
SHGR: A Generalized Maximal Correlation Coefficient

Samuel Stocksieker
CNRS, I2M

Aix Marseille University
Marseille, France

Denys Pommeret
CNRS, I2M

Aix Marseille University
Marseille, France

Abstract

Traditional correlation measures, such as Pearson’s and Spearman’s coefficients,
are limited in their ability to capture complex relationships, particularly nonlinear
and multivariate dependencies. The Hirschfeld–Gebelein–Rényi (HGR) maximal
correlation offers a powerful alternative by seeking the highest Pearson correlation
attainable through nonlinear transformations of two random variables. However,
estimating the HGR remains challenging due to the complexity of optimizing
arbitrary nonlinear functions. We introduce a new coefficient inspired by the HGR
but grounded in the Spearman rank correlation, which we call the Spearman HGR
(SHGR). We propose a neural network-based estimator tailored to (i) bivariate corre-
lation matrix, (ii) multivariate correlations between a set of variables and another
one, and (iii) full correlation between two sets of variables. The SHGR satisfies
Rényi’s axioms, effectively detects nonlinear dependencies, and demonstrates ro-
bustness to noise, outliers, and spurious correlations (hallucinations). Additionally,
it achieves competitive computational efficiency through tailored neural architec-
tures. Comprehensive Numerical experiments and feature selection tasks confirm
that SHGR outperforms existing state-of-the-art methods.

1 Introduction

Understanding variable dependencies is a central challenge in machine learning, statistics, and data
science, with critical applications including feature selection, dimensionality reduction, fairness
assessment, causal inference, and multimodal learning. Classical measures, especially Pearson’s and
Spearman’s correlations, are widely used but restricted to linear, monotonic, and pairwise relation-
ships, often failing to capture complex or higher-order dependencies. To address these limitations,
some generalized dependence measures have been proposed. Among them, the Hirschfeld-Gebelein-
Rényi (HGR) maximal correlation stands out as a theoretically principled tool for quantifying
nonlinear dependence between random variables, whether univariate or multivariate. Introduced by
Hirschfeld ([21]), extended by Gebelein ([10]), and formalized by Rényi ([37]), HGR defines correla-
tion as the maximum linear correlation between transformed versions of the variables. Despite its
strong theoretical appeal, estimating the HGR coefficient remains challenging due to the complexity
of identifying optimal transformations. Other methods suffer from similar drawbacks, including
limited interpretability, high computational complexity, or difficulty in extending to multivariate
configurations.

In this paper, we introduce an extension of the Hirschfeld-Gebelein-Rényi (HGR) maximal correlation
that we shall call Spearman HGR (SHGR). It is based on Spearman instead of the Pearson coefficient.
SHGR offers a scalable and flexible way to estimate nonlinear dependencies in both bivariate and
multivariate settings. It computes pairwise, multivariate (set-to-target), and groupwise correlation
matrices. This extension builds on two key components: (i) a neural approximation tailored for
simultaneous estimation of correlations, and (ii) a copula-based formulation that improves robustness
and stability by reducing sensitivity to extreme values. Our main contributions are summarized as
follows:
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• We revisit HGR maximal correlation by proposing a Spearman-based extension: SHGR
• We present a first estimator of SHGR that is differentiable, fast, efficient, and robust to noise,

outliers, and hallucinated dependencies. Unlike some prior methods, it also recovers the
data transformations and supports significance testing of the correlation.

• We introduce a stacked cross-encoder architecture specifically designed to estimate multiple
correlations simultaneously in both bivariate and multivariate contexts.

• We deduce a comprehensive evaluation protocol, the Multivariate Power of Correlation
Measure, for assessing maximal correlation estimators in terms of performance, robustness
to noise, hallucinations (respecting Rényi’s Axiom 4; see Appendix A), extreme values, as
well as the estimation of bivariate, multivariate, and full correlations, significance testing,
and computational efficiency.

• We validate SHGR on synthetic and real-world tabular datasets. We demonstrate that SHGR
outperforms existing state-of-the-art methods in terms of performance and robustness.

The remainder of the paper is organized as follows: Section 2 reviews prior work on maximal
correlation. Section 3 introduces SHGR, our estimator that extends HGR through a copula-based
formulation and a neural architecture with stacked encoders. Section 4 presents a comprehensive
empirical evaluation, comparing SHGR to state-of-the-art methods, especially in terms of detection
power and robustness. Section 5 shows the application of SHGR to feature selection tasks on real
datasets. Section 6 concludes with a discussion of the strengths and limitations of our approach and
future directions. Code and data are available at: https://github.com/sstocksieker/SHGR

