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Abstract

Recently, 3D-LLMs, which combine point-001
cloud encoders with large models, have been002
proposed to tackle complex tasks in embodied003
intelligence and scene understanding. In addi-004
tion to showing promising results on 3D tasks,005
we find that they are significantly affected by006
hallucinations. For instance, they may generate007
objects that do not exist in the scene or produce008
incorrect relationships between objects. To in-009
vestigate this issue, this work presents the first010
systematic study of hallucinations in 3D-LLMs.011
We begin with quickly evaluating hallucina-012
tions in several representative 3D-LLMs and013
reveal that they are all significantly affected by014
hallucinations. We then define hallucinations015
in 3D scenes and, through a detailed analy-016
sis of datasets, uncover the underlying causes017
of these hallucinations. We find three main018
causes: (1) Uneven frequency distribution of019
objects in the dataset. (2) Strong correlations020
between objects. (3) Limited diversity in ob-021
ject attributes. Additionally, we propose new022
evaluation metrics for hallucinations, including023
Random Point Cloud Pair and Opposite Ques-024
tion Evaluations, to assess whether the model025
generates responses based on visual informa-026
tion and align it with the text’s meaning.027

1 Introduction028

Large Language Models (LLMs) have achieved029

impressive results in tasks such as code comple-030

tion (Kanade et al., 2020; Wang et al., 2021),031

mathematical reasoning (Jiang et al., 2024; Guo032

et al., 2024), and dialogue generation (Li et al.,033

2024; Le et al., 2020). Motivated by their suc-034

cess, researchers have extended multi-modal do-035

mains. Vision language models (VLMs) (Wang036

et al., 2024; Deitke et al., 2024) allow models to037

process images and text jointly. However, 2D vi-038

sual data provide limited spatial cues as a result039

of its single-perspective nature. To overcome this,040

3D-LLMs (Hong et al., 2023; Xu et al., 2024; Zhen041

et al., 2024) incorporate point clouds to better un- 042

derstand spatial relationships. These models typ- 043

ically extract features via a point cloud encoder 044

and align them with LLM token space, enabling 045

performance gains in 3D reasoning tasks. 046

Despite their potential hallucinations (Rohrbach 047

et al., 2018; Li et al., 2023; Hu et al., 2023; 048

Guan et al., 2024)—the generation of plausible yet 049

false information—persist across LLMs and VLMs. 050

This undermines their reliability in critical fields 051

like healthcare and law. Existing benchmarks such 052

as TruthfulQA, HalluQA, CHAIR, and POPE have 053

been proposed to evaluate hallucinations in text 054

and 2D visual outputs. However, hallucinations in 055

3D-LLMs remain underexplored. 056

The inclusion of depth and geometry introduces 057

new challenges in defining and evaluating hallu- 058

cinations in 3D contexts. In this work, we first 059

formalize 3D hallucinations, distinguishing them 060

from their 2D and textual counterparts. We then 061

evaluate state-of-the-art 3D-LLMs and reveal that 062

spatial hallucinations are widespread. Our analysis 063

attributes this to high object co-occurrence bias in 064

training data. Unlike prior work focusing on object 065

presence, we emphasize spatial relationship hallu- 066

cinations and introduce a benchmark to detect them 067

effectively. 068

Our contributions are: (1) We provide the first 069

formal definition and taxonomy of 3D hallucina- 070

tions. (2) We evaluate and analyze hallucination 071

patterns in representative 3D-LLMs. (3) We pro- 072

pose a new dataset and benchmark for detecting 073

spatial relationship hallucinations. 074

2 Related Work 075

2.1 3D LLMs 076

Large Vision Models (LVMs) (Shen et al., 2024; 077

Zhang et al., 2022; Kirillov et al., 2023; Oquab 078

et al., 2023) have achieved strong performance 079

across various tasks, motivating their extension to 080
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Figure 1: In 3D scenes, the relationships between objects are significantly more complex than those in text or
images. The left side of the figure illustrates hallucinations related to relative positional relationships and absolute
positional relationships, while the right side demonstrates attribute hallucinations such as color, size, and shape.

