Published as a conference paper at ICLR 2025

SWIFT4D: ADAPTIVE DIVIDE-AND-CONQUER
GAUSSIAN SPLATTING FOR COMPACT AND EFFICIENT
RECONSTRUCTION OF DYNAMIC SCENE

Jiahao Wu, RuiPeng, Zhiyan Wang, Lu Xiao,

Luyang Tang, Jinbo Yan, Kaiqiang Xiong, Ronggang Wang*

Guangdong Provincial Key Laboratory of Ultra High Definition Immersive Media Technology
Shenzhen Graduate School, Peking University

2301212750@stu.pku.edu.cn, rgwangl@pkusz.edu.cn

324 FPSi125
Swift4D (Ours) FPSI114 FPS:110
22 @ Real-time 4dgs SpaceTimeGS
3201 3205

32 - Ours(lite) ®
AL os FPS:0.12
FPS:0.15 Hex-plane
318 o 35(637slream K-planes 317
. 3163
D
g
FPS:30
314
L 4DGS
3115
312
® s The size of circle @

Mix-voxel FPS:0.05 i

31 represents the siz

308 NeRFPlayer epresents €
30.69 of model

FPS:8

08 StreamRF
3068 .
306

0 2 4 6 8 10 12 14
Time(hours)

Figure 1: Our method demonstrates high-quality rendering, rapid convergence, and compact storage
characteristics. It can achieve competitive result with just 5 minutes of training. Additionally, with
increased training iterations, our method excels in handling finer details.

ABSTRACT

Novel view synthesis has long been a practical but challenging task, although
the introduction of numerous methods to solve this problem, even combining
advanced representations like 3D Gaussian Splatting, they still struggle to recover
high-quality results and often consume too much storage memory and training
time. In this paper we propose Swift4D, a divide-and-conquer 3D Gaussian
Splatting method that can handle static and dynamic primitives separately,
achieving a good trade-off between rendering quality and efficiency, motivated by
the fact that most of the scene is the static primitive and does not require additional
dynamic properties. Concretely, we focus on modeling dynamic transformations
only for the dynamic primitives which benefits both efficiency and quality. We
first employ a learnable decomposition strategy to separate the primitives, which
relies on an additional parameter to classify primitives as static or dynamic. For
the dynamic primitives, we employ a compact multi-resolution 4D Hash mapper
to transform these primitives from canonical space into deformation space at each
timestamp, and then mix the static and dynamic primitives to produce the final
output. This divide-and-conquer method facilitates efficient training and reduces
storage redundancy. Our method not only achieves state-of-the-art rendering
quality while being 20x faster in training than previous SOTA methods with a
minimum storage requirement of only 30MB on real-world datasets.

1 INTRODUCTION

Novel view synthesis (NVS) is a crucial task in computer vision and graphics, with significant
applications in areas such as augmented reality (AR), virtual reality (VR), and content production.

*Corresponding author

Published as a conference paper at ICLR 2025

e .\. : *. .”\ : . e Deformed point
._\.“0 | 'v\.‘o * . X ® Canonical point
o .r\. E o e ‘. E . ® e Static point
o .k\ "o P O\\ ‘4. | o . Dynamic point
® ® : \u. ‘e : . - — Deformation path

(a) Dynamic NeRF method (b) Dynamic 3DGS method (c) Our decomposition method

Figure 2: Illustration of different dynamic scene rendering methods. (a) Pumarola et al. (2021);
Park et al.[|(2021) proposes mapping deformation field points to canonical space, a widely adopted
practice in NeRF-based methods; (b) Wu et al.[(2024);|Yang et al.|(2024) propose mapping canonical
space points to the deformation field; (c) We propose dividing the points in canonical space into
dynamic and static, and then mapping only the dynamic points to the deformation space.

The goal of NVS is to render photorealistic images from arbitrary viewpoints using 2D images
or video inputs. While recent advancements have achieved considerable success in static scenes,
this task becomes particularly challenging when applied to dynamic scenes, where complexities
introduced by object motion and temporal changes make accurate rendering significantly difficult.

Current NVS techniques can be broadly classified into two predominant approaches: neural
rendering methods, exemplified by Neural Radiance Fields (NeRF) [Mildenhall et al.| (2021), and
point cloud-based rendering techniques, such as 3D Gaussian Splatting |[Kerbl et al.| (2023). NeRFs
have recently made significant strides in achieving photorealistic rendering of static scenes, with
subsequent works Barron et al| (2021} 2022 2023)); Reiser et al.| (2023) further enhancing both
quality and speed. Despite these advancements in static scene rendering, NeRFs face significant
challenges when extended to dynamic scenes, primarily due to the substantial training time and
storage requirements. To overcome these obstacles, various approaches have been proposed. As
shown in Figa), Pumarola et al.[|(2021) and Park et al.[(2021) leverage deformation fields to map
deformation space at arbitrary timestamps to canonical space, effectively capturing dynamic scene
changes. [Li et al.| (2021) and|Gao et al.| (2021) employ scene flow to model the motion trajectories
within dynamic environments. (Cao & Johnson|(2023) and [Fridovich-Keil et al.| (2023)), decompose
the 4D spacetime domain into multiple compact planes, thereby improving training and rendering
speeds. Although these methods have achieved some degree of success, achieving high-quality
real-time rendering remains challenging.

Compared to NeRF, 3DGS offers significant advantages, including real-time rendering and
substantially reduced training time. Within the scope of dynamic modeling, several notable methods
have emerged. As shown in Figb), 4DGS (Wu et al.|(2024)), inspired by HexPlane, introduces a
neural voxel encoder to model deformation relationships over time. 3DGStream |Sun et al.|(2024)
utilizes a compact Neural Transformation Cache (NTC) to efficiently model the translation and
rotation of 3D Gaussians between two adjacent frames. RTGS |Yang et al.[(2023) treats spacetime as
an integrated whole by optimizing a set of 4D primitives, parameterized as anisotropic ellipses that
capture both geometry and appearance. Additionally, STGS |Li et al.[|(2024)) enhances standard 3D
Gaussians with temporal opacity and motion/rotation parameters, effectively capturing both static
and dynamic elements to model dynamic deformation.

