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ABSTRACT

Cyclic learning, which involves training with pairs of inverse tasks and uti-
lizes cycle-consistency in the design of loss functions, has emerged as a pow-
erful paradigm for weakly-supervised learning. However, its potential remains
under-explored due to the current methods’ narrow focus on domain-specific im-
plementations. In this work, we develop generalized solutions for both pair-
wise cycle-consistent tasks and self-cycle-consistent tasks. By formulating cross-
domain mappings as conditional probability functions, we reformulate the cycle-
consistency objective as an evidence lower bound optimization problem via vari-
ational inference. Based on this formulation, we further propose two training
strategies for arbitrary cyclic learning tasks: single-step optimization and alternat-
ing optimization. Our framework demonstrates broad applicability across diverse
tasks. In unpaired image translation, it not only provides a theoretical justification
for CycleGAN but also leads to CycleGN—a competitive GAN-free alternative.
For unsupervised tracking, CycleTrack and CycleTrack-EM achieve state-of-the-
art performance on multiple benchmarks. This work establishes the theoretical
foundations of cyclic learning and offers a general paradigm for future research.

1 INTRODUCTION

The need for labeled data is now one of the biggest obstacles in machine learning research, where
supervised learning’s reliance on manual labeling introduces both scalability issues and quality con-
trol challenges. To address this, researchers have turned to self-supervised training, the core idea of
which is to generate supervisory signals from unlabeled data for training. Self-consistency-based
self-supervised learning has already demonstrated strong capabilities in the field of representation
learning(Zhang et al., 2016; He et al., 2022; Mikolov et al., 2013; Devlin et al., 2019; Chen & He,
2021). A series of studies have now shifted focus to cross-domain self-supervised learning con-
structed via cyclic consistency(Xu et al., 2023; Yuan et al., 2020; Dwibedi et al., 2019; Wang et al.,
2024; Kulkarni et al., 2019).

This type of approach involves designing a pair of inverse tasks and constructing the training pro-
cess by leveraging the property that data points should return to their origin after cyclic processing.
This not only eliminates the reliance on manual annotations but also preserves task-specific seman-
tic constraints. As shown in Fig. 1, this framework has been applied to various tasks(Zhu et al.,
2017; Wang et al., 2024; 2019b; Dwibedi et al., 2019). A well-known example is CycleGAN(Zhu
et al., 2017)(Fig. 1(a)), which jointly optimizes two tasks by combining cycle consistency loss and
adversarial loss, leading to its widespread adoption in weakly supervised visual tasks(Almahairi
et al., 2018; Yang et al., 2020; Kwon & Park, 2019). In contrast, a different approach is employed
in the visual grounding (Referring Expression Comprehension) and image caption (Referring Ex-
pression Generation) loop(Fig. 1(b)), where both CyCO(Wang et al., 2024) and SC-Tune(Yue et al.,
2024) adopt an alternating training strategy for the two tasks, showcasing the cross-modal adapta-
tion capability. In CyCO, they first conduct cyclic training using only the cross-entropy loss with
image captioning as the objective, followed by another training batch utilizes only the bounding-box
losses(Rezatofighi et al., 2019; Girshick, 2015) for visual grounding. However, current approaches
face two key limitations: First, task-specific designs hinder cross-domain generalization (e.g., the
loss of CycleGAN cannot be directly applied to video alignment task). Second, many methods
still rely on pseudo-labels (e.g., unsupervised visual tracking approaches(Zheng et al., 2021; Wang
et al., 2019a; Shen et al., 2022) requiring initial trajectories from base trackers). To address this, we
propose a probabilistic modeling approach to enable universal cyclic learning across all applicable
tasks.
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Figure 1: Tasks forming cyclic learning: (a) Image-to-image translation; (b) Referring expression
comprehension & referring expression generation; (c) Visual object tracking.

Building upon the constraint of cycle consistency, this work establishes a unified probabilistic frame-
work for both paired cyclic tasks (bidirectional mapping A→B and B→A) and self-cyclic tasks
(A→B and B→A mapped by the same function). Methodologically, this framework is inspired by
the Expectation-Maximization (EM) algorithm (Neal & Hinton, 1998), leveraging it as a founda-
tional variational method for iterative training. By introducing a latent variable z, it transforms the
maximization of log-likelihood into the maximization of a evidence lower bound, and then approxi-
mates the optimum stepwise through the Expectation step (E-step) and Maximization step (M-step).
This method has stood the test of time and remains highly influential across various fields to this
day(Sun & Yang, 2020; Bao et al., 2024; Qu et al., 2019). Another canonical application is the
Variational Autoencoder (VAE) (Kingma et al., 2013), which assumes that the latent variables corre-
sponding to natural images follow the normal distribution. Through variational inference, it derives
a reconstruction loss and a Kullback-Leibler divergence(Kullback & Leibler, 1951) loss, ultimately
training a decoder capable of generating random images from standard Gaussian noise. In con-
trast, our framework aims to deliver theoretically rigorous and computationally efficient solutions
for broad cyclic learning problems.

Specifically, we formalize cycle consistency by treating intermediate data points as latent variables,
with cross-task transitions as learnable distributions. Within this framework, we propose: (i) a
universal single-step loss derived via variational inference that enforces cycle consistency for end-
to-end training, and (ii) an EM-based method that alternately updates model parameters in two tasks
when KL divergence approximation is infeasible. To validate the universality and effectiveness of
our method, we conduct experiments in two distinct tasks: for image translation, our approach not
only reveals the working mechanism of CycleGAN(Zhu et al., 2017) but also achieves bidirectional
style mappings without GANs through the EM method. In object tracking, our model effectively
captures dynamic target appearance variations via self-cyclic constraints, significantly improving
unsupervised tracking robustness. The proposed probabilistic framework provides a unified solution
for diverse cyclic learning scenarios. Our main contributions are:

• We regard the intermediate points (non-starting/non-terminal points) in cyclic learning as
latent variables, thereby establishing the first variational probabilistic framework that uni-
fies both paired and self-cyclic tasks through variational inference.

