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Abstract

Recently, 3D-LLMs, which combine point-
cloud encoders with large models, have been
proposed to tackle complex tasks in embodied
intelligence and scene understanding. In addi-
tion to showing promising results on 3D tasks,
we find that they are significantly affected by
hallucinations. For instance, they may generate
objects that do not exist in the scene or produce
incorrect relationships between objects. To in-
vestigate this issue, this work presents the first
systematic study of hallucinations in 3D-LLMs.
We begin with quickly evaluating hallucina-
tions in several representative 3D-LLMs and
reveal that they are all significantly affected by
hallucinations. We then define hallucinations
in 3D scenes and, through a detailed analy-
sis of datasets, uncover the underlying causes
of these hallucinations. We find three main
causes: (1) Uneven frequency distribution of
objects in the dataset. (2) Strong correlations
between objects. (3) Limited diversity in ob-
ject attributes. Additionally, we propose new
evaluation metrics for hallucinations, including
Random Point Cloud Pair and Opposite Ques-
tion Evaluations, to assess whether the model
generates responses based on visual informa-
tion and align it with the text’s meaning.

1 Introduction

Large Language Models (LLMs) have achieved
impressive results in tasks such as code comple-
tion (Kanade et al., 2020; Wang et al., 2021),
mathematical reasoning (Jiang et al., 2024; Guo
et al., 2024), and dialogue generation (Li et al.,
2024; Le et al., 2020). Motivated by their suc-
cess, researchers have extended multi-modal do-
mains. Vision language models (VLMs) (Wang
et al., 2024; Deitke et al., 2024) allow models to
process images and text jointly. However, 2D vi-
sual data provide limited spatial cues as a result
of its single-perspective nature. To overcome this,
3D-LLMs (Hong et al., 2023; Xu et al., 2024; Zhen

et al., 2024) incorporate point clouds to better un-
derstand spatial relationships. These models typ-
ically extract features via a point cloud encoder
and align them with LLM token space, enabling
performance gains in 3D reasoning tasks.

Despite their potential hallucinations (Rohrbach
et al., 2018; Li et al.,, 2023; Hu et al., 2023;
Guan et al., 2024)—the generation of plausible yet
false information—persist across LLMs and VLMs.
This undermines their reliability in critical fields
like healthcare and law. Existing benchmarks such
as TruthfulQA, HalluQA, CHAIR, and POPE have
been proposed to evaluate hallucinations in text
and 2D visual outputs. However, hallucinations in
3D-LLMs remain underexplored.

The inclusion of depth and geometry introduces
new challenges in defining and evaluating hallu-
cinations in 3D contexts. In this work, we first
formalize 3D hallucinations, distinguishing them
from their 2D and textual counterparts. We then
evaluate state-of-the-art 3D-LLMs and reveal that
spatial hallucinations are widespread. Our analysis
attributes this to high object co-occurrence bias in
training data. Unlike prior work focusing on object
presence, we emphasize spatial relationship hallu-
cinations and introduce a benchmark to detect them
effectively.

Our contributions are: (1) We provide the first
formal definition and taxonomy of 3D hallucina-
tions. (2) We evaluate and analyze hallucination
patterns in representative 3D-LLMs. (3) We pro-
pose a new dataset and benchmark for detecting
spatial relationship hallucinations.

2 Related Work

2.1 3D LLMs

Large Vision Models (LVMs) (Shen et al., 2024;
Zhang et al., 2022; Kirillov et al., 2023; Oquab
et al., 2023) have achieved strong performance
across various tasks, motivating their extension to
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Figure 1: In 3D scenes, the relationships between objects are significantly more complex than those in text or
images. The left side of the figure illustrates hallucinations related to relative positional relationships and absolute
positional relationships, while the right side demonstrates attribute hallucinations such as color, size, and shape.

other modalities. 3D tasks such as semantic navi-
gation (Zheng et al., 2024; Huang et al., 2023) and
embodied intelligence (Jatavallabhula et al., 2023;
Hong et al., 2024) has received growing attention
due to their real-world relevance, with many ap-
proaches leveraging the reasoning capabilities of
LLMs.

