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Abstract
When large language models (LLMs) use in-context learning (ICL) to solve a new task, they seem to
grasp not only the goal of the task but also core, latent concepts in the demonstration examples. This
begs the question of whether transformers represent latent structures as part of their computation or
whether they take shortcuts to solve the problem. Prior mechanistic work on ICL does not address this
question because it does not sufficiently examine the relationship between the learned representation
and the latent concept, and the considered problem settings often involve only single-step reasoning.
In this work, we examine how transformers disentangle and use latent concepts. We show that in
2-hop reasoning tasks with a latent, discrete concept, the model successfully identifies the latent
concept and does step-by-step concept composition. In tasks parameterized by a continuous latent
concept, we find low-dimensional subspaces in the representation space where the geometry mimics
the underlying parameterization. Together, these results refine our understanding of ICL and the
representation of transformers, and they provide evidence for highly localized structures in the model
that disentangle latent concepts in ICL tasks.

1. Introduction
Do the representations of LLMs reflect latent structures present in in-context learning tasks?

LLMs excel at in-context learning (ICL) tasks [11], and there has been much interest in understanding
how they learn from in-context demonstrations. This has ranged from work on training models from
scratch on various canonical tasks [9, 15], circuit-level mechanistic investigations of pre-trained
models [14, 38], and work on understanding how LLMs encode the underlying task [22, 48]. This
last line of work has found that LLMs encode in-context learning tasks through specific directions
in the weight space. These directions are known as “task vectors” or “concept vectors”, and prior
research showed that manipulating (or steering) the representation of the LLM along these directions
can modify the expression of the associated task. The study of these representations closely relates
to the linear representation hypothesis [7, 29, 33], which says that many (or most) concepts are
represented linearly in the representation space of LLMs.

Prior work on task vectors suggests that LLMs can recognize certain concepts during in-context
learning, partially answering the leading question at the beginning of this section. However, our
understanding of LLMs’ representations is still relatively coarse. While previous works exhibit
task vectors for certain in-context learning tasks, they do not answer if the task vectors themselves
reflect latent structures and concepts present in the task. If different instances of the task share
some underlying latent relationship — such as shared intermediate reasoning steps, or shared
parameterization between the tasks — then do task vectors reflect these latent concepts or structures?
Our goal is understand if LLMs successfully disentangle such latent concepts via task vectors.
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To understand the disentanglement capability of LLMs, we do a mechanistic study of multiple
models on a variety of ICL tasks. We choose these tasks to embody various latent structures,
such as intermediate reasoning steps or an underlying continuous parameterization. We show that
transformer-based models can successfully disentangle latent concepts in these tasks; task vectors in
the weight space can capture latent concepts and reflect the underlying parameterization. Therefore,
our findings provide evidence that when provided with data with some underlying structure, LLMs
can successfully disentangle this latent structure, and moreover, this disentanglement can happen in a
highly interpretable fashion via task vectors. Hence, through a few well-chosen problems, we gain
visibility into the capabilities and internal workings of transformer-based language models.

2. Disentanglement for Latent Discrete Task in Multi-hop Reasoning
Prior works have mechanistically analyzed how LLMs solve ICL problems that require a single
step of reasoning over world knowledge, such as geography puzzles “Country→Capital”, “National
Park→Country” [41, 50]. However, whether and how LLMs can solve ICL problems with under-
specified reasoning steps, or essentially those requiring latent multi-hop reasoning remains unclear.

