infections and parasitic diseases 313 (73.80) 0.877 ± 0.032 0.751 ± 0.033 0.873 ± 0.019 0.787 ± 0.029

Combined

Neoplasms 585 (53.68) 0.752 ± 0.028 0.724 ± 0.023 0.672 ± 0.024 0.660 ± 0.018
Factors influencing health status
and contact with health services 405 (71.60) 0.902 ± 0.014 0.793 ± 0.019 0.847 ± 0.010 0.768 ± 0.013

Certain infections and parasitic diseases 360 (75.83) 0.871 ± 0.021 0.730 ± 0.029 0.878 ± 0.018 0.792 ± 0.028
Endocrine, nutritional and metabolic

diseases 351 (79.77) 0.930 ± 0.017 0.779 ± 0.031 0.893 ± 0.012 0.816 ± 0.019

Diseases of the nervous system 334 (62.87) 0.808 ± 0.027 0.709 ± 0.026 0.770 ± 0.019 0.659 ± 0.021

relying on sets of hand-annotated features. Furthermore, most trials
suffer from small training data sources, whereas LINT takes into
account a large, multi-modal dataset of text and tabular data.

A.4.2 Deep Representation Learning Related to Clinical Trials. Re-
cently, deep learning has been rising in popularity in the machine
learning for healthcare space; specifically, it has been used to learn
representation from clinical trial data to support downstream tasks
such as drug repurposing [14, 25], patient retrieval [19, 58] and
enrollment [1].

Doctor2Vec [1], a recently proposed hierarchical clinical trial em-
bedding where the unstructured trial descriptions were embedded
using Bidirectional Encoder Representations from Transformers
(BERT) [9].

DeepEnroll [58] leverages a hierarchical embedding model to
represent patient longitudinal electronic health record (EHR) and
aligns it with eligibility criteria (EC) via a numerical information
embedding and entailment module to reason over numerical infor-
mation in both EC and EHR.
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Gao et al. [19] proposed a patient-trial matching model to find
qualified patients for clinical trials given structured EHR and un-
structured EC text with both inclusion and exclusion criteria. The
core of this model consists of a convolutional highway network
and a hierarchical memory network that generates a contextualized
word embedding for each word of the trial protocol. Multiple one-
dimensional convolutional layers with varying kernel sizes capture
semantics at different granularity.

Qi et al. [38] designed a Residual Semi-Recurrent Neural Network
and took phase 2 results as features to predict the phase 3 outcome.
This network consists of an RNN with a residual connection from
the first input and performs significantly better than RNNs. The
trough concentration (Ctrough) and Phase 2 subject–level baseline
characteristics were used to build an individual treatment effect
(ITE) model for Phase 3 trial patients.

Fu et al. [13] designed a Hierarchical Interaction Network (HINT)
to capture the interaction between multi-modal features (drug
molecules, disease codes, eligibility). It uses an interaction graph
module on embeddings produced via domain knowledge to capture
various relations between EC, molecule structure, trial protocol,
and more to predict trial outcomes. However, this work does not
support biologics-related interventions because the lack of protein
structures and molecule properties such as absorption, distribution,
metabolism, excretion, and toxicity (ADMET) are not known.

A.4.3 Baseline Methods. We employ the following baseline meth-
ods for clinical trial outcome prediction and compare them with
our proposed LINT method. Each baseline method has the average
text embedding of the input texts as well as the GRAM embeddings
of the ICD codes for diseases addressed in the clinical trials.
• Logistic Regression is a common model that models the log-
odds for a class through a linear combination of the input features,
similar to a simple one-layer neural network with a logistic acti-
vation function [28].

• Supporting Vector Machine (SVM) is another common linear
model that attempts to fit a maximum-margin hyperplane be-
tween the input features (often using a nonlinear kernel function)
in order to separate classes [54].

• DecisionTree is a hierarchical, rule-basedmodel that’s generally
trained using algorithm that attempts to iteratively split on a
feature using an information-theoretic measure like label entropy
at each branch of the tree [28].

• AdaBoost is a meta-estimator that iteratively fits a decision tree
and then fits additional copies of the classifier on the re-weighted
dataset (where weights of incorrectly classified instances are
increased to emphasize them) [13].

