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Abstract
When large language models (LLMs) use in-context learning (ICL) to solve a new task, they seem to
grasp not only the goal of the task but also core, latent concepts in the demonstration examples. This
begs the question of whether transformers represent latent structures as part of their computation or
whether they take shortcuts to solve the problem. Prior mechanistic work on ICL does not address this
question because it does not sufficiently examine the relationship between the learned representation
and the latent concept, and the considered problem settings often involve only single-step reasoning.
In this work, we examine how transformers disentangle and use latent concepts. We show that in
2-hop reasoning tasks with a latent, discrete concept, the model successfully identifies the latent
concept and does step-by-step concept composition. In tasks parameterized by a continuous latent
concept, we find low-dimensional subspaces in the representation space where the geometry mimics
the underlying parameterization. Together, these results refine our understanding of ICL and the
representation of transformers, and they provide evidence for highly localized structures in the model
that disentangle latent concepts in ICL tasks.

1. Introduction
Transformer-based Large Language Models (LLMs) demonstrate remarkable in-context learning
(ICL) abilities: with only a handful of input-output demonstrations, they can generalize to new inputs
without any parameter updates [11]. These successes hint that models might be inferring latent rules
or concepts implicit in the prompt. Yet it is still unresolved whether transformers truly form explicit
internal representations of such hidden structure, or whether apparent generalization can be explained
by more superficial pattern matching. This work therefore asks:

How do LLMs disentangle and manipulate latent concepts during in-context learning?
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Figure 1: An illustration of problem setup and examples of main findings in this work. We primarily
focus on how decoder-only transformer-based language models disentangle and manipulate latent
concepts for solving in-context learning (ICL) problems. In the multi-hop ICL setting, we discover
that transformers compose disentangled latent concept representations for predicting the answer.
For example, as shown in the upper half of the figure, by intervening on certain “bridge-concept”
attention heads, we can push the model’s “belief” (reflected in logit and rank) in the original
answer Canberra (the capital of Australia, which the city Sydney belongs to) to the “type-corrected”
alternative answer Ottawa (the capital of Canada, which the landmark Niagara Falls belongs to). In
the continuous-parameterization ICL setting, we discover that transformers’ hidden embeddings
capture the geometry of the latent concepts for our prediction tasks. For instance, for a transformer
trained to predict circular trajectories whose radius is randomly chosen from a continuous interval,
not only do we obtain causal evidence for task vectors which control the trajectory’s radius, but they
also fall on a smooth 2D manifold.

Prior mechanistic studies leave this question open: most focus on tasks with simple latent structures
which do not require intricate disentanglement nor manipulation of concepts. For instance, recent
research has identified linear task or function vectors for problems such as basic arithmetic, single-
step reasoning, and linguistic mappings [20, 43], and isolated certain attention heads that drive ICL
behavior on these straightforward problems [12, 33, 52]. However, real ICL usage often involves
richer latent structures — for instance, demonstrations with under-specified intermediate reasoning
steps, or that share continuous latent parameters. It remains unclear how transformers represent these
latent concepts, and how they disentangle and reuse them.

We address these gaps by probing two challenging ICL settings:

• Discrete multi-hop reasoning. A model must map a “source” entity to a “target” entity (e.g.,
landmark→capital) by first latently inferring the hidden “bridge” entity (e.g., country), allowing
us to ask whether the LLM first resolves the “bridge”, then refines it to a “target” entity via
(causal) concept compositions.

• Continuous-parameter tasks. Demonstrations are generated by unknown real-valued parameters
(e.g., the radius of a circular trajectory), allowing us to ask whether the model encodes such
parameters along a systematic low-dimensional geometry.
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Both tasks are demanding enough to require intricate latent concept disentanglement and manipula-
tion, yet sufficiently controlled to permit causal, feature and circuit-level analysis.

Figure 1 illustrates the main ideas of our paper. Our experiments show that transformers do learn,
and when necessary, compose disentangled latent concept representations in these settings. In the
multi-hop task, we identify a highly sparse circuit of attention heads that first recovers the “bridge”
concept, and then specializes it using “target concepts” to produce the answer. In the continuous
tasks, we find that the model’s task vectors lie on a low-dimensional manifold precisely aligned with
the underlying parameter. These results show that transformers internalize latent structure through
specialized mechanisms rather than heuristics.

2. Disentanglement for Latent Discrete Task in Multi-hop Reasoning
Prior works have mechanistically analyzed how LLMs solve ICL problems that require a single
step of reasoning over world knowledge, such as geography puzzles “Country→Capital”, “National
Park→Country” [43, 52]. However, whether and how LLMs can solve ICL problems with under-
specified reasoning steps, or essentially those requiring latent multi-hop reasoning remains unclear.

The “Source→Target” problem. We create two-hop ICL puzzles by composing two facts
linked by a common “Bridge” entity.1 That is, we sample fact tuples {(Si, r1, Bi, r2, Ti)}ni=1, where
the Source entity Si is related to the Bridge entity Bi via relation r2, and Bi is related to the Target
entity Ti via r2. We then create the ICL puzzle in the form [S1, T1. S2, T2...Sn, ] [Answer: Tn]. Note
that the bridge entities Bi’s are never specified in the prompt. We primarily work with geography
puzzles, with input types {City, University, Landmark}, and output types {Capital, Calling code}.
An example problem is

Sydney, Canberra. Nantes, Paris. Oshawa,

Here, r1 is “belongs to the country of”, the (unspecified) bridge entities for this example are
“Australia”, “France”, “Canada”, and r2 is “has capital”. Therefore, the prompt’s answer is Ottawa,
the capital of Canada, the country Oshawa is in. We discuss dataset details in Appendix A.1.