• We derive two theoretically-grounded optimizers for general cyclic learning: (i) a single-
step variational loss enabling stable and efficient training with explicit distributions, and
(ii) a KL-free, EM-based algorithm compatible with complex distributions.

• In unpaired image translation, we theoretically explain the success of CycleGAN and pro-
pose a GAN-free, EM-based alternative. In visual tracking, we introduce CycleTrack
(single-step) and CycleTrack-EM (EM-based), which achieve state-of-the-art unsupervised
performance.

2 VARIATIONAL INFERENCE FOR CYCLIC LEARNING

2.1 METHODOLOGY

Fundamentally, the generation problem involves learning a function f that maps data points from the
input space to the output space, i.e., f : X → Y . For example, in image captioning, X is a collection
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of natural images where a data point x is a photo of a horse, and Y is the set of all grammatically
correct sentences. The corresponding y ∈ Y for x would be a natural language description of the
horse. The goal of a generative model is to learn this mapping f , such that for an input x from
the domain, the output f(x) appears ”real” and follows a specific distribution in the codomain Y .
Although the generative function itself is not an explicit probabilistic model, it implicitly encodes
the dynamic process of probabilistic transition.

We now examine a special case from a theoretical perspective: when y = f(x) is invertible. In this
scenario, f establishes a bijective mapping, and there exists a unique inverse function x = f−1(y),
which is a necessary condition to guarantee cycle consistency. When a specific observed value ŷ is
given, it must have been produced by a unique x̂ = f−1(ŷ). Probabilistically, this implies that under
the condition Y = {y′}, the distribution of X is deterministic—all probability mass is concentrated
at the single point x′. Thus, the conditional probability density function p(x|y) becomes a Dirac
function:

p(x|y) = δ(x − f−1(y)). (1)
Let g(·) denote f−1(·), with ϕ and θ being the parameters to be learned for f and g respectively, the
conditional probability can then be expressed as:

pθ(x|y) = δ(x − gθ(y)); pϕ(y|x) = δ(y − fϕ(x)). (2)

Based on the above transformation relationships, cyclical learning can be formulated probabilisti-
cally to optimize the mapping functions. First, considering the cycle starting from a data point x and
returning to x, we aim to maximize the log-likelihood, i.e., max log pθ(x). By modeling the samples
from domain Y as latent variables, we have:

log pθ(x) = log

∫
qϕ(y|x)pθ(x)dy ≥ Eqϕ(y|x)

[
log

pθ(x, y)
qϕ(y|x)

]
+DKL(qϕ(y|x)||pdata(y|x)), (3)

where DKL denotes the Kullback-Leibler divergence, and pdata(y|x) represents the true conditional
probability distribution of the output y given an input x in the real world. The first term corresponds
to the so-called Evidence Lower Bound (ELBO), which admits the following decomposition:

ℓθ,ϕ(x) =
∫

qϕ(y|x) log pθ(x|y)dy −DKL(qϕ(y|x)||pdata(y)), (4)

where pdata(y) denotes the true distribution. In Eq. 4,
∫
qϕ(y|x) log pθ(x|y)dy represents the recon-

struction expectation, while DKL(qϕ(y|x)||p(y)) enforces distributional alignment between qϕ(y|x)
and the prior p(y). One may simultaneously consider the symmetric case starting from a data point
y and completing the cycle back to y, for which the ELBO is given by:

ℓθ,ϕ(x, y) =
∫
qϕ(y|x) log pθ(x|y)dy −DKL(qϕ(y|x)||pdata(y))

+
∫
qθ(x|y) log pϕ(y|x)dx−DKL(qθ(x|y)||pdata(x)).

(5)

The gap between the maximum log-likelihood and its evidence lower bound is:
DKL(qϕ(y|x)||pdata(y|x)) +DKL(qθ(x|y)||pdata(x|y)). (6)

The maximization of ℓθ,ϕ(x, y) inherently minimizes two KL divergence terms. Through this pro-
cess, the approximation qϕ(y|x) and qθ(x|y) progressively approach the true distributions pdata(y|x)
and pdata(x|y), achieving exact alignment with the ultimate objective of cyclic learning. This vari-
ational inference process shares similarities with both VAE(Kingma et al., 2013) and EM(Neal &
Hinton, 1998) algorithms. In fact, the two methods we will present next can be regarded as their
direct counterparts: one being VAE-style and the other EM-style. The crucial difference in our
framework is that instead of simply estimating x’s distribution, we learn cross-domain mappings by
analyzing x’s distribution after cyclic transformation. Importantly, the latent variable y here is not
freely designed but must strictly satisfy domain Y’s constraints.

Returning to the perspective of mapping functions, for the first term in Eq. 4, we have:∫
qϕ(y|x) log pθ(x|y)dy =

∫
δ(y − fϕ(x)) log δ(x − gθ(y))dy = log δ(x, gθ(fϕ(x))), (7)

Then for a chosen distance function Dcyc(x, x̂) where Dcyc(x, x̂) = 0 if x = x̂, and Dcyc(x, x̂) > 0
otherwise, the optimization of Eqϕ(y|x) [log pθ(x|y)] can be replaced with the optimization of Dcyc:

argmax
θ,ϕ

Eqϕ(y|x) [log pθ(x|y)] = argmax
θ,ϕ

log δ(x, gθ(fϕ(x))) = argmin
θ,ϕ

Dcyc (x, gθ (fϕ(x))) .

