
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTRADICTION RETRIEVAL VIA SPARSE-AWARE
SENTENCE EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Contradiction retrieval refers to identifying and extracting documents that explicitly
disagree with or refute the content of a query, which is important to many down-
stream applications like fact checking and data cleaning. To retrieve contradiction
argument to the query from large document corpora, existing methods such as
similarity search and crossencoder models exhibit significant limitations. The
former struggles to capture the essence of contradiction due to its inherent nature
of favoring similarity, while the latter suffers from computational inefficiency,
especially when the size of corpora is large. To address these challenges, we
introduce a novel approach: SPARSECL that leverages specially trained sentence
embeddings designed to preserve subtle, contradictory nuances between sentences.
Our method utilizes a combined metric of cosine similarity and a sparsity function
to efficiently identify and retrieve documents that contradict a given query. This
approach dramatically enhances the speed of contradiction detection by reducing
the need for exhaustive document comparisons to simple vector calculations. We
validate our model using the Arguana dataset, a benchmark dataset specifically
geared towards contradiction retrieval, as well as synthetic contradictions generated
from the MSMARCO and HotpotQA datasets using GPT-4. Our experiments
demonstrate the efficacy of our approach not only in contradiction retrieval with
more than 30% accuracy improvements on MSMARCO and HotpotQA across
different model architectures but also in applications such as cleaning corrupted
corpora to restore high-quality QA retrieval. This paper outlines a promising
direction for improving the accuracy and efficiency of contradiction retrieval in
large-scale text corpora.

1 INTRODUCTION

Figure 1: Performance gains in
NDCG@10 score across different
sentence embedding models and
datasets, showcasing the effective-
ness and robustness of our SPAR-
SECL compared with standard con-
trastive learning (CL)
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Training sentence embedding for similarity retrieval has been well studied in the literature (Gao et al.
(2021); Xiong et al. (2020); Karpukhin et al. (2020)), where a standard practice is to use contrastive
learning to map those similar sentences together and those dissimilar sentences far from each other.
However, these existing sentence embeddings are mainly tailored to similarity retrieval, while as far
as we know, there hasn’t been sentence embeddings for non-simlarity based retrieval. In this paper,
we study the problem of contradiction retrieval, a typical case of non-similarity based retrieval. Given
a large document corpus and a query passage, the goal is to retrieve document(s) in the corpus that
contradict the query, assuming they exist. This problem has a large number of applications, including
counter-argument detection Wachsmuth et al. (2018) and fact verification Thorne et al. (2018). The
standard approaches to retrieving contradictions are two-fold. One is to use a bi-encoder Xiao et al.
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Figure 2: Comparison of our SPARSECL with Cross-Encoder and Contrastive-Learning based Bi-
Encoder for contradiction retrieval.

(2023); Li & Li (2023); Li et al. (2023) that maps each document to a feature space such that two
contradicting documents are mapped close to each other (e.g., according to the cosine metric) and use
nearest neighbor search algorithms. The second approach is to train a cross-encoder model Xiao et al.
(2023) that determines whether two documents contradict each other, and apply it to each document
or passage in the corpus.

Unfortunately, both methods suffer from limitations. The first approach (cosine similarity search on
sentence embeddings) is inherently incapable of representing the “contradiction relation” between the
documents, due to the fact that the cosine metric is transitive: if A is similar to B, and B is similar
to C, then A is also similar to C. As an example, consider an original sentence and its paraphrase
in Table 8. Both of them contradict the sentence in the third column but they are not contradicting
each other. The second approach, which uses a cross-encoder model, can capture the contradiction
between sentences to some extent, but it is much more computationally expensive. Our experiment in
Appendix H shows that compared with standard vector computation, running a cross-encoder is at
least 200 times slower.

In this paper, we propose to overcome these limitations by introducing SPARSECL for efficient
contradiction retrieval using sparse-aware sentence embeddings. The key idea behind our approach
is to train a sentence embedding model to preserve sparsity of differences between the contradicted
sentence embeddings. When answering a query, we calculate a score between the query and each
document in the corpus, based on both the cosine similarity and the sparsity of the difference between
their embeddings, and retrieve the ones with the highest scores. Our specific measure of sparsity is
defined by the Hoyer measure of sparsity Hurley & Rickard (2009), which uses the scaled ratio of the
ℓ1 norm and the ℓ2 norm of a vector as a proxy of the number of non-zero entries in the vector. Unlike
the cosine metric, the Hoyer measure is not transitive (please refer to Appendix D for a detailed
analysis), which avoids the limitations of the former. At the same time this method is much more
efficient than a cross-encoder, as both the cosine metric and the Hoyer measure are easy to compute
given the embeddings. The Hoyer sparsity histogram of our trained embeddings is displayed in
Figure 3.

We first evaluate our method on the counter-argument detection dataset Arguana Wachsmuth et al.
(2018), which to the best of our knowledge, is the only publicly available dataset suitable for testing
contradiction retrieval. In addition, we generate two synthetic data sets, where contradictions for
documents in MSMARCO Nguyen et al. (2016) and HotpotQA Yang et al. (2018) datasets are
synthetically generated using GPT-4 Achiam et al. (2023). Our experiments demonstrate the efficacy
of our approach in contradiction retrieval, as seen in Table 1. We also apply our method to corrupted
corpus cleaning problem, where the goal is to filter out contradictory sentences in a corrupted corpus
and preserve good QA retrieval accuracy.

To summarize. our contributions can be divided into three folds:
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• We introduce a novel contradiction retrieval method that employs specially trained sentence
embeddings combined with a metric that includes both cosine similarity and the Hoyer
measure of sparsity. This approach effectively captures the essence of contradiction while
being computationally efficient.

• Our method demonstrates superior performance on both real and synthetic datasets, achiev-
ing significant improvements in contradiction retrieval metrics compared to existing methods.
This underscores the effectiveness of our embedding and scoring approach.