other modalities. 3D tasks such as semantic navi-081

gation (Zheng et al., 2024; Huang et al., 2023) and082

embodied intelligence (Jatavallabhula et al., 2023;083

Hong et al., 2024) has received growing attention084

due to their real-world relevance, with many ap-085

proaches leveraging the reasoning capabilities of086

LLMs.087

3D-LLMs (Hong et al., 2023) typically con-088

sist of a 3D encoder that maps point clouds into089

the language space of a pre-trained LLM. Differ-090

ent models vary in their encoding strategies. 3D-091

LLM (Hong et al., 2023) extracts multi-view 2D092

features to construct 3D representations using tra-093

ditional methods. LL3DA (Chen et al., 2024) uses094

a scene encoder pretrained on ScanNet (Dai et al.,095

2017) as the point cloud encoder. Leo (Huang et al.,096

2023) adopts an object-centric approach by encod-097

ing each object with a point cloud encoder followed098

by a spatial transformer. After fine-tuning on down-099

stream 3D tasks, these models exhibit strong spatial100

reasoning abilities.101

These 3D-LLMs have shown promising perfor-102

mance on tasks such as 3D dense captioning, 3D103

question answering, and scene description.104

2.2 Hallucination in Multimodal LLMs105

In LLMs, hallucinations refer to outputs that appear106

plausible but are not faithful to facts or context (Fil-107

ippova, 2020). These errors undermine the reliabil-108

ity of LLMs in real-world applications. Existing 109

work (Leng et al., 2024; Liu et al., 2023; Yu et al., 110

2024; Zhai et al., 2023) mitigates hallucinations 111

through model editing, post-training, or contrastive 112

decoding. 113

As LLMs are increasingly integrated into mul- 114

timodal systems, hallucinations in LVLMs have 115

become a key research focus. In this context, hal- 116

lucinations occur when generated text misaligns 117

with visual content (Rohrbach et al., 2018; Li et al., 118

2023; Hu et al., 2023; You et al., 2023). Previous 119

work mainly targets object-level hallucinations, in- 120

cluding those related to object types, attributes, and 121

relationships. Mitigation strategies mirror those of 122

LLMs, including methods at the data level, train- 123

ing level, and decoding level. A large body of re- 124

search (Hu et al., 2023; Liu et al., 2023) has shown 125

that one significant cause of hallucinations is data 126

bias. The homogeneity of the tasks and the lack of 127

diversity in scenarios limit the model’s ability to un- 128

derstand visual information and follow instructions 129

across different environments. 130

Hallucinations are particularly problematic in 131

3D tasks such as embodied intelligence and spatial 132

navigation, where accurate spatial understanding 133

is critical. Yet, hallucinations in 3D-LLMs remain 134

unexplored. This work addresses that gap by de- 135

tecting and analyzing hallucinations in 3D-LLMs. 136
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3 3D Hallucination137

In this section, we first validate the existence of sig-138

nificant hallucination issues in the current popular139

3D-LLMs on the 3D captioning task using tradi-140

tional object-centric method which is used in image141

hallucination evaluation. We then define 3D hallu-142

cinations and compare them with the multimodal143

hallucinations defined in previous works.144

3.1 Simple Evaluation Based on Traditional145

Detection Methods146

Precision Recall F1Score Rouge Meteor

LL3DA 36.36 16.67 22.86 25.87 14.98
3D-LLM 22.97 8.20 10.92 9.94 4.37

LLaVA-3D 29.44 12.28 15.27 13.72 6.95

Table 1: Evaluate Result of Sota 3D-LLM.Precision
reflects the probability that a mentioned object actually
exists in the scene — lower precision indicates a higher
object hallucination rate. Recall measures how well the
description covers the objects present in the scene —
higher recall suggests a more comprehensive depiction
of the scene.

First, we evaluate whether existing 3D-LLMs suf-147

fer from object hallucinations—describing objects148

not present in the real scene—using the traditional149

image-text definition. We test this by having 3D-150

LLMs describe scene point clouds and flag de-151

scriptions that include nonexistent objects as hal-152

lucinations. We employ precision (Fisher, 1936)153

and recall to evaluate the probability that the ob-154

jects described in the generated captions belong to155

the scene, as well as the coverage of the descrip-156

tions over the scene. Formally, we define A as157

the set of items output by the model, representing158

TP + FP , and B as the set of items present in the159

real scene,representing TP + FN . The evaluation160

metrics can be defined as:161

Precision =
|A ∩B|
|A|

(1)162

163

Recall =
|A ∩B|
|B|

(2)164

To validate that existing 3D models suffer from165

significant object hallucinations, we selected three166

representative 3D models : LL3DA , 3D-LLM,167

and LLaVA-3D for evaluation. We used the metric168

defined above. The results are presented in Ta-169

ble 1. As we can see, all three models perform170

badly and exhibit significant hallucination issues171

in the object description task. To better illustrate172

the evaluation of hallucinations, we present our 173

evaluation of LL3DA on the description task as 174

a Recall-Precision plot, as shown in Fig. 2. The 175

plot is divided into the bottom-left corner and the 176

top-right corner. The bottom-left corner indicates 177

that the model struggles with hallucinations in the 178

object description task, while the top-right corner 179

demonstrates that the model performs well. It can 180

be observed that most of the samples are concen- 181

trated in the lower-left corner of the plot, which 182

reflects the presence of severe hallucinations in 183

the majority of examples produced by the current 184

state-of-the-art models. 185

Figure 2: Object hallucination evaluation for 3D
LLMs. Precision measures the proportion of de-
scribed objects that exist in the scene, while recall
represents the proportion of scene objects that are
described.

3.2 3D Hallucination Definition 186

3.2.1 Modality Difference 187

Previous hallucination studies focus on text and 188

image modalities and their interactions. Since 3D- 189

LLMs differ mainly in input modality, we analyze 190

hallucinations from this perspective. As Table 191

??Different_modalitytable Different_modalitys, 192

unlike text-based LLMs and text-image LVLMs, 193

3D-LLMs use text and point clouds, adding depth 194

information. 195

Model Type
Input Modality Modality Conflict

Text Vision Depth Knowledge Conflict Text-Image Conflict Scene Conflict

LLM ✓ ✗ ✗ ✓ ✗ ✗
LVLM ✓ ✓ ✗ ✓ ✓ ✗

3D-LLM ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Modality Difference

The uniqueness of the input modalities leads 196

to differences in the interactions between modal- 197

ities. In text hallucinations, conflicts only arise 198

between different textual knowledge, i.e., knowl- 199

edge conflicts, which are also presented in LVLMs 200
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Model Type
Object Hallucination Relation Hallucination
Color Shape Size Abstract Relative Accurate