As shown in Figure 7, Gemma-2-27B [17] achieves high accuracy (> 80%) at 20 shots. How is
the LLM solving these harder, “source→target” problems that do not specify the bridge, or even hint
at the compositional nature of the problem at all? In the following, we show a surprising finding that
a highly sparse set of attention heads are responsible for “resolving the bridge value”.

2.1. Bridge-value resolution for answering the query
We analyze how the LLM infers the answer (target entity) from the query (source entity), given
sufficiently many in-context examples. We will show both causal and correlational evidence that
the LLM latently infers the bridge entity as an abstract concept representation, and compose it with
output-concept representations to produce the answer. To achieve this, there are two main steps of
our experiments, which we discuss below.

We perform activation patching [45, 54] on normal and altered problem pairs with different bridge
entities (different countries), across different source and target types, at the last token position. If our
hypothesis of certain attention heads resolving the bridge value from Sn for prediction is correct,
then this bridge representation must be transferable across source and target types: for instance,
patching a [University→Calling Code] prompt’s activation (i.e. the “altered activation”) onto that of

1. We think of this as a systematic ICL version of TWOHOPFACT [51]. Here, the model must figure out relations between
the input-bridge and bridge-output facts from the ICL examples.
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Figure 2: Evidence of the bridge-resolving attention heads in Gemma-2-27B. (a) and (b) provide
causal evidence and (c) provides correlational evidence, which we elaborate in the main text.

a normal prompt [City→Capital], should cause the model to favor the alternative prompt’s answer,
but in the form of Capital (instead of Calling Code).

This suggests a slightly unorthodox intervention experiment. Instead of taking the normal-
alternative answer pairs to be the ground truths, we convert the alternative answer into the same output
type as the normal one, i.e., set T̂ (alt)

n = Typenorm(T
(alt)
n ). The logit difference and (reciprocal)

rank of the alternative answer would use T̂
(alt)
n instead of the raw target T (alt)

n . For instance, if the
target type of the normal prompt is Capital, and the alternative prompt ends with “Sydney, 61”, then
T̂
(alt)
n = Canberra. We discuss the full detail of our patching experiments in Appendix A.2.

We report the results in Figure 2. In Figure 2(a), we report results on a select set of patching
experiments: on both tasks with and without overlap in source and target types, we observe that a
sparse set of attention heads consistently exhibits very strong causal effects; the head group (24,30;31)
is especially dominant.2 To further understand whether (24,30;31) is really boosting the alternative
answer (instead of only decreasing model’s confidence on the normal answer, which logit difference
might not tell), in Figure 2(b), we show an example patching experiment result of [University,
Code]→[City, Capital]. Surprisingly, at least 73% of the time, patching this single head group can
boost the model’s rank of the alternative prompt’s answer into top 10 (and directly become the top-1
answer more than 40% of the time!), when its original rank, obtained on the normal prompt without
intervention, is typically in the hundreds to thousands.

Finally, to understand the nature of (24,30;31)’s output embeddings better, in Figure 2(c), we
visualize an example cosine similarity matrix of this attention head, with either “Italy” or “Spain”
as the bridge values for Sn (the query source entity) in the prompts, across a total of 12 different
combinations of bridge, source and target types. Specifically, for each combination of the bridge and
source-target type shown in the grid, we sample 10 prompts which obey such requirement3, giving
us a total of 120 prompts. We then obtain head group (24,30;31)’s embedding of these prompts at

2. In our CMA experiments, we account for grouped-query attention by patching heads in groups of 2 on Gemma-2-27B.
We noticed that this tends to produce stronger causal effects than with individual heads.

3. We only specify the bridge entity for Sn in the prompt; the bridge for Si for all i < n are randomly chosen.

4



LATENT CONCEPT DISENTANGLEMENT IN TRANSFORMERS

the last token position, and compute the pairwise cosine similarities. Observe that the embedding
consistently exhibits strong disentanglement with respect to the bridge value in the prompt, regardless
of source and target types. We delay further analysis of the circuit and more general statistics of
disentanglement strength of the bridge concepts to the appendix due to space limitations.

3. Disentanglement for Latent Continuous Parameterization
In this section, we consider two problems with numerical or continuous parameterization. For these
experiments we study a very small transformer, with a similar architecture to GPT-2 [38]. We use
a 2-layer 1-head transformer, with embedding dimension 128, trained with the AdamW optimizer.
Additional details about training and hyperparameter choices are in the Appendix.

add-k Problem. Each task is a sequence consisting of pairwise examples {(xi, yi)}n+1
i=1 , where

yi = xi + k, for a given offset k. Here, we use integer inputs and offsets; all values are in
{0, . . . , V − 1}, each treated as a distinct token. We consider a collection of K tasks parameterized
by different offset values in {ki}Ki=1, where k1 = 1 and we fix ki+1 − ki = 3. The model is trained
autoregressively to predict the label for each example in the sequence. At test time, the model
observes the first n examples and should predict yn+1 = xn+1 + k for the last example.