2 Background

2.1 Related Work

Numerous nonlinear dependence measures have been proposed to extend classical coefficients such
as Pearson’s r, Kendall’s τ , and Spearman’s ρ. Canonical Correlation Analysis (CCA) [23] is a
foundational method for extracting linear dependencies between sets of variables, but its linearity
limits its capacity to capture complex relationships. Its extensions ([42, 49]) include Kernel CCA
[26, 20], which applies CCA to nonlinear feature spaces, and Deep CCA (DCCA) [1, 45, 9], which
uses deep networks to model nonlinear projections. The Randomized Dependence Coefficient (RDC)
[31] offers a flexible and efficient alternative using random nonlinear projections followed by CCA.
In contrast, the Hirschfeld–Gebelein–Rényi (HGR) maximal correlation, originally developed by
[21, 10, 37], aims to quantify dependence via maximal Pearson correlation after applying measurable
transformations. HGR has been widely studied in machine learning, notably through the Alternating
Conditional Expectations (ACE) algorithm [6], which iteratively estimates transformations via
conditional regressions. While partially interpretable, ACE is sensitive to noise and the quality of
the estimators [25]. Recently, HGR-based methods have been applied in fairness-aware learning
[36, 33, 16, 13], multimodal learning [30, 44], regression [47], a linear-time independence criterion
[48], a generalized ACE for unlabeled data [46] or in feature selection [24]. Hellinger Correlation
[11] is a recent alternative, though limited to two variables. Other notable dependence measures
include Distance Correlation (dCor) or Brownian Correlation [28], the Hilbert-Schmidt Independence
Criterion (HSIC and CHSIC) [19, 18], and the Maximum Mean Discrepancy (MMD) [17]. These
kernel-based methods, widely used in hypothesis testing, capture a broad range of dependencies, but
are sensitive to kernel choice and do not yield interpretable scores in [0, 1]. The Mutual Information
Coefficient (MIC) [38] can detect various functional relationships but lacks axiomatic properties
like those of HGR and is sensitive to binning heuristics. GeDI [14], recently proposed for fairness
applications, offers an interpretable, transparent measure. MMD and its copula-based variant CMMD
[35], as well as GeDI, are not included in our evaluation as they yield scale-free measures not confined
to [0, 1], limiting interpretability and comparability. Table 1 Appendix B compares the different
methods, theoretically and empirically.

2.2 Hirschfeld–Gebelein–Rényi Correlation coefficient

The Hirschfeld–Gebelein–Rényi maximum correlation (HGR) is a statistical measure theoretically
designed to quantify the relationship between two (univariate or multivariate) random variables.
Unlike the standard correlation coefficients, the HGR is capable of detecting both linear and nonlinear
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associations. It is computed as the maximum correlation coefficient obtained after transforming
the variables using functions. This makes the HGR particularly useful in situations where the
relationship between variables is complex. The HGR coefficient has the advantage of being between
0 (independence) and 1 (strong correlation). As defined by Rényi ([37]), the maximal coefficient
presents interesting properties, described in Appendix A. While the HGR correlation coefficient
holds great potential in theory, estimating the HGR coefficient can be quite challenging due to the
limitless possibilities for transformations. Moreover, the relationships between variables can be
highly complex and require substantial computational resources, making its application difficult.
DEFINITION 1 (HGR maximal correlation coefficient). Let U (∼ DU ) and V (∼ DV ) be two
continuous random variables taking values in U and V , respectively. Let E(U) (resp. E(V)) denote
the set of measurable functions from U (resp. V) to R. Let r() denote the Pearson correlation
coefficient. The Hirschfeld-Gebelein-Renyi (HGR) maximal correlation coefficient is defined as
follows ([21], [10], [37]):

HGR(U, V ) := sup
fU∈E(U)
fV ∈E(V)

r(fU (U), fV (V )) = sup
fU∈E(U),fV ∈E(V)

E(fU (U))=0,E(fV (V ))=0

E(f2
U (U))=1,E(f2

V (V ))=1

EU∼DU ,V∼DV
(fU (U)fV (V ))

2.3 Neural HGR

In the context of fairness analysis, [15] proposed estimating the HGR transformations using neural
networks to capture nonlinear relationships. This estimation can be formulated as a general opti-
mization problem, where the goal is to transform two random variables in such a way that the linear
correlation between their transformations is maximized. The algorithm takes u, sample of U and
v, sample of V as inputs, and returns as output the estimated Pearson correlation1 r(fu(u), fv(v)),
where fu and fv are parameterized by a compact domain Θ. This measure is then estimated using a
neural network by minimizing the following loss function:

LNHGR = − sup r(fθu(u), fθv (v)),

where fθu (resp. fθv ) denotes a neural estimator of fu (resp. fv). This estimator of the maximal
correlation coefficient HGR(u, v), denoted NHGR (for Neural-HGR) is defined as:

NHGRΘ(u, v) = r(f∗
θu(u), f

∗
θv (v)), with (f∗

θu , f
∗
θv ) = argmax

fθu ,fθv∈Θ
r(fθu(u), fθv (v))

This method enables the approximation of the maximal correlation between two variables, or between
one variable and a set of variables ([15], [31]). Nevertheless, by construction, this approach is based
on the Pearson correlation coefficient and therefore inherits its known limitations.