3D-LLMs (Hong et al., 2023) typically con-
sist of a 3D encoder that maps point clouds into
the language space of a pre-trained LLM. Differ-
ent models vary in their encoding strategies. 3D-
LLM (Hong et al., 2023) extracts multi-view 2D
features to construct 3D representations using tra-
ditional methods. LL3DA (Chen et al., 2024) uses
a scene encoder pretrained on ScanNet (Dai et al.,
2017) as the point cloud encoder. Leo (Huang et al.,
2023) adopts an object-centric approach by encod-
ing each object with a point cloud encoder followed
by a spatial transformer. After fine-tuning on down-
stream 3D tasks, these models exhibit strong spatial
reasoning abilities.

These 3D-LLMs have shown promising perfor-
mance on tasks such as 3D dense captioning, 3D
question answering, and scene description.

2.2 Hallucination in Multimodal LLMs

In LLMs, hallucinations refer to outputs that appear
plausible but are not faithful to facts or context (Fil-
ippova, 2020). These errors undermine the reliabil-

ity of LLMs in real-world applications. Existing
work (Leng et al., 2024; Liu et al., 2023; Yu et al.,
2024; Zhai et al., 2023) mitigates hallucinations
through model editing, post-training, or contrastive
decoding.

As LLMs are increasingly integrated into mul-
timodal systems, hallucinations in LVLMs have
become a key research focus. In this context, hal-
lucinations occur when generated text misaligns
with visual content (Rohrbach et al., 2018; Li et al.,
2023; Hu et al., 2023; You et al., 2023). Previous
work mainly targets object-level hallucinations, in-
cluding those related to object types, attributes, and
relationships. Mitigation strategies mirror those of
LLMs, including methods at the data level, train-
ing level, and decoding level. A large body of re-
search (Hu et al., 2023; Liu et al., 2023) has shown
that one significant cause of hallucinations is data
bias. The homogeneity of the tasks and the lack of
diversity in scenarios limit the model’s ability to un-
derstand visual information and follow instructions
across different environments.

Hallucinations are particularly problematic in
3D tasks such as embodied intelligence and spatial
navigation, where accurate spatial understanding
is critical. Yet, hallucinations in 3D-LLMs remain
unexplored. This work addresses that gap by de-
tecting and analyzing hallucinations in 3D-LLM:s.



3 3D Hallucination

In this section, we first validate the existence of sig-
nificant hallucination issues in the current popular
3D-LLMs on the 3D captioning task using tradi-
tional object-centric method which is used in image
hallucination evaluation. We then define 3D hallu-
cinations and compare them with the multimodal
hallucinations defined in previous works.

3.1 Simple Evaluation Based on Traditional

Detection Methods
Precision Recall Fl1Score Rouge Meteor
LL3DA 36.36 16.67 2286 2587 1498
3D-LLM 22.97 8.20 10.92 9.94 4.37
LLaVA-3D  29.44 12.28 15.27 1372 6.95

Table 1: Evaluate Result of Sota 3D-LLM.Precision
reflects the probability that a mentioned object actually
exists in the scene — lower precision indicates a higher
object hallucination rate. Recall measures how well the
description covers the objects present in the scene —
higher recall suggests a more comprehensive depiction
of the scene.

First, we evaluate whether existing 3D-LLMs suf-
fer from object hallucinations—describing objects
not present in the real scene—using the traditional
image-text definition. We test this by having 3D-
LLMs describe scene point clouds and flag de-
scriptions that include nonexistent objects as hal-
lucinations. We employ precision (Fisher, 1936)
and recall to evaluate the probability that the ob-
jects described in the generated captions belong to
the scene, as well as the coverage of the descrip-
tions over the scene. Formally, we define A as
the set of items output by the model, representing
TP+ FP,and B as the set of items present in the
real scene,representing T'P + F'N. The evaluation
metrics can be defined as:

. |AN B|
Precision = ————— (D)
A
|AN B|
Recall = ——— (2)
| B|

To validate that existing 3D models suffer from
significant object hallucinations, we selected three
representative 3D models : LL3DA , 3D-LLM,
and LLaVA-3D for evaluation. We used the metric
defined above. The results are presented in Ta-
ble 1. As we can see, all three models perform
badly and exhibit significant hallucination issues
in the object description task. To better illustrate

the evaluation of hallucinations, we present our
evaluation of LL3DA on the description task as
a Recall-Precision plot, as shown in Fig. 2. The
plot is divided into the bottom-left corner and the
top-right corner. The bottom-left corner indicates
that the model struggles with hallucinations in the
object description task, while the top-right corner
demonstrates that the model performs well. It can
be observed that most of the samples are concen-
trated in the lower-left corner of the plot, which
reflects the presence of severe hallucinations in
the majority of examples produced by the current
state-of-the-art models.
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Figure 2: Object hallucination evaluation for 3D
LLMs. Precision measures the proportion of de-
scribed objects that exist in the scene, while recall
represents the proportion of scene objects that are
described.

