Empirical Evaluation of Knowledge Distillation from Transformers to
Subquadratic Language Models

Anonymous ACL submission

Abstract

Knowledge distillation is a widely used tech-
nique for compressing large language mod-
els (LLMs), in which a smaller student model
is trained to mimic a larger teacher model.
Typically, both the teacher and student mod-
els are Transformer-based architectures, lever-
aging softmax attention for sequence model-
ing. However, the quadratic complexity of self-
attention during inference remains a significant
bottleneck, motivating the exploration of sub-
quadratic alternatives such as structured state-
space models (SSMs), linear attention, and re-
current architectures. In this work, we systemat-
ically evaluate the transferability of knowledge
distillation from a Transformer teacher model
to eight subquadratic student architectures. Our
study investigates which subquadratic model
can most effectively approximate the teacher
model’s learned representations through knowl-
edge distillation, and how different architec-
tural design choices influence the training dy-
namics. We further investigate the impact of
initialization strategies, such as matrix mixing
and query-key-value (QKV) copying, on the
adaptation process. Our empirical results on
multiple NLP benchmarks provide insights into
the trade-offs between efficiency and perfor-
mance, highlighting key factors for successful
knowledge transfer to subquadratic architec-
tures.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has led to significant advances in natural language
processing (NLP) by enabling highly scalable and
parallelizable training of language models (LMs).
The core of its effectiveness is the self-attention
mechanism, which produces contextualized token
representations across long sequences. However,
the quadratic computational complexity of self-
attention, O(n?) with respect to sequence length,
leads to high inference costs for long sequences,

posing challenges for resource-constrained applica-
tions.

Rise of linear complexity architectures. To ad-
dress this limitation, alternative architectures have
been proposed that reduce the complexity of self-
attention. These models achieve subquadratic, and
often linear, complexity with O(n). These in-
clude linear attention models (Katharopoulos et al.,
2020), structured state-space models (SSMs) (Gu
and Dao, 2024; Dao and Gu, 2024), and recur-
rent neural networks (RNNs) with improved gating
mechanisms (Sun et al., 2023). These architectures
aim to reduce computational overhead while main-
taining competitive modeling capabilities.

While these architectures offer theoretical effi-

ciency gains, pretraining them from scratch is pro-
hibitively expensive and training-intensive. More-
over, their training dynamics remain less well un-
derstood than those of Transformers, making op-
timization more challenging. To avoid costly pre-
training, we apply knowledge distillation (Hinton
et al., 2015) from capable Transformer models into
subquadratic architectures, aiming to retain their
language modeling capabilities while significantly
improving efficiency. Although knowledge distil-
lation is typically applied between models of the
same architecture, we adapt this paradigm to dis-
till from a Transformer teacher into various sub-
quadratic student models.
Contributions. To assess the feasibility of trans-
ferring knowledge from Transformer-based mod-
els into subquadratic architectures, we conduct a
controlled empirical study involving eight distinct
architectures (see Figure 1 for an overview of our
approach). Our study aims to quantify the extent
to which different architectures preserve the induc-
tive biases and representations learned by attention-
based Transformers, and to analyze the effect of
various alignment strategies on downstream task
performance.

Specifically, we incorporate several alignment

Model Architecture Teacher (Self-Attention) Student (Linear Attention) Alignment Steps
N Initial Step:
LM Head [pt = o(FFN(y)) H Dy,)](—[q: = o(FFN(3))] Replace softmax attention in
student model with linear
_-—— - == attention module.
I I 1 L |
X 1 Yy 1 1 Y 1 Initialization strategies:

1 I 1 I Copying Query, Key, Value,
¥ FFN - 4 - - 4 - and Output projection from
g teacher
al
o Norm — == [N N N L] = Matrix mixing:

w T i
s 1 QK 1 |l T 1 Matrix norm between teacher
& o() > [4(Q) d(K)'V and student attention output.
9 [Multihead 1 vD ' | ! 1 P
2 Attention . -T- - 'T 4 j_ - I - T - Hidden State Alignment:
E - - === = L2-norm between teacher
Norm Wo Wi Wy : Wo Wi Wy : and student hidden states.
4 - -—k = = -
T LJ L Full training between
transformer teacher
Embedding and linearized student.
x T
/

Figure 1: Overview of our knowledge distillation approach. We replace the softmax attention mechanism in
transformer models with various subquadratic modules and train the resulting models using knowledge distillation

and additional alignment techniques.

strategies to facilitate effective knowledge trans-
fer, including matrix mixing (aligning the stu-
dent’s attention mechanism with the teacher’s self-
attention), QKV copying (initializing the student’s
query, key, and value projections with those learned
by the teacher), and hidden-state alignment (mini-
mizing the divergence between intermediate repre-
sentations of the student and teacher models).

Our empirical results reveal significant perfor-
mance disparities across different subquadratic ar-
chitectures, with XLSTM (Beck et al., 2024) achiev-
ing the highest average performance. Additionally,
leveraging all advanced alignment techniques com-
bined yields notable improvements. We summarize
our contributions as follows:

* We present a systematic empirical evaluation
of knowledge distillation into subquadratic
models, comparing alignment techniques and
downstream task performance.

* We analyze the effectiveness of various align-
ment strategies, such as hidden-state align-
ment, and direct and indirect token mixer
alignment, providing insights into the role
of structural compatibility in student-teacher
adaption

¢ We release our code and models to facilitate
further research on linearizing attention-based
Transformer models.

2 Preliminaries and Related Work

With the introduction of Transformers (Vaswani
et al., 2017), the softmax attention mechanism be-
came the de facto standard for language model-
ing. However, it has a computational complexity
of O(n%d), where n is the sequence length and d
the hidden dimension of the model.

Parallel form of softmax attention. Given an
input sequence = € R™*¢, the model computes
projected “query,” “key,” and “value” representa-
tionsas Q, K,V = xWg,xW g, Wy, where
Wo, Wk, Wy € R¥*? are learnable weight ma-
trices. The output y € R™*? of softmax attention
is computed as:

y =softmazx((QKT)® M)V, (D

where M € R™ "™ is a causal mask to prevent
the model from attending to future tokens. Thus,
softmax attention allows each token to attend to
all tokens in the sequence by computing similarity
scores between queries and keys, and using these
scores to compute a weighted sum of value vectors.
Recurrent form for inference. While self-
attention can be computed in parallel during train-
ing (Equation (1)), which is efficient on GPUs,
inference requires sequential computation. At each
decoding step, a newly generated token x; € R1*¢
attends to all previous tokens. Thus, the recurrent
formulation of softmax attention is given by

St exp(qk])v;
>iiexp(qk])

Y =)

ARCHITECTURE

RECURRENCE

mLSTM (Beck et al., 2024)

GLA (Yang et al., 2024)

RetNet (Sun et al., 2023)

MetalLA (Chou et al., 2024)
DeltaNet (Yang et al., 2025)

Linear Attention

+ Vanilla (Choromanski et al., 2022)
+ ReBased (Aksenov et al., 2024)

+ Hedgehog (Zhang et al., 2024b)

DECAY TERM
St = ftSi—1+ itvtk:tT dynamic
S; = S;_1Diag(a;) + vtkstT dynamic
S =vSi-1+ 'vtk: static
S; = S;_1Diag(oy) +vi(1 —ay) " dynamic
Sy = Si_1(a(l — Bikik/)) + vk, dynamic

S =81+ Ut¢(kt)T -
where ¢(x) = elu(x) + 1 -
where ¢(z) = (v - norm(z) +)2 -
where ¢(z) = exp(Wz + b) -

Table 1: Overview of all architectures and their recurrent form under evaluation. S; € R4x"

where q;, ki, vy = W, zeWg, z:Wy. As
a result, autoregressive inference incurs grow-
ing memory and computational costs, since each
new token must recompute attention over a ever-
expanding set of keys and values {k;, vz}f;i

Linear complexity with kernelized feature
maps. Katharopoulos et al. (2020) introduce a
kernel-based approximation of the softmax atten-
tion by applying a feature map ¢(-), such that:

softmar(QKT) ~ 6(Q)6(K)T. (3

Leveraging the associative property of matrix mul-
tiplication, we can rewrite the recurrent form of
attention:

_ Xi dlg)dlk)To;
Z§=1 ¢(qt)¢(k’z‘)T

_ 0(a) Xioy $ki)Tvi.)
¢(qr) Yoiy P(ki)T

Unlike the standard softmax formulation (cf. Equa-
tion (2)), which scales with O(n2d), the kernelized
approximation (cf. Equation (5)) reduces the com-
plexity to O(nd?).