• We apply our contradiction retrieval method to the problem of corpus cleaning, showcasing
its utility in removing contradictions from corrupted datasets to maintain high-quality QA
retrieval. This application highlights the practical benefits of our approach in real-world
scenarios.
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Figure 3: Histograms for the Hoyer sparsity of different pairs of sentence embedding differences on
HotpotQA test set. The left figure is the histogram produced by a standard sentence embedding model
(“bge-base-en-v1.5”), where the median Hoyer sparsity values for random pairs, paraphrases, and
contradictions are 0.212, 0.211, 0.211. The right figure is the histogram produced by our sentence
embedding model fine-tuned from “bge-base-en-v1.5” using our SPARSECL method, where the me-
dian Hoyer sparsity values for random pairs, paraphrases, and contradictions are 0.212, 0.281, 0.632.

2 RELATED WORK

Counter Argument Retrieval A direct application of our contradiction retrieval task in “counter-
argument retrieval”. Since the curation of Arguana dataset by Wachsmuth et al. (2018), there has
been a few previous work on retrieving the best counter-argument for a given argument Orbach et al.
(2020); Shi et al. (2023). In terms of methods, Wachsmuth et al. (2018) uses a weighted sum of
different word and embedding similarities and Shi et al. (2023) designs a "Bipolar-encoder" and
a classification head. We believe that our method relying only on cosine similarity and sparsity is
simpler than theirs and produces better results in the experiment. In addition, some analyses in the
counter-argument retrieval papers are specific to the “debate” setting, e.g. they rely on topic, stance,
premise/conclusion, and some other inherent structures in debates for help, which may prevent their
methods from being generalized to broader scenarios.

Fact verification and LLM hallucination Addressing the hallucination problem in Large Lan-
guage Models has been a subject of many research efforts in recent years. According to the three
types of different hallucinations in Zhang et al. (2023b), here we only focus on those so called
“Fact-Conflicting Hallucination” where the outputs of LLM contradict real world knowledge. The
most straightforward way to mitigate this hallucination issue is to assume an external groundtruth
knowledge source and augment LLM’s outputs with an information retrieval system. There have
been a few works on this line showing the success of this method Ren et al. (2023); Mialon et al.
(2023). This practice is very similar to "Fact-Verification" Thorne et al. (2018); Schuster et al. (2021)
where the task is to judge whether a claim is true or false based on a given knowledge base.

However, as pointed out by Zhang et al. (2023b), in the era of LLM, the external knowledge base can
encompass the whole internet. It is impossible to assume that all the information there are perfectly
correct and there may exist conflicting information within the database. In the context of our paper,
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instead of using a groundtruth database to check an external claim, our goal is to check the internal
contradictions between different documents in an unknown corpus.

Learning augmented LLM and retrieval corpus attack Augmenting large language models with
retrieval has been shown to be useful for many purposes. Recently, there have been a few works
Zhong et al. (2023); Zou et al. (2024) studying the vulnerability of retrieval system from adversarial
attack. In specific, they show that adding a few corrupted data to the corpus will significantly drop the
retrieval accuracy. This phenomenon bring our attention to the necessity of checking the factuality
of the knowledge database. Note that the type of corrupted documents considered by their papers
are different from ours. While they consider the injection of adversarially generated documents, we
consider the existence of contradicted documents as a natural part of the corpus. Also their purpose
is to show the effect of adversarial attack, while we provide a defense method for a certain kind of
corrupted database.

3 METHOD

Problem Formulation We consider the contradiction retrieval problem: given a passage corpus
C = {p1, p2, ...pn} and a query passage q, retrieve the “best” passage p∗ that contradicts q. We
assume that several similar passages supporting q might exist in the corpus C.

Embedding based method Judging whether two passages contradict each other is a standard
Natural Language Inference task and can be easily tackled by many off-the-shelf language models
Touvron et al. (2023); Xu et al. (2022), . However, to retrieve the best candidate from the corpus,
we have to iterate the whole corpus, or at least send the candidates retrieved by similarity search
to the language model to determine if they constitute contradiction. This is time consuming, given
that there are potentially many similar passages in the corpus. Therefore, in our paper, we mainly
focus on those methods that only rely on their passage embeddings. Specifically, we want to design a
simple scoring function F that given the embeddings of two passages, outputs a score between [0, 1],
indicating the likelihood that they are contradicting each other.

Sparse Aware Embeddings Following the idea from counter-argument retrieval papers Wachsmuth
et al. (2018), such a score function should be a combination of similarity and dissimilarity functions.
Observe that a dissimilarity function is basically a negation of a similarity function, so the authors
of Wachsmuth et al. (2018) design several different similarity functions and set the scoring function
to maximize one of them and minimize another. Here, instead of enumerating different similarity
functions, we consider another notion: the “sparsity” of their embedding differences. The basic
intuition is as follows. Suppose that all sentences are represented as vectors in a “semantic” basis,
where each coordinate represents one clearly identifiable semantic meaning. Then a contradiction
between two passages should manifest itself as a difference in a few coordinates, while other
coordinates should be quite close to each other. The issue, however, is that we do not know how to
construct the appropriate basis, and the sparsity is defined with respect to a fixed coordinate system.
Nevertheless, following this intuition, we fine-tune sentence embedding models using contrastive
learning, by rewarding the sparsity of the difference vectors between embeddings of contradicting
passages. Please see Figure 3 for the Hoyer sparsity histogram of our trained embeddings.

SPARSECL We use contrastive learning (Gao et al. (2021); Karpukhin et al. (2020)) to fine-tune
any pretrained sentence embedding model to generate the desired sparsity-aware embeddings. The
choice of positive and negative examples are exactly the reverse of the choice we make when the
training sets are Natural Language Inference datasets. The positive example for a passage is its
contradiction passage in the training set. The hard negative example for a passage is its similar
passage in the training set. There are also other random in-batch passages as soft negative examples.
The sparsity function we choose here is Hoyer sparsity function from Hurley & Rickard (2009). Let
h1 and h2 be two sentence embeddings and their embeddings have dimension d. We define

Hoyer(h1, h2) =

(√
d− ∥h1 − h2∥1

∥h1 − h2∥2

)
/
(√

d− 1
)
.