Circular-Trajectory Problem. Here a task consists of a sequence {xi}n+1
i=1 of points on a circle

centered at the origin. Each task is parameterized by the circle’s radius r; for K tasks, the set of
radii {ri}Ki=1 is sampled uniformly from [1, 4]. A task sequence is generated as follows. We first
sample θ0 uniformly at random in [0, π2 ], so x1 = r[cos θ0, sin θ0]

T . Then, we select the period p
randomly from {2, 3, 4}, which determines the number of equal consecutive step-sizes. Specifically,
we first sample a sequence of ⌊np ⌋+ 1 unique step-sizes uniformly between [0, 1], and then get the
full sequence of steps {ai}ni=1, where aj = aj+1 = · · · = aj+p−1 for j ∈ {0, p, 2p, . . . }. Here,
context length n = 12m + 1 for integer m. We also sample c ∈ {±1}, which denotes if the
trajectory is clockwise or anticlockwise. Next, we generate a sequence of angles {θi}ni=1, where
θi = θ0 + c2πn

∑
j≤i aj . Using the sequence of angles, we generate the sequence, xi+1 = rR(θi)xi,

where R(θ) is the 2D rotation matrix for θ. Figure 25 shows an example. As in the previous problem,
we train the transformer autoregressively on these types of sequences.

Existence of Task Vectors. We first outline the process to identify the task vectors for the add-k
problem. We set V = 100, n = 4, and K = 2. Figure 3 shows the cosine similarities between the
layer-2 attention embeddings at the last position for 200 input sequences from each of the two tasks.
We observe strong clustering between intra-task embeddings. This shows that the model disentangles
the concept of different offset values in its representation.

Figure 3: Cosine similarities between the
layer-2 attention embeddings for 200 input
sequences from two tasks/offsets for the add-
k problem. Strong clustering between intra-
task embeddings shows that the model dis-
entangles the concept of different offsets.

Figure 4: Results for linear probing the embeddings
of the trained model at various locations to predict the
final output and the task type for the add-k problem.
The task type becomes disentangled at layer-2 atten-
tion, and the output is computed in layer-2 MLP.
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To provide causal evidence for disentanglement, and locate where the task vectors emerge in the
model, we linear probe the embeddings of the trained model at various locations to predict the final
output and the offset/task type. We probe embeddings from the output of the MLP at the first layer,
the attention block at the second layer, and the hidden and output layers of the MLP at the second
layer. The results are shown in Figure 4. We observe that task type becomes disentangled at layer-2
attention, and the output is computed at layer-2 MLP. For each task, we treat the layer-2 attention
embeddings averaged across 200 input sequences from that task as the task vector.

Geometry of Task Vectors. We analyze the geometry of the task vectors for the two problems.
We visualize the task vectors by performing PCA and projecting them onto the first two PCs.

Figure 5 presents the 2D PCA projection of the task vectors for the add-k problem, for K =
4, 8, 16 tasks/offsets. We observe that in all three settings, the task vectors lie on a 1D linear manifold.
In each of the three cases, more than 99.9% of the variance is explained by the first PC. Notably, the
model compresses the concept of offsets into a line with the ordering of the offsets (lower to higher)
preserved on the manifold (left to right). To corroborate these results, we study the effect of steering
using the task vectors, and include the results in the Appendix.

Figure 5: 2D PCA projection of the task vectors for the add-k problem. The task vectors lie on a 1D
linear manifold. Here the number of tasks refers to the number of values of k.

Figure 6: 2D PCA projection of the task vectors for the Circular-Trajectory problem. The task vectors
lie on a smooth low-dimensional manifold. Here the number of tasks refers to the number of radius
values used for training.

Figure 6 presents the 2D PCA projection of the task vectors for the Circular-Trajectory problem,
for K = 16, 32, 64 (training) tasks/radii. In this setting, we consider K = 24 radii, spaced evenly
between [1, 4] to visualize the task vectors, since this task is continuous. We observe that in all three
settings, the task vectors lie on a low-dimensional manifold. The variance explained by the first two
PCs in the three cases is 97.05%, 96.44%, 93.68%, respectively. Similar to the previous setting, the
order of the radii (lower to higher) is preserved in the compressed representation.

4. Discussion and Conclusion
We showed that transformer-based models latently disentangle core concepts in the provided in-
context examples, and manipulate them well. For 2-hop tasks, we found that models contain sparse
sets of attention heads responsible for first inferring the bridge entity and then resolving the output.
For tasks with a continuous parameterization, we found that the model uses task vectors which
closely capture the underlying parameterization. It would be interesting to understand the extent of
this disentanglement across more diverse ICL tasks with various types of latent structures.
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[47] Dimitri von Rütte, Sotiris Anagnostidis, Gregor Bachmann, and Thomas Hofmann. A lan-
guage model’s guide through latent space, 2024. URL https://arxiv.org/abs/2402.
14433.

[48] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

[49] Zijian Wang and Chang Xu. Functional abstraction of knowledge recall in large language
models, 2025. URL https://arxiv.org/abs/2504.14496.

[50] Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. Inter-
pretability at scale: Identifying causal mechanisms in alpaca. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=nRfClnMhVX.

[51] Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large
language models latently perform multi-hop reasoning? In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
10210–10229, 2024.

11

https://openreview.net/forum?id=iGDWZFc7Ya
https://openreview.net/forum?id=iGDWZFc7Ya
https://openreview.net/forum?id=AwyxtyMwaG
https://arxiv.org/abs/2506.11613
https://arxiv.org/abs/2506.11613
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://arxiv.org/abs/2402.14433
https://arxiv.org/abs/2402.14433
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/2504.14496
https://openreview.net/forum?id=nRfClnMhVX
https://openreview.net/forum?id=nRfClnMhVX


LATENT CONCEPT DISENTANGLEMENT IN TRANSFORMERS

[52] Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? arXiv
preprint arXiv:2502.14010, 2025.