3.2 3D Hallucination Definition
3.2.1 Modality Difference

Previous hallucination studies focus on text and
image modalities and their interactions. Since 3D-
LLMs differ mainly in input modality, we analyze
hallucinations from this perspective. As Table
??Different_modalitytable Different_modalitys,
unlike text-based LLMs and text-image LVLMs,
3D-LLMs use text and point clouds, adding depth
information.

Input Modality Modality Conflict
Model Type Text Vision Depth Knowledge Conflict Text-Image Conflict Scene Conflict
LLM v X X v X X
LVLM v ' X v ' X
3D-LLM ' ' ' v ' v

Table 2: Modality Difference

The uniqueness of the input modalities leads
to differences in the interactions between modal-
ities. In text hallucinations, conflicts only arise
between different textual knowledge, i.e., knowl-
edge conflicts, which are also presented in LVLMs



Object Hallucination Relation Hallucination

Model Type Color Shape Size Abstract Relative Accurate
Text Hallucination v X X v X X
Image Hallucination v/ v X v v X
3D Hallucination v v v v v v

Table 3: Classification of Hallucinations

and 3D-LLMs, as both are built on LLMs. In im-
age hallucinations, conflicts occur between textual
and visual information. However, in 3D hallucina-
tions, the depth information leads to conflicts where
3D-LLMs generates fictitious spatial relationships
within the scene. We refer to this phenomenon as
scene conflict.

3.2.2 Hallucination Definition

To define hallucination types appeared in scene
conflict more concretely and accurately, we ab-
stract the 3D scene into objects and relationships,
thus defining two types of hallucinations: Object
hallucinations and Relation hallucinations. We
present the classification in Table 3.

Object hallucinations are primarily related to
the attributes of objects, such as color, shape, and
size. Among these attributes, size attribute re-
quires accurate depth information for proper eval-
uation, making this a hallucination type unique to
3D scenes. Formally, we use H; to represent ob-
ject hallucination, S to represent the attributes set.
Attr,.. € S represents the real object’s attribute.
Attr!  represents the attributes in the prediction

pred
of 3D-LLM.

HObj = S[Attrgrue 7& Attr;red] (3)

Relation hallucinations, on the other hand, are
primarily concerned with the relationships between
objects. Among these relations, Abstract relation-
ship hallucinations refer to the functional relation-
ships between objects. Relative positional rela-
tionships refer to broader postional relationships,
such as left-right orientation, which can usually be
inferred from a given view. However, because a sin-
gle view lacks depth information, precise positional
relationships, such as "hanging" or "standing on,"
cannot be determined. In 3D scene, we can deduce
accurate spatial relations among objects. For-
mally, we use O; and O; to represent two objects,

l . . .
"% to represent relationship between two objects,
d : . .
and =% to represent predicted relationship. The

we can define relation hallucination as:

pred

0; 1% 0; 40, 2% 0, )

4 Data Bias Intensifies 3D Large Model
Hallucinations

In the previous section, we briefly examined the
significant hallucinations present in existing 3D
large models and provided an analysis and defini-
tion of hallucinations in 3D scenes. In this section,
we will delve into the underlying causes of this
phenomenon. In Section 3 of our study, we evalu-
ated the occurrence of object hallucination in large
3D point cloud models. We found that the model
often describes objects that do not exist in the ac-
tual scene.We hypothesize that imbalanced object
frequencies and object corelation in the dataset con-
tribute heavily to hallucination.

4.1 Imbalanced Frequency Distribution of
Objects

We performed statistical analysis on the hallucina-
tion rate and occurrence frequency of objects. The
hallucination rate( H R) of an object is defined as
the ratio of scenes in which the object is incorrectly
identified as present, even though it does not actu-
ally exist, to the total number of scenes where the
object is absent in the test set. The occurrence fre-
quency of an object is defined as the ratio of scenes
where the object is present to the total number of
scenes. As shown in Figure 3, a represents the
object hallucination rate results for 3DLLM, and
b represents the object hallucination rate results
for LL3DA. From the figures, it can be observed
that the curve representing the hallucination rate
closely follows the curve representing the occur-
rence frequency. This suggests that objects with a
high frequency of occurrence are more likely to be
accurately described by the model, as it tends to
repeat the most common elements. In other words,
objects with higher occurrence frequencies are
more prone to hallucination, being more likely to
be incorrectly identified as present when they are
actually absent.