While these approaches achieve higher-quality results with faster rendering times, they still face
challenges related to long training time and heavy storage requirements. One potential limitation
in their approach is the uniform treatment of all Gaussian points during the modeling process.
However, we observe that static points, such as those in background regions, constitute the majority
of the scene. These points exhibit minimal or no deformation and therefore do not require complex
dynamic modeling. It is more efficient to partition the scene into static and dynamic points and
model each separately. This strategy has the potential to significantly reduce computational overhead
and storage requirements. Moreover, as demonstrated by Wang et al.| (2023), applying the same
modeling technique to both dynamic and static points can cause blurring in dynamic regions due to
the influence of static areas, ultimately compromising rendering quality.

In this paper, we introduce Swift4D, a method that simultaneously achieves fast convergence,
compact storage, and real-time high-quality rendering. Our approach starts by decomposing
Gaussian points into dynamic and static groups based on 2D multi-view images, incorporating an
additional parameter d for differentiation. For temporal modeling, we employ a deformation field
approach using a compact multi-resolution 4DHash and MLPs as the deformer, which maps dynamic
Gaussian points from canonical space to deformation space at arbitrary timestamps. Notably, as

Published as a conference paper at ICLR 2025

shown in Fig. [J[c), temporal modeling is applied exclusively to the dynamic points, while static
points are treated as temporally invariant, significantly reducing computational demands. This
reduction in the number of dynamic points enables the 4DHash to concentrate on deformation,
leading to faster convergence and improved rendering quality. Finally, we combine the static and
dynamic Gaussian points to render the final output. This approach also addresses the issue of
blurring caused by static elements interfering with the time-aware multi-resolution 4DHash.

Our method achieves SOTA performance in terms of training and rendering speed, storage efficiency,
and rendering quality. Furthermore, our supplement videos (basketball 1 and 2) demonstrate that
our approach remains effective even in scenarios involving large movements. We will release our
code and pre-trained models upon acceptance. In summary, the key contributions of our work are:

1) We propose a novel method for decomposing dynamic 3D scenes into dynamic and static
components based on 2D images, effectively reducing computational complexity. This
method can be seamlessly integrated into existing dynamic approaches as a plug-and-play
module to enhance quality.

2) We introduce a compact multi-resolution 4DHash, with a footprint as small as 8MB, to
effectively model the spatio-temporal domain. This approach not only enhances rendering
quality and accelerates training but also ensures efficient and compact storage.

3) Our method achieves state-of-the-art performance in training and rendering speed, storage,
and high-quality output.

2 RELATED WORK

Novel View Synthesis. In recent years, novel view synthesis has garnered significant attention,
leading to numerous breakthroughs. NeRHEMildenhall et al| (2021) pioneered this domain
by leveraging multi-layer perceptrons (MLPs) combined with volume rendering to model 3D
radiance fields, enabling image rendering from arbitrary viewpoints. Subsequent works aimed to
enhance efficiency and quality. Methods such as TensorF |Chen et al| (2022), DVGO |Sun et al.
(2022), PlenoxelFridovich-Keil et al. (2022), and Plenoctree |Yu et al. (2021)) adopt grid-based
representations for faster training and rendering. Instant NGP Miiller et al.|(2022) further accelerates
this process with a hash encoder, significantly reducing computation time. Meanwhile, MipNeRF
Barron et al.| (2021) and MipNeRF360 Barron et al.[(2022) propose integrated positional encoding
(IPE) to model conical frustums, effectively mitigating aliasing issues. More recently, 3DGS Kerbl
et al.| (2023) introduced a novel point-based rendering paradigm for novel view synthesis, achieving
real-time rendering with high quality. This has spurred additional advancements, including
Mipsplatting |Yu et al.| (2024a)) for anti-aliasing, 2DGS Huang et al.| (2024a) for improved mesh
extraction, and ScaffoldGS [Lu et al.[(2024) for large-scale scene rendering.

Novel View Synthesis for dynamic scene. |Li et al.| (2021); [Lin et al.| (2024)); Kratimenos et al.
(2023) attempt to directly model the trajectories of moving points across the scene, but they continue
to encounter challenges related to storage. [Pumarola et al.| (2021)); |Park et al.| (2021); Wu et al.
(2024); [Yang et al.| (2024) try to build a consistent canonical space across each time step and
then employ a deformer, mainly MLP-based and Muti-plane-based, to map this canonical space
to deformation spaces at each timestamp. [Huang et al.| (2024b) focuses on monocular dynamic
inputs, leveraging sparse control points to reconstruct scene dynamics with exceptionally high FPS.
Lin et al.| (2024) employs Fourier series and polynomial fitting to model the motion of Gaussian
points, enabling dynamic reconstruction. K-planes|Fridovich-Keil et al.|(2023) and Hexplane|Cao &
Johnson|(2023) employ an explicit structural representation of the 6D light field rather than modeling
underlying motions. Representing the deformer using MLPs or low-rank planes can reduce storage
requirements, but it often results in slower training and limited capacity for capturing complex
deformations.

Recently, He et al| (2024); |Yan et al.| attempt to separate dynamic and static Gaussian points to
improve rendering quality and introduced external models to segment foreground and background
areas. While these efforts have explored this direction, the resulting output quality remains
suboptimal. [Liang et al| (2023) employs adaptive dynamic-static separation, which differs from
our explicit separation approach.