(8)
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Figure 2: General solution for cyclic learning. (a) Single-step direct optimization. (b) Dual EM-
iteration optimization.

Here we introduce Dcyc to approximate the expectation in order to fulfill task-specific requirements
for similarity measurement. The core idea is to minimize the discrepancy between gθ (fϕ(x)) and x,
as exemplified by the Intersection over Union function in bounding box regression tasks.

For the second term in Eq. 4, we have:

DKL(qϕ(y|x)||pdata(y)) =
∫

δ(y − fϕ(x)) · log
δ(y − fϕ(x))
pdata(y)

dy = log δ(0)− log pdata(fϕ(x)).

(9)
where log δ(0) is a divergent constant, while log pdata(fϕ(x)) measures the probability that the
generated output fϕ(x) conforms to the distribution pdata(y), representing the optimization objective
of the KL divergence constraint. Similarly, if p(y) is undefined, the distance function Dsim(ŷ,Y)
can be introduced to quantify the difference between the generated ŷ and the target set Y , serving as
a proxy for log pdata(fϕ(x)):

argmax
ϕ

−DKL(qϕ(y|x)||pdata(y)) = argmax
ϕ

log pdata(fϕ(x)) = argmin
ϕ

Dsim(fϕ(x),Y). (10)

A classic choice for Dsim is the Wasserstein distance (Vaserstein, 1969). By combining Eq. 4 with
Eq. 8 and Eq. 10, the optimization process of the ELBO can be expressed as

argmax
θ,ϕ

ℓθ,ϕ(x) ≈ argmin
θ,ϕ

(Dcyc(x, gθ(fϕ(x))) +Dsim(fϕ(x),Y)) . (11)

Note that ℓθ,ϕ(x) requires joint optimization of θ and ϕ, which may not achieve exact equality in
Eq. 11 due to differing gradient behaviors across distance metrics. Nevertheless, since both Dcyc and
Dsim are proxy methods, maximizing Dcyc +Dsim to approximate max ℓθ,ϕ(x) is not detrimental
to training. The core design principle requires the loss function to incorporate:

• The similarity between x̂ and x (measured by Dcyc)
• The degree to which ŷ belongs to Y (measured by Dsim)

For cyclic tasks, models may converge to local optima of either minDcyc or minDsim. This neces-
sitates task-specific balancing between these two approximating terms.

By integrating Eq. 5 with Eq. 11, we arrive at the two-way cycle-consistent loss:

L(x, y) = DX
cyc(x, gθ(fϕ(x))) +DX

sim(fϕ(x),Y) +DY
cyc(y, fϕ(gθ(y))) +DY

sim(gθ(y),X ), (12)

which corresponds to the direct optimization scheme shown in Fig. 2(a).

Building on the favorable properties of latent-variable-like designs, we also propose an EM-based
method that alternately maximizes the log-likelihoods of pθ(x) and pϕ(y) which is illustrated in Fig.
2(b). This cyclic learning process consists of two alternating stages, termed Eθ-Mθ and Eϕ-Mϕ,
which are designed to promote global convergence. Specifically, the Eθ-Mθ stage optimizes the
parameters θ, while the Eϕ-Mϕ stage optimizes ϕ.

4
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Algorithm 1 An EM approach for cycle-consistent tasks.

Input: Dataset X = {xi}Ni=1, Y = {yi}Mi=1
1: while not converge do
2: while insufficient loss decrease do
3: Sample batch of datapoints X ′ = {x} from X
4: Using ϕ to get T ′ = {(x, ŷ)|ŷ = fϕ(x)} \\ Eθ

5: Update θ via L(θ) =
∑

T ′ DX
cyc (x, gθ(ŷ)) \\ Mθ

6: end while
7: while insufficient loss decrease do
8: Sample batch of datapoints Y ′ = {y} from Y
9: Using θ to get T ′ = {(x̂, y)|x̂ = gθ(y)} \\ Eϕ

10: Update ϕ via L(ϕ) =
∑

T ′ DY
cyc (y, fϕ(x̂)) \\Mϕ

11: end while
12: end while
Output: Generative models gθ(·) and fϕ(·).

In the Eθ-Mθ stage, we assume
the true distribution pdata(y|x) is
equal to pϕ∗(y|x). Under this
assumption, the Eθ step enforces
DKL(qϕ(y|x)∥pϕ∗(y|x)) = 0, which
implies qϕ(y|x) = pϕ∗(y|x). Sub-
sequently, the Mθ step updates θ by
maximizing Epϕ∗ (y|x)[log pθ(x|y)],
which drives θ to converge to-
wards a lower bound determined
by the approximation quality of
pϕ∗(y|x). In the Eϕ-Mϕ stage, we as-
sume that θ∗ is sufficiently accurate,
such that pθ∗(x|y) effectively repre-
sents the true conditional distribution
pdata(x|y). Analogously, the Eϕ step
enforces DKL(qθ(x|y)∥pθ∗(x|y)) =
0, and the Mϕ step updates ϕ by max-
imizing the expectation Epθ∗ (x|y)[log pϕ(y|x)]. Algo. 1 details the procedure described above, but
with the tone of generative models.

In the standard EM algorithm, the E-step fixes parameters θ to find the latent distribution q(z) that
tightens the ELBO, typically by computing the posterior p(z|x, θ). The M-step then fixes q(z) and
updates θ to maximize the expected complete-data log-likelihood. This process can be viewed as
coordinate ascent, alternately optimizing θ and q(z). Our method employs a different variational
inference workflow since we focus on learning mappings p(x|y) and p(y|x) rather than data distri-
butions. When optimizing pθ(x|y), the E-step fixes θ (via Eϕ) and finds the optimal qϕ(y|x) (via
Mϕ), while the M-step maximizes the expected log-likelihood under this qϕ(y|x) (via Eθ and Mθ).
The same logic applies to pϕ(y|x). Parameters θ and ϕ are alternately updated while keeping the
other fixed. For clarity, we define fixing network parameters and sampling data as the E-step, and
maximizing distribution functions as the M-step, labeled as Eϕ-Mϕ and Eθ-Mθ based on the opti-
mized parameters. Essentially, Eϕ-Mϕ serves as the E-step for p(x|y) while Eθ-Mθ acts as its M-step.
Thus, our method also implements coordinate ascent, alternately optimizing model parameters and
parameterized distribution functions.