The “Source→Target” problem. We create two-hop ICL puzzles by composing two facts
linked by a common “Bridge” entity.1 That is, we sample fact tuples {(Si, r1, Bi, r2, Ti)}ni=1, where
the Source entity Si is related to the Bridge entity Bi via relation r2, and Bi is related to the Target
entity Ti via r2. We then create the ICL puzzle in the form [S1, T1. S2, T2...Sn, ] [Answer: Tn]. Note
that the bridge entities Bi’s are never specified in the prompt. We primarily work with geography
puzzles, with input types {City, University, Landmark}, and output types {Capital, Calling code}.
An example problem is Sydney, Canberra. Nantes, Paris. Oshawa, — here, r1 is
“belongs to the country of”, and r2 is “capital of”. Therefore, the prompt’s answer is Ottawa, the
capital of Canada, the country Oshawa is in.2

As shown in Figure 6, Gemma-2-27B [16] achieves high accuracy (> 80%) at 20 shots. How is
the LLM solving these harder, “source→target” problems that do not specify the bridge, or even hint
at the compositional nature of the problem at all? In the following, we show a surprising finding that
a highly sparse set of attention heads are responsible for “resolving the bridge value”.

2.1. Bridge-value resolution for answering the query
We analyze how the LLM infers the answer (target entity) from the query (source entity), given
sufficiently many in-context examples. We will show both causal and correlational evidence that
the LLM latently infers the bridge entity as an abstract concept representation, and compose it with
output-concept representations to produce the answer. To achieve this, there are two main steps of
our experiments, which we discuss below.

We perform activation patching [42, 53] on normal and altered problem pairs with different bridge
entities (different countries), across different source and target types, at the last token position. If our
hypothesis of certain attention heads resolving the bridge value from Sn for prediction is correct,
then this bridge representation must be transferable across source and target types: for instance,
patching a [University→Calling Code] prompt’s activation (i.e. the “altered activation”) onto that of
a normal prompt [City→Capital], should cause the model to favor the alternative prompt’s answer,
but in the form of Capital (instead of Calling Code).

1. We think of this as a systematic ICL version of TWOHOPFACT [49]. Here, the model must figure out relations between
the input-bridge and bridge-output facts from the ICL examples.

2. We discuss dataset details in the appendix.
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Figure 1: Evidence of the bridge-resolving attention heads in Gemma-2-27B. We present causal
evidence in (a) and (b), and correlational evidence in (b). (a) and (b) provide causal evidence and (c)
provides correlational evidence for the bridge-resolving heads, which we elaborate in the main text.

This suggests a slightly unorthodox intervention experiment. Instead of taking the normal-
alternative answer pairs to be the ground truths, we convert the alternative answer into the same output
type as the normal one, i.e., set T̂ (alt)

n = Typenorm(T
(alt)
n ). The logit difference and (reciprocal)

rank of the alternative answer would use T̂
(alt)
n instead of the raw target T (alt)

n . For instance, if the
target type of the normal prompt is Capital, and the alternative prompt ends with “Sydney, 61”, then
T̂
(alt)
n = Canberra.

We report the results in Figure 1. In Figure 1(a), we report results on a select set of patching
experiments: on both tasks with and without overlap in source and target types, we observe that a
sparse set of attention heads consistently exhibits very strong causal effects; the head group (24,30;31)
is especially dominant.3 To further understand whether (24,30;31) is really boosting the alternative
answer (instead of only decreasing model’s confidence on the normal answer, which logit difference
might not tell), in Figure 1(b), we show an example patching experiment result of [University,
Code]→[City, Capital]. Surprisingly, at least 73% of the time, patching this single head group can
boost the model’s rank of the alternative prompt’s answer into top 10 (and directly become the top-1
answer more than 40% of the time!), when its original rank, obtained on the normal prompt without
intervention, is typically in the hundreds to thousands.

Finally, to understand the nature of (24,30;31)’s output embeddings better, in Figure 1(c), we
visualize an example cosine similarity matrix of this attention head, with either “Italy” or “Spain”
as the bridge values for Sn (the query source entity) in the prompts, across a total of 12 different
combinations of bridge, source and target types. Specifically, for each combination of the bridge and
source-target type shown in the grid, we sample 10 prompts which obey such requirement4, giving
us a total of 120 prompts. We then obtain head group (24,30;31)’s embedding of these prompts at
the last token position, and compute the pairwise cosine similarities. Observe that the embedding

3. In our CMA experiments, we account for grouped-query attention by patching heads in groups of 2 on Gemma-2-27B.
We noticed that this tends to produce stronger causal effects than with individual heads.