Published as a conference paper at ICLR 2025

¥ static GS
‘o ;
Init. ,— Decomp. 0 Density control
Dynamic GS 4D hash hyy MLPs Deform l_l
t)
e e | dr 0@¢
94— g > 7 i) —>[Eﬂ—> : — —>"D!‘—>
o
o0e >0 T du [
G(u, s 1 o,c Mixed GS Rendered IMG
Spatial-Temporal Structure Sec.3.3
Init. Sparse points Decomp. Canonical. points®, /"Density control
0 ® o parse poi p (K J ® p y
®¢ 0 Xy Floater
/ ol 20
/ 4 ’.\)
g 2
el Train view
~\Z- Test view
First Frame Images 2D Dynamic-static masks Sec.3.4

Figure 3: Pipeline of our Swift4D. First, we use the first frame images to obtain a well-initialized
canonical point cloud. Then, we train the dynamic parameter d according to the method described
in Sec[3.2] Based on d, the point cloud is divided into dynamic and static categories. Dynamic
points undergo deformation using a spatio-temporal structure, as discussed in Sec[3.3] Finally, the
deformed dynamic points are mixed with static points for rendering.

3 METHOD

Our main approach aims to achieve faster training speeds and higher quality rendering results
through the decomposition of dynamic and static elements. Based on this insight, we designed our
pipeline, as illustrated in Fig. 3] In this section, we will provide a detailed analysis of each module
in the pipeline. The preliminary concepts of 3D Gaussian Splatting are briefly introduced in Sec.
[3-1} We initially train the canonical space Gaussians using the first-frame images and then optimize
the dynamic parameter d of each Gaussian point based on the 2D dynamic-static pixel masks from
different viewpoints, as discussed in Sec[3.2} In the following stage, as outlined in Sec. [3.3] we
freeze the training of dynamic parameter d and proceed to jointly optimize the remaining parameter
of the Gaussian points alongside the swift spatio-temporal structure. Furthermore, our pruning
strategies are thoroughly described in Sec. [3.4] while Sec. [3.3] provides an in-depth discussion
of the optimization process.

3.1 GAUSSIAN SPLATTING PRELIMINARY

3DGSKerbl et al.|(2023) uses 3D Gaussian points as its rendering primitives. These 3D Gaussian
points have the following parameter: mean y, covariance matrix Y , opacity o , and view-dependent
color c. A 3D Gaussian point is mathematically defined as:

G(x) _ e—%(l‘—u)Tzfl(w—lt) (1)

In the next rendering phase, the 3D mean . is directly projected onto the plane as a 2D mean %P,
while the 3D covariance matrix is transformed into a 2D covariance matrix using the following
formula: ¥’ = (JWEZWTJT), where W and J denote the viewing transformation and the Jacobian
of the affine approximation of the perspective projection transformation, respectively. Finally, the
color of each pixel can be calculated using the following formula:

C(z) = Z co;(x) 1:[(1 — () where o, (x) = 0, exp <—;(x — 2T (g — ,u?D)> .

1€EN(x) Jj=1
(2)

Where N is the number of Gaussian points that intersect with the pixel x € R2. In the actual
implementation, the covariance matrix ¥ is typically decomposed into rotation ¢ and scaling s. The
color c is represented by a spherical harmonics (SH) function. Therefore, a Gaussian point can be
represented as G{y, q, s, 0, c}.

Published as a conference paper at ICLR 2025

Dynamic \:

] Static i
— Rendering flow]
]

—_— !

Gradient flow |

Occlusmn

Input view 2 Input view 3

Input view 1

(a) (b)

Figure 4: (a) Diagram illustrating dynamic parameter d optimization. Even when static points (blue)
are occluded by dynamic points (orange) from View 1, they can still be correctly optimized from
View 2 and 3. (b) shows the result of decomposition. From top left to bottom right, the order is GT
mask, dynamic parameter rendered image, dynamic point and static point rendering results.

3.2 EFFICIENT DYNAMIC AND STATIC DECOMPOSITION

In this section, we introduce our dynamic-static decomposition method for eliminating redundant
computations for static Gaussian points. The time-varying motion model is applied solely to
the dynamic components, leaving the static elements unchanged. This approach leads to faster
convergence and enhanced rendering quality. Specifically, we introduce a learnable dynamic
parameter d (Initialized to 0.) within the Gaussian points to quantify the the dynamic level of
each points. A higher d corresponds to more pronounced motion, indicating that the point is likely
dynamic. We first compute a 2D dynamic-static pixel mask D(z) from the training videos to
distinguish dynamic and static pixels, as shown in Eq. [3] which serves as the supervision signal.

D(x):{ 0 S(2) <:77 where S(z) = TZ:: (z,1) z:: 3)

where C(x, t) represents the pixel intensity of in ¢ th frame at location = € R2. S(x) is the temporal
standard deviation (std) for each pixel x across the entire time duration 7. Subsequently, a threshold
of v = 0.02 is applied to binarize S(z), generating a pixel mask D(x). Pixels with S(z) greater
than or equal to y are classified as dynamic, while those below are considered static.

Based on the concept: During backpropagation, Gaussian points intersecting dynamic pixels should
receive a positive gradient, while those intersecting static pixels should receive a negative gradient,
with the gradient gradually weakening with distance and occlusion. Our decomposition design is
illustrated in Fig. Eka) We use the o composition for parameter d with Sigmoid function to render

a dynamic value D() at location x, as Eq. 4|shows.

D) = Sigmoid(Y dioy(x) [T (1 et (2)) @

By applying the sigmoid function, we optimize the dynamic parameter d to span (—oo, +00),
enabling finer differentiation of dynamic degrees. This approach converts our dynamic-static
decomposition into a binary classification problem. Consequently, optimizing the dynamic value
for each Gaussian point can be accomplished by minimizing the binary cross-entropy loss:

L4 = E,[-D()log(D(x)) — (1 - D(x))log(1 — D(x)). 5)
From the equation above, we effectively optimize the dynamic parameter d for the Gaussian points.
The entire optimization process is highly efficient, typically concluding within 1 minute. Ultimately,
Gaussian points with dynamic parameter greater than the dynamic threshold ¢ = 7.0 are classified
as dynamic; otherwise, they are classified as static. An ablation study on (is presented in Fig. [7/|and
Sec. |5, demonstrating that our decomposition method is robust to the choice of (.