Text Hallucination ✓ ✗ ✗ ✓ ✗ ✗
Image Hallucination ✓ ✓ ✗ ✓ ✓ ✗

3D Hallucination ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Classification of Hallucinations

and 3D-LLMs, as both are built on LLMs. In im-201

age hallucinations, conflicts occur between textual202

and visual information. However, in 3D hallucina-203

tions, the depth information leads to conflicts where204

3D-LLMs generates fictitious spatial relationships205

within the scene. We refer to this phenomenon as206

scene conflict.207

3.2.2 Hallucination Definition208

To define hallucination types appeared in scene209

conflict more concretely and accurately, we ab-210

stract the 3D scene into objects and relationships,211

thus defining two types of hallucinations: Object212

hallucinations and Relation hallucinations. We213

present the classification in Table 3.214

Object hallucinations are primarily related to215

the attributes of objects, such as color, shape, and216

size. Among these attributes, size attribute re-217

quires accurate depth information for proper eval-218

uation, making this a hallucination type unique to219

3D scenes. Formally, we use Hobj to represent ob-220

ject hallucination, S to represent the attributes set.221

Attritrue ∈ S represents the real object’s attribute.222

Attripred represents the attributes in the prediction223

of 3D-LLM.224

Hobj = S[Attritrue ̸= Attripred] (3)225

Relation hallucinations, on the other hand, are226

primarily concerned with the relationships between227

objects. Among these relations, Abstract relation-228

ship hallucinations refer to the functional relation-229

ships between objects. Relative positional rela-230

tionships refer to broader postional relationships,231

such as left-right orientation, which can usually be232

inferred from a given view. However, because a sin-233

gle view lacks depth information, precise positional234

relationships, such as "hanging" or "standing on,"235

cannot be determined. In 3D scene, we can deduce236

accurate spatial relations among objects. For-237

mally, we use Oi and Oj to represent two objects,238
rel−→ to represent relationship between two objects,239

and
pred−→ to represent predicted relationship. The240

we can define relation hallucination as:241

Oi
rel−→ Oj ̸= Oi

pred−→ Oj (4)242

4 Data Bias Intensifies 3D Large Model 243

Hallucinations 244

In the previous section, we briefly examined the 245

significant hallucinations present in existing 3D 246

large models and provided an analysis and defini- 247

tion of hallucinations in 3D scenes. In this section, 248

we will delve into the underlying causes of this 249

phenomenon. In Section 3 of our study, we evalu- 250

ated the occurrence of object hallucination in large 251

3D point cloud models. We found that the model 252

often describes objects that do not exist in the ac- 253

tual scene.We hypothesize that imbalanced object 254

frequencies and object corelation in the dataset con- 255

tribute heavily to hallucination. 256

4.1 Imbalanced Frequency Distribution of 257

Objects 258

We performed statistical analysis on the hallucina- 259

tion rate and occurrence frequency of objects. The 260

hallucination rate(HR) of an object is defined as 261

the ratio of scenes in which the object is incorrectly 262

identified as present, even though it does not actu- 263

ally exist, to the total number of scenes where the 264

object is absent in the test set. The occurrence fre- 265

quency of an object is defined as the ratio of scenes 266

where the object is present to the total number of 267

scenes. As shown in Figure 3, a represents the 268

object hallucination rate results for 3DLLM, and 269

b represents the object hallucination rate results 270

for LL3DA. From the figures, it can be observed 271

that the curve representing the hallucination rate 272

closely follows the curve representing the occur- 273

rence frequency. This suggests that objects with a 274

high frequency of occurrence are more likely to be 275

accurately described by the model, as it tends to 276

repeat the most common elements. In other words, 277

objects with higher occurrence frequencies are 278

more prone to hallucination, being more likely to 279

be incorrectly identified as present when they are 280

actually absent. 281

However,in the Scannet dataset, certain objects 282

such as the floor, wall, and door appear very fre- 283

quently across many scenes. Floor appeared in 284

1506 out of 1513 scenes. Wall appeared in 1473 285

scenes. Door appeared in 1015 scenes. These 286

data demonstrate that scene similarity in ScanNet 287

is high, with the same object appearing repeatedly 288

across multiple scenes. Based on the conclusion 289

that excessively high occurrence frequencies can 290

exacerbate hallucinations, we can infer that the 291

high overlap of objects across different scenes in 292
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Figure 3: (1) Figures a and b show the relationship between object hallucination rates in 3DLLM and LL3DA and
object occurrence frequencies in the dataset. The blue and orange lines represent hallucination rates and object
frequencies, respectively. (2) Figure c shows the relationship between strong object correlations and hallucination
rates. The y-axis indicates the conditional probability of object occurrence, and the x-axis represents condition A.
For example, the red line shows the probability of "telephone" being present given the presence of the object on the
y-axis.