This is a transformed version of the ratio of the l1 to the l2 norm, with output normalized to [0, 1].
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Finally, for each training tuple (xi, x
+
i , x

−
i ) with their embeddings (hi, h

+
i , h

−
i ), batch size N , and

temperature τ , its loss function is defined as

li = − log
eHoyer(hi,h

+
i )/τ∑N

j=1

(
eHoyer(hi,h

+
j )/τ + eHoyer(hi,h

−
j )/τ

) .
Scoring function for contradiction retrieval For the score function for contradiction retrieval,
we use a weighted sum of the standard cosine similarity and our sparsity function. Note that the
cosine similarity is provided separately by any off-the-shelf sentence embedding model in a zeroshot
manner. It can can also be fine-tuned. Let E() be the standard sentence embedding model and Es()
be our sparse-aware sentence embedding model trained by SPARSECL. Then the final score function
for contradiction retrieval is

F (p1, p2) = cos (E(p1), E(p2)) + α · Hoyer(Es(p1), Es(p2)).

where α is a scalar tuned using the validation set. Note that the criterion for contradiction is usually
case-dependent, so it is necessary that we reserve a parameter to adapt to different notions of
contradiction. To get the answer passages, we calculate the score function for all passages and report
the top 10 of them1.

4 EXPERIMENTS

We test our contradiction retrieval method on a counterargument retrieval task Arguana Wachsmuth
et al. (2018) and two synthetic datasets adapted from HotpotQA Yang et al. (2018) and MS-
MARCO Nguyen et al. (2016). Then, we apply our contradiction retrieval task to a new experimental
setting: retrieval corpus cleaning. Finally, we perform ablation studies to explain the functionality of
each component of our method. Most of our experiments are not so computationally extensive, which
can be run by one single A6000 GPU. We run our major experiments on A6000 and A100 GPUs.

4.1 COUNTER-ARGUMENT RETRIEVAL

Dataset Arguana is a dataset curated in Wachsmuth et al. (2018), where the author provide a corpus
of 6753 argument-counterargument pairs, taken from 1069 debates with 15 themes on idebate.org.
For each debate, the arguments are further divided into two opposing stances (pro and con). For each
stance, there are paired arguments and counter-arguments. The dataset is split into the training set
(60% of the data), the validation set (20%), and the test set (20%). This ensures that data from each
individual debate is included in only one set and that debates from every theme are represented in
every set. The task goal is: given an argument, retrieve its best counter-argument.

Training We use Arguana’s training set to fine-tune our sparsity aware sentence embedding model
via SPARSECL. To construct our training data, for each argument and counter-argument pair (xi, x

c
i )

in the Arguana’s training set, we set xc
i to be the positive example of xi. We select all the other

arguments and counter-arguments from the same debate and stance as xi’s hard negatives. We
fine-tune three pretrained sentence embedding models of different sizes (“UAE-Large-V1” Li & Li
(2023), “GTE-large-en-v1.5” Li et al. (2023), and “bge-base-en-v1.5” Xiao et al. (2023)). Please
refer to Table 12 for our training parameters.

Baselines We mainly compare our method to the similarity-based method. Since Arguana is one
of the datasets in the MTEB Retrieval benchmark, directly searching for the similar passages in the
corpus can already produce quite good test results. We report the performance of several efficient
(with fewer than 1B parameters) and top-ranked pretrained sentence embedding models including
“GTE-large-en-v1.5”, “UAE-Large-V1”, “bge-base-en-v1.5”, when used to directly retrieve the most
similar argument to each query (Zeroshot). For a fair comparison, we also report the results of
fine-tuning these models using standard contrastive learning (CL) on the same dataset used for
SPARSECL.

1In the actual implementation, for time efficiency, we first use FAISS Douze et al. (2024) to retrieve the top
K candidates with cosine similarity and then rerank them using our cosine + sparsity score function. We set a
very large K (e.g. K = 1000) so that empirically this is almost equivalent to searching for the maximal cosine +
sparsity score in the whole corpus
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Model Method Arguana MSMARCO HotpotQA

BGE Zeroshot (Cosine) 0.658 0.600 0.595
Zeroshot (Cosine) + SPARSECL(Hoyer) 0.704 0.909 0.967

BGE CL (Cosine) 0.687 0.527 0.562
CL (Cosine) + SPARSECL(Hoyer) 0.722 0.883 0.965

UAE Zeroshot (Cosine) 0.683 0.597 0.587
Zeroshot (Cosine) + SPARSECL(Hoyer) 0.743 0.902 0.955

UAE CL (Cosine) 0.704 0.442 0.541
CL (Cosine) + SPARSECL(Hoyer) 0.744 0.869 0.943

GTE Zeroshot (Cosine) 0.725 0.603 0.597
Zeroshot (Cosine) + SPARSECL(Hoyer) 0.797 0.953 0.977

GTE CL (Cosine) 0.778 0.651 0.597
CL (Cosine) + SPARSECL(Hoyer) 0.813 0.952 0.979

Table 1: Results for different models and methods on the contradiction retrieval task. Experiments are
run on the Arguana dataset Wachsmuth et al. (2018) and modified MSMARCONguyen et al. (2016)
and HotpotQAYang et al. (2018) datasets. We report NDCG@10 score here, the higher the better.
“UAE” stands for “UAE-Large-V1”, “BGE” stands for “bge-base-en-v1.5”, “GTE” stands for “gte-
large-en-v1.5”, The “Method” column denotes the score function used to retrieve contradictions. We
consider two score functions: cosine similarity and cosine similarity plus Hoyer sparsity. “Zeroshot”
denotes the direct testing of the model without any fine-tuning. “CL” denotes fine-tuning using
standard contrastive learning. “SPARSECL” denotes fine-tuning using Hoyer sparsity contrastive
learning (our method).

Test The Arguana test set consists of 1401 query arguments and counter-argument pairs. Following
the standard test setting, we search for an answer of a query within the whole corpus (training set
+ validation set + test set) and report NDCG@10 scores. The α parameter we used in the score
function varies across different datasets and models. We select α based on the best NDCG@10 score
on the validation set. Please refer to Table 13 in Appendix G for our specific α choices and parameter
searching details. When we directly use a model to provide cosine similarity scores in a zeroshot
manner, we use its default pooler (“cls”) for that model. When we use a fine-tuned model (via either
CL or SPARSECL) to provide either cosine similarity scores or sparsity scores, we use the “avg”
pooler.