Existing Linear Attention Models. Several fea-
ture map strategies have been proposed to address
issues such as negative attention weights and train-
ing instabilities. TransNormer (Qin et al., 2022)
and Retention Networks (RetNet) (Sun et al., 2023)
identify instabilities in the normalization term of
linear attention and replace classical normaliza-
tion with GroupNorm (Wu and He, 2018). Re-
Based (Aksenov et al., 2024) introduces a learnable
polynomial kernel that adapts during training, miti-
gating the limitations of fixed feature maps. Simi-
larly, Hedgehog (Zhang et al., 2024b) extends this
idea by learning feature maps using single-layer

“4)

networks, which preserve low-entropy attention
weights and enforce monotonicity of query-key dot
products. DeltaNet (Yang et al., 2025) introduces
a delta update rule designed to improve memory
efficiency and recall.

Beyond kernel-based methods, recent work in-
corporates recurrent structures into linear atten-
tion models. This includes Linear Recurrent
Unit (LRU) (Orvieto et al., 2023) and Recep-
tance Weighted Key Value (RWKYV) (Peng et al.,
2023, 2024), which both model sequence infor-
mation through gated recurrence. Several works
explore alternative gating parameterizations to im-
prove selective information flow. Examples include
Gated Linear Attention (GLA) (Yang et al., 2024),
Hierarchically Gated Recurrent Neural Networks
(HGRN/HGRN2) (Qin et al., 2023, 2024), Grif-
fin (De et al., 2024), and mLSTM (Beck et al.,
2024). Mamba2 (Dao and Gu, 2024) proposes
a variant of linear attention based on state-space
models from control theory, where sequence dy-
namics are modeled using latent state variables.
Other approaches, such as Meta Linear Attention
(MetaLA) (Chou et al., 2024) and Zimerman et al.
(2024), present unified theoretical frameworks that
improve the approximation of softmax attention
while reducing parameter redundancy.

Linearizing softmax attention in pretrained
LMs. Rather than training linear models from
scratch, several approaches (Kasai et al., 2021;
Mao, 2022) replace softmax attention with linear at-
tention blocks in pretrained Transformers and apply
knowledge distillation (Hinton et al., 2015). More
recent work refines this paradigm with increasingly
targeted strategies. SUPRA (Mercat et al., 2024)
introduces a scalable uptraining framework to con-
vert pretrained Transformers into recurrent archi-

tectures. LOLCATSs (Zhang et al., 2024a) combines
low-rank adaptation (Hu et al., 2021) with attention
transfer to efficiently approximate softmax atten-
tion.. MOHAWK (Bick et al., 2024) employs a
staged distillation pipeline that progressively aligns
the student with its Transformer teacher. Further
extensions include Mamba-LLaMA (Wang et al.,
2025), which applies progressive distillation with
instruction tuning, and LIGER (Lan et al., 2025),
which reuses Transformer weights to construct
gating modules for a range of subquadratic mod-
els, incorporating sliding-window attention. Fi-
nally, Yueyu et al. (2025) linearize Qwen-2.5 us-
ing RWKV-7 blocks, combining hidden-state align-
ment with word-level distillation. As Mamba has
already become a common target for such distilla-
tion efforts, we focus our analysis on alternative
subquadratic architectures.

3 Methodology

The first step in linearizing softmax attention-based
language models involves replacing the attention
block with a linear attention module (see Table 1).
The common approach for training such linearized
language models is to apply knowledge distillation
(KD) from a softmax attention-based teacher model
to a student model, thereby avoiding the need for
expensive pretraining. The student model is trained
using two objectives: (/) cross-entropy loss for
next-token prediction and (2) the Kullback-Leibler
(KL) divergence between output distributions of
the teacher and the student. The total distillation
loss Lkp is defined as:

Lxp = Lcg + X - Lk, (6)

where L is the cross-entropy loss and L. is the
KL divergence loss. A is a scaling factor controlling
the contribution of each term. The KL divergence
loss is given by:

N
Lir =3 SKLGPRY). @)

i=1
where N is the number of tokens, KL denotes the
Kullback-Leibler divergence, and pg) and pg) are
the output probability distributions of the teacher
and student models, respectively, for the ¢-th token.
We provide a conceptual overview of these two
steps in Figure 1 and introduce additional align-
ment techniques in the following sections. As a
preliminary verification, we confirm that knowl-
edge distillation significantly improves student

model performance and that parameter copying
(e.g., copying the teacher’s MLP layers, embed-
dings, and language modeling head) provides an
effective starting point, consistent with prior find-
ings (Appendix A).

3.1 Additional Alignment Improvements

In the following section, we present refined align-
ment techniques to improve the distillation process
between the transformer teacher model and the lin-
earized student.
Attention matrix alignment. This approach aims
to align the teacher’s self-attention matrix with that
of the linearized student model. However, this is
non-trivial, since linear attention models do not ex-
plicitly compute full attention matrices. Prior work
reconstructs approximate attention matrices from
linear counterparts to enable alignment (Zhang
etal.,2024b,a). In particular, the MOHAWK frame-
work (Bick et al., 2024) proposes a method based
on minimizing the Frobenius norm between the
teacher’s self-attention matrix and the student’s
materialized matrix at each layer, referred to as
“matrix mixing.”

We extend this approach empirically to all eight
linear architectures listed in Table 1. The matrix
mixing loss is defined as:

L

Ly = i; |AtnMat{” — AtnMat |z, (8)
where L is the number of layers, AttnMat(TZ) is
the teacher’s self-attention matrix at layer ¢, and
AttnMatg) is the materialized attention matrix of
the student at the corresponding layer.
Hidden state alignment. An additional alignment
strategy introduced in the MOHAWK framework
is hidden state alignment, which encourages the
student model’s hidden representations to remain
close to those of the teacher. This is achieved by
minimizing the Lo-norm between corresponding
hidden states at each layer. The hidden state align-
ment loss is defined as:

L
1 i i
Lo = 7 Z; 1hY —nd3,)

where L is the number of layers, hgf) is the hidden

state of the teacher model at layer ¢, and hg) is the
corresponding hidden state of the student model.
This loss encourages the student model to preserve

intermediate representations of the teacher, thereby
improving structural alignment between the mod-
els.

4 Experimental Setup

For our empirical evaluation, we consider eight
subquadratic architectures as student models, listed
in Table 1. We use SmolLM-360M (Allal et al.,
2025) as our softmax attention-based teacher
model, which is built on the Llama architec-
ture (Touvron et al., 2023). To construct a lin-
earized student model, we retain the teacher’s nor-
malization layers, MLP blocks, embedding layers,
and language modeling head while replacing the
self-attention mechanism with the corresponding
linearized attention module (see Table 1). We
show the exact parameter counts for each model
in Appendix C.