Notably, our method adapts well to occlusion. In Fig. ffa), while dynamic pixels (orange) from View
1 incorrectly assign positive dynamic values to static Gaussian points (blue), other views like View

Published as a conference paper at ICLR 2025

2 and 3 assign larger negative values, ensuring correct classification. Further details are provided in
the Supplementary material Sec.

3.3 SPATIO-TEMPORAL STRUCTURE

We introduce our proposed efficient spatio-temporal structure encoder, the 4D multi-resolution hash
hy4q, and the deformation decoder MLPs, used to predict the deformation of each dynamic Gaussian.

4D Multi-resolution hash encoder. Inspired by INGP Miiller et al.| (2022), we propose utilizing a
4D multi-resolution hash h44 for encoding to effectively model the temporal information of dynamic
Gaussians by normalizing the point cloud into the hash grid range. As described in INGP, voxel grid
at each resolution is mapped to a hash table that stores F'-dimensional learnable feature vectors. For
a given 4D dynamic Gaussian (y,t) € R*, its hash encoding at resolution I, denoted as huq (1, t;1) €
R¥, is computed through linear interpolation of the feature vectors associated with corners of the
surrounding grid. Consequently, its multi-resolution hash encoding features are as follows:

fr = [haa(p, t;0), hag(p, t; 1) haa(p, t; L — 1)) € REF, 6)

where L denotes the number of resolution levels, typically set to 16. Following this, a small MLP ¢4
combines all features to produce fq = ¢4(fr). Using the 4D hash hyy as an encoder offers several
advantages: compactness, O(1) query complexity, and the multi-resolution approach effectively
integrates global and local information.

However, while 4D Hash offers O(1) query complexity, its hashing characteristics make encoding
the temporal information of an entire scene both challenging and storage-intensive. Fortunately, our
proposed decomposition method focuses on encoding the temporal information of dynamic points
only, reducing the need for a larger hashing space and simplifying the modeling of the scene’s
temporal domain. This approach enables us to retain the fast access speed of 4D Hash while
minimizing storage requirements.

Multi-head Gaussian Deformation Decoder. Once all features of dynamic Gaussian points are
encoded, we can compute any required variables using a multi-head Gaussian deformation decoder

MLPs = { ¢Ha ¢Sa d)tp ¢Ua ¢sh }:
dy, ds, dg, do, dsh = MLPs(f,) %

Here, du, ds, dgq, do, dsh represent the deformation intensity of the mean, scaling, rotation, opacity,
and color of the Gaussian point at time ¢. Therefore, the deformed parameters of dynamic Gaussian
(G4 can be expressed as:

(w7, q o', sh') = (u+dp,r +dr,q + dg, o + do, sh + dsh) (8)

where (u', 7', q’, o', sh’) represent the new parameters of the dynamic Gaussian at time ¢. For static
Gaussian elements G, they are directly combined with the deformed dynamic Gaussian elements
(4 to render the final rendered image I;.

3.4 DENSITY CONTROL

In the original 3DGS, the opacity of all points is regularly reduced, and Gaussian points with low
transparency are clipped during the pruning stage. However, this approach is not appropriate for our
method as it results in excessive coupling between the canonical space and the deformation space.
Therefore, we eliminate the reset opacity operation. Inspired by previous works [Niemeyer et al.
(2024); Deng et al.| (2024); |[Fan et al.| (2023)), which focus on the compact representation of static
scenes by pruning redundant Gaussians based on spatial attributes such as transparency and volume.
We adopt a novel approach to pruning floaters across canonical and deformation space: Temporal
Importance Pruning, as shown in Fig. [3| This involves calculating the importance of each Gaussian
point to each training viewpoint at every timestamp. Gaussians with importance below a certain
threshold can be clipped, effectively reducing floater issues. For a Gaussian point g;, the importance
w; 1s calculated as follows:

i—1
wi = max (ai(a]t) E(l —a;(x[t))) ©)

Published as a conference paper at ICLR 2025

Table 1: Quality comparison on the N3DV dataset. The and the results are
denoted by red and blue. ! online method.

Method PSNR1 DSSIM| LPIPS | Time | Size(MB) | FPS 1

DyNeRF|Li et al.|(2022b) 29.58 0.020 0.099 1300.0 hours 30 0.02
NeRFPlayer|Song et al.|(2023) 30.69 - 0.111 6.0 hours 5100 0.05
HexPlane |Cao & Johnson|(2023) 31.70 0.014 0.075 12.0 hours 240 0.21
K-Planes [Fridovich-Keil et al.|(2023) 31.63 0.018 - 5.0 hours 300 0.15
4DGS|Wu et al.|(2024) 31.02 0.030 0.150 50 mins 90 30
3DGStream * [Sun et al.|(2024) 31.67 - - 60 mins 2340 215
SpaceTimeGS|Li et al.|(2024) 32.05 0.014 0.044 10.0 hours 200 110
Real-Time4DGS |Yang et al.|(2023) 32.01 0.014 0.055 9.0 hours > 1000 114
SwiftdDLite(Ours) 31.79 0.017 0.072 20 mins 30 128
Swift4D(Ours) 32.23 0.014 0.043 25 mins 120 125

Table 2: Quantitative comparison on the MeetRoom dataset. PSNR is averaged across all frames,
while training time and storage requirements accumulate over the entire sequence. * online method.