• Random Forest is an ensemble of decision trees trained on
different sub-samples of the input data (usually via sampling
with bootstrapping) [28].

• Hierarchical Interaction Network (HINT) is the previous
state-of-the-art model we compare against. It is a complex model,
consisting of a graph attention network, highway networks, and
more to combine drug structure, eligibility criteria, and ICD codes
in order to make a binary trial success prediction [13].

A.5 Trial Details
We describe the processing for each of the tabular features in x.

• ec_gender: The eligible patient genders (male/female / or either)
that the trial considers from eligibility criteria.

• ec_min_age, ec_max_age: The minimum and maximum ages of
patients selected via the eligibility criteria. Notes that we convert
the valid age range of the eligibility criteria to 4 bins following
the Research Inclusion Statistics Report from the NIH [35]. Ages
below 6 are considered children, ages 6-18 are considered adoles-
cents, and ages 18-65 are considered adults. Finally, ages higher
than 65 are considered older adults. I.e., 4 bins of (<6, 6-18, 18-65
and >65).

• allocation: the treatment allocation, which can be randomized or
nonrandomized.

• intervention_model: The general design of the strategy for assign-
ing therapies and can be Crossover, Factorial, Parallel, Sequential,
or Single Group Assignment.

• primary_purpose: Describes the trial purpose, including Basic
Science, Diagnostic, Educational/Counseling/Training, Health
Services Research, Prevention, Screening, Supportive Care, Treat-
ment, or Other.

• masking: The type of method (single, double, triple, or quadru-
ple masking) used to keep the study group assignment hidden
after allocation between parties (Participants, Care Providers,
Investigators, and Outcomes Assessors).

• sponsors: The organization that oversees the trial. Since there
are hundreds of possible sponsors, we simply denote separate
sponsors into Large or Small, where large sponsors are the top
10 most common sponsors over all trials 5.

• continents: The continents in which the study was performed
were converted from the raw trial "country" data.

A.6 Ablations

Table 7: Ablation experiments on removing different parts
of the text from the input data. The first row denotes the
complete input data. The rest of the rows indicates results
from removal of that specific text feature only (preserves the
other inputs text features).

Ablation PR AUC ROC AUC F1 Acc.

All Data Included 0.766 ± 0.007 0.679 ± 0.005 0.726 ± 0.005 0.647 ± 0.005
No Trial Summary 0.703 ± 0.011 0.613 ± 0.007 0.000 ± 0.000 0.386 ± 0.007

No Trial Tabular Data 0.770 ± 0.008 0.684 ± 0.006 0.632 ± 0.005 0.616 ± 0.004
No EC 0.770 ± 0.008 0.683 ± 0.005 0.660 ± 0.005 0.625 ± 0.004

No Drugs 0.771 ± 0.008 0.685 ± 0.006 0.635 ± 0.005 0.618 ± 0.004

We conduct ablations by excluding text features from the trial
summary, trial tabular data, eligibility criteria, and drug informa-
tion, as shown in Table 7. Interestingly, removing certain text fea-
tures marginally boosts ROC-AUC performance, but at the expense
of F1 and Accuracy. Furthermore, excluding the trial summary sig-
nificantly impairs LINT’s performance, with all metrics dropping.
This could elucidate why removing other features doesn’t impact
the results, as the model appears to predominantly rely on the trial
summary.
5Top 10 sponsors: GlaxoSmithKline, Merck Sharp & Dohme LLC, Sanofi Pasteur, a
Sanofi Company, Amgen, Pfizer, National Cancer Institute (NCI), Novartis Pharmaceu-
ticals, Abbott, Bristol-Myers Squibb, Novartis Vaccines
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Despite this, LINT might still find other outcomes important, yet
it primarily hinges on the trial summary, thereby heavily influenced
if it’s absent. Future studies should delve into this dependency since
other text features also significantly contribute to trial outcome
prediction.

A.6.1 Case Studies. In this section, we take a closer look at 2
different biologic drugs. Secukinumab and Botulinum toxin type
A, two random examples chosen from the test set, for the fair
evaluation of LINT.