[53] Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning?, 2025.
URL https://arxiv.org/abs/2502.14010.

[54] Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=Hf17y6u9BC.

[55] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting
enables complex reasoning in large language models, 2023. URL https://arxiv.org/
abs/2205.10625.

12

https://arxiv.org/abs/2502.14010
https://openreview.net/forum?id=Hf17y6u9BC
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625


LATENT CONCEPT DISENTANGLEMENT IN TRANSFORMERS

2 4 8 16 20
In-context Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

City, Cap
Univ, Cap

Landmk, Cap
City, Code

Univ, Code
Landmk, Code

Figure 7: Accuracy of Gemma-2-27B on the two-hop “Source→Target” ICL problems.

Appendix A. Additional Details/Results for Section 2

A.1. Further details on problem setup

We collect the puzzles’ data for over 40 countries in the world. For each source type in {City,
University, Famous Landmark}, we collect at least 10 entities per country, leading to over 400
possible source entities per source type in the puzzles.

Our 2-hop ICL dataset is constructed by first prompting ChatGPT for the raw data, then clean
and add to the data manually. The geography puzzles are cleaned to reduce leakage of source types,
for instance, ChatGPT sometimes append city or state/province/region to a landmark, which we
remove to ensure that the Landmark source type remains sufficiently distinct from the City source
type. University names sometimes cannot avoid such overlap, e.g. University of California, Berkeley
indeed has city name in it.

Furthermore, we show the accuracy of Gemma-2-27B on the problems with different number of
in-context examples in Figure 7.

A.2. Causal mediation analysis

Direct effect
X Y

M Indirect effect

Figure 8: Basic illustration of CMA. X =
input (exposure), M = mediator, Y = output
(outcome).

We primarily rely on causal mediation analysis
(CMA), a.k.a. activation patching in the mechanistic
interpretability literature, to obtain causal evidence
for our claims in the LLM studies.

At a high level, CMA is about the study of indi-
rect effects (IE) and direct effects (DE) in a system
with causal relations [37]. Consider the following
classical diagram of CMA, in Figure 8.

Suppose we wish to understand whether a certain
mediator M plays an important role in the causal path
from the input X to the outcome Y . We decompose
the “total effect” of X on Y into the sum of direct
and indirect effects (DEs and IEs), as shown in the
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figure. The indirect effect measures how important a role the mediator M plays in the causal path
X → Y . To measure it, we compute Y given X , except that we artificially hold M ’s output to its
“corrupted” version, which is obtained by computing M on a counterfactual (“corrupted”) version of
the input. A significant change in Y indicates a strong IE, which implies that M is important in the
causal path. On the other hand, a weak IE implies a strong DE, meaning that the mediator does not
play a strong causal role in the system (for the distribution of inputs of interest).

There are two common classes of interventions in mechanistic interpretability for localizing
model components with strong IE in the causal graph. The first class is simple ablation, such as
mean ablation (replace activation of the mediator by its average output on a distribution of interest)
[48] or “noising” [30]. While this type of intervention is easy to perform, it typically leads to poor
localization, surfacing low-level processing components irrelevant to the study [54].

The other class, which we employ, is “interchange” intervention: it requires construction of
alterative prompts which differ from the normal prompt in subtle ways, requiring careful consideration
of the problem’s nature, but allows “causal surgery” which surfaces model components with specific
functional roles. Technically speaking, we are measuring the natural indirect effects of the mediator.
In particular, it works as follows. We first run the system (the LLM) on both normal and alternative
(or sometimes called counterfactual) inputs, and cache the output of the mediator M . We then hold
M ’s output to its alternative version, as we run the full system (the LLM) on the normal prompt.
Everything downstream in the causal graph from M are also influenced, up to the output Y . This
helps us measure how the mediator M causally implicate the answer. Or more intuitively, it measures
how “flipping” the output of M causally influences the LLM’s “belief” in the alternative answer over
the normal answer.

What makes our intervention experiments somewhat novel lies in exactly how we measure the
IE. In particular, as we briefly discussed Section 2.1 and 2.2, we do not directly use the alternative
prompt’s ground truth answer to measure how well we are “bending” the model’s “belief” through
intervention. We discuss our method in greater detail here.

First, to understand whether certain attention heads have functional roles in processing the
query source entity Sn which transcend source-target types of the two-hop problems, we work with
normal-alternative prompts with distinct source and target types, such as sampling an alternative
prompt “EPFL, 41. ... University of Tokyo, ” ([University, Code] problem), and a normal prompt
“Okinawa, Tokyo. ... Chicago, ” ([City, Capital] problem). We hypothesize that there are certain
model components which output the bridge concept, which is then composed with the target/output
concept of the problem. For the normal example, this means “Chicago”→“USA” is resolved first,
then the model executes Capital(USA) = Washington D.C. as the output. This means that, patching
a model component’s activation from the alternative prompt onto its activation on a normal prompt,
would cause the model to favor the answer of the alternative prompt, but with the same target semantic
type as the normal prompt. In our running example, this would be “Tokyo”, the capital of “Japan”,
the country (bridge) of the university “University of Tokyo”.