Method PSNR 1 Time(hours) | Size(MB) |
PlenoxelFridovich-Keil et al.|(2022) 27.15 70 304500
I-NGPMiiller et al.[(2022) 28.10 5.5 14460
3DGSKerbl et al.|(2023) 31.31 13 6330
StreamRF '|Li et al.|(2022a) 26.72 0.85 2700
3DGStream “{Sun et al.|(2024) 30.79 0.6 1230
SwiftdD(Ours) 32.05 0.3 40

Here, Z represents the images from all training views, «; (x|t) is the value of «;(z) at time ¢ in Eq. |2}
T represents the set of query times. We prune Gaussians when their importance satisfies w; < 0.02.
As illustrated in Fig. [9] this method effectively eliminates artifacts that are suspended in the air and
were not captured by the training views. For the cloning and splitting of Gaussians, we adhere to
the procedures of 3DGS, with the child Gaussians inheriting the dynamic properties of their parent
Gaussians.

3.5 OPTIMIZATION PIPELINE

We start by initializing the SfM Schonberger & Frahm| (2016) point cloud using the first frames,
then train on the first-frame images for 5000 iterations to establish a well-defined canonical space.
Next, training the dynamic attributes of each Gaussian point within the canonical space takes about 1
minute, followed by training the spatio-temporal structure. Consistent with the principles of 3DGS,
our loss function remains simple, without additional terms:

Lree =(1—X)L1+ MLssim

4 EXPERIMENT

In this section, we provide details of our implementation and datasets in Sec. and 2]
respectively. A thorough analysis of the experimental results is presented in Sec. F.3] while Sec. 4.4]
covers the ablation experiments for our method. The results show that our approach achieves sota
performance in terms of training speed, storage efficiency, and rendering quality.

4.1 IMPLEMENTATION DETAILS

We initialize with point clouds generated by Colmap, followed by constructing our canonical space
using the first frames from all training viewpoints, trained for 5000 epochs. Next, we train the
dynamic parameter d of Gaussian points using the Adam optimizer Kingma & Bal (2014) with a
learning rate of 0.05. This training spans 3000 epochs and completes in under 1 minute. Finally,
we train our spatio-temporal structure for approximately 14000 epochs, utilizing settings for the 4D
Hash table similar to those in InstantNGP Miiller et al.| (2022). We use the Adam optimizer with
an initial learning rate of 0.002, which exponentially decays to 0.00002 over the course of training.

Published as a conference paper at ICLR 2025

N Em

(a) GT (b) Ours (c) 3DGStream (d) 3DGS

Figure 5: Qualitative result on the discussion.

(a) GT (b) Ours (c) RTGS (d) STGS

Figure 6: Qualitative result on coffee martini and cut beef. It can be observed that our method
achieves higher-quality modeling in both dynamic and static regions.

Lite refers to a lite-version model with a hash table size set to 21° and A\; = 0. All experiments were
conducted on an NVIDIA RTX 3090 GPU.

4.2 DATASET

The N3DV dataset is captured using a multi-view system with 18-21 cameras,
recording dynamic scenes at a resolution of 2704 x 2028 and 30 FPS. It includes various complex
scenarios such as fire, reflections, and new objects. Following prior works|[Li et al/ (2022b)); [Cao &
Johnson| (2023); [Wu et al| (2024); [Yang et al.| (2023); [Li et al| (2024), we downsampled the videos

by a factor of two and used the same training and testing data splits as established by them.

The Meet Room dataset Li et al.) is captured using a multi-view system with 13 cameras,
recording dynamic scenes at a resolution of 1280 x 720 and 30 FPS. Following prior works
et al.| (2024); Li et al.| (2022a)), we used 12 views for training and reserved 1 view for testing.

The Basketball court dataset VRU| is captured using a multi-view system with 34 cameras,
recording dynamic scenes at a resolution of 1920 x 1080 and 25 FPS. This dataset encompasses a
large scene with many complex situations, including bouncing, fast motion, occlusion, and transient
objects, making it highly challenging.

4.3 EVALUATION

For the Meetroom and Basketball court dataset, we follow the processing approach from
(2024), using COLMAP [Schonberger & Frahm|(2016) to estimate the camera pose of the first frame
as the global pose. For the N3DV dataset, we adopt the processing approach from Wu et al|(2024).
We evaluate the methods using three metrics across all 300 frames: 1) Average PSNR, DSSIM, and
LPIPS [Zhang et al.| (2018)) scores for the test views; 2) Total training time and FPS; 3) Model size .

Published as a conference paper at ICLR 2025

(a) Lite (b) Muti-plane encoder (c) W/O decomp (d) Full(Ours)

Figure 8: Some ablation experiments results on sear steak.

)) Table 3: Quantitative results comparison for sear
Tab. [I] and Fig. [0 respectively present steak and flame steak includes average PSNR and

the quantitative and qualitative evaluations of {jme metrics over 300 frames of the test view.
various methods on the N3DV video dataset.

As shown in Tab. [I} our approach not only
significantly surpasses previous methods in

Method PSNR 1 Time(mins) |

rendering quality but also achieves speeds at Lite 33.31 20
least 20 times faster compared to methods Muti-planes 3348 28
achieving similar rendering quality W/o decom 32 68 35
(2023)); [Li et al] (2024). It can be seen in Full p- 33.83 25
Fig. [f] that our method not only achieves u :

higher-quality modeling of static regions, such

as the plate in the bottom right corner and the background outside the window in the coffee
martini, but also provides more detailed modeling of moving regions, such as the arms. As for
the MeetRoom dataset results, shown in Fig. [5] and Tab. 2] our method achieves state-of-the-art
performance in rendering quality, training time, and storage efficiency. Particularly noteworthy is
the storage efficiency, as 3DGStream requires 30 times more storage compared to our approach. The
results of training on the basketball court dataset are presented in Fig. [0} Appendix Tab. [5 and
the supplementary videos (basketball 1 and 2), showcasing our method’s ability to handle highly
complex dynamic scenes. Our decomposition technique effectively separates all athletes from the
scene, illustrating the model’s strong adaptability to occlusion, as discussed in Sec. [3.2]