We then train the student model using knowledge
distillation, with additional alignment techniques
progressively incorporated as described in Sec-
tion 3. After training, we evaluate the student
model’s performance on various downstream tasks.

4.1 Training Dataset and Evaluation

All student models are trained on a 3B-token sub-
set of the FineWeb dataset (Penedo et al., 2024),
a cleaned and deduplicated English web corpus.
Text is concatenated and chunked into fixed-length
sequences of 512 tokens. We allocate fixed budgets
for alignment objectives: 80M tokens for matrix
mixing and 160M for hidden-state alignment, fol-
lowing the MOHAWK setup (Bick et al., 2024).
For evaluation, we follow LM-Eval-Harness (Gao
et al., 2023) to assess six zero-shot tasks: LAM-
BADA (Paperno et al., 2016), WinoGrande (Sak-
aguchi et al., 2019), ARC (easy/challenge) (Clark
et al., 2018), PIQA (Bisk et al., 2019), and Hel-
laSwag (Zellers et al., 2019). LAMBADA is re-
ported as the mean of its Standard and OpenAl
variants. To evaluate long-context capabilities, we
include five subsets from LongBench (Bai et al.,
2024): WikiMQA, MultiFieldQA, NarrativeQA,
TREC, and TriviaQA. Inputs exceeding the context
window are left-truncated.

4.2 Training Details

We largely follow the training setup proposed in
MOHAWK, using the Adam (Kingma and Ba,
2017) optimizer for matrix mixing, hidden state
alignment and end-to-end training. For learning

rate scheduling, we apply a stable decay schedule
with warmup during matrix mixing phase and a
linear schedule for end-to-end training, which we
found to yield more stable results across all model
variants. The maximum learning rate was set to
1 x 1073, with a batch size of 48. We note that
MOHAWK uses only the KL divergence as its fi-
nal loss, whereas we additionally optimize with a
cross-entropy loss term (see Equation (6)), as it is
widely adopted in distillation setups and aligns with
its use in many practical implementations (Sanh
et al., 2019; Jiao et al., 2020; Haller et al., 2024).
We primarily use FLA (Yang and Zhang, 2024)
for model implementations, PyTorch (Paszke et al.,
2019) along with the Hugging Face Transformers
and Datasets libraries (Wolf et al., 2020; Lhoest
et al., 2021) for model training, inference, and
dataset management. We also compared the use
of Frobenius norm vs. mean squared error (MSE)
loss for matrix mixing and found both losses to
perform similarly (Appendix A). Based on this ob-
servation, we opted for Frobenius norm alignment
in our experiments due to its conceptual alignment
with prior approaches (Bick et al., 2024).

S Experiments and Results

5.1 Experiment 1: Downstream Evaluation

Our first experiment aims to answer which sub-
quadratic architectures are best suited for knowl-
edge distillation from a Transformer-based teacher.
To this end, we compare 8 architectures under dif-
ferent applications of the three phases of the MO-
HAWK framework: Stage 3 represents a full fine-
tuning of the architecture and is always applied.
Stages 1 and 2 correspond to attention matrix align-
ment and hidden state alignment, respectively. Ap-
plying all three phases constitutes to the full MO-
HAWK setup.

As a point of reference, we include two con-
figurations where the student is also based on
the LLama architecture: one where a newly
initialized LLama-based student is trained from
the teacher (Llama-Llamag,g4en¢) and a sanity
check in which the full teacher model is copied
into the student and then continuously fine-tuned
(Llama-Llama ,icopy). Table 2 shows the results
of this comparison. We make the following obser-
vations:

Recoverage of linearized models. Among all stu-
dent architectures, xXLSTM, GLA, and MetalLA
consistently achieve the highest recoverage scores

LAMB. WINOG.

ARC-E ARrc-C PIQA HELLAS.

MODEL STAGES AVG.T REC.
acc. acc. acc. norm. acc. norm. acc. norm acc. norm.
SmolLM-360M (Teacher) - 4133 56.51 63.72 36.01 71.49 53.37 53.73 -
Llama-Llama fy,1copy 3 40.88 56.04 63.01 36.35 71.44 53.59 53.55 -
Llama-Llamag,gens 3 3358 53.20 58.38 32.08 70.57 47.36 49.19 -
Llama-Llamagydent 243 4075 56.99 63.43 36.26 71.60 53.10 53.68 99.90%
Llama-Llamagyqdent 1+2+3 40.89 56.69 63.30 36.18 70.95 53.03 53.50 -
Llama-xLSTM 3 32.06 54.54 59.30 31.83 70.67 48.34 49.45 -
Llama-xLSTM 2+3 3444 54.46 59.72 32.68 71.49 49.89 50.44 -
Llama-xLSTM 1+2+3 3571 56.43 60.40 32.51 70.95 50.37 51.06 95.03%
Llama-MetalL A 3 3217 53.83 58.04 31.66 70.95 47.99 49.10 -
Llama-MetalL A 243 36.60 54.70 60.56 32.51 70.67 50.40 50.90 -
Llama-MetalL A 1+2+3 3639 54.22 61.07 32.68 71.22 50.21 50.95 94.82%
Llama-~GLA 3 3274 53.59 57.95 31.66 70.95 48.40 49.21 -
Llama-~GLA 2+3 3452 53.75 61.20 32.25 70.57 50.15 50.40 -
Llama~GLA 1+243 35.05 53.67 60.94 3242 70.35 50.17 50.43 93.85%
Llama-RetNet 3 30.01 53.04 57.41 32.17 69.86 46.45 48.15 -
Llama-RetNet 2+3 3232 55.33 59.13 31.23 70.51 48.47 4949 92.10%
Llama-RetNet 1+243 3154 53.83 59.97 32.00 70.35 48.47 49.35 -
Llama-DeltaNet 3 3244 53.51 58.84 31.74 71.55 47.81 49.31 -
Llama-DeltaNet 2+3 2828 52.49 57.32 31.74 70.46 46.38 47.77 88.90%
Llama-DeltaNet 1+243 2838 52.01 56.86 31.83 70.18 45.98 47.54 -
Llama-VanillaLA 3 19.03 50.20 51.01 27.65 67.68 38.53 42.53 -
Llama-VanillaLA 2+3 3174 53.91 56.90 31.83 69.75 46.99 48.52 90.30%
Llama-VanillaLA 1+2+3 3094 53.75 55.68 31.48 70.02 46.33 48.03 -
Llama-Rebased 3 20.76 50.51 50.55 27.99 68.12 39.29 42.80 -
Llama-Rebased 243 3177 53.35 58.25 30.97 69.80 47.60 48.62 -
Llama-Rebased 1+24+3 3441 52.80 57.83 3242 69.75 48.60 49.30 91.75%
Llama-Hedgehog 3 2057 51.07 52.06 28.58 68.66 39.43 43.95 -
Llama-Hedgehog 243 3094 53.83 56.94 31.14 69.75 46.45 48.17 89.65%
Llama-Hedgehog 1+2+3 3072 53.99 56.99 30.38 70.57 46.18 48.13 -

Table 2: Results on Zero-Shot LM downstream benchmarks. All models, except the teacher model SmolLM-360M,
were trained for 3B tokens of the FineWeb dataset. We provide two Llama-Llama results as upper bounds of transfer
within the same architecture: (1) Llama—Llama;,qent, Where a new transformer model is distilled from a teacher.
(2) Llama-Llama;copy, a sanity check where the teacher is fully copied into the student. We find that several
subquadratic architectures, such as XLSTM and MetalLA, outperform the Llama-Llamag;,4en: baseline.

across all training stage combinations, recovering
up to 95% of the teacher model’s performance. In
contrast, models lacking dynamic decay mecha-
nisms, like those with static or no decay terms,
consistently underperform. This trend highlights
the importance of explicit memory dynamics in pre-
serving the inductive biases of the teacher during
distillation.