It follows that, to evaluate the “causal effects” of such a bridge-resolving component, we should
set T̂ (alt)

n = Typenorm(T
(alt)
n ). We then measure the (expected) intervened logit difference

∆alt→norm = E
[
logitalt→norm(pnorm)[T

(norm)
n ]− logitalt→norm(pnorm)[T̂

(alt)
n ]

]
, (1)

where pnorm = [S
(norm)
1 , T

(norm)
1 ... S

(norm)
n , ] is the normal prompt, logitalt→norm(pnorm) indicates the

logits of the model obtained after intervention while running the model on the normal prompt, and
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(c)(i) 2-shot

(c)(iv) 20-shot

(b)(i) Patching experiment 1 (c)(ii) 4-shot

(c)(iii) 8-shot(b)(ii) Patching experiment 2

(a)(i) 2-shot (a)(ii) 4-shot

(a)(iii) 8-shot (a)(iv) 20-shot

Figure 9: This figure illustrates how the transferability and disentanglement of the bridge representa-
tion increases as we increase the number of in-context examples. Figure series (a) and (b) present the
transferability result, obtained by performing cross-problem-type patching, and measuring the causal
influence of the patched representation. In (a)(i) to (iv), we plot the percentage logit variation of the
attention heads found to output “bridge” values, measured on several intervention experiments. For
(b)(i) and (ii), we zoom in on head group (24,30;31), and show its causal effects on two patching
experiments. The x-axis is the number of in-context examples, and the y-axis is the 30th percentile of
the reciprocal rank of the alternative prompt’s answer. For (c)(i) to (iv), we plot the disentanglement
strength of the representations of head group (24,30;31).

logit(pnorm) indicates the logits of the model running naturally (un-intervened) on the normal prompt.
Moreover, when we measure the rank of the model’s answer when intervened, we also use T̂

(alt)
n as

the target.
Remark. To normalize our logit-difference variations, we compute

∆̄ =
∆norm −∆alt→norm

∆norm
, (2)

where
∆norm = E

[
logit(pnorm)[T

(norm)
n ]− logit(pnorm)[T̂

(alt)
n ]

]
. (3)

A.3. Multi-hop circuit formation and the number of in-context examples

This sub-section focuses on illustrating the relation between the number of in-context examples
versus (1) how strong a role the multi-hop mechanism plays in the LLM’s inference (via causal
interventions), (2) disentanglement strength of key bridge-resolving attention heads. As we will show
below, there is a general positive correlation between the number of shots and the two factors.

More demonstrations =⇒ stronger causal score. Figure 9 visualizes the experimental results.
From Figure 9(a) and (b) and sub-figures, we observe a correlation between the number of shots
(ICL examples) and the bridge-resolving heads’ “causal importance” in the model’s inference. When
the number of shots is low, we find that they tend to exhibit weak causal influence on the model’s
inference. For instance, as (b)(i) shows, at 2 shots, the 30th percentile of the alternative answer’s
rank after patching at (24,30;31) is on the order of 103. This is in stark contrast to how strong this
head group’s causal influence is at 20 shots as we saw before.

More demonstrations =⇒ stronger disentanglement, with a catch. In Figure 9(c)(i) to (iv),
we observe that the intra-bridge cosine similarity tends to cluster better as the number of shots
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increase, while the inter-bridge cosine similarities decay toward 0.2, with the two distributions
overlapping less and less. Interestingly, the bridge-disentanglement strength is still non-trivial
with very few shots, mirroring the causal-intervention results: regardless of how disentangled the
representations are in the very-few-shot regime, the LLM does not “realize” how it should utilize the
multi-hop sub-circuit.

A.4. Further mechanistic analysis and causal evidence

Causal evidence. Recall that in the main text, to provide causal evidence for the bridge-resolving
mechanism, we primarily presented causal intervention experiments where we treated [City, Capital]
as the problem type we intervene on, using cross-type prompts [University, Calling Code], [Landmark,
Calling Code] to show causal evidence for the bridge-resolving heads. Here, we add further evidence
by having other source-target types. The results are presented in Figures 10 to 19, indexed as follows:

1. Experiment [City, Capital]→[Landmark, Calling Code]: Figure 10

2. Experiment [University, Capital]→[Landmark, Calling Code]: Figure 11

3. Experiment [City, Capital]→[University, Calling Code]: Figure 12

4. Experiment [Landmark, Capital]→[University, Calling Code]: Figure 13

5. Experiment [University, Capital]→[City, Calling Code]: Figure 14

6. Experiment [Landmark, Capital]→[City, Calling Code]: Figure 15

7. Experiment [City, Calling Code]→[University, Capital]: Figure 16

8. Experiment [Landmark, Calling Code]→[University, Capital]: Figure 17

9. Experiment [City, Calling Code]→[Landmark, Capital]: Figure 18

10. Experiment [University, Calling Code]→[Landmark, Capital]: Figure 19

Every patching experiment is performed on at least 100 prompts. As we can see, the general
trend is that there is strong transferability of the bridge representation across the problem types,
including when the source and target types have no overlap, giving us causal evidence that head
groups (24,30;31), (35,22;23) are “resolving the bridge”.

Scaling constant for bridge intervention. We found that for some of the transfer experiments,
multiplying the patched representation for the heads (24,30;31), (35,22;23) improves the result, i.e.
there is a greater percentage of samples where the alternative answer is boosted into the top-10 (or
even top-1) answers of the model after intervention. Therefore, we also report those results. An
intriguing property of this scaling constant is that it typically works best around 2.0. At 4.0, we
often observe saturation or even decline in the intervened alternative answer’s rank, such as in the
[University, Capital]→[City, Calling Code] experiment shown in Figure 14.