This approach eliminates the need to define Dsim or estimate pdata(·) as in Eq. 12, thus avoiding
both training instability caused by metric inaccuracies or ill-defined data distributions. The alternat-
ing nature of EM optimization prevents direct distribution control through DKL. Its convergence
guarantee for ŷ = fϕ(x) ∈ Y stems from the M-step’s enforcement of ŷ = fϕ(gθ(y)) to approxi-
mate y, which is similar to SimSiam(Chen & He, 2021). But in practice, the EM method does carry
a risk of converging to local optima due to the lack of explicit constraints on latent variables.

2.2 APPLICATION ON UNPAIRED IMAGE TRANSLATION

We use CycleGAN(Zhu et al., 2017) as an example and conduct experiments on the unpaired image-
to-image translation task. For two distinct image domains X and Y , the objective of CycleGAN is to
find a pair of mapping functions: fϕ : X → Y and gθ : Y → X . The method employs a single-step
optimization strategy for network training, with the proposed loss function as follows:

L(fϕ, gθ, DX , DY) = LGAN(fϕ, DY ,X ,Y) + LGAN(gθ, DX ,Y,X ) + Lcyc(fϕ, gθ), (13)

where LGAN denotes the adversarial loss and Lcyc represents the cycle consistency loss. DX and DY
are the discriminators for domains X and Y respectively, which engage in adversarial training with
the generators G and fϕ. Lcyc consists of both forward and backward cycle consistency loss:

Lcyc(fϕ, gθ) = Ex∼pdata(x)[∥gθ(fϕ(x))− x∥1] + Ey∼pdata(y)[∥fϕ(gθ(y))− y∥1]. (14)

Under our framework, the corresponding components of the loss function can be mapped in Eq.12
shown in Tab. 1. It can be seen that LGAN enforces similarity between the generated distribution
and the target distribution, while Lcyc enforces cycle consistency. The discriminator in a GAN is
related to the Jensen-Shannon (JS) divergence(Lin, 2002) between the generated and real data dis-
tributions(Goodfellow et al., 2014). As the JS divergence itself is a symmetric reformulation of the
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Table 1: The correspondence between com-
ponents in Eq.12 and those in CycleGAN.

Components in Eq. 12 Components in CycleGAN

DX
cyc(x, gθ(fϕ(x))) Ex∼pdata(x)[∥gθ(fϕ(x)) − x∥1]

DX
sim(fϕ(x),Y) LGAN(fϕ, DY ,X ,Y)

DY
cyc(y, fϕ(gθ(y))) Ey∼pdata(y)[∥fϕ(gθ(y)) − y∥1]

DY
sim(gθ(y),X ) LGAN(gθ, DX ,Y,X )

Table 2: The correspondence between steps in
Algo. 1 and those in CycleGN.

Steps in Steps in CycleGNAlgo. 1.

Eθ ŷ = fϕ(x)
Mθ Update θ via Lcyc(gθ) = Ex∼pdata(x)[∥gθ(ŷ) − x∥1]
Eϕ x̂ = gθ(y)
Mϕ Update ϕ via Lcyc(fϕ) = Ey∼pdata(y)[∥fϕ(x̂) − y∥1]

KL divergence, the adversarial loss function effectively serves as an indirect method for approxi-
mating DKL. Integrating these four components reveals that Eq. 13 is essentially an application of
Eq. 12, which explains why CycleGAN works effectively.

Based on Algo. 1, we propose a cyclic learning approach that alternately optimizes tasks in both
directions. The detailed procedure is summarized in Tab. 2, with iterations continuing until conver-
gence is achieved. Unlike CycleGAN, our method removes adversarial discriminators entirely and
is thus named CycleGN.

2.3 EXPERIMENTS

Table 3: FCN-scores of labels→photo for dif-
ferent methods on Cityscapes.

Loss GAN Per-pixel Per-class Class
acc. acc. IOU

CoGAN ✓ 0.40 0.10 0.06
BiGAN/ALI ✓ 0.19 0.06 0.02
SimGAN ✓ 0.20 0.10 0.04
Feat. loss + GAN ✓ 0.06 0.04 0.01

CycleGAN ✓ 0.52 0.17 0.11
CycleGN (ours) × 0.52 0.14 0.10

Table 4: Classification performance of
photo→labels on Cityscapes.