the dataset is one of the key factors contributing293

to the strong hallucinations observed in 3D large294

language models.295

4.2 Potential Influence of Object Correlation296

In Figure 3, the y-axis represents the conditional297

probability P (AB|A), where A denotes the pres-298

ence of object a in the scene and B denotes the pres-299

ence of object b. A higher value of P (AB|A) indi-300

cates a higher likelihood that if object a is present,301

object b is also likely to be present. The objects302

b labeled on the x-axis, such as floor, wall, and303

door, are arranged in descending order of their304

hallucination rates, and the conditional probabili-305

ties also exhibit a downward trend. This suggests306

that objects frequently co-occurring with others307

are more likely to be incorrectly identified as308

present, thereby inducing hallucinations. For ex-309

ample, if chairs and tables often appear together310

in the same scene, the model might learn an im-311

plicit dependency between them. When the chair312

is present, the model may "hallucinate" the table,313

even if it isn’t present in the actual scene.314

ScanNet is an indoor scene dataset containing envi-315

ronments such as bedrooms, bathrooms, and offices.316

Due to the specific nature of these scenes, they con-317

sistently include certain objects—such as toilets,318

sinks, and toilet paper—always appearing together319

in bathrooms. This strong correlation between ob-320

jects in the dataset means that during training, the321

model may receive rewards for providing answers322

based on these associations rather than point clouds.323

As a result, the model may incorrectly associate324

these objects with one another, leading to halluci-325

nations when detecting one object.326

5 Proposed Evaluation Frameworks for 327

3D Hallucinations 328

5.1 Inadequacy of Existing Evaluation 329

Frameworks 330

Existing evaluation frameworks for 2D multimodal 331

models, such as POPE (Li et al., 2023), are insuf- 332

ficient for addressing the challenges in 3D point 333

cloud large language models (LLMs). Since the 334

POPE view uses yes/no questions to evaluate model 335

object hallucinations, which cannot accurately as- 336

sess the model’s understanding of spatial relation- 337

ships or visual details such as attributes.In Section 338

3, we assess hallucinations in 3D point cloud mod- 339

els by evaluating object hallucination in description 340

tasks. However, this method has two main limita- 341

tions: 1) It only detects hallucinations in descrip- 342

tion tasks, as not all responses involve objects. 2) It 343

doesn’t analyze other types of hallucinations, such 344

as attribute or relational errors. 345

Therefore, we aim to propose a more stable, fair, 346

and flexible evaluation framework for evaluating 347

hallucinations in 3D point clouds. 348

5.2 Proposed Evaluation Framework 349

We propose two strategies for detecting hallucina- 350

tions in 3D point cloud models. 351

Random Point Cloud Pair Evaluation We select 352

a random point cloud and ask the model the same 353

question on both the original and new point clouds. 354

If the answers are identical, it’s considered a hal- 355

lucination, indicating the model doesn’t integrate 356

visual context and just maps the question to a fixed 357

answer. 358

Opposite Question Evaluation For a fixed point 359

cloud, we ask two Opposite questions (e.g., "What 360

is on the right of the table?" and "What is on the 361
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Figure 4: In the evaluation process, we generate new QA pairs by changing the scene while keeping the questions
fixed: different scenes are randomly selected to form new QA pairs. Additionally, we modify the questions while
keeping the scene fixed: spatial relationship-related questions are selected, and all QA pairs are transformed such
that the object A is the focus. Then, the spatial relationship in the questions is inverted, generating new QA pairs.

Figure 5: Impact of Attribute Simplicity on Accuracy.ROUGE represents the average quality of question-answer
pairs for a specific item, while the Top 3 Ratio is the proportion of the three most common attributes of the item.

left?"). If the model gives the same answer, it’s a362

hallucination, suggesting the model isn’t using the363

spatial information from the point cloud.364

By employing these two strategies, we aim to365

identify cases where the model fails to distinguish366

between spatially different scenarios or produces367

inconsistent responses to questions.368

5.3 Inadequacy of Existing Evaluation369

Frameworks370

The entire pipeline is illustrated in Figure 4.371

Data Generation We first construct a scene372

graph Gi for each scene, where Gi consists373

of a set of relational triplets in the form of374

(object1, object2, relation). These triplets are375

used to evaluate scene similarity and to verify 376

whether the spatial relationships described in ques- 377

tions are actually present in the scene. 378

In the Change Scene experiment, for each QA- 379

scene triplet (Qi, Ai, Si), we randomly select a dif- 380

ferent scene Sj from the dataset to construct a new 381

data instance: (Qi, Ai, {Si, Sj}). To ensure that 382

Sj does not contain the spatial relation required to 383

answer Qi, we extract the spatial relation triplets 384

from Si and Sj , denoted as T (Si) and T (Sj), re- 385

spectively, and enforce that: 386

T (Si) ∩ T (Sj) = ∅ (5) 387

This guarantees that the same question Qi leads to 388

different answers in Si and Sj . 389
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Type LL3DA 3D-LLM LEO LLaVA3D
ROUGE-L HRran% ROUGE-L HRran% ROUGE-L HRran% ROUGE-L HRran%

Direction 31.09 19.89 30.46 39.03 17.02 42.66 5.22 21.58
Containment 41.30 25.24 41.78 49.00 17.45 38.84 4.4 23.30
Contact 33.46 24.53 35.46 47.20 13.82 45.48 2.98 20.94
Distance 31.05 20.85 32.19 38.10 12.98 37.02 3.13 19.57
Color 47.72 49.02 52.00 79.37 37.03 66.94 0.21 33.18
Shape 42.67 41.58 44.61 67.02 34.61 65.98 0.74 52.92
Size 53.50 77.14 47.48 68.58 34.00 62.86 0.0 42.86
Comparison 24.75 63.16 29.43 63.16 10.48 47.37 0.0 52.63
Quantity 51.29 51.60 49.44 70.10 48.79 81.28 0.18 39.27
Usage 32.41 36.23 31.80 55.22 16.86 40.58 2.10 30.44
Other 35.29 35.18 39.36 52.83 11.93 35.19 0.62 18.52

Table 4: Model Performance and Hallucination Rate in Random Scenarios.Accuracy refers to the evaluation result
between the model’s response and the ground truth. HRran is defined as the hallucination rate from random scene
pairs (see Section 5.2).