Results The detailed results are presented in Table 1. Across all models—“GTE-large-en-v1.5”,
“UAE-Large-V1”, and “bge-base-en-v1.5”—an average improvement of 4.8% in counter-argument
retrieval were observed when incorporating our SPARSECL to either Zeroshot or CL. Furthermore,
our CL (Cosine) + SPARSECL (Hoyer) method achieves NDCG@10 score 0.813 using GTE with
only 400M parameters. For completeness, we also compare our results with Shi et al. (2023) in
Appendix E.

This pattern of enhancement was consistently observed regardless of whether the embedding models
were fine-tuned or not. Notably, standard cosine similarity fine-tuning alone also contributed to
performance gains. For instance, fine-tuned GTE models showed an increase from 0.725 to 0.778 on
the Arguana dataset using standard cosine similarity alone. This suggests that the Arguana dataset
inherently favors scenarios where the counterargument is the most similar passage to the query, which
may amplify the benefits of fine-tuning.

These findings highlight the robustness of our approach, particularly when traditional similarity
metrics are augmented with sparsity measures to capture subtle nuances in contradiction. Further
insights can be gleaned from our ablation study detailed in Section 4.5, where we analyze the impact
of similar non-contradictory passages within the corpus.

4.2 CONTRADICTION RETRIEVAL ON SYNTHETIC DATASETS

The task of “contradiction retrieval" generalizes beyond the argument and counter-argument relation-
ship in the debate area, e.g. passages with conflicting factual information should also be considered

6
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as “contradictions". To test our method’s validity for these more general forms of contradictions, we
construct two synthetic datasets to test our method’s performance.

Data set construction Given a QA retrieval dataset, e.g. MSMARCO Nguyen et al. (2016), for
each answer passage xi of a query qi, we use Large Language Models (specifically, GPT-4 Achiam
et al. (2023)) to generate 3 synthetic answers paraphrasing xi or contradicting xi. Let the generated
paraphrases be {x+

i1, x
+
i2, x

+
i3} and the generated contradictions be {x−

i1, x
−
i2, x

−
i3, }. We then delete xi

from the corpus and add the set of generated passages {x+
i1, x

+
i2, x

+
i3, x

−
i1, x

−
i2, x

−
i3} to the corpus. In

the test phrase, the queries are {x+
i1, x

+
i2, x

+
i3}, each of which has the same answers {x−

i1, x
−
i2, x

−
i3, }.

We generate the paraphrases and contradictions for the validation set, test set, and a randomly sampled
10000 documents from the training set.

The reason why we only keep the generated text but not the original one is that all the GPT-4 generated
passages are easily distinguishable from the human written ones, which makes language models
vulnerable to shortcuts. Please refer to Table 8 to see two examples of the generated paraphrases and
contradictions. We report the prompts and the temperature parameter we use to generate these data in
Appendix B.

Training To prepare the training data for contrastive learning, for each paraphrase and contradiction
set {x+

i1, x
+
i2, x

+
i3, x

−
i1, x

−
i2, x

−
i3} generated from the same original passage, we form 9 pieces of training

data (x+
ia, x

−
ib, x

+
ic) for 9 different combinations of paraphrases, contradictions, and a randomly

selected hard negative from the remaining two paraphrases. We then perform SPARSECL to fine-tune
a sparsity-enhanced embedding.

Baseline We are not aware of any accurate methods for retrieving contradictions that only rely on
sentence embeddings. Therefore, the only baseline we provide is a standard contrastive learning
with cosine similarity (CL), using the same training data (contradictions as positive examples and
paraphrases as negative examples) that we use for our SPARSECL.

Test Similar to the testing strategy for Arguana, we define our corpus to consist of all generated
text (training set + validation set + test set). We query the paraphrases {x+

i1, x
+
i2, x

+
i3} of the original

passage xi and set the groundtruth answers to be the generated contradictions {x−
i1, x

−
i2, x

−
i3}. We

select the α parameter with the maximal NDCG@10 score on the validation set and report the
NDCG@10 score obtained by applying that α to the test set.

The results are reported in Table 1. For both MSMARCO and HotpotQA data sets, incorporating
our SPARSECL method achieves over 30 percentage points gain compared with the pure cosine-
similarity-based method. The large improvement is due to the existence of paraphrases in the corpus,
that are strong confounders for the pure similarity-based methods. We also observe that fine-tuning
using standard contrastive learning with cosine similarity (CL) yields performance gains for Arguana
but not for MSMARCO and HotpotQA. Our explanation is that, for MSMARCO and HotpotQA, the
generated paraphrases are more similar to the query than the contradictions. Therefore fine-tuning
with the standard cosine similarity is unlikely to work.

4.3 ZERO-SHOT GENERALIZATION TEST

To evaluate the generalization capability of our sparse-aware embeddings, we also conduct zero-
shot tests on other datasets. Specifically, we train the embeddings on our synthetic HotpotQA or
MSMARCO datasets and then test them on the other dataset in a zero-shot manner. As presented in
Table 2, SparseCL trained on MSMARCO or HotpotQA produces reasonable test results on the other
dataset, albeit with a slight performance drop. This demonstrates that the sparse-aware embeddings
trained on one dataset can capture contradiction relationships and generalize to unseen datasets.

4.4 RETRIEVAL CORPUS CLEANING

As an application of contradiction retrieval, we test how well our method can be used to find
inconsistencies within a corpus and clean the corpus for future training or QA retrieval. We first
inject corrupted data contradicting existing documents into the corpus, and measure the retrieval
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Model Method Train Dataset Test Dataset NDCG@10

BGE Zeroshot(Cosine)+SparseCL(Hoyer) MSMARCO HotpotQA 0.886
HotpotQA MSMARCO 0.877

BGE Zeroshot(Cosine)+SparseCL(Hoyer) HotpotQA HotpotQA 0.967
MSMARCO MSMARCO 0.909

BGE Zeroshot(Cosine) N/A HotpotQA 0.595
N/A MSMARCO 0.600

Table 2: Results for zero-shot generalization experiment for contradiction retrieval

accuracy degradation for retrieved answers. Then, we use our contradiction retrieval method to filter
out corrupted data and measure the retrieval accuracy again.