4.4 ABLATION AND ANALYSIS
Dynamic and static decomposition. To
validate the effectiveness of our dynamic-static 36

decomposition method, we conducted s -
experiments on the sear steak and flame o1 s
steak. As illustrated in Fig. [§[c) and Tab. 3] o '

33

treating all points as dynamic led to increased '
computation time, significantly reduced ' 28
rendering quality, and introduced blurring in "
areas with large motion amplitudes. sz 324

=e~The percentage of dynamic points =e=PSNR

326

322

Muti-plane encoder. There are three °%
commonly used choices for encoder selection: s 1 s s 7 s
an implicit MLP|Gao et al.| (2021)), multi-planes

Cao & Johnson! (2023), and a hash table Miiller; Figure 7: Distribution of dynamic points counts
et al| (2022). In this study, we delve into and PSNR at different thresholds.

employing the multi-plane approach to replace

the 4D Hash as the encoder in our method. The subjective and objective experimental results, shown
in Fig. [8(b) and Tab. 3] indicate that while it slightly lags behind the hash table in terms of rendering
speed and quality, it still outperforms methods that do not apply dynamic-static decomposition

(2024).

Temporal importance pruning. As shown in Fig. [0 (a) and (b) exhibit severe artifacts. In contrast,
images rendered with our pruning strategy, (c), appear much cleaner.

5 DISCUSSION

Incomplete decomposition of dynamic and static points. Although we employ the pixel level
supervisor, it fails to fully decouple dynamic and static points. This can lead to two issues: Gaussian

Published as a conference paper at ICLR 2025

(a) With opacity reset (b) W/O opacity reset (c) Ours (d) GT

Figure 9: Importance Pruning Ablation Experiments: (a), (b), (c), and (d) show the rendered
results of the our model with opacity reset every 3000 iterations, without opacity reset, with our
importance pruning method, and the ground truth, respectively.

Figure 10: Basketball court dataset experiment. (a) and (c) are dynamic point renderings, while
(b) and (d) are GT. The black floaters are actually Gaussian points from the dynamic background.

points in textureless regions of small moving objects may be mistaken for static, while static objects
may be identified as dynamic due to interference from nearby moving objects.

In the first situation, as shown in Fig. ﬂb), certain textureless areas, like clothing and the table, are
mistakenly identified as static, despite being dynamic. In fact, this proves beneficial in Tab. [3] If the
entire table were labeled as dynamic, the increased dynamic points would lower rendering quality
(W/o decomp). By recognizing only the edges as dynamic, where pixel changes are significant, the
method reduces the number of dynamic points and enhances rendering quality (Ours).

In the second situation, as illustrated in Fig. some Gaussians in static areas are classified as
dynamic due to the shadows or movements of the basketball players passing through these regions.
Therefore, it is reasonable to identify these areas as dynamic. Classifying these points as static will
impact the visual experience, as static points can hardly model dynamic areas.

The selection of the dynamic threshold. As shown in Fig. [7} experiments with the “cook spinach”
scene revealed that varying the dynamic threshold ¢ from 3 to 9 did not significantly affect PSNR
or the percentage of dynamic points, demonstrating the robustness of our method. To ensure
consistency, we set the threshold to 7.

The training time. Due to the large dataset (nearly 6000 images), we load images during training,
which empirically wastes around 40% of the training time on disk I/O. Eliminating this overhead
could reduce training time to 10 minutes while maintaining high-quality 4D scene reconstruction.

6 CONCLUSION

In this paper, we introduce Swift4D, which achieves fast convergence, compact storage, and
high-quality real-time rendering capabilities within the field of 4D reconstruction. The core
innovation of our method lies in the introduction of a dynamic-static decomposition technique,
which can be applied to most existing dynamic scene reconstruction methods, enhancing quality
and accelerating convergence. Additionally, we introduce a 4D Hash encoder and a multi-head
decoder as our spatio-temporal structure, allowing for faster and more efficient temporal modeling
of dynamic points. Finally, to prevent severe coupling between the canonical and deformation fields,
we propose a novel temporal pruning method that effectively removes floaters in the scene. Our
proposed method delivers competitive results in just 5 minutes, and we hope it can offer new insights
for applications struggling with training efficiency.

Limitation: Similar to previous work [Sun et al.| (2024); L1 et al| (2024), our mrthod focuses
on multi-view scenes and currently does not support monocular datasets for dynamic scene
reconstruction. Additionally, our method focuses on scene reconstruction and does not include

human reconstruction [Wu et al.| (2020); |Cheng et al| (2023).

10

Published as a conference paper at ICLR 2025

7 ACKNOWLEDGEMENTS

This work is financially supported by Guangdong Provincial Key Laboratory of Ultra High
Definition Immersive Media Technology(Grant No. 2024B1212010006), National Natural
Science Foundation of China U21B2012, Shenzhen Science and Technology Program-Shenzhen
Cultivation of Excellent Scientific and Technological Innovation Talents project(Grant No.
RCJC20200714114435057), this work is also financially supported for Outstanding Talents Training
Fund in Shenzhen.

REFERENCES

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 5855-5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470-5479, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19697-19705, 2023.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130-141, 2023.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European conference on computer vision, pp. 333-350. Springer, 2022.

Wei Cheng, Ruixiang Chen, Siming Fan, Wanqi Yin, Keyu Chen, Zhongang Cai, Jingbo Wang, Yang
Gao, Zhengming Yu, Zhengyu Lin, et al. Dna-rendering: A diverse neural actor repository for
high-fidelity human-centric rendering. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 19982-19993, 2023.

Tianchen Deng, Yaohui Chen, Leyan Zhang, Jianfei Yang, Shenghai Yuan, Jiuming Liu, Danwei
Wang, Hesheng Wang, and Weidong Chen. Compact 3d gaussian splatting for dense visual slam.
arXiv preprint arXiv:2403.11247, 2024.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245, 2023.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5501-5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbek Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479-12488, 2023.