In the Change Question experiment, we first390

select questions involving spatial relationships and391

use GPT-4 to transform each QA pair into a for-392

mat where the answer is a single object, resulting393

in the ScanQA-SR dataset. For each question Qi394

in ScanQA-SR, we generate its opposite Qj (e.g.,395

by reversing the spatial relation) to form the pair:396

({Qi, Qj}, Ai, Si) which constitutes the ScanQA-397

SR-Opposite dataset.398

To ensure that Qj does not apply to the same399

answer Ai in scene Si, we extract the spatial rela-400

tion triplet implied by (Qj , Ai) and verify that it401

does not exist in the scene graph Gi. Formally, we402

require: (object1, object2, relation) /∈ Gi. This403

guarantees that Qi and Qj yield different answers404

within the same scene context.405

Experiment We evaluate different models us-406

ing the proposed benchmark.407

In Experiment 1, given a question qi, we generate408

two answers aij and aik from two different scenes409

sj and sk, respectively. To measure the semantic410

similarity between answers, we use BLEU-4 (Pa-411

pineni et al., 2002) (n-gram precision), ROUGE-412

L (Lin, 2004) (longest common subsequence), and413

METEOR (Banerjee and Lavie, 2005) (semantic414

alignment with synonym matching).415

Based on human-verified answers from the416

ScanQA test set, the average ROUGE-L and ME-417

TEOR score are 0.71 and 0.49 respectively. There-418

fore, we consider two answers to be semantically419

equivalent if ROUGE-L > 0.71 and METEOR420

> 0.49. The hallucination rate is defined as:421

HRran =
1

N

∑
i

1 (ROUGE-L(aij , aik) > 0.71

and METEOR(aij , aik) > 0.49)
(6)422

In Experiment 2, for a fixed scene si, we gener- 423

ate answers aji and aki for two semantically oppo- 424

site questions qj and qk. The hallucination rate is 425

computed as: 426

HRopp =
1

N

∑
i

1 (ROUGE-L(aij , aik) > 0.71

and METEOR(aij , aik) > 0.49)

(7)

427

6 Evaluation on 3D-LLMs 428

6.1 Hallucinations in Random Scene Queries 429

We evaluate four models using the approach above. 430

Table 4 presents the results for random scenes. 431

ROUGE-L measures performance on ScanQA, 432

while HRran is defined in Section 5.2. The ta- 433

ble shows a positive correlation between accuracy 434

and hallucination rate. LL3DA , 3DLLM, LEO and 435

LlaVA3D all exhibit low accuracy and hallucina- 436

tion rates for spatial questions but higher rates for 437

object attributes. 438

For instance, models with higher ROUGE-L scores 439

often exhibit higher hallucination rates.Specifically, 440

LL3DA achieves the highest accuracy for size- 441

related questions, 3D-LLM for color-related ques- 442

tions, and LEO for quantity-related questions; how- 443

ever, each model also exhibits the highest halluci- 444

nation rate in its respective category. This pattern 445

suggests that higher accuracy does not necessar- 446

ily correlate with a deeper understanding of the 447

relationship between the questions and the point 448

clouds. These findings indicate that the models 449

exhibit significant hallucination issues, where it 450

answers questions without considering the visual 451

context, yet its responses appear ’better’ or closer 452
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Model ScanQA ScanQA-SR ScanQA-SR-Opposite
ROUGE-L METEOR ROUGE-L METEOR ROUGE-L METEOR HRopp%

LL3DA 36.56 26.95 4.12 28.27 50.25 52.94 46.52
3D-LLM 37.46 28.18 15.55 10.28 60.78 56.22 53.80

LEO 22.85 16.08 18.46 12.97 66.52 61.13 62.12
LLaVA-3D 3.29 16.71 3.87 28.42 61.03 58.51 56.82

Table 5: This table compares model performance across three tasks: ScanQA, ScanQA-SR (spatial questions), and
ScanQA-SR-Opposite. It uses RougeL and Meteor to measure similarity between model responses and ground
truth (GT) in ScanQA and ScanQA-SR. For ScanQA-SR-Opposite, higher RougeL and Meteor scores indicate a
higher probability of the model generating the same response for opposite spatial questions, reflecting a higher
hallucination rate.