Data Similarly to the data generation in Section 4.2, we construct a new corpus containing LLM-
generated paraphrases and contradictions based on MSMARCO and HotpotQA data sets. We start
with an original corpus C and its subset S. We then generate paraphrases and contradictions for S as
in Section 4.2.

For HotpotQA, S contains all answer documents for the test set, 10000 answer documents sampled
from the training set, and 1000 answer documents sampled from the development set. For MS-
MARCO, S contains all answer documents for the dev set, and 11000 answer documents sampled
from the training set.

We then curate 3 different versions of the corpus based on the original corpus C and the subset S.

• The initial corpus C+: For each original answer document x in S, we remove x from C and
instead add 3 LLM-generated paraphrases {x+

1 , x
+
2 , x

+
3 } to C. The result forms the initial

corpus C+.
• The corrupted corpus C−: For each original answer document x in S, we generate 3

contradictions {x−
1 , x

−
2 , x

−
3 } and add them to C+ to get the corrupted corpus C−.

• The cleaned corpus C♮: We apply our data cleaning procedure to the corrupted corpus C−,
obtaining the cleaned dataset C♮.

Test We test the retrieval accuracy (NDCG@10) and the corruption ratio (Recall@10) for answering
the original queries in the test set. The goal of our experiment is to show how retrieval algorithms
behave on these three constructed corpora C+, C−, and C♮.

Data Cleaning Our sparsity-based method can only identify contradictions within the data set,
but we do not know which element in a contradiction pair is correct. To perform data cleaning, we
make the assumption that for each original passage x ∈ S, we are given one of its paraphrases as the
groundtruth. Then, our task is reduced to searching for passages contradicting a given ground truth
document and filtering them out.

Method We use the GTE-large-en-v1.5 model without fine-tuning to provide the cosine similarity
score for this data cleaning experiment. We use the model from our contradiction retrieval experiment
in section 4.2 trained on MSMARCO and HotpotQA to provide the sparsity score. The α parameter
is also identical to the one used in section 4.2. For each ground truth document, we filter out the top 3
scored documents from the corpus.

Note that the optimal choice of α for contradiction retrieval may not be the optimal choice for data
cleaning because of different test objectives. We apply the same α only for simplicity, as our goal is
to demonstrate the validity of applying our method to the data cleaning problem.

Table 3 shows the results. We observe that the retrieval accuracy on the corrupted corpus drops
significantly, as the generated contradictions cause the embedding model to retrieve them as query
answers. The corruption ratio measures the average fraction of the top-10 retrieved documents that
correspond to the generated contradicting passages. This performance is above 40% for both datasets.
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Datasets Original Corrupted Cleaned
Acc Acc Corrupt Acc Corrupt

HotpotQA 0.676 0.567 0.443 0.652 0.020

MSMARCO 0.435 0.381 0.413 0.414 0.040

Table 3: Experimental results for the impact of corrupted data on QA retrieval and contradiction
retrieval for filtration. “Acc” represents the retrieval accuracy measured by the NDCG@10 score and
“Corrupt” represents the fraction of returned passages that are corrupted, as measured by Recall@10.

After performing our corpus cleaning procedure, which searches for the passages contradicting the
given ground truth documents and removes the top-3 for each of them, we can recover more than
60% of the performance loss due to corruption and at the same time reduce the corruption ratio to
less than 5%.

4.5 ABLATION STUDIES

We perform the following three ablation studies to further understand sparsity-based retrieval method.

Arguana retrieval results analysis In the standard Arguana dataset, even though the task is
to retrieve the counter-argument for the query, the retrieval based solely on similarity still gives
reasonable results. This means that counter-arguments are also the most similar arguments to the
query, which makes the data set an imperfect test bed for testing contradiction retrieval.

To further compare our sparsity-based method and the pure similarity-based method , we augment
Arguana by adding arguments’ paraphrases to the corpus. Specifically, for any argument x and
its counter-argument x− in the original corpus C, we use GPT-4 to generate three paraphrases
{x1, x2, x3} of x. We then form three new corpora with an increasing number of paraphrases added
to the corpus: C1 contains all x1 and x−, C2 contains all x1, x2, and x−, and C3 contains all x1, x2,
x3, and x−.

In the testing phase, we query the counter-arguments for one of x’s paraphrases, the answer of which
should still be x−. We observe how the performance varies when the corpora we retrieve from are
C1, C2, C3.

Models Methods C1 C2 C3

BGE Zeroshot (Cosine) 0.561 0.355 0.267
Zeroshot (Cosine) + SPARSECL(Hoyer) 0.682 0.679 0.675

BGE CL (Cosine) 0.471 0.303 0.228
CL (Cosine) + SPARSECL(Hoyer) 0.619 0.618 0.615

Table 4: Counter-argument retrieval results on the augmented Arguana dataset with different numbers
of similar arguments in the corpus. Cx denotes testing counter-argument retrieval on the corpus with
x existing paraphrases (including itself) of the query argument.

We present our overall experimental results in Table 4. Please also refer to Appendix F for an example
case study. As the number of paraphrases in corpus increases from 1 to 3, the performance of the
similarity-based method drops significantly. Thus it is reasonable to deduce that, as the number of
similar arguments in the corpus increases further, the NDCG@10 scores for similarity-based methods
will converge to 0. On the other hand, the performance of our sparsity-based method is stable with
respect to the number of paraphrases in the corpus.