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 5712-5721, 2021.

Bing He, Yunuo Chen, Guo Lu, Li Song, and Wenjun Zhang. S4d: Streaming 4d real-world
reconstruction with gaussians and 3d control points. arXiv preprint arXiv:2408.13036, 2024.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. arXiv preprint arXiv:2403.17888, 2024a.

11

Published as a conference paper at ICLR 2025

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi.
Sc-gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4220-4230, 2024b.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139-1, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural motion factorization for
real-time dynamic view synthesis with 3d gaussian splatting. arXiv preprint arXiv:2312.00112,
2023.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Ping Tan. Streaming radiance fields for 3d
video synthesis. Advances in Neural Information Processing Systems, 35:13485-13498, 2022a.

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video
synthesis from multi-view video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5521-5531, 2022b.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8508-8520, 2024.

Zhenggqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498-6508, 2021.

Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James Tompkin,
and Lei Xiao. Gaufre: Gaussian deformation fields for real-time dynamic novel view synthesis.
arXiv preprint arXiv:2312.11458, 2023.

Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Efficient
neural radiance fields for interactive free-viewpoint video. In SIGGRAPH Asia 2022 Conference
Papers, pp. 1-9, 2022.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21136-21145, 2024.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654-20664, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):
1-15, 2022.

Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Daniel
Duckworth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser, and Federico Tombari.
Radsplat: Radiance field-informed gaussian splatting for robust real-time rendering with 900+
fps. arXiv preprint arXiv:2403.13806, 2024.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5865-5874, 2021.

12

Published as a conference paper at ICLR 2025

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318-10327, 2021.

Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan, Ben Mildenhall, Andreas Geiger, Jon
Barron, and Peter Hedman. Merf: Memory-efficient radiance fields for real-time view synthesis
in unbounded scenes. ACM Transactions on Graphics (TOG), 42(4):1-12, 2023.

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEFE conference on computer vision and pattern recognition, pp. 4104-4113, 2016.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and
Andreas Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed neural
radiance fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732-2742,
2023.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast
convergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 5459-5469, 2022.

Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 3dgstream: On-the-fly
training of 3d gaussians for efficient streaming of photo-realistic free-viewpoint videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20675-20685, 2024.

VRU. https://anonymous.4open.science/r/vru-sequence/. 2024.

Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural
voxels for fast multi-view video synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19706-19716, 2023.

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T
Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning
multi-view image-based rendering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 4690-4699, 2021.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310-20320,
2024.

Minye Wu, Yuehao Wang, Qiang Hu, and Jingyi Yu. Multi-view neural human rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1682-1691, 2020.

Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming Sun, Yujun Shen, Hujun Bao, and
Xiaowei Zhou. 4k4d: Real-time 4d view synthesis at 4k resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20029-20040, 2024.

Jinbo Yan, Rui Peng, Luyang Tang, and Ronggang Wang. 4d gaussian splatting with scale-aware
residual field and adaptive optimization for real-time rendering of temporally complex dynamic
scenes. In ACM Multimedia 2024.

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642,
2023.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20331-20341, 2024.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752-5761, 2021.

13

Published as a conference paper at ICLR 2025

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting:
Alias-free 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 19447-19456, 2024a.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient and compact
surface reconstruction in unbounded scenes. arXiv preprint arXiv:2404.10772, 2024b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586-595, 2018.

Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He, and Hengshuang Zhao. Pixel-gs: Density control
with pixel-aware gradient for 3d gaussian splatting. arXiv preprint arXiv:2403.15530, 2024.

A APPENDIX

In the supplementary materials, we will provide more details. In Sec[A.T] we provide detailed setting
s about our method. In Sec[A.2] we describe our dynamic-static decomposition method in detail. In
Sec[A.3] we present additional experimental results.

A.1 IMPLEMENT DETAILS

Three-stage method. In the first stage, we train the Gaussian points initialized by StMSchonberger
& Frahm| (2016) using the first frame images from each viewpoint. The goal of this stage is to obtain
a canonical space. In the second stage, we train the dynamic parameter d of each Gaussian point
according to the method proposed in Sec. [3.2] In the third stage, we jointly train the attributes of the
Gaussian points and the spatio-temporal structure.

MLPs as feature decoders. As shown in Fig[T3] we use five shallow MLPs as decoders for
the mean, opacity, color, rotation, and scaling, respectively. The outputs are directly added to the
attributes of the Gaussian points in the canonical space, and then passed through the corresponding
activation functions to obtain the attributes at time t.

Lite version. We empirically found that removing the SSIM loss, while slightly degrading rendering
quality, offers the advantage of reducing the number of Gaussian points by 2-3 times (approximately
200,000). Therefore, we removed the SSIM loss and set the hash table size to 2!° in the Lite version.
This ensures a significant reduction in model size without severely impacting rendering quality. The
models rendered in the Lite version average only 30MB in size, with the Gaussian point cloud being
22MB and the hash table 8MB, making it the smallest dynamic model to date (including the NeRF
series).

A.2 DYNAMIC - STATIC DECOMPOSITION

We precompute the temporal variance S?(x) for each pixel # € R to generate the variance map V;
for each viewpoint ¢. To reduce noise, we smooth V; using a Gaussian filter with a 31x31 kernel.
Each pixel’s variance SZ(x) is then binarized into D;(z) using a threshold +, providing pixel-level
supervision.

Initially, the dynamic parameter d of each Gaussian point is set to 0, resulting in a dynamic value of
D;(x) = 0.5 for each pixel. When the cross-entropy loss £, is employed as the loss function, the

Gaussian points that intersect with the dynamic pixel D;(x) will receive a positive gradient, leading
to the dynamic parameter d expanding towards +oco. Conversely, when Gaussian points intersect
with static pixels, the dynamic parameter d will expand towards —oo. Due to the properties of the
Sigmoid function, the dynamic parameter can extend infinitely towards both —oo and +o0, allowing
us to better distinguish between dynamic and static points.