Subquadratic architectures without decay term
consistently underperform. Kernel-based atten-
tion models such as VanillalLA, Rebased, and
Hedgehog fail to match the performance of recur-
rent or gated architectures, even when trained with
advanced alignment strategies. Although Hedge-
hog incorporates learnable feature maps to approxi-
mate softmax attention, it does not outperform sim-

pler baselines, indicating that capturing softmax-
like properties alone is insufficient. These results
highlight the importance of explicit memory mech-
anisms, such as decay or gating, for effectively
transferring the teacher model’s sequential reason-
ing capabilities.

Hidden state alignment substantially boosts per-
formance, especially on tasks requiring long-
range reasoning. We observe that hidden-state
alignment and end-to-end training (Stages 2+3)
yields consistent improvements across all architec-
tures compared to full fine-tuning alone (Stage 3),
with average gains of 1-3 points. These improve-
ments are particularly pronounced on LAMBADA, a
benchmark designed to test long-range dependency
modeling. For example, MetalLA improves from

LaMB. WINOG. ARC-E ARrc-C PIQA HELLAS.
MODEL STAGES AVG.T

acc. acce. acc. norm. acc. norm. acc_norm acc. norm.
Llama-xLSTM 3 32.06 54.54 59.30 31.83 70.67 48.34 49.45
Llama-xLSTM 4, 3 32.04 52.72 59.34 32.59 70.13 48.37 49.19
Llama-~GLA 3 3274 53.59 57.95 31.66 70.95 48.40 49.21
Llama~GLA 4, 3 30.67 53.83 59.86 31.91 70.13 48.24 49.10
Llama-RetNet 3 30.01 53.04 57.41 32.17 69.86 46.45 48.15
Llama-RetNet 3 27.63 54.70 57.73 32.08 70.08 46.06 48.04
Llama-DeltaNet 3 3244 53.51 58.84 31.74 71.55 47.81 49.31
Llama-~DeltaNetgy, 3 26.75 51.54 55.18 31.14 70.24 44.99 46.64
Llama-MetaLA 3 3217 53.83 58.04 31.66 70.95 47.99 49.10
Llama-Metal A j,, 3 30.10 54.14 58.21 31.83 69.64 47.48 48.56
Llama-LA 3 19.03 50.20 51.01 27.65 67.68 38.53 42.53
Llama-LA g, 3 19.53 49.72 51.22 27.56 67.46 39.73 42.53
Llama-Rebased 3 20.76 50.51 50.55 27.99 68.12 39.29 42.80
Llama-Rebased,,, 3 19.57 49.80 51.22 26.79 66.97 38.35 42.11
Llama-Hedgehog 3 20.57 51.07 52.06 28.58 68.66 39.43 43.95
Llama-Hedgehog,;,, 3 23.99 49.72 53.75 29.78 69.59 42.41 44.87

Table 3: Effect of copying query, key, value, and output projections from the teacher compared to random

initialization.

30.10 to 36.60 accuracy, and Rebased from 19.57
to 31.77.
Attention matrix alignment only provides
marginal improvements. Extending training to
include attention matrix alignment (Stages 1+2+3)
provides only marginal improvements over hidden
state alignment alone (Stages 2+3), and primar-
ily for architectures that already provide a strong
baseline. For most architectures, this phase has
negligible or even negative impact, indicating that
attention matrix alignment is only beneficial when
the student model is structurally capable of repre-
senting softmax-style interactions.

For full details on the convergence behavior
across training stages, we provide per-stage plots
in Appendix D.

5.2 Experiment 2: Impact of QKV Copying

We conduct an ablation experiment to investigate
whether copying the query, key, and value and out-
put projections from the teacher model provides
a good initialization for more effective alignment.
To this end, we train each model both with and
without copying all projections from the Trans-
former teacher. The results are shown in Table 3.
We find that, while copying each projection of-
fers a helpful initialization, it is insufficient for
effective knowledge transfer on its own. Only for

Llama-Hedgehog do we observe a noticeable im-
provement. This suggests that additional align-
ment stages are necessary to address structural mis-
matches and enable effective distillation.

5.3 Experiment 3: Explicit vs. Implicit
Approximation of Self-Attention

In this experiment, we investigate whether directly
approximating the attention weights leads to bet-
ter performance than aligning the attention hidden
state. We compare two setups: In the first, we
only train the parameters necessary to reconstruct
the attention weights for a given linear attention
model (taken from Experiment 2). In the second,
we apply an implicit approximation by aligning the
attention hidden state, which involves performing a
whole forward pass of the token mixer. The results
are depicted in Table 4. We observe that implicit
approximation via hidden-state alignment slightly
outperforms direct attention weight reconstruction
in most cases, particularly for MetalLA and GLA.
This suggests that fully engaging the token mixer
during training allows the student to better inter-
nalize the teacher’s inductive biases. However, the
differences remain small, indicating that both strate-
gies can support alignment, provided the model
has sufficient structural capacity. Overall, implicit
methods appear more robust across architectures.

Perplexity vs Context Length

1200 A

1000 A

800 1

600

Perplexity

400 A

200 4

0 - T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
Context Length

—— Llama-xLSTM
Llama-DeltaNet
—— Llama-Llama

—— Llama-MetalA
—— Llama-RetNet
—— Llama-GLA

LongBench Avg. Score

0 2000 4000 6000 8000 10000 12000 14000 16000
Context Length

Llama-Rebased
—— Llama-Hedgehog
Llama-LA

Figure 2: Long-context evaluation. Left: Perplexity over increasing context lengths. Right: LongBench scores.
Models with dynamic decay terms (xLSTM, GLA, MetalLA) retain performance across increasing context lengths,

while others show degradation.

MODEL EXPLICIT IMPLICIT
Llama-xLSTM 51.06 50.84
Llama-GLA 50.43 50.80
Llama-RetNet 49.35 49.64
Llama-MetalLA 50.95 51.00
Llama-DeltaNet 47.54 46.80
Llama-LA 47.88 48.03
Llama-Rebased 49.30 48.95
Llama-Hedgehog 48.13 48.01

Table 4: Final average performance across downstream
benchmarks for each model and alignment variant. Full
results are listed in Appendix E.

5.4 Experiment 4: Long-Context Evaluation

To assess the generalization ability of distilled mod-
els beyond standard sequence lengths, we evaluate
them under long-context scenarios. First, we con-
duct controlled perplexity measurements on pro-
gressively longer input sequences to analyze each
model’s capacity to integrate and retain information
over extended contexts. Second, we evaluate down-
stream performance using a subset of tasks from
the LongBench benchmark, which reflects realistic,
context-heavy applications. For inputs exceeding
a model’s maximum context length, we apply left-
truncation. As shown in Figure 2, models with
dynamic decay terms, like xLSTM, GLA, and Met-
alLA, maintain stable performance across longer
sequences. In contrast, models without such mech-
anisms (e.g., DeltaNet, RetNet, LA) exhibit sig-
nificant degradation, indicating limited long-range
generalization.

6 Conclusion

Our study evaluates the effectiveness of distilling
Transformer-based language models into a range
of subquadratic architectures, focusing on align-
ment techniques such as QKV copying, attention-,
and hidden-to-hidden alignment. We find that mod-
els with dynamic decay mechanisms consistently
achieve the highest performance and recover well
across training stages. In contrast, models with-
out explicit memory dynamics - such as VanillaLA,
Rebased, and Hedgehog - struggle to match the
teacher, even with advanced alignment strategies.
While QKV copying serves as a convenient ini-
tialization, it is insufficient alone, highlighting the
importance of progressive alignment.