Loss GAN Per-pixel Per-class Class
acc. acc. IOU

CoGAN ✓ 0.45 0.11 0.08
BiGAN/ALI ✓ 0.41 0.13 0.07
SimGAN ✓ 0.47 0.11 0.07
Feat. loss + GAN ✓ 0.50 0.10 0.06

CycleGAN ✓ 0.58 0.22 0.16
CycleGN (ours) × 0.51 0.16 0.10

CycleGN and CycleGAN(Zhu et al., 2017) use the same generator network from pix2pix(Isola et al.,
2017). The unpaired training and test sets are from Cityscapes(Cordts et al., 2016). CycleGN
switches between training Eθ-Mθ and Eϕ-Mϕ every 200 data samples, with a total of 100 train-
ing epochs. All other training settings remain consistent with CycleGAN. We compare approaches
employing different loss functions for cyclic learning, with experimental results reported by Cycle-
GAN, including: CoGAN(Liu & Tuzel, 2016), BiGAN/ALI(Dumoulin et al., 2016; Donahue et al.,
2016), SimGAN(Shrivastava et al., 2017), Feature loss + GAN(Shrivastava et al., 2017; Zhu et al.,
2017). We conduct experiments for labels-to-photo and photo-to-labels translation on Cityscapes.
Tab. 3 and 4 compare CycleGN with CycleGAN and other loss configurations. The successes
achieved by CycleGAN on this pair of cyclic tasks demonstrate the feasibility of the single-step
optimization paradigm. Moreover, our proposed application of CycleGN based on the EM method
on this task achieves better accuracy than other loss functions, with only a minor gap compared to
CycleGAN. Notably, CycleGN does not even employ an adversarial structure—competitive genera-
tion results were still obtained by pushing the outputs of the generative network closer to instances
within the target domain.

3 EXTENDING TO SELF-CYCLIC LEARNING

3.1 METHODOLOGY

We consider a special case with self-cycle-consistent single-task learning, where for any X ,Y ∈ Ω,
and any x ∈ X , y ∈ Y , the symmetry p(x|y) = p(y|x) holds (i.e., fϕ = gθ). When fϕ = gθ, a
trivial solution gθ(gθ(x)) = x would be gθ(x) = x. However, since ŷ = gθ(x) must belong to Y not
X in cyclic learning, gθ(x) cannot directly equal x. Thus, we reformulate the optimization objective
of cyclical learning as gθ(gθ(x,X ,Y),Y,X ) = x, which corresponds to optimizing the conditional
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Figure 3: General solution for self-cycle-consistent learning.

probability log pθ(x|Y,X ), yielding the evidence lower bound:

ℓθ(x|Y,X ) = Eqθ(y|x,X ,Y) [log pθ(x|y,Y,X )]−DKL(qθ(y|x,X ,Y)||pdata(y)). (15)

Algorithm 2 An EM approach for self-cycle-consistent
tasks.

Input: Dataset Ω = {X i}N
i=1 with X i = {xij}Ni

j=1
1: while not converge do
2: Random chosen sub-domains X ,Y ⊆ Ω
3: Sample batch of datapoints X ′ = {x} from X
4: ⊡ E-step: Stop Gradient
5: Using θ to get T ′ = {(x, ŷ)|ŷ = gθ(x,X ,Y)}
6: ⊡ M-step: Learning Procedure
7: Update θ via L(θ) =

∑
T ′ Dcyc (x, gθ(ŷ,Y,X ))

8: end while
Output: Generative model gθ(·).

For self-cycle tasks, either the backward
or forward components in the asymmet-
ric task loss in Eq. 12 can be removed,
leading to the follow loss function:

L(x) = Dcyc(x, gθ(gθ(x,X ,Y),Y,X ))
+Dsim(gθ(x,X ,Y),Y).

(16)
This loss function guides the model ŷ =
gθ(·, ·,Y) toward ŷ ∈ Y through Dsim,
preventing convergence to the local opti-
mum gθ(x,X , ·) = x.

The EM algorithm remains applica-
ble to self-cycle tasks. As outlined
in Algo. 2, the E-step minimizes
DKL(qθ(y|x,X ,Y)||pθ∗(y|x,X ,Y)), while the M-step performs posterior probability maximiza-
tion via argmaxEpθ∗ (y|x,X ,Y) [log pθ(x|y,Y,X )]. The KL divergence term in Eq. 15 is omitted
in M-step as it reduces to a constant in this case. Note that fϕ = gθ enables joint optimization of
bidirectional tasks in one EM process, contrasting with the Eθ-Mθ / Eϕ-Mϕ alternating sequence in
Algo. 1.

3.2 APPLICATION ON UNSUPERVISED VISUAL TRACKING

Visual object tracking is a classic self–cycle-consistent task, with its cyclic structure illustrated in
Fig. 1(c). Based on the paradigm proposed in this work, we can design two self-supervised schemes.

For a video sequence, let X and Y be the selected template and search frames, with x as a random
object box in X . Then, the loss function of the tracker T can be derived from Eq. 16:

L(T, x) = Lb(T (T (x,X ,Y),Y,X )) + Lb(T (x,X ,Y), ỹ),
s.t. ỹ = argmaxy∈BOXY IoU(y, T (x,X ,Y)),

(17)

where Lb is the bounding-box loss, IoU represents the Intersection over Union between two bound-
ing boxes, and BOXY is detector-generated bounding-box set in frame Y . The correspondence
between this loss function and Eq.16 is as follows:

• Dcyc(x, gθ(gθ(x,X ,Y),Y,X )) ⇒ Lb(T (T (x,X ,Y),Y,X ));
• Dsim(gθ(x,X ,Y),Y) ⇒ Lb(T (x,X ,Y), ỹ).

Using Algo. 2 as a reference, we propose an EM variant that bypasses y distribution estimation,
where the expectation step computes ŷ = T (x,X ,Y), and the maximization step updates T by
optimizing the objective Lb(T (ŷ,Y,X )).
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Since current trackers fail to achieve differentiable head-to-tail connections, we are compelled to
develop CycleTrack from scratch. We map template boxes x to positional tokens via MLP, then
concatenate them with uncropped frame tokens as input. The main architecture combines a vanilla
ViT(Dosovitskiy et al., 2021) encoder, STARK(Yan et al., 2021)’s feature enhancer, and parallel
FCOS(Tian et al., 2019) heads generating confidence-weighted box outputs. The tracker can be
formally expressed as ŷ = Tθ(x,X ,Y). For clarity, we refer to the single-step trained tracker as
CycleTrack and the EM-trained tracker as CycleTrack-EM.