Different Scoring function for contradiction retrieval We experiment with 5 other retrieval
methods in our ablation study. The methods evaluated are as follows: "Prompt" involves appending
the "Not true: " prompt to the query during testing, followed by standard similarity search. "Prompt +
CL (Cosine)" extends this by incorporating contrastive learning with the "Not true: " prompt included
in the training data. "Gen" uses GPT-4 to generate contradictions to the query (details in Appendix B)
and applies similarity search for testing. "Gen + CL (Cosine)" fine-tunes using contrastive learning
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Model Method Arguana

BGE
Prompt + Zeroshot (Cosine) 0.657

Gen + Zeroshot (Cosine) 0.647
Zeroshot (Cosine) 0.658

BGE Prompt + CL (Cosine) 0.645
Gen + CL (Cosine) 0.700

CL (Cosine) 0.687

BGE SparseCL (Hoyer) 0.561
CL (Cosine) + SparseCL (Hoyer) 0.722

Table 5: Counter-argument retrieval re-
sults (NDCG@10 scores) on Arguana
dataset with different retrieval methods.
“Gen” means using GPT-4 to generate
a contradiction c of the query argument
q, “Prompt” means appending the “Not
true : ” prompt in the front of the query
text. “Zeroshot” refers to direct testing
and “CL” and “SparseCL” refer to fine-
tuning with respective methods.

with the generated contradictions in the training data before similarity search. Finally, "SparseCL
(Hoyer)" employs SparseCL fine-tuning and retrieves documents based on the maximal Hoyer sparsity
score during testing.

As shown in Table 5, we observe that generally “Gen” and “Prompt” don’t improve much upon
standard similarity search. For the “Gen + CL (Cosine)” method, a diverse set of counter-arguments
exist for a given argument, making it hard to generate a single counter-argument that closely matches
the true ground truth counter-argument. For the “Prompt + CL (Cosine)” method, fine-tuning with
the appended prompt even results in a performance drop. During the training process, we observed
overfitting and hypothesize that the special prompt “Not true:” introduces a shortcut, making it easier
for the model to learn whether a text belongs to the “argument” class or the “counter-argument” class.
However, this class information is not useful when identifying pairwise contradiction relationships.
Finally, directly using Hoyer sparsity to retrieve contradictions doesn’t yield good results as well,
because we believe contradictions involve a combination of similarity and dissimilarity.

Different sparsity functions Our intuition in Section 3 does not give clear guidelines on which
sparsity function to use in our SPARSECL. Thus, we also experiment with different choices of sparsity
functions, selected from Hurley & Rickard (2009). Specifically, we consider two other sparsity
functions (l2/l1 and κ4), which are scale invariant and differentiable (see Table III in Hurley &
Rickard (2009)). Note that both of these two sparsity functions have ranges [0, 1], and higher values
of those functions correspond to sparser vectors.

l2
l1

=
∥h1 − h2∥2
∥h1 − h2∥1

κ4 =
∥h1 − h2∥44
∥h1 − h2∥22

.

Model Method l2/l1 κ4 Hoyer Cosine (baseline)

BGE Zeroshot (Cosine) + SPARSECL 0.675 0.684 0.704 0.657

BGE CL (Cosine) + SPARSECL 0.702 0.707 0.722 0.687

Table 6: NDCG@10 scores for Arguana using SPARSECL with different sparsity functions. We also
report two baselines that use only the cosine similarity (zeroshot and contrastive learning).
As per Table 6, compared to the cosine similarity method, the combination of the cosine similarity
score with the sparsity score trained by SPARSECL, yields higher NDCG@10 scores for each sparsity
function. However, Hoyer sparsity yields the highest accuracy. We believe that simple sparsity
functions have a more benign optimization landscape and thus are easier for models to optimize.

5 CONCLUSION

In this work, we introduced a novel approach to contradiction retrieval that leverages sparsity-aware
sentence embeddings combined with cosine similarity to efficiently identify contradictions in large
document corpora. This method addresses the limitations of the traditional similarity search as well
as computational inefficiencies of the cross-encoder models, proving its effectiveness on benchmark
datasets like Arguana and on synthetic contradictions retrieval from MSMARCO and HotpotQA.
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A SCORE FUNCTIONS FOR NATURAL LANGUAGE INFERENCE TASK

As an application of our SPARSECL method, we demonstrate that our method can be useful for dis-
tinguishing entailments and contradictions in natural language inference datasets. For SNLI Bowman
et al. (2015) and MNLI Williams et al. (2018) datasets, we extract entailment and contradiction pairs,
fine-tune using standard contrastive learning and our SPARSECL, and then report the average cosine
similarity / Hoyer sparsity score between entailments, contradictions, and random pairs.

Contradiction Entailment Random

SNLI
Zeroshot (Cosine) 0.546 0.769 0.376

CL (Cosine) 0.885 0.886 0.777
SparseCL (Hoyer) 0.376 0.347 0.228

MNLI
Zeroshot (Cosine) 0.659 0.818 0.378

CL (Cosine) 0.919 0.917 0.733
SparseCL (Hoyer) 0.422 0.364 0.244

Table 7: Average Cosine / Hoyer scores between Contradiction / Entailment / Random pairs of texts.
The experiment is run on “bge-base-en-v1.5” model. Texts pairs are from SNLI and MNLI datasets

We can observe from Table 7 that, in the zeroshot setting, the average cosine similarity of contradiction
pairs lies between the ranges of random and entailment pairs. For the fine-tuned model using
standard contrastive learning (CL), the average cosine similarity of contradiction pairs is almost
indistinguishable from that of entailment pairs. Finally, after being fine-tuned using SPARSECL, the
model exhibits higher average Hoyer sparsity scores for contradiction pairs compared to other two
types of relationships.

B DATA GENERATION DETAILS FOR MSMARCO AND HOTPOTQA
EXPERIMENTS IN SECTION 4.2

We use “gpt-4-turbo” to generate paraphrases and contradictions for our experiment in Section 4.2.
The prompts we use are in Table 9. We set temperature = 1 and n = 3 (to generate 3 outputs).
Please see Table 8 for some examples of generated paraphrases and contradictions.