Among the evaluated techniques, hidden-to-
hidden alignment emerges as the most reliable
strategy for guiding student models toward the
teacher’s representations. Attention alignment can
further support this process, though its benefits
are more architecture-dependent. Notably, several
subquadratic models, such as xXLSTM, GLA, and
MetalLA, achieve strong downstream performance
while preserving the efficiency advantages of lin-
earized attention.

As an outlook, preliminary results with scaled
variants of XLSTM (Table 10) suggest promis-
ing gains with increased model capacity. Future
work may explore scaling and adapting hidden-
state alignment for larger models.

We release our training pipelines, architectures,
and evaluation framework to support continued
research on efficient model design and cross-
architecture distillation.

Limitations

While our findings offer meaningful contributions,
several limitations should be considered:

Lack of qualitative analysis. While we provide
a broad empirical evaluation across diverse sub-
quadratic backbones, we do not examine how
the models’ inductive biases manifest during the
approximation of attention weights. A deeper
analysis of the resulting attention patterns—e.g.,
spikiness, focus distribution, or alignment dynam-
ics—could offer valuable insights into why certain
architectures align better than others and inform
future improvements to the distillation process.
Limited training data. The experiments were con-
ducted with a constrained dataset, limiting our abil-
ity to assess the full generalization potential of the
proposed techniques. Larger-scale training could
reveal additional insights into model adaptation
across diverse benchmarks.

Scaling to larger models. Our study primarily fo-
cuses on mid-sized models (350M to 500M param-
eters), and it remains an open question how well
these techniques generalize to larger architectures.
We hypothesize that matrix mixing may be more
effective for larger models due to their increased
hidden state dimensionality and greater representa-
tional capacity, allowing for a closer approximation
of the teacher’s attention matrix.

Despite these limitations, our findings provide a
foundation for future work exploring more effec-
tive alignment techniques, improved compatibility
layers, and novel training methodologies for effi-
cient language models. Further research into alter-
native architectures and task-specific adaptations
will be essential for advancing the deployment of
subquadratic models in real-world applications.

References

Yaroslav Aksenov, Nikita Balagansky, Sofia Maria
Lo Cicero Vaina, Boris Shaposhnikov, Alexey Gor-
batovski, and Daniil Gavrilov. 2024. Linear trans-
formers with learnable kernel functions are better
in-context models. Preprint, arXiv:2402.10644.

Loubna Ben Allal, Anton Lozhkov, Elie Bak-
ouch, Gabriel Martin Blazquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek,
Agustin Piqueres Lajarin, Vaibhav Srivastav, Joshua
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clé-
mentine Fourrier, Ben Burtenshaw, Hugo Larcher,
Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin
Raffel, Leandro von Werra, and Thomas Wolf.

2025. Smollm2: When smol goes big — data-
centric training of a small language model. Preprint,
arXiv:2502.02737.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xi-
aozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu, Lei
Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. 2024.
Longbench v2: Towards deeper understanding and
reasoning on realistic long-context multitasks. arXiv
preprint arXiv:2412.15204.

Maximilian Beck, Korbinian Poppel, Markus Span-
ring, Andreas Auer, Oleksandra Prudnikova, Michael
Kopp, Giinter Klambauer, Johannes Brandstetter, and
Sepp Hochreiter. 2024. xIstm: Extended long short-
term memory. In Thirty-eighth Conference on Neural
Information Processing Systems.

Aviv Bick, Kevin Y. Li, Eric P. Xing, J. Zico Kolter,
and Albert Gu. 2024. Transformers to ssms: Dis-
tilling quadratic knowledge to subquadratic models.
Preprint, arXiv:2408.10189.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piga: Reasoning about
physical commonsense in natural language. Preprint,
arXiv:1911.11641.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2022. Rethinking attention with per-
formers. Preprint, arXiv:2009.14794.

Yuhong Chou, Man Yao, Kexin Wang, Yuqi Pan, Rui-
jie Zhu, Yiran Zhong, Yu Qiao, Jibin Wu, Bo Xu,
and Guoqi Li. 2024. Metala: Unified optimal linear
approximation to softmax attention map. Preprint,
arXiv:2411.10741.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Tri Dao and Albert Gu. 2024. Transformers are
ssms: Generalized models and efficient algorithms
through structured state space duality. Preprint,
arXiv:2405.21060.

Soham De, Samuel L. Smith, Anushan Fernando, Alek-
sandar Botev, George Cristian-Muraru, Albert Gu,
Ruba Haroun, Leonard Berrada, Yutian Chen, Sri-
vatsan Srinivasan, Guillaume Desjardins, Arnaud
Doucet, David Budden, Yee Whye Teh, Razvan Pas-
canu, Nando De Freitas, and Caglar Gulcehre. 2024.
Griffin: Mixing gated linear recurrences with local
attention for efficient language models. Preprint,
arXiv:2402.19427.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,

https://arxiv.org/abs/2402.10644
https://arxiv.org/abs/2402.10644
https://arxiv.org/abs/2402.10644
https://arxiv.org/abs/2402.10644
https://arxiv.org/abs/2402.10644
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2405.04517
https://arxiv.org/abs/2405.04517
https://arxiv.org/abs/2405.04517
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2411.10741
https://arxiv.org/abs/2411.10741
https://arxiv.org/abs/2411.10741
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2402.19427

Albert Gu and Tri Dao. 2024.

Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Mamba: Linear-
time sequence modeling with selective state spaces.
Preprint, arXiv:2312.00752.

Patrick Haller, Jonas Golde, and Alan Akbik. 2024.

BabyHGRN: Exploring RNNs for sample-efficient
language modeling. In The 2nd BabyLM Challenge
at the 28th Conference on Computational Natural
Language Learning, pages 82-94, Miami, FL, USA.
Association for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.

Distilling the knowledge in a neural network.
Preprint, arXiv:1503.02531.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan

Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao

Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yo-

gatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao,
Weizhu Chen, and Noah A. Smith. 2021. Fine-
tuning pretrained transformers into rnns. Preprint,
arXiv:2103.13076.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-

pas, and Francois Fleuret. 2020. Transformers
are rnns: fast autoregressive transformers with lin-
ear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML’20.
JMLR.org.

Diederik P. Kingma and Jimmy Ba. 2017. Adam:

A method for stochastic optimization.
arXiv:1412.6980.

Preprint,

Disen Lan, Weigao Sun, Jiaxi Hu, Jusen Du, and

Yu Cheng. 2025. Liger: Linearizing large lan-
guage models to gated recurrent structures. Preprint,
arXiv:2503.01496.

Quentin Lhoest, Albert Villanova del Moral, Yacine

Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Dramg, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Sasko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
siere, Lysandre Debut, Stas Bekman, Pierric Cistac,
Thibault Goehringer, Victor Mustar, Frangois Lagu-
nas, Alexander M. Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. Preprint, arXiv:2109.02846.

10

Huanru Henry Mao. 2022. Fine-tuning pre-trained
transformers into decaying fast weights. Preprint,
arXiv:2210.04243.

Jean-Pierre Mercat, Igor Vasiljevic, Sedrick Scott Keh,
Kushal Arora, Achal Dave, Adrien Gaidon, and
Thomas Kollar. 2024. Linearizing large language
models. ArXiv, abs/2405.06640.