The output-concept heads. While the main interest of this work lies in the bridge-resolving
mechanism enabled by the sparse set of attention heads discussed above, we also present more
analysis of the output-concept heads, whose embedding tends to cluster with respect to the output
concept (Capital versus Calling Code). To localize these heads, we generate normal-alternative
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prompt pairs where we only change the target/output type of the normal prompt to generate the
alternative prompt, but keep the Si’s to be identical across the prompt pairs for all i ≤ n. This helps
us surface components which are independent of the query and bridge value, and sensitive to the
output/target type for the ICL problem. The results are shown in Figure 20 and 21, where we run
the intervention experiment [Landmark, Calling Code]→[Landmark, Capital] (due to limitations
in time and computing resources, we could not sweep all the source-target combinations as of this
version of the paper). As we can see, these head groups with the strongest causal scores indeed tend
to exhibit sensitivity to output type, and insensitivity to source/input type and query and bridge value.
Moreover, they are more concentrated in the deeper layers of the model.

Statistics of alternative-type answers. A natural question to challenge the bridge-resolving
mechanism is as follows. Say we are performing intervention by sampling alternative prompts from
the problem type [University, Calling Code], and normal prompts from the type [City, Capital]: even
though the target types have no overlap in text, perhaps the model still assigns nontrivial confidence
to the “Capital” version of the alternative answer (which has target type “Calling Code”)? If that is
so, then it challenges our hypothesis about the role of the “bridge” representations, since we might
just be directly injecting the right version of the alternative answer into the model.

We show evidence to refute this. In particular, in Figure 22, we show that the model places trivial
confidence on the altered-type answer, even if they share the same bridge value. Therefore, we add
further evidence to the bridge-resolving mechanism.

The role of MLPs. We performed similar intervention experiments on the MLPs at the last token
position just like with the attention heads. They are observed to be much less interesting in their
functional roles: we find that the MLPs appear to primarily process the output concept type, and do
not participate heavily in outputting the bridge concept representation. This is revealed in Figure 23.

Smaller LLM exhibits weaker disentanglement. To contrast against our results for the 27B
model, we study a small model in the same family of Gemma 2 models, Gemma-2-2B. This smaller
model has significantly lower accuracies on the problems, measured at 20 shots. [City, Capital]:
71.67%, [University, Capital]: 25.83%, [Landmark, Capital]: 66.67%, [City, Calling Code]: 47.5%,
[University, Calling Code]: 57.5%, [Landmark, Calling Code]: 23.33%.