C ADDITIONAL RELATED WORK

Complex retrieval tasks Information retrieval is a well-studied area Singhal et al. (2001) and there
have been many benchmarks for testing retrieval performance such as BEIR Thakur et al. (2021),
MTEB Muennighoff et al. (2023), and MIRACL Zhang et al. (2023a). However, most of the datasets,
through varying in some degrees, focus only on "retrieving the most similar document". People have
noted that there exist some more complex retrieval tasks (e.g. Arguana Wachsmuth et al. (2018)
retrieves counter-arguments that refute a query argument), and build retrieval benchmark focusing on
complex retrival goals, e.g. BIRCO Wang et al. (2024) and BERRI Asai et al. (2023).

To retrieve according to different instructions, Asai et al. (2023) trains TART, a multi-task retrieval
system with task instructions attached as prompts in front of the query content. However, when
answering queries, they are still searching for the most similar sentence embedding, though the prompt
is different for different tasks. As far as we know, our paper studies the first non-similarity-based
search problem.

Data inconsistency and misinformation detection Data inconsistency, refers to the factually
incorrectness in the content, might come from different sources, including their natural existence
in the corpus Shahi & Nandini (2020); Cui & Lee (2020), data augmentations Jha et al. (2020);
Zhou et al. (2022), and pseudo labeling Xie et al. (2020); Wang et al. (2022), which might lead to
negative influence if serving as training dataset. There have been a few datasets on detecting the
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Datasets Orginal Paraphrase Contradiction

MSMARCO In addition to the high
financial value of higher
education, higher
education also makes
individuals much more
intelligent than what
they would be with just a
high school education...

Beyond its significant
monetary worth, higher
education substantially
enhances a person’s
intelligence compared to
merely completing high
school...

Besides the low
financial significance of
higher education, higher
education often renders
individuals no more
intelligent than they
would be with just a high
school education...

HotpotQA Ice hockey is a contact
team sport played on ice,
usually in a rink, in
which two teams of
skaters use their sticks to
shoot a vulcanized
rubber puck into their
opponent’s net to score
points...

Ice hockey is a contact
sport where two teams
compete on an ice
surface, typically in a
rink, using sticks to hit a
vulcanized rubber puck
into the opposing team’s
net to earn points...

Ice hockey is a
non-contact team sport
played on grass, often in
an open field, where two
teams of players use
their feet to kick a soft
leather ball into their
opponent’s goal to score
points...

Table 8: Examples of passages from MSMARCO and HotpotQA datasets, with their generated
paraphrases, and generated contradictions. Highlighted key-words represent exact matchings or
contradictions

Task Prompt

Generating
paraphrases

Paraphrase the given paragraph keeping its original meaning. Do not add
information that is not present in the original paragraph. Your response should
be as indistinguishable to the original paragraph as possible in terms of length,
language style, and format. Begin your answer directly without any introductory
words.

Generating
contradictions

Rewrite the given paragraph to contradict the original content. Ensure the
revised paragraph changes the factuality of the original. Your response should be
as indistinguishable to the original paragraph as possible in terms of length,
language style, and format. Begin your answer directly without any introductory
words.

Table 9: Prompts used to generate paraphrases and contradictions for MSMARCO and HotpotQA
documents.

factually wrong information. For example, Laban et al. (2022) detects whether a given summary is
consistent with the input document, Shahi & Nandini (2020); Cui & Lee (2020) detects whether a
given COVID-19 related news is true or false. Most of these datasets lie in a specific domain and
require external knowledge to judge the correctness of each piece of data. On the contrary, the “data
inconsistency” notion we consider in our paper doesn’t depend on any external knowledge, but is a
relationship between different pieces of data in the same corpus. The goal of our method is to find
such “contradiction pairs” in corpus efficiently, but not to judge which one is consistent with the real
world knowledge.

D TWO EXAMPLES DEMONSTRATING THE “NON-TRANSITIVITY” OF HOYER
SPARSITY AND THE “TRANSITIVITY” OF COSINE FUNCTION

Here, we provide a simple example to demonstrate that using Hoyer sparsity to measure “contradiction”
can bypass the challenging scenario for similarity metrics where “A contradicts C, B contradicts C,
but A doesn’t contradict B”. Specifically, Hoyer sparsity satisfies the following “non-transitivity”
property.
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Proposition D.1 (“non-transitivity” of hoyer sparsity). There exist three vectors A, B, and C of
dimensionality d, satisfying 1 ≤ ∥A∥2, ∥B∥2, ∥C∥2 ≤ 1 + O( 1√

d
), such that Hoyer(A,C) >

1−O
(

1√
d

)
, Hoyer(B,C) > 1−O

(
1√
d

)
, and Hoyer(A,B) < O( 1√

d
)

Proof. We construct the following d dimensional vectors where ϵ < 1
d can be any parameter.

A = (1, 0, 0, . . . , 0)
B = (1, 0, ϵ, . . . , ϵ)
C = (0, 1, 0, . . . , 0)

Then, we calculate their l1 over l2 ratios:

∥A−B∥1
∥A−B∥2

=
√
d− 2

∥A− C∥1
∥A− C∥2

=
√
2

∥B − C∥1
∥B − C∥2

=
2 + (d− 2)ϵ√
2 + (d− 2)ϵ2

<
3√
2

Applying their l1 over l2 ratio bounds to the Hoyer sparsity formula will give us the desired relation-
ship.

Next, we provide another example to demonstrate that the cosine function exhibits the following
“transitivity” property, which makes it hard to characterize the scenario where “A contradicts C, B
contradicts C, but A doesn’t contradict B”.

Proposition D.2 (“transitivity” property of cosine function). Given three unit vectors A, B, and C,
if cos(A,C) ≥ 1−O(ϵ) and cos(B,C) ≥ 1−O(ϵ), we have cos(A,B) ≥ 1−O(ϵ)

Proof. For any two vectors X and Y with unit norm, we have cos(X,Y ) = 1− ∥X−Y ∥2
2

2 . Because

cos(A,C) ≥ 1 − O(ϵ), we have ∥A − C∥2 ≤ O(
√
ϵ). Finally, cos(A,B) = 1 − ∥A−B∥2

2

2 ≥
1− (∥A−C∥2+∥C−B∥2)

2

2 ≥ 1−O(ϵ)

E EXPERIMENT COMPARISON WITH METHOD FROM SHI ET AL. (2023)

Shi et al. (2023) proposes "Bipolar-encoder" method to retrieve contradictions from the corpus.
They also tested their method on the Arguana dataset but used a different metric, Recall@1. For
completeness, we have translated our results into their Recall@1 metric for a fair comparison. As
shown in Table 10, both our CL (baseline method) and CL+SparseCL (our method) demonstrate
significant improvement over the previous results in Shi et al. (2023).