When a Gaussian point intersects both dynamic and static pixels (e.g., in the presence of occlusion),
it will receive two opposing gradient values. If the positive gradient is larger, its dynamic value will
be greater than 0, classifying it as a dynamic point. Conversely, if the negative gradient dominates,
it will be classified as a static point.

14

Published as a conference paper at ICLR 2025

Table 4: Per-scenes results on the NV3D dataset. The best and the second best results are denoted
by and

Method Coffee Martini ~ Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean

Mix Voxels 29.36 31.61 31.30 29.92 31.21 3143 30.80
NeRFPlayer 31.53 30.56 29.35 31.65 31.93 29.13 30.69
HexPlane - 32.04 32.55 29.47 32.08 32.39 31.70
K-Planes 29.99 32.60 31.82 30.44 32.38 32.52 31.63
4DGS 27.34 32.46 32.90 29.20 32.51 32.49 31.15
3DGStream 27.75 33.31 33.21 28.42 34.30 33.01 31.67
SpaceTimeGS 28.61 33.18 33.52 29.48 33.64 33.89 32.05
Real-Time4DGS 28.33 32.93 33.85 29.38 34.03 33.51 32.01
Swift4DLite(Ours) 28.84 32.57 32.82 29.92 33.13 33.48 31.79
Swift4D(Ours) 29.13 33.05 33.80 29.75 33.67 33.98 32.23

Finally, we provide the formula for calculating the gradient received by each Gaussian point. Based

on this formula, the CUDA code can be easily written. Assuming we need to compute the dynamic
value gradient of Gaussian point g, the equation as following: %. Due to autograd , we have
9

known grad;:
grad, = /61:‘171 - (10)
(D iy dic; Hj:l(]' - aj))

we only need to compute:

(X, dict, H;;ll(l —af)) ’ 91_[—1(1 -

grads = = («) (11
ad, g o J
So, the final formula is as follows:
0Ly _ L4 L 00 i dic [1,23 (1 - o)) a2
Odg O, die TTj=1 (1~ o) od,
_ OLa H 1-d (13)

O,y dief [T;21 (1 = af) i

From this formula, it can be seen that the gradient of the dynamic value is related to occlusion,
self-opacity, and the distance to the camera plane, which is very reasonable.

A.3 MORE RESULTS

Fig[TT| shows the rendering results from new viewpoints at different iteration of training. It can be
observed that our method achieves very high quality after 7000 epochs (approximately 10 minutes),
demonstrating that our approach is highly efficient for reconstructing 4D dynamic scenes. Fig[I2]
demonstrates that our method can effectively segment dynamic points. Tab. [5] presents the results
of several static and dynamic methods on the basketball court datasetVRU|(2024), showing that our
method outperforms 4DGSWu et al.| (2024). To demonstrate the robustness and generalization of
our approach, we also conducted experiments on the ENeRF dataset. The results, shown in Table|[6]
follow the training policies described in 4k4d |Xu et al.[(2024)).

15

Published as a conference paper at ICLR 2025

(a) GT (b) 3000 its (c) 7000 its (d) 13000 its

Figure 11: Training Epoch Comparison: the results of our method in 3000, 7000, 13000 epochs.
Based on the results from 3000 iterations, our method demonstrates rapid convergence.

Table 5: Quantitative comparison on the Basketball court dataset. The first four methods
correspond to static methods, tested on the first frame, while the last two methods represent dynamic
methods, tested on 20 frames.

Method PSNR{ SSIMT| LPIPS]

Gof[Yu et al.|(2024b) 30.39 0.949 0.141
2DGS Huang et al.[(2024a 30.78 0.949 0.187

PixelGS [Zhang et al.|(202 29.26 0.946 0.168
3DGSKerbl et al.|(2023 30.50 0.949 0.171

4DG (2024 2787 0921 0.191
Swift4D(Ours 2903 0933 0.187

16

Published as a conference paper at ICLR 2025

Figure 12: Decomposition results. (a) is the dynamic-static pixel mask, (b) is the dynamic map
rendered with our dynamic value d of Gaussians, (c) is the image rendered with dynamic Gaussians,
and (d) is the GT image.

Table 6:
Methods PSNRT SSIM{ LPIPS |
ENeRF[Lin et al.[(2022) 25.452 0.809 0.273
IBRNet|Wang et al.[(2021) 24.966 0.929 0.172
KPlanes [Fridovich-Keil et al.{(2023) 21.310 0.735 0.454
4k4d [Xu et al.| (2024) 25.815 0.898 0.147
Swift4D (Ours) 26.12 0911 0.070

17

Mean: du

— - 333-..
e[| Wl g
XYZ t —— 4DHash ©o ReLU N x48 Ofi C.is.h
ReLU N x4 Rzmatio.n:.
SOREE 25

Figure 13: MLP Structures. For each dynamic point, we use five small MLPs to predict the
deformations.

Figure 14: The result of hierarchical rendering in dynamic scenes based on the dynamic parameter
d of Gaussian points. The specific video can be found in the supplementary material.

Figure 15: The training results of the basketball court from four novel viewpoints. The images above
are the GT images, and the ones below are our rendered results.

18

	Introduction
	Related work
	Method
	Gaussian Splatting Preliminary
	Efficient dynamic and static decomposition
	Spatio-temporal structure
	Density control
	Optimization pipeline

	Experiment
	Implementation details
	Dataset
	Evaluation
	ABLATION AND ANALYSIS

	Discussion
	Conclusion
	ACKNOWLEDGEMENTS
	Appendix
	 Implement details
	 dynamic - static decomposition
	 More results