3.3 EXPERIMENTS

Table 5: Comparison with leading unsupervised
trackers on LaSOT and TrackingNet.

Method LaSOT TrackingNet
AUC Precision AUC Precision

ResPUL - - 54.6 48.5
LUDT+ 30.5 28.8 56.3 49.5
USOT* 35.8 34.0 61.5 56.6
ULAST*-off 46.8 44.8 64.9 58.5
ULAST*-on 47.1 45.1 65.4 59.2
CycleTrack 51.0 49.7 75.9 71.5
CycleTrack-EM 56.5 57.9 77.3 74.4

Table 6: Comparison with leading strictly-
unsupervised trackers on two datasets.

Method LaSOT TrackingNet
AUC Precision AUC Precision

ResPUL - - 54.6 48.5
LUDT 26.2 23.4 54.3 46.9
USOT 33.7 32.3 59.9 55.1
ULAST-off 42.9 40.5 - -
ULAST-on 43.3 40.7 - -
CycleTrack 45.0 42.2 65.6 59.0
CycleTrack-EM 51.2 49.9 69.1 64.7

In CycleTrack and CycleTrack-EM, Lb adopts the weighted L1 and GIoU(Rezatofighi et al., 2019)
losses consistent with STARK(Yan et al., 2021). The DETA detector(Ouyang-Zhang et al., 2022)
produces detections on TrackingNet(Muller et al., 2018), GOT-10k(Huang et al., 2019), and La-
SOT(Fan et al., 2019), combined with COCO(Lin et al., 2014) for unsupervised training. Optical
flow labels are generated by ARFlow(Liu et al., 2020) on YouTube-VOS(Xu et al., 2018), ImageNet-
ViD(Deng et al., 2009), GOT-10k, and LaSOT, serving as the strictly unsupervised set. We conduct
comparisons with leading unsupervised trackers, including ResPUL(Wu et al., 2021), LUDT(Wang
et al., 2021), USOT(Zheng et al., 2021), ULAST(Shen et al., 2022). We evaluate our unsuper-
vised object tracking methods on LaSOT and TrackingNet, demonstrating significant advantages
over existing approaches. Unlike conventional methods requiring pseudo-labels for image cropping,
our tracker directly implements the proposed cyclic learning paradigm through full-image process-
ing. Experimental results in Tab. 5 and 6 show our single-step and EM-based training approaches
achieve state-of-the-art performance in both unsupervised (detector-annotated) and strictly unsu-
pervised (optical-flow-annotated) settings, outperforming the second-best methods by considerable
margins. Additionally, our framework naturally supports semi-supervised training (see Appendix
for more details).

4 FURTHER ANALYSIS AND DISCUSSION

This section outlines the primary concerns of cyclic learning in applied contexts.

1. Is the mapping learned by cyclic learning always what we need?

Not necessarily. We observe that cyclic learning models can learn incorrect mappings across paired
domains. As shown in Fig. 4, although the reconstructed photos can closely match the real pho-
tos (and similarly for the reconstructed maps and the real maps), the intermediate fake images re-
main unsatisfactory. In visual tracking, CycleTrack occasionally locates incorrect objects in search
frames. Owing to the annotation bias of the detector, the tracker retains the robustness to probabilis-
tically re-localize the target even when initialized with random objects. This may cause the tracker to
degenerate into a basic object detector. We attribute these failure cases primarily to the inherent lim-
itations of cyclic learning itself. Without paired annotations, the models only learn some mapping
between domains X and Y that satisfies cycle consistency but does not guarantee that the learned
mapping is exactly what we intend. Introducing additional constraints beyond cycle consistency
may help mitigate this issue.

Additionally, the EM method has an intrinsic risk of converging to local optima. During training, gθ
may gradually adapt to two distinct modes: gθ(a) = x and gθ(y) = b. This means it simultaneously
learns mappings from A → X and Y → B, both of which can be achieved with a single set of
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Figure 4: Failure cases in cyclic learning. (a) CycleGN failures in photo↔map translation: While
reconstructed images closely resemble real images, the generated fake images exhibit significant
quality degradation. (b) Mislocalizations in CycleTrack-EM (highlighted by yellow boxes): Target
objects are confused with other salient objects or visually similar distractors.

Figure 5: Ablation on Dsim removal (E-step removal): (a) Train tracker solely with Dcyc; (b) Freeze
forward process via E-step, then train tracker with Dcyc.

parameters θ, where A = {ai} and B = {bi} represent domains corresponding to local optima.
Correspondingly, fϕ learns the mappings X → A and B → Y . As a result, we obtain a pair of
bidirectional mappings: X ↔ A and B ↔ Y , which deviate from the intended behavior X ↔ Y .
Once a steady state where both cycles are satisfied is reached, the assumption pdata(y|x) = qϕ(y|x)
in an inner loop can never be achieved.

2. Which is better - single-step training or EM training?

In image translation, the single-step CycleGAN outperforms the EM-based CycleGN. Conversely, in
visual tracking, the EM-based method CycleTrack-EM surpasses its single-step loss variant, Cycle-
Track. Besides, as introduced in the opening section, image generation tasks(Kwon & Park, 2019;
Yang et al., 2020) tend to favor single-step optimization, whereas the REC-REG cycle(Yue et al.,
2024; Wang et al., 2024) exhibits a preference for EM optimization. We argue that the choice be-
tween these two methods primarily depends on whether DKL is well approximated. Both methods
must employ the cycle-consistency loss Dcyc, which can be disregarded in this comparison. The
accuracy of Dsim in measuring the KL divergence between sample and target distributions criti-
cally influences convergence behavior. For instance, while EM methods introduce inherent training
instability, the GAN discriminator provides a robust DKL surrogate that makes single-step opti-
mization preferable.In contrast, aligning with the nearest detection box in CycleTrack is unreliable,
because targets may remain completely undetected. This leads to poor Dsim estimation, explaining
CycleTrack’s inferior performance compared to CycleTrack-EM. An alternative perspective is that,
compared to paired cyclic tasks, self-cyclic tasks facilitate more stable EM training by eliminating
the need to wait for one EM process to converge before initiating the next. We provide a more
detailed analysis of the applicable scenarios in Appendix C.