to the ground truth. Upon examining the train-453

ing set, we find that object attributes often align454

with typical characteristics—for example, tables455

are usually black, white, or brown, and televisions456

are typically rectangular. This indicates that the457

model learns attribute associations due to the ho-458

mogeneous nature of indoor scenes and the limited459

diversity of attributes.460

6.2 Relationship Between Attribute461

Uniformity and Answer Accuracy462

We plotted Figure 5 to illustrate the relationship463

between the uniformity of an object’s properties464

and the accuracy of the answers. For instance,465

chair color is queried 346(N ) times, with black466

(T1 times), brown (T2 times), and gray (T3 times)467

as the most frequent colors. To quantify attribute468

uniformity, we introduce the "Top-K Ratio," where469

the Top-3 Ratio for the chair can be calculated as:470

Top-3 Ratio =
T1 + T2 + T3

N
. (8)471

The x-axis shows the average ROUGE-L score472

for questions about a specific object, reflecting473

how easily its properties can be correctly answered.474

The three plots (color, shape, size) illustrate that475

answer accuracy increases with property unifor-476

mity—especially for color and shape, where a clear477

linear trend appears. Many points cluster near a478

Top-3 Ratio of 1, indicating that the dataset con-479

tains objects with highly uniform attributes, which480

may lead the model to hallucinate correct answers481

more easily.482

6.3 Hallucinations in Opposite-Question483

Queries484

The results for testing with opposite questions485

within the same scene are presented in Table 5.The486

ScanQA dataset includes a wide range of QA pairs487

involving various attributes, spatial relationships,488

and other data types. In contrast, ScanQA-SR fo- 489

cuses solely on spatial relationships and transforms 490

all QA pairs into those where the answer is the 491

object itself. 492

By comparing the results from these two datasets, 493

we observe that the ROUGE scores for ScanQA- 494

SR are significantly lower than those for ScanQA. 495

This indicates that the model is more prone to er- 496

rors when dealing with spatial relationship tasks. 497

To investigate whether the model truly understands 498

the meaning of spatial relationships, we created a 499

dataset of opposite questions specifically for spatial 500

relationships. The goal was to assess the model’s 501

ability to handle questions about opposing spatial 502

positions. 503

However, we found that the hallucination rate for 504

both models exceeded 50%. This suggests that 505

when posed with opposite questions about the same 506

scene, the model has a 50% chance of giving the 507

same answer. This result further supports our ear- 508

lier observation that the model is prone to errors 509

and hallucinations when handling spatial relation- 510

ship queries. The results imply that the model may 511

lack a proper visual-semantic understanding of spa- 512

tial relationships, leading it to answer incorrectly 513

without considering point cloud data. 514

7 Conclusion 515

This study categorizes 3D hallucinations and as- 516

sesses their severity in 3DLLM, LL3DA, LEO and 517

LLaVA3D using description and QA tasks.We find 518

that high object frequency, strong correlations, and 519

attribute uniformity drive hallucinations. Since ex- 520

isting metrics rely on text similarity, we design two 521

experiments to better define hallucinations and in- 522

vestigate whether models truly use and understand 523

visual information when answering correctly. Re- 524

sults show that models often fail to answer contex- 525

tually accurate questions and struggle with aligning 526

spatial relationships to visual input. 527
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8 Limitations528

In this study, we provide a detailed classification529

of hallucination types specifically for the QA task.530

Each QA pair is classified to detect correspond-531

ing hallucinations. However, for the description532

task and other long-text tasks, no specific approach533

is proposed to detect the types of hallucinations534

present in the generated answers. This limitation535

means that our evaluation only demonstrates the536

significant hallucination issues within 3D point537

cloud models, and uses different types of short QA538

pairs to explore the following questions: 1) Which539

types of questions are more likely to induce hallu-540

cinations in the model? 2) How does the dataset541

distribution impact the occurrence of hallucinations542

in the model?543

Furthermore, we identify that models are partic-544

ularly prone to attribute hallucinations and investi-545

gate the relationship between dataset distribution546

and hallucination rates. Regarding spatial relation-547

ship hallucinations, our experiments only reveal548

that the models lack understanding of spatial re-549

lationships, but do not explain why the models550

perform worse on spatial relationship-related ques-551

tions compared to other question types.552

Third, in our experiments designed to explore553

whether the models answer based on visual infor-554

mation or rely on textual inputs alone, the results555

indicate that the current dataset is overly simple556

and highly regular, which enabling models to ne-557

glect point cloud information in favor of answering558

based on text alone. However, we do not provide559

insights into why the models do not incorporate560

point cloud information in their responses from an561

architectural perspective.562

Finally, we utilize GPT-4 to generate a new an-563

notated dataset, which, compared to manual anno-564

tation, may contain some minor errors. Although565

we have discussed hallucination issues in 3D large566

language models and highlighted the problem of567

models not responding based on point cloud data,568

this highlights current limitations, but we believe569

the field holds strong potential. On the contrary,570

we aim to identify the reasons behind their subopti-571

mal performance, such as the dataset distribution572

issues discussed in this paper. We hope that our573

work can provide new insights and ideas for further574

improving the performance of 3D large language575

models.576

References 577

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An 578
automatic metric for mt evaluation with improved cor- 579
relation with human judgments. In Proceedings of 580
the acl workshop on intrinsic and extrinsic evaluation 581
measures for machine translation and/or summariza- 582
tion, pages 65–72. 583

Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang 584
Yu, Hao Fei, Hongyuan Zhu, Jiayuan Fan, and Tao 585
Chen. 2024. Ll3da: Visual interactive instruction tun- 586
ing for omni-3d understanding reasoning and plan- 587
ning. In Proceedings of the IEEE/CVF Conference 588
on Computer Vision and Pattern Recognition, pages 589
26428–26438. 590