4. We only specify the bridge entity for Sn in the prompt; the bridge for Si for all i < n are randomly chosen.

3



LATENT CONCEPT DISENTANGLEMENT IN TRANSFORMERS

consistently exhibits strong disentanglement with respect to the bridge value in the prompt, regardless
of source and target types. We delay further analysis of the circuit and more general statistics of
disentanglement strength of the bridge concepts to the appendix due to space limitations.

3. Disentanglement for Latent Continuous Parameterization
In this section, we consider two problems with numerical or continuous parameterization. For these
experiments we study a very small transformer, with a similar architecture to GPT-2 [35]. We use
a 2-layer 1-head transformer, with embedding dimension 128, trained with the AdamW optimizer.
Additional details about training and hyperparameter choices are in the Appendix.

add-k Problem. Each task is a sequence consisting of pairwise examples {(xi, yi)}n+1
i=1 , where

yi = xi + k, for a given offset k. Here, we use integer inputs and offsets; all values are in
{0, . . . , V − 1}, each treated as a distinct token. We consider a collection of K tasks parameterized
by different offset values in {ki}Ki=1, where k1 = 1 and we fix ki+1 − ki = 3. The model is trained
autoregressively to predict the label for each example in the sequence. At test time, the model
observes the first n examples and should predict yn+1 = xn+1 + k for the last example.

Circular-Trajectory Problem. Here a task consists of a sequence {xi}n+1
i=1 of points on a circle

centered at the origin. Each task is parameterized by the circle’s radius r; for K tasks, the set of
radii {ri}Ki=1 is sampled uniformly from [1, 4]. A task sequence is generated as follows. We first
sample θ0 uniformly at random in [0, π2 ], so x1 = r[cos θ0, sin θ0]

T . Then, we select the period p
randomly from {2, 3, 4}, which determines the number of equal consecutive step-sizes. Specifically,
we first sample a sequence of ⌊np ⌋+ 1 unique step-sizes uniformly between [0, 1], and then get the
full sequence of steps {ai}ni=1, where aj = aj+1 = · · · = aj+p−1 for j ∈ {0, p, 2p, . . . }. Here,
context length n = 12m + 1 for integer m. We also sample c ∈ {±1}, which denotes if the
trajectory is clockwise or anticlockwise. Next, we generate a sequence of angles {θi}ni=1, where
θi = θ0 + c2πn

∑
j≤i aj . Using the sequence of angles, we generate the sequence, xi+1 = rR(θi)xi,

where R(θ) is the 2D rotation matrix for θ. Figure 9 shows an example. As in the previous problem,
we train the transformer autoregressively on these types of sequences.

Existence of Task Vectors. We first outline the process to identify the task vectors for the add-k
problem. We set V = 100, n = 4, and K = 2. Figure 2 shows the cosine similarities between the
layer-2 attention embeddings at the last position for 200 input sequences from each of the two tasks.
We observe strong clustering between intra-task embeddings. This shows that the model disentangles
the concept of different offset values in its representation.

Figure 2: Cosine similarities between the
layer-2 attention embeddings for 200 input
sequences from two tasks/offsets for the add-
k problem. Strong clustering between intra-
task embeddings shows that the model dis-
entangles the concept of different offsets.

Figure 3: Results for linear probing the embeddings
of the trained model at various locations to predict the
final output and the task type for the add-k problem.
The task type becomes disentangled at layer-2 atten-
tion, and the output is computed in layer-2 MLP.
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To provide causal evidence for disentanglement, and locate where the task vectors emerge in the
model, we linear probe the embeddings of the trained model at various locations to predict the final
output and the offset/task type. We probe embeddings from the output of the MLP at the first layer,
the attention block at the second layer, and the hidden and output layers of the MLP at the second
layer. The results are shown in Figure 3. We observe that task type becomes disentangled at layer-2
attention, and the output is computed at layer-2 MLP. For each task, we treat the layer-2 attention
embeddings averaged across 200 input sequences from that task as the task vector.