3. Can we rely solely on the cycle-consistency loss?

Using only the Dcyc loss in single-step optimization is mathematically equivalent to removing the
E-step in the EM algorithm by eliminating the stop-gradient operation, which introduces a key lim-
itation: the generated ŷ often fails to adhere to the target domain or distribution due to the lack of

9
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explicit constraints. In our implementation, we disable the E-step by removing the forward-process
freezing operation in CycleTrack-EM. As evidenced by Fig. 5, this ablated model converges to
clearly trivial solutions compared to the complete EM training procedure—a behavior that parallels
the significant performance deterioration observed in CycleGAN when removing its adversarial loss
while retaining only the cycle-consistency loss. This validates the necessity of both the Dsim loss
for single-step methods and the E-step for EM algorithms.

5 CONCLUSION

This work introduces a novel probabilistic framework that unifies cycle-consistent learning through
variational modeling. By formulating cyclic tasks within a general theoretical foundation, we es-
tablish principled connections between previously disparate approaches. The framework naturally
gives rise to two complementary optimization strategies - a VAE-style single-step method for effi-
cient training, and an EM variant that operates without KL divergence estimation. Together, these
contributions provide both theoretical coherence and practical flexibility for cycle-consistent learn-
ing across tasks. In image translation, our framework theoretically explains CycleGAN’s success
as variational approximation of cycle-consistent learning, while enabling GAN-free alternatives via
EM optimization. For object tracking, self-cyclic constraints dynamically model appearance varia-
tions, where both single-step and EM-based trackers achieve robust unsupervised performance. We
hope this work will inspire future research directions in cyclic learning.
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A EXTENDED INFERENCES

A.1 FROM MAXIMIZING LOG-LIKELIHOOD TO MAXIMIZING ELBO.

Here, we derive Eq. 3 in detail, and similar steps are followed for the ELBO-related parts in the
paper:

log pθ(x) = log

∫
qϕ(y|x)pθ(x)dy

≥
∫

qϕ(y|x) log pθ(x)dy

=

∫
qϕ(y|x) log

pθ(x, y)
pdata(y|x)

dy

=

∫
qϕ(y|x) log

(
pθ(x, y)
qϕ(y|x)

· qϕ(y|x)
pdata(y|x)

)
dy

=

∫
qϕ(y|x) log

pθ(x, y)
qϕ(y|x)

dy +

∫
qϕ(y|x) log

qϕ(y|x)
pdata(y|x)

dy

=Eqϕ(y|x)

[
log

pθ(x, y)
qϕ(y|x)

]
+DKL(qϕ(y|x)||pdata(y|x))

≥ℓθ,ϕ(x),

(18)

with

ℓθ,ϕ(x) =Eqϕ(y|x)

[
log

pθ(x, y)
qϕ(y|x)

]
=

∫
qϕ(y|x) log

pθ(x|y)pdata(y)
qϕ(y|x)

dy

=

∫
qϕ(y|x) log pθ(x|y)dy +

∫
qϕ(y|x) log

pdata(y)
qϕ(y|x)

dy

=Eqϕ(y|x) [log pθ(x|y)]−DKL(qϕ(y|x)||pdata(y)).

(19)

A.2 ANOTHER CONSTRAINT: FEATURE CONSISTENCY.

The feature consistency assumes that corresponding data points from the two domains can over-
lap when mapped to the same space, or that paired data samples share domain-invariant features.
In essence, this serves as a way to constrain y by aligning x and y = f(x) in a particular feature
space, thereby replacing or enhancing the role of DKL(qϕ(y|x)||pdata(y)) in single-step optimiza-
tion. The difference between feature consistency and cycle consistency in constraining the range
of y lies in their metrics: the former is represented by Dsim(y, x) while the latter is approximated
by Dsim(y,Y). Since additional reasonable constraints are introduced, the mapping quality may
improve as mentioned in the main text, but Dsim(y, x) may also lack proper definition in practical
applications like Dsim(y,Y).

For instance, Wang et al. (2019b) models the relationship between forward and backward pixels
as a self-cycle-consistent task, performing cyclic training across multiple frames with a one-step
training pattern. In Eq. 16, Dcyc is expressed in this work as the requirement for pixel alignment
within the cycle formed by different frames, while Dsim enforces feature consistency for the object
across frames, serving as a replacement for the KL divergence. Dwibedi et al. (2019) proposes
a self-supervised representation learning method which aims to learn frame-level embeddings by
temporally aligning video sequences. This task is formulated as a self-consistent task. The method
enforces Dcyc by constructing bidirectional mappings between video frames. Meanwhile, DKL is
implicitly satisfied as the same encoder maps inputs into the embedding space. Additionally, the
mapping process in the embedding space inherently enforces a feature consistency constraint.

Since feature consistency falls outside the scope of this work, we provide only a brief introduction
here.
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Figure 6: The structure of CycleTrack.

Table 7: The performance of different optimization methods in image translation tasks.