Model Method Arguana(Recall@1)

GTE CL+SparseCL (ours) 0.629
GTE CL (baseline) 0.563

Shi et al. (2023) Bipolar-encoder 0.490

Table 10: Comparison of experimental results on the Arguana dataset
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F A CASE STUDY FOR COUNTER-ARGUMENT RETRIEVAL FROM ARGUANA
DATASET

In this section we provide an example to illustrate how our sparsity-based retrieval method is better at
retrieving counter-arguments. In the setting of the augmented Arguana dataset (see our ablation study
in Section 4.5), we selected an example query with an ID "aeghh-pro03a", for which we list the top 10
retrieved passages using the standard cosine similarity score and our sparsity-based score (α = 1.78
selected from the dev set). The first five letters of a passage ID represent the argument topic ID;
“pro/con” denotes the argument stance; suffix “a/b” indicates the argument and its corresponding
counter-argument; “para0/para1/para2” are three paraphrases generated by GPT4.

As shown in Table 11, for the example query "aeghh-pro03a", its correct counter-argument, "aeghh-
pro03b" (in red), ranks fourth using the cosine score but first using the cosine + hoyer score.
Meanwhile, its paraphrases “aeghh-pro03a-para0/1/2” (in blue) achieve high cosine scores but
low sparsity scores.

Method CL(Cosine) CL(Cosine)+SparseCL(Hoyer)

Rank Cosine Passage ID Overall Cosine Hoyer Passage ID

1 0.940 aeghh-pro03a-para0 1.683 0.794 0.499 aeghh-pro03b
2 0.926 aeghh-pro03a-para2 1.644 0.719 0.519 aeghh-con02a-para0
3 0.916 aeghh-pro03a-para1 1.617 0.716 0.506 aeghh-con02a-para2
4 0.794 aeghh-pro03b 1.606 0.940 0.374 aeghh-pro03a-para0
5 0.719 aeghh-con02a-para0 1.602 0.718 0.496 aeghh-con02a-para1
6 0.718 aeghh-con02b 1.528 0.718 0.454 aeghh-con02b
7 0.718 aeghh-con02a-para1 1.494 0.916 0.324 aeghh-pro03a-para1
8 0.716 aeghh-con02a-para2 1.426 0.926 0.280 aeghh-pro03a-para2
9 0.696 aeghh-con02a 1.396 0.669 0.408 dhwif-pro02b

10 0.692 aeghh-pro04a-para0 1.344 0.628 0.402 thggl-con03b

Table 11: An example query analysis for counter-argument retrieval. The passage ID in red represents
the ground-truth counter-argument, while the passage IDs in blue are paraphrases of the query
argument.

G HYPER-PARAMETERS FOR TRAINING AND INFERENCE

Here we present the training details (Table 12) for our experiments on Arguana and synthetic
HotpotQA and MSMARCO. We report the α parameters tuned on the validation set in Table 13. We
search the α parameters from the range [0, 10] by first dividing the range into 10 intervals, calculating
the NDCG@10 score on the validation set for each interval’s midpoint, and then diving into that
interval for a finer search. We stop when the interval range is smaller than 0.01

Models Model Size Backbone CL SPARSECL temp bzep lr ep lr

GTE-large-en-v1.5 434M BERT + RoPE + GLU 1 1e-5 3 2e-5 0.01 64
UAE-Large-V1 335M BERT 1 2e-5 3 2e-5 0.02 64

bge-base-en-v1.5 109M BERT 1 2e-5 3 2e-5 0.02 64

Table 12: Training parameters for Arguana. We set max sequence length to be 512 for Arguana
dataset and 256 for HotpotQA and MSMARCO datasets.

H EFFICIENCY TEST OF CROSS-ENCODER AND VECTOR CALCULATION

To further compare the efficiency of cross-encoders and Hoyer sparsity calculations, we perform the
following experiments:
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Models Methods Arguana MSMARCO HotpotQA

GTE Zeroshot (Cosine) + SPARSECL(Hoyer) 0.88 2.65 2.36
CL (Cosine) + SPARSECL(Hoyer) 0.20 0.35 5.44

UAE Zeroshot (Cosine) + SPARSECL(Hoyer) 0.20 1.00 1.06
CL (Cosine) + SPARSECL(Hoyer) 0.31 1.01 1.22

BGE Zeroshot (Cosine) + SPARSECL(Hoyer) 0.18 2.19 4.82
CL (Cosine) + SPARSECL(Hoyer) 0.12 2.53 3.72

Table 13: α choices for different methods and datasets

• We choose “bge-reranker-base” and “bge-reranker-large” to be our cross-encoders. We
use them to calculate the similarity between one query from Arguana’s test set and 100
documents from Arguana’s corpus. We report the average running time of this method for
100 queries.

• We choose “bge-base-en-v1.5” and “bge-large-en-v1.5” to be our bi-encoders. Suppose we
have preprocessed all the sentence embeddings. We use it to calculate the Hoyer sparsity
between one query embedding from Arguana’s test set and 100 document embeddings from
Arguana’s corpus. We report the average running time of this method for 100 queries.

Please see Table 14 for the running time of different methods. We can see that the calculation of
Hoyer sparsity is at least 200 times faster than running a cross-encoder.

Cross-encoder Model size Time

bge-reranker-base 278M 0.8832s
bge-reranker-large 560M 1.6022s

Bi-encoder Embedding dimension Time

bge-base-en-v1.5 768 0.0029s
bge-large-en-v1.5 1024 0.0036s

Table 14: Average running time for calculating the score functions between one Arguana query and
100 Arguana documents
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