We perform an intervention experiment [University, Code]→[City, Capital] on Gemma-2-2B,
similar to the bridge-resolving head localization experiments we did on the 27B model. Intriguingly,
we were also able to surface a highly sparse set of attention heads which have nontrivial causal
scores (but much lower than that achieved by the 27B model). We find that these heads exhibit
noticeable, but noisy disentanglement with respect to the bridge representation. We show these
results in Figure 24. The weaker causal score of the bridge-resolving heads and their noisier concept
disentanglement in the 2B model suggests the conjecture that, the larger the model, the more
specialized its concept-processing components are — assuming that the model is well-trained. Such
specialization likely benefits the model’s generalization accuracy.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 10: Gemma-2-27B [City, Capital]→[Landmark, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a),
and reciprocal rank of the answer answer before and after intervention in the (b) series of figures,
with different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two
attention head groups. Here, the scaling constant does not significantly affect the intervention
performance.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 11: Gemma-2-27B [University, Capital]→[Landmark, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a), and
reciprocal rank of the answer answer before and after intervention in the (b) series of figures, with
different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two head
groups. Interesting, past a scaling constant of 1.5, we observe decline in intervention performance.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 12: Gemma-2-27B [City, Capital]→[University, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a), and
reciprocal rank of the answer answer before and after intervention in the (b) series of figures, with
different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two attention
head groups, boosting the alternative answer into top 1 around 60% of the time! Additionally, the
scaling constant does not significantly affect the intervention performance in this experiment.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 13: Gemma-2-27B [Landmark, Capital]→[University, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a), and
reciprocal rank of the answer answer before and after intervention in the (b) series of figures,
with different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two
attention head groups. Here, the positive effects of the scaling constant saturates around 2.0.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 14: Gemma-2-27B [University, Capital]→[City, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a),
and reciprocal rank of the answer answer before and after intervention in the (b) series of figures,
with different scaling constants in {1.0, 1.5, 2.0, 4.0}. Interestingly, we observe decline in the
intervention’s accuracy as we push the scaling constant from 2.0 to 4.0 (top-1 accuracy decreases
from around 50% to slightly above 40%), indicating a subtle regime in which the scaling constant
boosts intervention performance.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 15: Gemma-2-27B [Landmark, Capital]→[City, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a),
and reciprocal rank of the answer answer before and after intervention in the (b) series of figures,
with different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two
attention head groups.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 16: Gemma-2-27B [City, Calling Code]→[University, Capital] transfer experiments, inter-
vening head groups (24, 30; 31), (35, 22; 23). At scaling constant 1.0 (i.e. natural intervention, no
additional scaling), the reciprocal rank of 0.1 for the alternative answer after intervention is at the
36th percentile, while before patching, as we can see, the reciprocal rank of the alternative answer is
mainly in the range of 10−2 to 10−5.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 17: Gemma-2-27B [Landmark, Calling Code]→[University, Capital] transfer experiments,
intervening head groups (24, 30; 31), (35, 22; 23). At scaling constant 1.0 (i.e. natural intervention,
no additional scaling), the reciprocal rank of 0.1 for the alternative answer after intervention is at the
41th percentile.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 18: Gemma-2-27B [City, Calling Code]→[Landmark, Capital] transfer experiments, inter-
vening the single head group (24, 30; 31). At scaling constant 1.0 (i.e. natural intervention, no
additional scaling), the reciprocal rank of 0.1 for the alternative answer after intervention is at the
34th percentile.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 19: Gemma-2-27B [University, Calling Code]→[Landmark, Capital] transfer experiments,
intervening the single head group (24, 30; 31). At scaling constant 1.0 (i.e. natural intervention, no
additional scaling), the reciprocal rank of 0.1 for the alternative answer after intervention is at the
31st percentile.
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Figure 20: (Best viewed zoomed in) Cosine similarity map of the output-concept head groups (with
top causal scores) identified in Gemma-2-27B, along with the percent logit-difference variation of
the head groups, serving as the metric for the head groups’ causal effects. Observe that they are
mostly insensitive to the source type, query value, and bridge value, and primarily sensitive to the
output/target type. Note: in this set of visualizations, we are using “Italy” and “Spain” as the bridge
values.
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Figure 21: Cosine similarity map of the output-concept head groups identified in Gemma-2-27B.
Here, we construct four groups of prompts. The first two groups consist of multi-hop ICL problems
with Capital or Calling Code as the target type. The remaining two are created by randomly shuffling
the output of the normal multi-hop ICL samples, causing the problem to essentially demand randomly
outputting a Capital or a Calling Code; these are the “negative controls” we discussed in the main
text. We find the output-concept heads’ embeddings on the multi-hop prompts to align strongly with
those on the output-concept-only prompts, further confirming their role in the circuit.
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Figure 22: Distribution of Gemma-2-27B’s confidence on the correct- and incorrect-type answer
on the different problems. When we say “correct-class” answer, we simply mean that the answer’s
semantic type aligns with that of the problem’s target, e.g. the correct-type answer for a prompt
“Okinawa, Tokyo. Nantes, Paris. ... Shanghai, ” would be “Beijing”, while the incorrect-type answer
would be “1” (the calling code of China, which the city Shanghai belongs to). We observe a clear
separation in the LLM’s confidence between the two types of answers.
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Figure 23: Functional roles of the MLPs in Gemma-2-27B. We perform patching experiments
on [University, Code]→[City, Capital] at the last token position, similar to how we localize the
bridge-resolving attention heads. We report the percentage logit-difference variation of the top-
scoring MLPs, along with their cosine similarity maps computed on prompts sampled with different
combinations of bridge values (“Italy” and “Spain”) and diverse set of source-target types. Perhaps
unsurprisingly, the MLPs at the last token position play a less interesting role: as seen in the cosine
similarity maps for the MLPs with the highest causal scores (fairly low compared to the attention
heads), they primarily discriminate against the output type. They do not appear to participate much
in resolving the bridge concept.
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Figure 24: Results of the intervention experiment [University, Code]→[City, Capital], conducted on
Gemma-2-2B, with 20-shot ICL. On the left, we show the percentage logit difference variation of the
intervention experiment; on the right, we plot the cosine similarity map of the two head groups with
the highest causal scores, namely (15, 4; 5) and (22, 0; 1). We find that while the two attention head
groups exhibit nontrivial causal effects and disentanglement, they are, in comparison, much weaker
than those exhibited by the 27B model. This likely explains the significantly lower accuracy of the
2B model than the 27B model. This also suggests a conjecture: perhaps the larger the model, the
more specialized its concept-processing components are?
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Figure 25: Illustration of an input sequence for the circle trajectory problem. Here, radius r=3,
period p=2, sequence length n=13. Every p consecutive steps on the trajectory are equal. We first
sample ⌊np ⌋+1 unique step-sizes in [0, 1], and get the full sequence {a1, a2, a3, a4, . . . }, where same
colors denote equal step-sizes. Then, we generate the trajectory by rotating point xi clockwise by
angle ai · 2πn (see text for formal description).

Appendix B. Additional Details/Results for Section 3

Figure 26: Steering with the task vectors for tasks k1 and kK for the add-k problem (see text for
details). We plot the top-1 and top-3 accuracies for predicting the output based on the original offset
k1 (kK), the ‘opposite’ offset kK (k1), or the target offset (1 − β)k1 + βkK ((1 − β)kK + βk1),
where β ∈ [0, 1], The result shows that the model output can be steered toward the target.

Figure 27: Steering with the task vectors for tasks r1 and rK for the Circular-Trajectory problem (see
text for details). The MSE between the radius inferred from the model output and the original radius
r1 (rK), the ‘opposite’ radius rK (r1), or the target radius (1 − β)r1 + βrK ((1 − β)rK + βr1),
where β ∈ [0, 1], indicates that the model output can be steered toward the target.