Loss Per-pixel Per-class Class
accuracy accuracy IOU

Labels→ Photo

DX
cyc + DX

sim 0.41 0.07 0.03
DY

cyc + DY
sim 0.39 0.05 0.02

DX
cyc + DX

sim ⇄ DY
cyc + DY

sim 0.51 0.13 0.10
CycleGN 0.52 0.14 0.10
CycleGAN(Zhu et al., 2017) 0.52 0.17 0.11

Photo→ Labels

DX
cyc + DX

sim 0.10 0.06 0.02
DY

cyc + DY
sim 0.32 0.09 0.05

DX
cyc + DX

sim ⇄ DY
cyc + DY

sim 0.52 0.16 0.11
CycleGN 0.51 0.16 0.10
CycleGAN(Zhu et al., 2017) 0.58 0.22 0.16

B EXTENDED EXPERIMENTS

B.1 SEVERAL VARIANTS OF SINGLE-STEP LOSS.

This paper focuses on the joint optimization of max(log p(x)+log pϕ(y)). We show that optimizing
only a single direction, specifically maximizing p(x) alone or p(y) alone, influences performance
in both forward and backward tasks. Tab. 7 summarizes the results, where DX

cyc + DX
sim and

DY
cyc+DY

sim correspond to maximizing log p(x) and log p(y) respectively. Another variant involves
rotated optimization of log p(x) and log p(y), denoted in the table as DX

cyc +DX
sim ⇄ DY

cyc +DY
sim.

Unlike Algo. 1, this approach switches objectives every mini-batch without awaiting convergence
between two EM cycles. While this configuration demonstrates inferior performance to CycleGAN
on both tasks, it remains viable. We argue that under constrained training conditions, splitting
Equation 8 into dual cyclic objectives with rotated training provides a feasible alternative.

B.2 FULLY-SUPERVISED AND SEMI-SUPERVISED EXPERIMENTS OF CYCLETRACK.

CycleTrack was evaluated under identical settings to STARK for supervised training. In the semi-
supervised setup, only the annotation of the target in the first frame of each sequence was available.
Since the similarity loss Dsim(ŷ,Y) cannot be defined in search frames under this configuration,
the single-step optimization method becomes inapplicable. Therefore, we exclusively employed the
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Table 8: Comparison between fully-supervised and semi-supervised CycleTrack with state-of-the-
art fully-supervised trackers on LaSOT and TrackingNet.

Method LaSOT TrackingNet
AUC Precision AUC Precision

DiMP(Bhat et al., 2019) 56.9 56.7 74.0 68.7
STARK(Yan et al., 2021) 67.1 - 82.0 -
Mixformer-22k(Cui et al., 2022) 69.2 74.7 83.1 81.6
OSTrack(Ye et al., 2022) 69.1 75.2 83.1 82.0
GRM(Gao et al., 2023) 69.9 75.8 84.0 83.3
CycleTrack (fully) 70.1 75.2 82.9 81.0
CycleTrack-EM (semi) 63.6 66.7 80.6 78.3

EM approach for semi-supervised training. As shown in Tab. 8, CycleTrack achieves comparable
performance to leading two-frame trackers, demonstrating that our assembled network possesses the
fundamental capabilities expected of a competent tracker. Notably, the semi-supervised CycleTrack-
EM delivers remarkably strong performance - showing minimal degradation compared to its fully-
supervised counterpart and even surpassing the fully-supervised DiMP. These results validate the
effectiveness of our proposed training methodology.

C EXTENDED DISCUSSIONS

Given that the single-step approach is more conceptually straightforward and has achieved remark-
able success in CycleGAN-related applications, while the EM-based method is less prevalent, we
provide the following recommendations for its applicable scenarios:

i. Scenarios without DKL estimation. GANs serve as an effective estimator of DKL, but they
are not universally suitable for all tasks. In practice, apart from GANs, few methods can reliably
approximate KL divergence. While image-based domain adaptation largely adopts CycleGAN and
uses GANs as the estimator, other modalities attempting to use single-step losses have generally
achieved suboptimal results. This has compelled some studies to resort to alternatives such as feature
consistency(discussed in Appendix A.2). Adopting EM-based methods may offer a new perspective
for addressing problems in non-GAN scenarios.

ii. Scenarios where convergence to local optima can be avoided. a). Semi-supervised settings
with limited annotated data: Even a small amount of annotated data can prevent domains X and Y
from forming independent cycles. In such configurations, domains X and Y are necessarily con-
nected. Even if the network tends to generate simpler outputs, the locally optimal domains B and
A will remain closer to the true domains X and Y . b). When fϕ and gθ are already capable of
generating outputs in the target domain: In this case, although the network lacks direct mapping
ability between domains, it has acquired the capacity to generate results in domain Y through other
upstream tasks (even if not starting from domain X ). EM training then acts as fine-tuning on a
pre-trained network, significantly reducing the possibility of the network freely diverging to other
domains. c). When no alternative domains are available to the generative function—i.e., in strictly
bijective scenarios: While training CycleTrack, we observed that for any output quadruple beyond
object bounding boxes, there are hardly any other meaningful or structured combinations that can
satisfy cycle consistency. This makes producing object bounding descriptions the most straightfor-
ward choice for the network.

iii. Scenarios that call for a quick and simple trial: In practice, EM training involves only the
reconstruction loss Dcyc, which is generally the simplest loss to design across tasks and modalities.
In contrast, designing and optimizing Dsim is considerably more challenging. Another key consid-
eration lies in the structural constraints imposed by single-step loss training: for fϕ and gθ to be
trained end-to-end, they must form a fully differentiable pipeline. Satisfying this requirement often
places strong constraints on the architecture of both networks—sometimes even necessitating cus-
tomized designs, as encountered in our work on CycleTrack. In contrast, the EM approach imposes
no structural constraints on fϕ and gθ, since the two networks are trained separately. This enables
the use of non-differentiable operations during training.
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(a) Visualization of tracking results by different CycleTrack variants on LaSOT.

(b) Visualization of photo↔labels translation results by CycleGN on Cityscape.
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