Geometry of Task Vectors. We analyze the geometry of the task vectors for the two problems.
We visualize the task vectors by performing PCA and projecting them onto the first two PCs.

Figure 4 presents the 2D PCA projection of the task vectors for the add-k problem, for K =
4, 8, 16 tasks/offsets. We observe that in all three settings, the task vectors lie on a 1D linear manifold.
In each of the three cases, more than 99.9% of the variance is explained by the first PC. Notably, the
model compresses the concept of offsets into a line with the ordering of the offsets (lower to higher)
preserved on the manifold (left to right). To corroborate these results, we study the effect of steering
using the task vectors, and include the results in the Appendix.

Figure 4: 2D PCA projection of the task vectors for the add-k problem. The task vectors lie on a 1D
linear manifold. Here the number of tasks refers to the number of values of k.

Figure 5: 2D PCA projection of the task vectors for the Circular-Trajectory problem. The task vectors
lie on a smooth low-dimensional manifold. Here the number of tasks refers to the number of radius
values used for training.

Figure 5 presents the 2D PCA projection of the task vectors for the Circular-Trajectory problem,
for K = 16, 32, 64 (training) tasks/radii. In this setting, we consider K = 24 radii, spaced evenly
between [1, 4] to visualize the task vectors, since this task is continuous. We observe that in all three
settings, the task vectors lie on a low-dimensional manifold. The variance explained by the first two
PCs in the three cases is 97.05%, 96.44%, 93.68%, respectively. Similar to the previous setting, the
order of the radii (lower to higher) is preserved in the compressed representation.

4. Discussion and Conclusion
We showed that transformer-based models latently disentangle core concepts in the provided in-
context examples, and manipulate them well. For 2-hop tasks, we found that models contain sparse
sets of attention heads responsible for first inferring the bridge entity and then resolving the output.
For tasks with a continuous parameterization, we found that the model uses task vectors which
closely capture the underlying parameterization. It would be interesting to understand the extent of
this disentanglement across more diverse ICL tasks with various types of latent structures.
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Figure 6: Accuracy of Gemma-2-27B on the two-hop “Source→Target” ICL problems.

Appendix A. Additional Details/Results for Section 2

A.1. Further details on problem setup

We collect the puzzles’ data for over 40 countries in the world. For each source type in {City,
University, Famous Landmark}, we collect at least 10 entities per country, leading to over 400
possible source entities per source type in the puzzles.

Figure 7: Cosine similarity maps of
“output-concept” heads, the majority of
which are in the deeper layers.

Furthermore, we show the accuracy of Gemma-2-27B
on the problems with different number of in-context ex-
amples in Figure 6.

A.2. Output-concept attention heads

We discussed in the main text the evidence for the bridge-
resolving heads. Here, we elaborate on how the “second
step” of the ICL problem is solved, that is, how the model
specializes the abstract “bridge value” concept representa-
tion into a concrete output type (i.e. “Capital” vs. “Calling
Code”). To support the hypothesis that the LLM refines
the bridge value via certain output-concept representations,
we need to perform CMA on normal-alternative prompt
pairs which differ only in output type, and examine their
disentanglement strength with respect to the output type.