Results for Steering with the Task Vectors. Let t1 and tK denote the task vectors for tasks
k1 and kK , respectively. Then, for task k1 (kK), we consider steering with (1 − β)t1 + βtK
((1− β)tK + βt1) and evaluate the accuracy for predicting the output based on the original offset k1
(kK), the ‘opposite’ offset kK (k1), or the target offset (1− β)k1 + βkK ((1− β)kK + βk1), where
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β ∈ [0, 1]. Figure 26 presents the top-1 and top-3 accuracies for each case. High top-1 accuracies
and ≈ 100% top-3 accuracies for the target for all considered values of β indicate that the model
output is steered toward the target. This shows that interpolating along the top principal direction
is successful at interpolating values of k in the task space, showing that the model is somewhat
strikingly successful at capturing the latent concept.

Figure 27 presents the results for steering the model output using the task vectors for radii r1 and
rK . We follow the same procedure as in the add-k problem, with a different evaluation metric. We
compute the norm of the generated output after steering as the model’s radius (since the center of the
circles is fixed at the origin), and consider the MSE between these radii and the original radius r1
(rK), the ‘opposite’ radius rK (r1), or the target radius (1− β)r1 + βrK ((1− β)rK + βr1), where
β ∈ [0, 1], averaged over 200 sequences from each task. We observe that the MSE with the target
radius is the lowest, which indicated the task vector can steer the model’s output toward the target.

B.1. More on the Rectangular-Trajectory Problem

Figure 28: An illustration of a sequence of
points for the Rectangular-Trajectory prob-
lem with e = 5 points per edge and n = 15.
See text for details.

Figure 29: 2-D projection of the task vectors
obtained for 64 (a, b) combinations. A fixed
colour or transparency level corresponds to a
fixed a or b, respectively; the task vectors lie
on a smooth 2-D manifold.

In this section we consider a Rectangular-Trajectory
problem, parameterized by two parameters, namely
the lengths of the two sides of the rectangle, say (a, b).
Specifically, the trajectories contain points on axis-
aligned rectangles centered at the origin. Let e denote
the number of points on each edge of the rectangle
spaced uniformly. The starting point of the sequence
is randomly sampled from one of the e points on the
right vertical edge of the rectangle. The rest of the
points are obtained by traversing the rectangle CW or
CCW, determined by c = −1 or 1. Figure 28 shows
an example sequence.

Similar to Circular-Trajectory problem, each se-
quence is obtained by first sampling a and b uni-
formly between 1 and 4, then sampling the starting
point and c = −1 or 1, and then following the afore-
mentioned process. For our experiments, we set
e = 5 and n = 15 for this task. The number of
tasks K denotes the number of different combina-
tions (a, b).

In Figure 29, we plot the 2D projection of the
task vectors obtained for all (a, b) combinations lying
on the 2D grid between a ∈ [1, 4] and b ∈ [1, 4].
Similar to the experiments in Fig. 10, we plot the
task vectors for trajectories with c = −1 here. We
consider K = 32 in this experiment. The first two
PCs explain 91.97% variance. We observe that all
the task vectors lie on a 2D manifold.
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This setting goes beyond the Circular-Trajectory problem and shows that transformers represent
task vectors corresponding to the problem parameters (radius for circles and edge lengths for
rectangles) in low-dimensional (smooth) manifolds in both cases.

Appendix C. Related Work

Task and Function Vectors. Task vectors In-context Learning Interpretation. ICL abilities of
transformer-based models were first observed by Brown et al. [11], which sparked work in analyzing
this ability. This includes analyzing how pretrained LLMs solve ICL tasks requiring abilities such
as copying, single-step reasoning, basic linguistics [20, 32, 33, 43, 52, 55], and smaller models
trained on synthetic tasks like regression [1, 6, 16, 18, 46], discrete tasks [9], and mixture of Markov
chains [14, 34, 39]. These setups enable discovery of relations between in-context and in-weight
learning [27, 40, 41], and internal algorithms that models implement [14, 33, 34, 52]. We contribute
to this line of work, by shedding light on how transformers solve ICL problems which have more
intricate latent structures.

Linear Representation Hypothesis (LRH). Our results are also connected to the LRH, which
essentially speculates that LLMs represent high-level concepts in (almost) linear latent directions
[8, 13, 23–25, 31, 35, 36]. Many papers motivated by the LRH then find “concept” vectors that can
capture directions of truthfulness [4, 29], sentiment [42], humor [47], toxicity [44], etc. We deepen
this study, asking how LLMs’ representations capture/disentangle latent input concepts, and compose
them during inference. In addition, the LRH is rooted in the field of mechanistic interpretability, which
aims to reverse engineer mechanisms in transformer-based LMs [3, 5, 7, 10, 15, 19, 21, 33, 41, 45, 48–
50].

Task and Function Vectors. A specific line of work in analyzing ICL mechanisms focus on
task or function vectors. They essentially show that there exist certain causal patterns which capture
the input-output relationship of the ICL task, on relatively simple problems such as “Country to
Capital”, “Antonyms”, “Capitalize a Word” [12, 20, 43, 53]. Similarly, [2, 26, 28, 31] observed that
LLMs tend to compress certain task or context information into sparse sets of vectors. We work with
ICL problems with more complex latent structures, and our focus is not solely on (high-level) task
vectors, but more on how the model disentangle and manipulate latent concepts useful to answering
the query.

In addition, our work also complements the function vector analysis from contemporaneous work
[22], providing add-k results for smaller models where we have full control over training and can
hence conclude that the geometry of the task vector only arises from the latent task structure. We
also compare results from add-k with other ICL tasks, giving additional insights.
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