Case 1: Secukinumab (NCT02404350)6 [34, 53]. First, let us
take a look at a successful test prediction. As a brief summary, No-
vartis Pharmaceuticals sponsored this study, and the main goal of
this study was to demonstrate efficacy on inhibition of progres-
sion of structural damage of secukinumab in subjects with active
Psoriatic Arthritis (PsA) as measured by improvement in physical
function measured by Health Assessment Questionnaire and skin
and nail improvement for psoriasis signs. This study was deemed
successful and had P-value of less than 0.0001 in its Estimation
Parameter of Odds Ratio. LINT predicted success with a normalized
score of 0.79 (from 0 to 1).

Case 2: Botulinum toxin type A (NCT02660359)7 Here, we
take a look at an incorrect test prediction. This study was sponsored
by Ipsen, and the primary purpose of this trial was to analyze safety
and efficacy of two Dysport [40] (Similar to Botox) doses (600 units
U and 800 U), compared to placebo in reducing urinary incontinence
(UI) in adult subjects treated for neurogenic detrusor overactivity
(NDO) due to spinal cord injury (SCI) or multiple sclerosis (MS).
This study was annotated to be unsuccessful due to the lack of
participants; however, upon further analysis of the trial, all p-values
were significantly less than 0.05, indicating statistical significance.
This could indicate that if given more participants, a successful
outcome may have been possible. LINT predicted success with a
normalized score of 0.38 (from 0 to 1).

A.7 Additional Figures and Tables
Figure 4 breaks down the histogram and density estimated distri-
bution of completion years by phase and [small molecule drug vs
biologics]. Table 8 shows a full example text input to LINT.

A.8 Shap Values
Figure 7 shows the text Shapley (SHAP) value importance. The base
value as shown in the upper left of the plot is the model logit output
when the entire input text is masked. Using Shapley values [31, 32]
from the package shap.readthedocs.io, we are additionally able to
visualize the portions of the raw input text that affect model output
the most (See Figure 7). The SHAP values additively explain the
impact of unmasking each word on the model output–from the base
value (where the entire input is masked) to the final prediction value
(no mask). In short, the darker the color of the highlighted text, the
more attention themodel pays to it in its final classification. In short,
Shapley values are the average marginal contribution of a feature
value across all possible coalitions (combinations of features).

6https://clinicaltrials.gov/ct2/show/study/NCT02404350
7https://clinicaltrials.gov/ct2/show/results/NCT02660359

Features are masked out by random sampling from the existing
dataset when not considered for traditional tabular feature clas-
sification. In this case, masking is done by replacing words with
the [MASK] token by the SHAP package. Section A.6.1 shows an
example of this. From this, we see that the model generally does
rely on informative portions of text.

A.8.1 Example Input. Received 20 February 2007; revised 12 March 2009;
accepted 5 June 2009

shap.readthedocs.io
https://clinicaltrials.gov/ct2/show/study/NCT02404350
https://clinicaltrials.gov/ct2/show/results/NCT02660359
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Figure 3: All Trial Completion Years. Note that some completion years may be in the future due to projections. Completion
Years by small molecule drugs and Biologics is broken down in Figure 4.
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Figure 4: Additional plots for the distribution of completion years by phase and modality. Histograms of trial completion years
by phase for biologics and small molecule drugs
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Figure 5: Phase 3 Predictions of success vs actual success. This can be interpreted as LINT’s predicted probability of success
in the X-axis (e.g., X=0.1 contains all success probability predictions in the range [0.1,0.2)), versus the actual probability of
successful trials among the predicted successful trial on the Y-axis (given the predictions ). Combined refers to the combined.
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Figure 6: Phase 3 Number of predictions. Combined refers to the combined. From these figures, we are able to see that many
biologics classifications are made close to the .5 threshold, indicating that they are harder to classify.
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inputs
Secukinumab (Cosentyx) is a human monoclonal antibody designed for
the treatment of uveitis, rheumatoid arthritis, ankylosing spondylitis, and

psoriasis. Secukinumab is an interleukin-17A (IL-17A) inhibitor
marketed by Novartis. IL-17 is a group of proinflammatory cytokines

released by cells of the immune system and and exist in higher levels in
many immune conditions associated with chronic inflammation. By

targeting IL-17A, secukinumab has shown excellent efficacy in psoriasis
by normalizing skin histology and was approved by the United States

Food and Drug Administration on January 21, 2015 to treat adults with
moderate-to-severe plaque psoriasis.
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The purpose of this study is to provide confirmatory evidence of the

safety and efficacy of two Dysport® doses (600 units [U] and 800 U),
compared to placebo in reducing urinary incontinence (UI) in adult

subjects treated for neurogenic detrusor overactivity (NDO) due to spinal
cord injury (SCI) or multiple sclerosis (MS).