However,in the Scannet dataset, certain objects
such as the floor, wall, and door appear very fre-
quently across many scenes. Floor appeared in
1506 out of 1513 scenes. Wall appeared in 1473
scenes. Door appeared in 1015 scenes. These
data demonstrate that scene similarity in ScanNet
is high, with the same object appearing repeatedly
across multiple scenes. Based on the conclusion
that excessively high occurrence frequencies can
exacerbate hallucinations, we can infer that the
high overlap of objects across different scenes in
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Figure 3: (1) Figures a and b show the relationship between object hallucination rates in 3DLLM and LL3DA and
object occurrence frequencies in the dataset. The blue and orange lines represent hallucination rates and object
frequencies, respectively. (2) Figure ¢ shows the relationship between strong object correlations and hallucination
rates. The y-axis indicates the conditional probability of object occurrence, and the x-axis represents condition A.
For example, the red line shows the probability of "telephone" being present given the presence of the object on the

y-axis.

the dataset is one of the key factors contributing
to the strong hallucinations observed in 3D large
language models.

4.2 Potential Influence of Object Correlation

In Figure 3, the y-axis represents the conditional
probability P(AB|A), where A denotes the pres-
ence of object a in the scene and B denotes the pres-
ence of object b. A higher value of P(AB|A) indi-
cates a higher likelihood that if object a is present,
object b is also likely to be present. The objects
b labeled on the x-axis, such as floor, wall, and
door, are arranged in descending order of their
hallucination rates, and the conditional probabili-
ties also exhibit a downward trend. This suggests
that objects frequently co-occurring with others
are more likely to be incorrectly identified as
present, thereby inducing hallucinations. For ex-
ample, if chairs and tables often appear together
in the same scene, the model might learn an im-
plicit dependency between them. When the chair
is present, the model may "hallucinate" the table,
even if it isn’t present in the actual scene.

ScanNet is an indoor scene dataset containing envi-
ronments such as bedrooms, bathrooms, and offices.
Due to the specific nature of these scenes, they con-
sistently include certain objects—such as toilets,
sinks, and toilet paper—always appearing together
in bathrooms. This strong correlation between ob-
jects in the dataset means that during training, the
model may receive rewards for providing answers
based on these associations rather than point clouds.
As a result, the model may incorrectly associate
these objects with one another, leading to halluci-
nations when detecting one object.

S Proposed Evaluation Frameworks for
3D Hallucinations

5.1 Inadequacy of Existing Evaluation
Frameworks

Existing evaluation frameworks for 2D multimodal
models, such as POPE (Li et al., 2023), are insuf-
ficient for addressing the challenges in 3D point
cloud large language models (LLMs). Since the
POPE view uses yes/no questions to evaluate model
object hallucinations, which cannot accurately as-
sess the model’s understanding of spatial relation-
ships or visual details such as attributes.In Section
3, we assess hallucinations in 3D point cloud mod-
els by evaluating object hallucination in description
tasks. However, this method has two main limita-
tions: 1) It only detects hallucinations in descrip-
tion tasks, as not all responses involve objects. 2) It
doesn’t analyze other types of hallucinations, such
as attribute or relational errors.

Therefore, we aim to propose a more stable, fair,
and flexible evaluation framework for evaluating
hallucinations in 3D point clouds.

5.2 Proposed Evaluation Framework

We propose two strategies for detecting hallucina-
tions in 3D point cloud models.

Random Point Cloud Pair Evaluation We select
a random point cloud and ask the model the same
question on both the original and new point clouds.
If the answers are identical, it’s considered a hal-
lucination, indicating the model doesn’t integrate
visual context and just maps the question to a fixed
answer.

Opposite Question Evaluation For a fixed point
cloud, we ask two Opposite questions (e.g., "What
is on the right of the table?" and "What is on the
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left?"). If the model gives the same answer, it’s a
hallucination, suggesting the model isn’t using the
spatial information from the point cloud.