Angela Dai, Angel X Chang, Manolis Savva, Maciej 591
Halber, Thomas Funkhouser, and Matthias Nießner. 592
2017. Scannet: Richly-annotated 3d reconstructions 593
of indoor scenes. In Proceedings of the IEEE con- 594
ference on computer vision and pattern recognition, 595
pages 5828–5839. 596

Matt Deitke, Christopher Clark, Sangho Lee, Rohun 597
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza 598
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, 599
et al. 2024. Molmo and pixmo: Open weights and 600
open data for state-of-the-art multimodal models. 601
arXiv preprint arXiv:2409.17146. 602

Katja Filippova. 2020. Controlled hallucinations: 603
Learning to generate faithfully from noisy data. In 604
Findings of the Association for Computational Lin- 605
guistics: EMNLP 2020, pages 864–870, Online. As- 606
sociation for Computational Linguistics. 607

Ronald A Fisher. 1936. The use of multiple measure- 608
ments in taxonomic problems. Annals of eugenics, 609
7(2):179–188. 610

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, 611
Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, 612
Furong Huang, Yaser Yacoob, et al. 2024. Hallu- 613
sionbench: an advanced diagnostic suite for entan- 614
gled language hallucination and visual illusion in 615
large vision-language models. In Proceedings of the 616
IEEE/CVF Conference on Computer Vision and Pat- 617
tern Recognition, pages 14375–14385. 618

Pei Guo, Wangjie You, Juntao Li, Yan Bowen, and Min 619
Zhang. 2024. Exploring reversal mathematical rea- 620
soning ability for large language models. In Findings 621
of the Association for Computational Linguistics ACL 622
2024, pages 13671–13685. 623

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong 624
Zheng, Yilun Du, Zhenfang Chen, and Chuang Gan. 625
2023. 3d-llm: Injecting the 3d world into large lan- 626
guage models. Advances in Neural Information Pro- 627
cessing Systems, 36:20482–20494. 628

Yining Hong, Zishuo Zheng, Peihao Chen, Yian Wang, 629
Junyan Li, and Chuang Gan. 2024. Multiply: A 630
multisensory object-centric embodied large language 631
model in 3d world. In Proceedings of the IEEE/CVF 632

9

https://doi.org/10.18653/v1/2020.findings-emnlp.76
https://doi.org/10.18653/v1/2020.findings-emnlp.76
https://doi.org/10.18653/v1/2020.findings-emnlp.76


Conference on Computer Vision and Pattern Recog-633
nition, pages 26406–26416.634

Hongyu Hu, Jiyuan Zhang, Minyi Zhao, and Zhenbang635
Sun. 2023. Ciem: Contrastive instruction evaluation636
method for better instruction tuning. arXiv preprint637
arXiv:2309.02301.638

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun639
Linghu, Puhao Li, Yan Wang, Qing Li, Song-Chun640
Zhu, Baoxiong Jia, and Siyuan Huang. 2023. An em-641
bodied generalist agent in 3d world. arXiv preprint642
arXiv:2311.12871.643

Krishna Murthy Jatavallabhula, Alihusein Kuwajer-644
wala, Qiao Gu, Mohd Omama, Tao Chen, Alaa645
Maalouf, Shuang Li, Ganesh Iyer, Soroush Saryazdi,646
Nikhil Keetha, et al. 2023. Conceptfusion: Open-647
set multimodal 3d mapping. arXiv preprint648
arXiv:2302.07241.649

Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu,650
Yu Zhang, Zhenguo Li, and James Kwok. 2024.651
Forward-backward reasoning in large language mod-652
els for mathematical verification. In Findings of the653
Association for Computational Linguistics ACL 2024,654
pages 6647–6661.655

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,656
and Kensen Shi. 2020. Learning and evaluating con-657
textual embedding of source code. In International658
conference on machine learning, pages 5110–5121.659
PMLR.660

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi661
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,662
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,663
et al. 2023. Segment anything. In Proceedings of the664
IEEE/CVF International Conference on Computer665
Vision, pages 4015–4026.666

Hung Le, Doyen Sahoo, Chenghao Liu, Nancy F667
Chen, and Steven CH Hoi. 2020. Uniconv: A668
unified conversational neural architecture for multi-669
domain task-oriented dialogues. arXiv preprint670
arXiv:2004.14307.671

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin672
Li, Shijian Lu, Chunyan Miao, and Lidong Bing.673
2024. Mitigating object hallucinations in large vision-674
language models through visual contrastive decod-675
ing. In Proceedings of the IEEE/CVF Conference676
on Computer Vision and Pattern Recognition, pages677
13872–13882.678

Chuyuan Li, Yuwei Yin, and Giuseppe Carenini.679
2024. Dialogue discourse parsing as generation: A680
sequence-to-sequence llm-based approach. In Pro-681
ceedings of the 25th Annual Meeting of the Special682
Interest Group on Discourse and Dialogue, pages683
1–14.684

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,685
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Eval-686
uating object hallucination in large vision-language687
models. arXiv preprint arXiv:2305.10355.688

Chin-Yew Lin. 2004. ROUGE: A package for auto- 689
matic evaluation of summaries. In Text Summariza- 690
tion Branches Out, pages 74–81, Barcelona, Spain. 691
Association for Computational Linguistics. 692

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser 693
Yacoob, and Lijuan Wang. 2023. Mitigating hal- 694
lucination in large multi-modal models via robust 695
instruction tuning. arXiv preprint arXiv:2306.14565. 696