Figure 7: An example plot of which parts of the text affect the output of the LINT model the most. This is a visualization of
Shapley values https://shap.readthedocs.io of the text from 2 trials: https://clinicaltrials.gov/ct2/show/NCT02404350 on the top
and https://clinicaltrials.gov/ct2/show/results/NCT02660359 on the bottom. The darker the color, the more the word affects the
final output logits.

https://shap.readthedocs.io
https://clinicaltrials.gov/ct2/show/NCT02404350
https://clinicaltrials.gov/ct2/show/results/NCT02660359
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Table 8: An example of the text data (associated with https://clinicaltrials.gov/ct2/show/NCT00000172) that is input to the PLM.
Each row represents one string. The titles are bolded. Note that for this particular trial, there is only one drug that it considers.
If there are 𝑛 more drugs, this table would have 5 ∗ 𝑛 more paragraphs accordingly.

Trial Text
Galantamine is an experimental drug being evaluated in the United States for the treatment of Alzheimer’s
disease. Results from previous clinical trials suggest that galantamine may improve cognitive performance
in individuals with Alzheimer’s disease [29]. It is not a cure for Alzheimer’s disease. Nerve cells in
the brain responsible for memory ...
Trial Eligibility Criteria
inclusion criteria probable alzheimers disease minimental state examination mmse 1022 and adas greater
than or equal to 18 Alzheimers disease assessment scale cognitive portion adascog11 score of at least
18 opportunities for activities of daily living caregiver subjects who live with or have regular daily
visits from a responsible caregiver ...
Additional Trial Info
eligibility gender all eligibility min age child eligibility max age none allocation randomized
intervention model parallel assignment primary purpose treatment masking double sponsors small location
countries north america ...
Drug Description
Galantamine is a tertiary alkaloid and reversible competitive inhibitor of the acetylcholinesterase AChE
enzyme which is a widely studied therapeutic target used in the treatment of Alzheimers disease.A1018
First characterized in the early 1950s galantamine is a tertiary alkaloid that was extracted from
botanical sources such as Galanthus nivalis.A201968 Galantamine ...
Drug Pharmacodynamics
Galantamine is a competitive and reversible inhibitor of acetylcholinesterase that works to increase
acetylcholine levels.L13571 Galantamine acts both centrally and peripherally to inhibit both muscle and
brain acetylcholinesterase thereby increasing cholinergic tone.A201968 Galantamine is also a positive
allosteric modulator of neuronal nicotinic acetylcholine receptors.A1022A201968 As dementia is a
progressive neurodegenerative ...
Drug Toxicity
The oral LDsub50sub of the active ingredient galantamine hydrobromide in rats is 75 mgkg.L13709 Symptoms
of overdose are expected to be similar to those of cholinomimetics which involve the central nervous
system the parasympathetic nervous system and the neuromuscular junction. Effects of a cholinergic crisis
include severe nausea vomiting gastrointestinal ...
Drug Metabolism
In vitro study findings suggest that about 75 of the drug is metabolized by CYP2D6 and CYP3A4. CYP2D6
promotes Odemethylation of the drug to form Odesmethylgalantamine and the CYP3A4mediated pathway forms
the galantamineNoxide.A182993 Important metabolic pathways also include Ndemethylation epimerization
and sulfate conjugation.A203444 Other metabolites include norgalantamine Odesmethylgalantamine
Odesmethylnorgalantamine epigalantamine ...
Drug Absorption
Over a dose range of 832 mgday galantamine exhibits a doselinear pharmacokinetic profile. The oral
bioavailability of galantamine ranges from 90100. Following oral administration the Tmax is about 1
hour.L13571 Following 10 hours of administration the mean galantamine plasma concentrations were 8297
gL for the 24 mgday dose and 114126 ...

https://clinicaltrials.gov/ct2/show/NCT00000172
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