In particular, to construct an altered prompt, we keep
everything in it the same as the normal demonstrations,
besides the output type: for instance, if the normal output type is Capital, then the altered output type
is Calling Code. This helps us isolate components which are sensitive to the output concept, without
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(c)(i) 2-shot

(c)(iv) 20-shot

(b)(i) [Univ, Code] to [City, Capital] (c)(ii) 4-shot

(c)(iii) 8-shot(b)(ii) [Landmk, Code] to [City, Capital]

(a)(i) 2-shot (a)(ii) 4-shot

(a)(iii) 8-shot (a)(iv) 20-shot

Figure 8: This figure illustrates how the transferability and disentanglement of the bridge representa-
tion increases as we increase the number of in-context examples. Figure series (a) and (b) present the
transferability result, obtained by performing cross-problem-type patching, and measuring the causal
influence of the patched representation. In (a)(i) to (iv), we plot the percentage logit variation of the
attention heads found to output “bridge” values, measured on several intervention experiments. For
(b)(i) and (ii), we zoom in on head group (24,30;31), and show its causal effects on two patching
experiments. The x-axis is the number of in-context examples, and the y-axis is the 30th percentile of
the reciprocal rank of the alternative prompt’s answer. For (c)(i) to (iv), we plot the disentanglement
strength of the representations of head group (24,30;31).

surfacing components which are bridge-value dependent. We visualize the cosine similarity matrix
of the top-scoring heads, shown in Figure 7.

In addition to measuring cosine similarity on our multi-hop prompts with Capital or Calling
Code type output, we also design negative-control prompts, where we randomly shuffle the output.
This leaves the prompts without structure, except asking for the model to output tokens belonging to
either the “Capital” or “Calling Code” concept. We note that, as long as the output concept agrees,
there is high similarity of these heads’ embeddings on the multi-hop and out-concept-only prompts.

A.3. Multi-hop circuit formation and the number of in-context examples

This sub-section focuses on illustrating the relation between the number of in-context examples
versus (1) how strong a role the multi-hop mechanism plays in the LLM’s inference (via causal
interventions), (2) disentanglement strength of key bridge-resolving attention heads. As we will show
below, there is a general positive correlation between the number of shots and the two factors.

More demonstrations =⇒ stronger causal score. Figure 8 visualizes the experimental results.
From Figure 8(a) and (b) and sub-figures, we observe a correlation between the number of shots
(ICL examples) and the bridge-resolving heads’ “causal importance” in the model’s inference. When
the number of shots is low, we find that they tend to exhibit weak causal influence on the model’s
inference. For instance, as (b)(i) shows, at 2 shots, the 30th percentile of the alternative answer’s
rank after patching at (24,30;31) is on the order of 103. This is in stark contrast to how strong this
head group’s causal influence is at 20 shots as we saw before.

More demonstrations =⇒ stronger disentanglement, with a catch. In Figure 8(c)(i) to (iv),
we observe that the intra-bridge cosine similarity tends to cluster better as the number of shots
increase, while the inter-bridge cosine similarities decay toward 0.2, with the two distributions
overlapping less and less. Interestingly, the bridge-disentanglement strength is still non-trivial
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Figure 9: Illustration of an input sequence for the circle trajectory problem. Here, radius r=3, period
p=2, sequence length n=13. Every p consecutive steps on the trajectory are equal. We first sample
⌊np ⌋+1 unique step-sizes in [0, 1], and get the full sequence {a1, a2, a3, a4, . . . }, where same colors
denote equal step-sizes. Then, we generate the trajectory by rotating point xi clockwise by angle
ai · 2πn (see text for formal description).

with very few shots, mirroring the causal-intervention results: regardless of how disentangled the
representations are in the very-few-shot regime, the LLM does not “realize” how it should utilize the
multi-hop sub-circuit.

Appendix B. Additional Details/Results for Section 3

Figure 10: Steering with the task vectors for tasks k1 and kK for the add-k problem (see text for
details). We plot the top-1 and top-3 accuracies for predicting the output based on the original offset
k1 (kK), the ‘opposite’ offset kK (k1), or the target offset (1 − β)k1 + βkK ((1 − β)kK + βk1),
where β ∈ [0, 1], The result shows that the model output can be steered toward the target.