Antonio Orvieto, Samuel L Smith, Albert Gu,
Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. 2023. Resurrecting recur-
rent neural networks for long sequences. Preprint,
arXiv:2303.06349.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. Preprint,
arXiv:1606.06031.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. Preprint, arXiv:1912.01703.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben al-
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Stella Biderman, Huangi Cao,
Xin Cheng, Michael Chung, Matteo Grella, Kran-
thi Kiran GV, Xuzheng He, Haowen Hou, Jiaju Lin,
Przemyslaw Kazienko, Jan Kocon, Jiaming Kong,
Bartlomiej Koptyra, Hayden Lau, Krishna Sri Ipsit
Mantri, Ferdinand Mom, Atsushi Saito, Guangyu
Song, Xiangru Tang, Bolun Wang, Johan S. Wind,
Stanislaw Wozniak, Ruichong Zhang, Zhenyuan
Zhang, Qihang Zhao, Peng Zhou, Qinghua Zhou, Jian
Zhu, and Rui-Jie Zhu. 2023. Rwkv: Reinventing rnns
for the transformer era. Preprint, arXiv:2305.13048.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Al-
balak, Eric Alcaide, Stella Biderman, Eugene Cheah,
Xingjian Du, Teddy Ferdinan, Haowen Hou, Prze-
mystaw Kazienko, Kranthi Kiran GV, Jan Kocon,
Bartlomiej Koptyra, Satyapriya Krishna, Ronald Mc-
Clelland Jr., Jiaju Lin, Niklas Muennighoff, Fares
Obeid, Atsushi Saito, Guangyu Song, Haoqin Tu,
Cahya Wirawan, Stanistaw WozZniak, Ruichong
Zhang, Bingchen Zhao, Qihang Zhao, Peng Zhou,
Jian Zhu, and Rui-Jie Zhu. 2024. Eagle and finch:
Rwkv with matrix-valued states and dynamic recur-
rence. Preprint, arXiv:2404.05892.

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://aclanthology.org/2024.conll-babylm.7/
https://aclanthology.org/2024.conll-babylm.7/
https://aclanthology.org/2024.conll-babylm.7/
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2103.13076
https://arxiv.org/abs/2103.13076
https://arxiv.org/abs/2103.13076
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2503.01496
https://arxiv.org/abs/2503.01496
https://arxiv.org/abs/2503.01496
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2210.04243
https://arxiv.org/abs/2210.04243
https://arxiv.org/abs/2210.04243
https://api.semanticscholar.org/CorpusID:269740949
https://api.semanticscholar.org/CorpusID:269740949
https://api.semanticscholar.org/CorpusID:269740949
https://arxiv.org/abs/2303.06349
https://arxiv.org/abs/2303.06349
https://arxiv.org/abs/2303.06349
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2404.05892
https://arxiv.org/abs/2404.05892
https://arxiv.org/abs/2404.05892
https://arxiv.org/abs/2404.05892
https://arxiv.org/abs/2404.05892

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li,
Lingpeng Kong, Nick Barnes, and Yiran Zhong. 2022.
The devil in linear transformer. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 7025-7041, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen,
Dong Li, Weigao Sun, and Yiran Zhong. 2024.
Hgrn2: Gated linear rnns with state expansion.
Preprint, arXiv:2404.07904.

Zhen Qin, Songlin Yang, and Yiran Zhong. 2023. Hi-
erarchically gated recurrent neural network for se-
quence modeling. Preprint, arXiv:2311.04823.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Preprint,
arXiv:1907.10641.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. 2023. Retentive network: A successor to
transformer for large language models. Preprint,
arXiv:2307.08621.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.

Junxiong Wang, Daniele Paliotta, Avner May, Alexan-
der M. Rush, and Tri Dao. 2025. The mamba in
the llama: Distilling and accelerating hybrid models.
Preprint, arXiv:2408.15237.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. Preprint, arXiv:1910.03771.

Yuxin Wu and Kaiming He. 2018. Group normalization.
Preprint, arXiv:1803.08494.

11

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar
Panda, and Yoon Kim. 2024. Gated linear atten-
tion transformers with hardware-efficient training.
Preprint, arXiv:2312.06635.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen,
and Yoon Kim. 2025. Parallelizing linear transform-
ers with the delta rule over sequence length. Preprint,
arXiv:2406.06484.

Songlin Yang and Yu Zhang. 2024. Fla: A triton-based
library for hardware-efficient implementations of lin-
ear attention mechanism.

Lin Yueyu, Li Zhiyuan, Peter Yue, and Liu Xiao.
2025. Arwkv: Pretrain is not what we need, an
rnn-attention-based language model born from trans-
former. Preprint, arXiv:2501.15570.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan
Wu, Benjamin Spector, Aaryan Singhal, Krithik
Ramesh, and Christopher Ré. 2024a. Lolcats:
On low-rank linearizing of large language models.
Preprint, arXiv:2410.10254.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and
Christopher Ré. 2024b. The hedgehog & the por-
cupine: Expressive linear attentions with softmax
mimicry. Preprint, arXiv:2402.04347.

Itamar Zimerman, Ameen Ali, and Lior Wolf. 2024.
Explaining modern gated-linear rnns via a uni-

fied implicit attention formulation. Preprint,
arXiv:2405.16504.

A Preliminary Experiments

To validate our approach before full-scale train-
ing, we conducted preliminary experiments com-
paring standard training (without parameter copy-
ing) against parameter-initialized training on a next-
token prediction task. Our goal was to assess
whether initializing student models with param-
eters from a pre-trained Transformer teacher could
provide a more effective starting point.

Additionally, we explored the effect of Frobe-
nius norm vs. MSE loss for Attention Alignment,
finding both to yield similar performance.

https://doi.org/10.18653/v1/2022.emnlp-main.473
https://arxiv.org/abs/2404.07904
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/2311.04823
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/2408.15237
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://arxiv.org/abs/2501.15570
https://arxiv.org/abs/2501.15570
https://arxiv.org/abs/2501.15570
https://arxiv.org/abs/2501.15570
https://arxiv.org/abs/2501.15570
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://arxiv.org/abs/2410.10254
https://arxiv.org/abs/2410.10254
https://arxiv.org/abs/2410.10254
https://arxiv.org/abs/2402.04347
https://arxiv.org/abs/2402.04347
https://arxiv.org/abs/2402.04347
https://arxiv.org/abs/2402.04347
https://arxiv.org/abs/2402.04347
https://arxiv.org/abs/2405.16504
https://arxiv.org/abs/2405.16504
https://arxiv.org/abs/2405.16504

MODEL INITIALIZATION METHOD LAMB. WINOG. ARC-E ARC-C PIQA HELLAS. AVG.T
SmolLM-360M 49.26 59.35 70.24 36.65 71.65 43.11 55.04
Preliminary Standard Training

xLSTM 10.36 51.38 36.70 20.05 61.81 20.07 33.39
Llama-xLSTM 22.09 53.20 52.03 25.09 67.95 35.36 42.62
Frobenius vs. MSE

Llama-xLSTMEobenius + QKV + Matrix Mixing 34.13 55.17 66.40 29.01 70.62 38.54 48.98
Llama~xLSTMpysg + QKV + Matrix Mixing 33.76 55.41 65.43 29.35 70.24 38.55 48.79

B Attention Matrix Approximation

Table 6 summarizes all models under evaluation
and how each attention matrix equivalent is con-
structed. We furthermore include references to the

Table 5: Preliminary experiments conducted on 1B tokens.

original definition.

We define C'M as the causal mask, where

C Model Parameter Counts

Table 7 lists the number of parameters for each
model after replacing the attention layer with the
corresponding linear attention backbone.