By employing these two strategies, we aim to
identify cases where the model fails to distinguish
between spatially different scenarios or produces
inconsistent responses to questions.

5.3 Inadequacy of Existing Evaluation

Frameworks

The entire pipeline is illustrated in Figure 4.

Data Generation We first construct a scene
graph G; for each scene, where G; consists
of a set of relational triplets in the form of
(objecty, objecta, relation). These triplets are

used to evaluate scene similarity and to verify
whether the spatial relationships described in ques-
tions are actually present in the scene.

In the Change Scene experiment, for each QA-
scene triplet (Q;, A;, S;), we randomly select a dif-
ferent scene S; from the dataset to construct a new
data instance: (Q;, Ai, {S;,5;}). To ensure that
S; does not contain the spatial relation required to
answer (;, we extract the spatial relation triplets
from S; and S}, denoted as 7'(.S;) and T'(S}), re-
spectively, and enforce that:

&)

This guarantees that the same question (); leads to
different answers in S; and S;.

T(SZ) N T(Sj) =0



Type LL3DA 3D-LLM LEO LLaVA3D
ROUGE-L HR;un% | ROUGE-L HR;:n% | ROUGE-L HR,.,% | ROUGE-L HR,q,%

Direction 31.09 19.89 30.46 39.03 17.02 42.66 5.22 21.58
Containment 41.30 25.24 41.78 49.00 17.45 38.84 44 23.30
Contact 33.46 24.53 35.46 47.20 13.82 45.48 2.98 20.94
Distance 31.05 20.85 32.19 38.10 12.98 37.02 3.13 19.57
Color 47.72 49.02 52.00 79.37 37.03 66.94 0.21 33.18
Shape 42.67 41.58 44.61 67.02 34.61 65.98 0.74 52.92
Size 53.50 77.14 47.48 68.58 34.00 62.86 0.0 42.86
Comparison 24.75 63.16 29.43 63.16 10.48 47.37 0.0 52.63
Quantity 51.29 51.60 49.44 70.10 48.79 81.28 0.18 39.27
Usage 3241 36.23 31.80 55.22 16.86 40.58 2.10 30.44
Other 35.29 35.18 39.36 52.83 11.93 35.19 0.62 18.52

Table 4: Model Performance and Hallucination Rate in Random Scenarios.Accuracy refers to the evaluation result
between the model’s response and the ground truth. H R,.,, is defined as the hallucination rate from random scene

pairs (see Section 5.2).

In the Change Question experiment, we first
select questions involving spatial relationships and
use GPT-4 to transform each QA pair into a for-
mat where the answer is a single object, resulting
in the ScanQA-SR dataset. For each question Q);
in ScanQA-SR, we generate its opposite (); (e.g.,
by reversing the spatial relation) to form the pair:
({Qi,Qj}, A;, S;) which constitutes the ScanQA-
SR-Opposite dataset.

To ensure that (); does not apply to the same
answer A; in scene .S;, we extract the spatial rela-
tion triplet implied by (Q;, A;) and verify that it
does not exist in the scene graph G;. Formally, we
require: (objecty,objects, relation) ¢ G;. This
guarantees that ); and ; yield different answers
within the same scene context.

Experiment We evaluate different models us-

ing the proposed benchmark.
In Experiment 1, given a question ¢;, we generate
two answers a;; and a;, from two different scenes
sj and sy, respectively. To measure the semantic
similarity between answers, we use BLEU-4 (Pa-
pineni et al., 2002) (n-gram precision), ROUGE-
L (Lin, 2004) (longest common subsequence), and
METEOR (Banerjee and Lavie, 2005) (semantic
alignment with synonym matching).

Based on human-verified answers from the
ScanQA test set, the average ROUGE-L and ME-
TEOR score are 0.71 and 0.49 respectively. There-
fore, we consider two answers to be semantically
equivalent if ROUGE-L > 0.71 and METEOR
> 0.49. The hallucination rate is defined as:

1
HRen = Z 1 (ROUGE-L(a;;, a;) > 0.71

and METEOR(CLZ'J', aik) > 0.49)
(6)

In Experiment 2, for a fixed scene s;, we gener-
ate answers a,; and ay; for two semantically oppo-
site questions g; and g. The hallucination rate is
computed as:

1
HRopp = +; > 1(ROUGE-L(asj,ai) > 0.71
%

and METEOR (a;;, a;) > 0.49)
(N

6 Evaluation on 3D-LLMs

6.1 Hallucinations in Random Scene Queries

We evaluate four models using the approach above.
Table 4 presents the results for random scenes.
ROUGE-L measures performance on ScanQA,
while H R, is defined in Section 5.2. The ta-
ble shows a positive correlation between accuracy
and hallucination rate. LL3DA , 3DLLM, LEO and
L1aVA3D all exhibit low accuracy and hallucina-
tion rates for spatial questions but higher rates for
object attributes.