Results for Steering with the Task Vectors. Let t1 and tK denote the task vectors for tasks
k1 and kK , respectively. Then, for task k1 (kK), we consider steering with (1 − β)t1 + βtK
((1− β)tK + βt1) and evaluate the accuracy for predicting the output based on the original offset k1
(kK), the ‘opposite’ offset kK (k1), or the target offset (1− β)k1 + βkK ((1− β)kK + βk1), where
β ∈ [0, 1]. Figure 10 presents the top-1 and top-3 accuracies for each case. High top-1 accuracies
and ≈ 100% top-3 accuracies for the target for all considered values of β indicate that the model
output is steered toward the target. This shows that interpolating along the top principal direction
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Figure 11: Steering with the task vectors for tasks r1 and rK for the Circular-Trajectory problem (see
text for details). The MSE between the radius inferred from the model output and the original radius
r1 (rK), the ‘opposite’ radius rK (r1), or the target radius (1 − β)r1 + βrK ((1 − β)rK + βr1),
where β ∈ [0, 1], indicates that the model output can be steered toward the target.

is successful at interpolating values of k in the task space, showing that the model is somewhat
strikingly successful at capturing the latent concept.

Figure 11 presents the results for steering the model output using the task vectors for radii r1 and
rK . We follow the same procedure as in the add-k problem, with a different evaluation metric. We
compute the norm of the generated output after steering as the model’s radius (since the center of the
circles is fixed at the origin), and consider the MSE between these radii and the original radius r1
(rK), the ‘opposite’ radius rK (r1), or the target radius (1− β)r1 + βrK ((1− β)rK + βr1), where
β ∈ [0, 1], averaged over 200 sequences from each task. We observe that the MSE with the target
radius is the lowest, which indicated the task vector can steer the model’s output toward the target.

Appendix C. Related Work

Task and Function Vectors. Task vectors [22] refer to directions within the latent space of a model
associated with a task. Other works have identified related concepts such as in-context vectors
[27], function vectors [41, 51], and context vectors [25]. Work on addition tasks finds Fourier or
trigonometric interpretations of LLM computations [23, 52, 55]. [48] examines the emergence of
task vectors in transformers trained from scratch on various ICL tasks. In contrast, our focus is
understanding if the structure of the task is captured by the representations through task vectors. Our
work also complements the function vector analysis from contemporaneous work [21], providing
add-k results for smaller models where we have full control over training and can hence conclude
that the geometry of the task vector only arises from the latent task structure. We also compare
results from add-k with other ICL tasks, giving additional insights.

Linear Representation Hypothesis (LRH). Our results are also connected to the LRH, which
essentially speculates that LLMs represent high-level concepts in (almost) linear latent directions
[8, 12, 22, 24, 29, 33, 34]. Many papers motivated by the LRH then find “concept” vectors that can
capture directions of truthfulness [3, 28], sentiment [40], humor [44], etc. We deepen this study,
asking how LLMs’ representations capture/disentangle latent input concepts. In addition, the LRH
is rooted in the field of mechanistic interpretability, which aims to reverse engineer mechanisms in
transformer-based LMs [2, 4, 6, 10, 14, 18, 20, 31, 39, 42, 45–47].

In-context Learning Interpretation. ICL abilities of transformer-based models were first
observed by Brown et al. [11], which sparked work in analyzing this ability. This includes analyzing
how pretrained LLMs solve ICL tasks requiring abilities such as copying, single-step reasoning,
basic linguistics [19, 30, 31, 41, 54], and smaller models trained on synthetic tasks like regression
[1, 5, 15, 17, 43], discrete tasks [9], and mixture of Markov chains [13, 32, 36]. These setups enable
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discovery of relations between in-context and in-weight learning [26, 37, 39], and internal algorithms
that models implement [13, 31, 32, 50]. We contribute to this line of work, by shedding light on how
transformers solve ICL problems which have more intricate latent structures.
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