Model #Params
CM;; = 0, lf] = ’L (10) Llama 361M
—oo, 1fj>1 Llama-xLSTM 478M
Llama-GLA 478M
Llama-RetNet 477TM
Llama-MetalL A 47TM
Llama-DeltaNet 448M
Llama-VanillaLA 448M
Llama-Rebased 448M
Llama—Hedgehog 448M
Table 7: Model list with corresponding parameter count
D Experiment 1: Convergence Behaviour
Figure 3 provides an overview of loss trajectories
across training stages for each model under all three
stage configurations.
Architecture Mixing Matrix P Decay / Mask Term Reference

Linear Attention

P=(¢(Q)¢(K)")oCM

+ Vanilla o(z) = elu(z) + 1 -
+ Rebased o(x) = (v - norm(zx) + B)? -
+ Hedgehog o(z) = exp(Wz +b) -
GLA P=((QoB)(¥))oCM B=[[_, a1 Yang et al. (2024), Section 4.1
0, ifi <j
mLSTM P=QK' o (F o exp(I)) Fi =<1, ifi =j Beck et al. (2024), Appendix A.3
[To(f), ifi>j
. T 0, ifi <j .
RetentionNet P=QK oD D;; = Pej eps . Sun et al. (2023), Section 2.1 Eq. 5
’ ol ifi > j
_ a0 T 41
DeltaNet P=(QK T 0CM)oT T=(I+ t”“f?gfg&@f K =1)7" Yang et al. (2025), Section 3.2
Table 6: Overview of attention matrix approximations for different sequence mixer backbones.

12

Llama - LA - Stage 1 Llama — LA - Stage 2 Llama — LA - Stage 3

200
Final Loss Stage 1+2+3: 42 Final Loss Stage 1+2+
20000 Final Loss Stage 2+3: 3 130 Final Loss Stage 2+3: 83
150 120
15000
2 2 2110
= 10000 2100 s
100
5000
90 p)
50 Y A A\
0 e U R B APy it ChANR A
80
oM 40M 80M oM 80M 160M 1388 2078 276B
Tokens Seen Tokens Seen Tokens Seen
Llama - DeltaNet - Stage 1 Llama - DeltaNet - Stage 2 Llama - DeltaNet - Stage 3
400 Final Loss Stage 1+2+3: 47 Final Loss Stage 1423
Final Loss Stage 2+3: 45.9 110 nal Loss Stage 2+ 95
300
100
] [Y
S 200 S % {
a0 {5 Fad, h !
100 VPRI H
i v M-w PAAA i
o i . 7 '\'V'V Ve g
oM 40M 80M oM 80M 160M 1388 2078 2768
Tokens Seen Tokens Seen Tokens Seen
Llama — Hedgehog - Stage 1 Llama - Hedgehog - Stage 2 Llama - Hedgehog - Stage 3
14 200 Final Loss Stage 1+2+3: 3 \ Final Loss Stage 1+2+3: 86.
Final Loss Stage 2+3: 3 160 '\[V\ AN » \r’ Final Loss Stage 2+3: 85.
12 e \A, h d\/\‘v\; (W x{\’ ﬂnoss Stage 3: 134.
150 140
8 100
‘ eidbmadodanabll e
oM 40M 80M oM 80M 160M 1388 2078 276B
Tokens Seen Tokens Seen Tokens Seen
Llama - Rebased - Stage 1 Llama - Rebased - Stage 2 Llama — Rebased - Stage 3
20 At TS SB5E 11213649
v J M) Final Loss St:
5000 AN Final Loss Stage 25030 8
2000 150 200
4 3000 2 2
3 S 100 8150
2000
| .
1000 50 conah 100775 A i L N S PN
0
oM 40M 80M oM 80M 160M 1388 2078 2768
Tokens Seen Tokens Seen Tokens Seen
Llama — MetalA - Stage 1 Llama — MetalLA - Stage 2 Llama — MetalLA - Stage 3
600 200 [i g 0l
inal Loss Stage 2+ W, KN
500 WA ,m. \
150 80 V’\
400
& 300 g
3 3 100
200
100 50
P IO
0 A
oM 40M 80M oM 80M 160M 1388 2078 276B
Tokens Seen Tokens Seen Tokens Seen
Llama — GLA - Stage 1 Llama - GLA - Stage 2 Llama - GLA - Stage 3
Final Loss Stage 1+2+3: 62.4
6000 Final Loss Stage 2+3: 53.3
80 ﬂ Final Loss Stage 3: 67.5
i
i 'Nw\w Wl
AR e F
g L’
5 4000 g 70 T Ay
3 3
2000
0
oM 40M 80M oM 80M 160M 1388 2078 2768
Tokens Seen Tokens Seen Tokens Seen
15000 Llama - RetNet - Stage 1 Llama — RetNet - Stage 2 Llama — RetNet - Stage 3
200
Final Loss Stage 1+2+3: 31.2 b | Final Loss Stage 1+2+3: 72.7
12500 Final Loss Stage 2+3: 2! ‘J ! Final Loss Stage 2+3: 74.0
Final Loss Stage 3: 112.3
10000 x
2 7500
S
5000
2500
0
oM 40M 80M oM 80M 160M 1388 2078 2768
Tokens Seen Tokens Seen Tokens Seen
Llama — XLSTM - Stage 1 Llama — XLSTM - Stage 2 Llama — XLSTM - Stage 3
250 Final Loss Stage 1+2+3: 24. 110 Final Loss Stage 1+2+3: 58
h Final Loss Stage 2+3: 2! Loss Stage 2+
! B 7 100 il toss Stage
200!
| 90
|
@ 2 150 q|1 2 8o
3 3 \ ﬁwﬁ
1004 | 70
50 01\ W Anm AN, ;
YOI 0 VNN e i o]
oM 40M 80M oM 80M 160M 1388 2078 2768
Tokens Seen Tokens Seen Tokens Seen

Figure 3: Loss plots for all runs conducted in Experiment 1. Green line plots indicate only Stage 3 training, while
red and blue indicate Stage 2+3 and 1+2+3 Stage respectively.

13

E Experiment 3: Full Results for Explicit
vs. Implicit Attention Approximation

For completeness, we include the full results of
Experiment 3.

F Experiment 4: Full Results for the
Longe Context experiments

For completeness, we include the full results of
Experiment 4.

G Ablation: SmolLM-xLLSTM Collection

As an outlook, we trained XLSTM student models,
based on the SmolLM collection. We used the
same training setup as described in Section 4. For
the 1.7B model equivalent we also trained a version
with a lower learning rate to adjust for size. Results
are shown in Table 10.

H Ablation: Efficiency Comparison.

Figure 4 shows token generation speed and mem-
ory usage across models. Transformer models like
Llama incur higher costs due to softmax attention
and growing key-value caches. In contrast, lin-
ear attention and recurrent models (e.g., XLSTM,
GLA) maintain constant or subquadratic memory
and achieve faster, linear-time inference through
efficient state updates.

14

LAMB. WINOG. ARC-E ARrc-C PIQA HELLAS.

MODEL MAT. MIXING AVG.T
acce. acc. acc. norm. acc. norm. acc_norm acc. norm.
Llama~xLSTM,,ohawk Explicit 35.71 56.43 60.40 32.51 70.95 50.37 51.06
Llama~xLSTM,,,ohawk Implicit 36.05 55.09 59.85 33.28 70.95 49.87 50.84
Llama~GLA,,ohawk Explicit 35.05 53.67 60.94 3242 70.35 50.17 50.43
Llama~GLA ,ohqwk Implicit 35.06 54.62 61.07 33.36 70.51 50.19 50.80
Llama-RetNet,,ohqwk Explicit 31.54 53.83 59.97 32.00 70.35 48.47 49.35
Llama-RetNet,,onqwk Implicit 32.27 54.62 59.60 3242 70.67 48.26 49.64
Llama-MetalLA,,ohqwk Explicit 36.39 54.22 61.07 32.68 71.22 50.21 50.95
Llama-MetalLA,,ohawk Tmplicit 35.54 54.14 62.08 32.94 71.00 50.31 51.00
Llama-DeltaNet,,,ohqawr ~ Explicit 28.38 52.01 56.86 31.83 70.18 45.98 47.54
Llama-DeltaNet,,,onqawr ~ Implicit 26.83 50.36 57.20 30.80 69.80 45.84 46.80
Llama-LA,,onawk Explicit 30.66 53.43 56.51 31.06 69.53 46.13 47.88
Llama-LA,ohawk Implicit 30.94 53.75 55.68 31.48 70.02 46.33 48.03
Llama-Rebased Explicit 34.41 52.80 57.83 3242 69.75 48.60 49.30
Llama-Rebased Implicit 33.14 53.49 57.37 31.06 70.51 48.13 48.95
Llama-Hedgehog,,, .o EXplicit 30.72 53.99 56.99 30.38 70.57 46.18 48.13
Llama-Hedgehog,,, nowe Implicit 30.44 52.17 56.69 32.17 70.62 46.02 48.01

Table 8: Comparison of explicit and implicit alignment of the token mixer backbone. When applying both approaches
an additional 80M tokens is allocated from the 3B token budget.