For instance, models with higher ROUGE-L scores
often exhibit higher hallucination rates.Specifically,
LL3DA achieves the highest accuracy for size-
related questions, 3D-LLM for color-related ques-
tions, and LEO for quantity-related questions; how-
ever, each model also exhibits the highest halluci-
nation rate in its respective category. This pattern
suggests that higher accuracy does not necessar-
ily correlate with a deeper understanding of the
relationship between the questions and the point
clouds. These findings indicate that the models
exhibit significant hallucination issues, where it
answers questions without considering the visual
context, yet its responses appear ’better’ or closer



Model ScanQA ScanQA-SR ScanQA-SR-Opposite
ROUGE-L METEOR | ROUGE-L METEOR | ROUGE-L METEOR HR,,,%
LL3DA 36.56 26.95 4.12 28.27 50.25 52.94 46.52
3D-LLM 37.46 28.18 15.55 10.28 60.78 56.22 53.80
LEO 22.85 16.08 18.46 12.97 66.52 61.13 62.12
LLaVA-3D 3.29 16.71 3.87 28.42 61.03 58.51 56.82

Table 5: This table compares model performance across three tasks: ScanQA, ScanQA-SR (spatial questions), and
ScanQA-SR-Opposite. It uses RougeLl. and Meteor to measure similarity between model responses and ground
truth (GT) in ScanQA and ScanQA-SR. For ScanQA-SR-Opposite, higher RougelL and Meteor scores indicate a
higher probability of the model generating the same response for opposite spatial questions, reflecting a higher

hallucination rate.

to the ground truth. Upon examining the train-
ing set, we find that object attributes often align
with typical characteristics—for example, tables
are usually black, white, or brown, and televisions
are typically rectangular. This indicates that the
model learns attribute associations due to the ho-
mogeneous nature of indoor scenes and the limited
diversity of attributes.

6.2 Relationship Between Attribute
Uniformity and Answer Accuracy

We plotted Figure 5 to illustrate the relationship
between the uniformity of an object’s properties
and the accuracy of the answers. For instance,
chair color is queried 346(/N) times, with black
(T times), brown (75 times), and gray (73 times)
as the most frequent colors. To quantify attribute
uniformity, we introduce the "Top-K Ratio," where
the Top-3 Ratio for the chair can be calculated as:

T +1Tr,+ T3

Top-3 Ratio =
op-3 Ratio N

(®)
The x-axis shows the average ROUGE-L score
for questions about a specific object, reflecting
how easily its properties can be correctly answered.
The three plots (color, shape, size) illustrate that
answer accuracy increases with property unifor-
mity—especially for color and shape, where a clear
linear trend appears. Many points cluster near a
Top-3 Ratio of 1, indicating that the dataset con-
tains objects with highly uniform attributes, which
may lead the model to hallucinate correct answers
more easily.

6.3 Hallucinations in Opposite-Question
Queries

The results for testing with opposite questions
within the same scene are presented in Table 5.The
ScanQA dataset includes a wide range of QA pairs
involving various attributes, spatial relationships,

and other data types. In contrast, ScanQA-SR fo-
cuses solely on spatial relationships and transforms
all QA pairs into those where the answer is the
object itself.

By comparing the results from these two datasets,
we observe that the ROUGE scores for ScanQA-
SR are significantly lower than those for ScanQA.
This indicates that the model is more prone to er-
rors when dealing with spatial relationship tasks.
To investigate whether the model truly understands
the meaning of spatial relationships, we created a
dataset of opposite questions specifically for spatial
relationships. The goal was to assess the model’s
ability to handle questions about opposing spatial
positions.

However, we found that the hallucination rate for
both models exceeded 50%. This suggests that
when posed with opposite questions about the same
scene, the model has a 50% chance of giving the
same answer. This result further supports our ear-
lier observation that the model is prone to errors
and hallucinations when handling spatial relation-
ship queries. The results imply that the model may
lack a proper visual-semantic understanding of spa-
tial relationships, leading it to answer incorrectly
without considering point cloud data.