Maxime Oquab, Timothée Darcet, Théo Moutakanni, 697
Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer- 698
nandez, Daniel Haziza, Francisco Massa, Alaaeldin 699
El-Nouby, et al. 2023. Dinov2: Learning robust vi- 700
sual features without supervision. arXiv preprint 701
arXiv:2304.07193. 702

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 703
Jing Zhu. 2002. Bleu: a method for automatic evalu- 704
ation of machine translation. In Proceedings of the 705
40th annual meeting of the Association for Computa- 706
tional Linguistics, pages 311–318. 707

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, 708
Trevor Darrell, and Kate Saenko. 2018. Object 709
hallucination in image captioning. arXiv preprint 710
arXiv:1809.02156. 711

Yunhang Shen, Chaoyou Fu, Peixian Chen, Mengdan 712
Zhang, Ke Li, Xing Sun, Yunsheng Wu, Shaohui 713
Lin, and Rongrong Ji. 2024. Aligning and prompting 714
everything all at once for universal visual percep- 715
tion. In Proceedings of the IEEE/CVF Conference 716
on Computer Vision and Pattern Recognition, pages 717
13193–13203. 718

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi- 719
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin 720
Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhanc- 721
ing vision-language model’s perception of the world 722
at any resolution. arXiv preprint arXiv:2409.12191. 723

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH 724
Hoi. 2021. Codet5: Identifier-aware unified 725
pre-trained encoder-decoder models for code un- 726
derstanding and generation. arXiv preprint 727
arXiv:2109.00859. 728

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, 729
Jiangmiao Pang, and Dahua Lin. 2024. Pointllm: 730
Empowering large language models to understand 731
point clouds. In European Conference on Computer 732
Vision, pages 131–147. Springer. 733

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, 734
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu 735
Chang, and Yinfei Yang. 2023. Ferret: Refer and 736
ground anything anywhere at any granularity. arXiv 737
preprint arXiv:2310.07704. 738

Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wen- 739
tao Ye, Bosheng Qin, Siliang Tang, Qi Tian, and 740
Yueting Zhuang. 2024. Hallucidoctor: Mitigating 741
hallucinatory toxicity in visual instruction data. In 742
Proceedings of the IEEE/CVF Conference on Com- 743
puter Vision and Pattern Recognition, pages 12944– 744
12953. 745

10

https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/


Bohan Zhai, Shijia Yang, Chenfeng Xu, Sheng Shen,746
Kurt Keutzer, and Manling Li. 2023. Halle-switch:747
Controlling object hallucination in large vision lan-748
guage models. arXiv e-prints, pages arXiv–2310.749

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang750
Su, Jun Zhu, Lionel M Ni, and Heung-Yeung Shum.751
2022. Dino: Detr with improved denoising anchor752
boxes for end-to-end object detection. arXiv preprint753
arXiv:2203.03605.754

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng755
Yang, Xin Yan, Yilun Du, Yining Hong, and756
Chuang Gan. 2024. 3d-vla: A 3d vision-language-757
action generative world model. arXiv preprint758
arXiv:2403.09631.759

Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and760
Liwei Wang. 2024. Towards learning a generalist761
model for embodied navigation. In Proceedings of762
the IEEE/CVF Conference on Computer Vision and763
Pattern Recognition, pages 13624–13634.764

9 Appendix765

9.1 Introduction of GPT-4o Prompts766

In this experiment, we employed GPT-4o to ana-767

lyze existing textual data and generate new data768

samples. The corresponding prompts used in each769

sub-task are as follows:770

1. Object Hallucination: To extract objects771

mentioned in the model’s responses, we used772

the following prompt:773

Provide a description to list the items in a774

room, ensuring the output is in singular form.775

For example, if the description is: "The room776

is a well-organized space with a floor, walls,777

and a ceiling," the output should be: [floor,778

wall, ceiling]. Just provide the list of items,779

no explanation is needed. Given the following780

room description: description781

2. Question Categorization: To enable a more782

fine-grained analysis of model performance,783

we categorized all question-answer pairs using784

the following prompt:785

Given a question, please determine the type786

of the question without answering it. Choose787

the question type from the following options:788

[Spatial Relationship, Size Comparison, Ob-789

ject’s Properties (color, size, shape), Quantity,790

Usage of an Object, Other]. Please do not pro-791

vide an answer outside of the listed options.792

The question is as follows: question.793

3. Opposite Question Evaluation – Question 794

Generation: To evaluate spatial understand- 795

ing, we generated new questions by revers- 796

ing spatial relationships using the following 797

prompt: 798

Give a question, such as "What is on the front 799

of the brown table?" and change the spatial 800

relationship in the question to the exact oppo- 801

site, for example, change it to "What is behind 802

the brown table?" Just provide the modified 803

result without explanation. The question is as 804

follows: question 805

4. Opposite Question Evaluation – Triple Ex- 806

traction: To verify whether the spatial rela- 807

tionships in generated question-answer pairs 808

exist in the scene, we used semantic scene 809

graphs, which represent relationships in the 810

form of triples (object1, object2, relation). To 811

convert the QA pairs into such triples, we used 812

the following prompt: 813

Provide a question and answer list pair related 814

to spatial relationships. Based on the question 815

and answer, abstract a triple (Item 1, Item 2, 816

Relationship). The question and answer list 817

are as follows: question answer list: answer. 818
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