Inference Efficiency Memory Consumption

—e— Llama-GLA 1 —=- Lama-GLA
Llama Llama
—e— Llama-xLSTM | =m- Llama-xLSTM

<

=}

<)
~
@

@

=]

S
~
o

5]

S

IS]
~
kS

~
N

~
o

1 ——————— ———————— e =

w
8
GPU Memory (GB)

Generation Time (seconds)
(5] 'S
8 3

"
S
5]

©
I
S

18 1k ak ok 16K 128 1k ak ok 16

Sequence Length

Figure 4: Inference efficiency and memory consumption of linear and softmax attention models, evaluated across
single sequences of varying lengths.

15

Model

WIKIMQA MULTIFIELDQA NARRATIVEQA TREC TRIVIAQA AVG.

512 Context

SmolLM-360M 34.30 26.71 30.25 14.96 34.11 28.06
Llama-xLSTM 31.90 23.94 26.54 7.67 30.15 24.04
Llama-GLA 34.12 29.26 28.92 5.75 28.26 25.26
Llama-MetalLA 22.59 21.19 19.46 0.00 25.04 17.66
Llama—RetNet 31.17 26.35 26.53 8.25 27.06 23.87
Llama-DeltaNet 26.19 27.38 27.44 5.25 29.79 23.21
Llama-LA 21.30 19.82 19.72 0.00 23.07 16.78
Llama-Bebased 32.61 28.54 24.78 9.00 27.51 24.49
Llama-Hedgehog 31.66 25.45 26.12 2.75 29.67 23.13
2K Context
SmolLM-360M 35.63 27.17 30.06 16.08 33.66 28.52
Llama-xLSTM 32.87 26.88 27.04 5.75 28.10 24.13
Llama-GLA 30.39 29.29 26.79 5.67 31.03 24.63
Llama-MetalLA 22.54 22.06 19.10 0.00 24.59 17.66
Llama-RetNet 18.00 17.40 16.03 1.50 18.48 14.28
Llama-DeltaNet 24.98 24.41 20.49 0.50 24.17 18.91
Llama-LA 11.75 11.36 12.99 0.00 16.06 10.43
Llama-Rebased 21.67 20.75 17.96 0.00 20.18 16.11
Llama-Hedgehog 22.28 20.02 21.13 0.00 18.88 16.46
4K Context
SmolLM-360M 33.18 24.51 31.70 15.29 36.68 28.27
Llama-xLSTM 31.16 23.40 25.77 5.00 26.96 22.46
Llama-GLA 33.12 23.05 26.83 2.75 30.10 23.17
Llama—-MetalLA 22.73 22.71 19.10 0.00 24.73 17.85
Llama-RetNet 18.07 11.21 16.66 1.25 19.12 13.26
Llama-DeltaNet 16.71 18.49 19.55 0.00 23.44 15.64
Llama-LA 13.97 14.92 17.21 0.00 13.60 11.94
Llama-Rebased 17.41 16.63 25.27 0.00 20.48 15.96
Llama-Hedgehog 21.78 16.43 19.40 0.00 18.57 15.24
8K Context
SmolLM-360M 17.84 15.44 17.29 0.17 19.06 14.16
Llama-xLSTM 33.71 27.66 24.86 4.25 27.61 23.62
Llama-GLA 30.63 27.55 28.06 3.50 28.87 23.72
Llama-MetalLA 24.26 22.72 19.10 0.00 25.18 18.25
Llama-RetNet 16.70 15.85 17.25 1.50 15.05 13.27
Llama-DeltaNet 17.21 21.43 18.57 0.00 18.87 15.22
Llama-LA 12.90 13.06 10.79 0.00 12.94 9.94
Llama-Rebased 11.98 15.61 24.65 0.50 20.66 14.68
Llama-Hedgehog 20.65 17.19 17.85 0.00 16.31 14.40
16K Context
SmolLM-360M 18.12 18.01 20.29 0.00 20.96 15.47
Llama-xLSTM 30.31 28.19 28.25 4.00 28.77 23.90
Llama-GLA 33.10 29.10 28.48 2.00 29.75 24.49
Llama-MetalLA 25.29 20.55 19.31 0.00 25.34 18.10
Llama-RetNet 17.16 15.89 19.90 0.00 18.19 14.23
Llama-DeltaNet 20.62 18.75 20.08 0.00 22.35 16.36
Llama-LA 13.44 11.28 11.26 0.00 14.02 10.00
Llama-Rebased 13.21 14.81 23.64 0.00 16.25 13.58
Llama-Hedgehog 16.00 17.23 13.62 0.00 16.15 12.60

Table 9: Full evaluation results for long-context evaluation on LongBench benchmark.

16

LaMB. WINOG. ARC-E ARrc-C PIQA HELLAS.

MODEL AVG.T RECOVERY
acc. acc. acc. norm. acc. norm. acc_norm acc. norm.
SmolLM-135M 32.93 52.88 55.85 29.18 68.23 42.68 46.96 -
SmolLM-360M 41.33 56.51 63.72 36.01 71.49 53.37 53.73 -
SmolLM-1.7B 48.38 60.93 73.48 46.42 76.06 65.74 61.83 -
Llama-xLSTM-180M 26.64 50.51 51.81 26.79 67.57 39.90 43.87 93.42%
Llama-xLSTM-400M 35.71 56.43 60.40 32.51 70.95 50.37 51.06 95.03%
Llama-xLSTM-1.8B 47.08 60.38 56.19 29.05 73.56 57.71 53.99 87.32%
Llama-xLSTM-1.8Bjopy—tr 39.99 57.46 66.71 38.57 74.43 60.41 56.26 90.99%

Table 10: Linearized XLSTM models based on the SmolLLM collection. All models were trained with the same 3
Stage regime like in Experiment 1. For the SmolLM-1.7B equivalent, we also trained a version with a lower LR of
le — 4 for Stage 3.

17

	Introduction
	Preliminaries and Related Work
	Methodology
	Additional Alignment Improvements

	Experimental Setup
	Training Dataset and Evaluation
	Training Details

	Experiments and Results
	Experiment 1: Downstream Evaluation
	Experiment 2: Impact of QKV Copying
	Experiment 3: Explicit vs. Implicit Approximation of Self-Attention
	Experiment 4: Long-Context Evaluation

	Conclusion
	Preliminary Experiments
	Attention Matrix Approximation
	Model Parameter Counts
	Experiment 1: Convergence Behaviour
	Experiment 3: Full Results for Explicit vs. Implicit Attention Approximation
	Experiment 4: Full Results for the Longe Context experiments
	Ablation: SmolLM-xLSTM Collection
	Ablation: Efficiency Comparison.