7 Conclusion

This study categorizes 3D hallucinations and as-
sesses their severity in 3DLLM, LL3DA, LEO and
LLaVA3D using description and QA tasks.We find
that high object frequency, strong correlations, and
attribute uniformity drive hallucinations. Since ex-
isting metrics rely on text similarity, we design two
experiments to better define hallucinations and in-
vestigate whether models truly use and understand
visual information when answering correctly. Re-
sults show that models often fail to answer contex-
tually accurate questions and struggle with aligning
spatial relationships to visual input.



8 Limitations

In this study, we provide a detailed classification
of hallucination types specifically for the QA task.
Each QA pair is classified to detect correspond-
ing hallucinations. However, for the description
task and other long-text tasks, no specific approach
is proposed to detect the types of hallucinations
present in the generated answers. This limitation
means that our evaluation only demonstrates the
significant hallucination issues within 3D point
cloud models, and uses different types of short QA
pairs to explore the following questions: 1) Which
types of questions are more likely to induce hallu-
cinations in the model? 2) How does the dataset
distribution impact the occurrence of hallucinations
in the model?

Furthermore, we identify that models are partic-
ularly prone to attribute hallucinations and investi-
gate the relationship between dataset distribution
and hallucination rates. Regarding spatial relation-
ship hallucinations, our experiments only reveal
that the models lack understanding of spatial re-
lationships, but do not explain why the models
perform worse on spatial relationship-related ques-
tions compared to other question types.

Third, in our experiments designed to explore
whether the models answer based on visual infor-
mation or rely on textual inputs alone, the results
indicate that the current dataset is overly simple
and highly regular, which enabling models to ne-
glect point cloud information in favor of answering
based on text alone. However, we do not provide
insights into why the models do not incorporate
point cloud information in their responses from an
architectural perspective.

Finally, we utilize GPT-4 to generate a new an-
notated dataset, which, compared to manual anno-
tation, may contain some minor errors. Although
we have discussed hallucination issues in 3D large
language models and highlighted the problem of
models not responding based on point cloud data,
this highlights current limitations, but we believe
the field holds strong potential. On the contrary,
we aim to identify the reasons behind their subopti-
mal performance, such as the dataset distribution
issues discussed in this paper. We hope that our
work can provide new insights and ideas for further
improving the performance of 3D large language
models.
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9 Appendix

9.1 Introduction of GPT-40 Prompts

In this experiment, we employed GPT-40 to ana-
lyze existing textual data and generate new data
samples. The corresponding prompts used in each
sub-task are as follows:

1. Object Hallucination: To extract objects
mentioned in the model’s responses, we used
the following prompt:

Provide a description to list the items in a
room, ensuring the output is in singular form.
For example, if the description is: "The room
is a well-organized space with a floor, walls,
and a ceiling," the output should be: [floor,
wall, ceiling]. Just provide the list of items,
no explanation is needed. Given the following
room description: description

2. Question Categorization: To enable a more
fine-grained analysis of model performance,
we categorized all question-answer pairs using
the following prompt:

Given a question, please determine the type
of the question without answering it. Choose
the question type from the following options:
[Spatial Relationship, Size Comparison, Ob-
ject’s Properties (color, size, shape), Quantity,
Usage of an Object, Other]. Please do not pro-
vide an answer outside of the listed options.
The question is as follows: question.
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3. Opposite Question Evaluation — Question
Generation: To evaluate spatial understand-
ing, we generated new questions by revers-
ing spatial relationships using the following
prompt:

Give a question, such as "What is on the front
of the brown table?" and change the spatial
relationship in the question to the exact oppo-
site, for example, change it to "What is behind
the brown table?" Just provide the modified
result without explanation. The question is as
follows: question

4. Opposite Question Evaluation — Triple Ex-

traction: To verify whether the spatial rela-
tionships in generated question-answer pairs
exist in the scene, we used semantic scene
graphs, which represent relationships in the
form of triples (objectl, object2, relation). To
convert the QA pairs into such triples, we used
the following prompt:

Provide a question and answer list pair related
to spatial relationships. Based on the question
and answer, abstract a triple (Item 1, Item 2,
Relationship). The question and answer list
are as follows: question answer list: answer.
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