3 SHGR: A Robust and Efficient Maximal Correlation Coefficient

3.1 Neural Spearman HGR

The HGR coefficient is a valuable tool for identifying potential correlations but may, in practice,
exhibit two key limitations similar to those of Pearson’s correlation: (i) sensitivity to extreme
values, and (ii) restricted to capturing linear dependencies of transformed variables (illustration in
Appendix C). In practice, the constraints of centering and unit variance are insufficient to completely
exclude outliers, which could bias the HGR estimator. Using neural networks could lead to overfitting
behaviors, such as learning extreme values to artificially inflate the correlation score. The sensitivity of
neural HGR estimators to outliers can lead to overfitting behaviors and artificially inflated correlation
scores. To address these limitations, we propose a natural extension of the HGR coefficient. Our
approach is inspired by the Spearman coefficient and copula-based methods, which rely on cumulative
distribution functions and are inherently robust to both extreme values and nonlinear relationships.
This substitution offers two main advantages: (i) it improves robustness to extreme values and
distributional shifts, and (ii) it extends the scope of measurable dependence to include monotonic but
nonlinear relationships. Importantly, it remains consistent with the HGR principle of maximizing
correlation between nonlinear transformations of the variables, but reframes the notion of dependence
in terms of rank-based monotonicity rather than raw linearity. This could help reduce transformation

1Its estimate is also designated by r to simplify notation.

3



efforts and optimize calibration to avoid looking for linear correlation, just monotonic correlation.
Recall here that the ith rank statistic from a n-sample, (z1, · · · , zn), drawn from a random univariate
variable Z, is given by:

rank(zi) =

n∑
j=1

1zj≤zi = nF̂z(zi), with F̂z(zi) :=
1

n

n∑
j=1

1zj≤zi ,

where F̂z denotes the empirical cumulative distribution function. By extension, the rank of a random
vector yields the vector of all ranks. We recall that the Spearman correlation coefficient between two
iid paired samples u = (u1, · · · , un) and v = (v1, · · · , vn) from U and V , denoted by ρ(u, v), is
defined as the Pearson correlation coefficient based on the ranks:

ρ(u, v) = r
(
nF̂U (u), nF̂V (v)

)
= r

(
F̂U (u), F̂V (v)

)
, with F̂U (u) = (F̂U (u1), · · · , F̂U (un)).

DEFINITION 2. (Spearman-HGR (SHGR) coefficient). Let U and V be two paired continuous random
variables taking values in U and V , respectively. Let E(U) (resp. E(V)) denote the set of measurable
functions from U (resp. V) to R. The Spearman-HGR (SHGR) coefficient associated to (U, V ) is
defined by

SHGR(U, V ) := max
fu∈E(U),fv∈E(V)

E(fu(U))=0,E(fv(V ))=0

E(f2
u(U))=1,E(f2

v (V ))=1

r(Ffu(U)(fu(U)), Ffv(V )(fv(V ))).

The SHGR is related to the notion of grade correlation between two random variables U and V (see
[12]), which is the limit of their Spearman coefficients and is defined as the correlation between their
copula transformations:

γ(U, V ) = r(FU (U), FV (V )) = lim
n 7→∞

E(ρ(u, v)),

where (u, v) = (ui, vi)i=1,··· ,n are n-iid paired samples from (U, V ). So, we have:

SHGR(U, V ) = max
fu∈E(U),fv∈E(V)

γ(fu(U), fv(V )).

It is important to note that the copula transformation preserves the dependence between the original
vectors U and V (see for instance, [34]).

Using the empirical estimator F̂ of F , we obtain an estimator of the SHGR and its Neural version:

ŜHGR = max
fu∈E(U),fv∈E(V)

E(fu(U))=0,E(fv(V ))=0

E(f2
u(U))=1,E(f2

v (V ))=1

r(F̂fu(U)(fu(U)), F̂fv(V )(fv(V ))),

SHGRΘ(u, v) = max
fθu ,fθv∈Θ

ρ(fθu(u), fθv (v)) = max
fθu ,fθv∈Θ

r(F̂fθu (U)(fθu(u)), F̂fθv (V )(fθv (v))).

Note that the rank transformation is applied only to the correlation computation, not to the input
variables themselves. This preserves the information of the original inputs while benefiting from the
robustness of rank-based objectives.

Consistency of SHGR estimates

SHGR is empirically motivated as a rank-based reformulation of the HGR coefficient ensuring ro-
bustness to outliers and extreme values. It theoretically relies on copula transformations to preserve
dependency structures. We now prove consistency guarantees through convergence results and
Rényi’s axioms. The proofs are given in Appendix D.
PROPOSITION 1. For all ϵ > 0, there exists a family of continuous neural networks parametrized by
a compact domain Θ, such that

|SHGRΘ(u, v)− ŜHGR(u, v)| ≤ ϵ.

PROPOSITION 2. Let (u, v) be independent sequences of iid samples of size n drawn by (U, V ).
We have the following convergence in law as n tends to infinity:

ŜHGR(u, v)→ SHGR(U, V ).
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PROPOSITION 3. Let U , V be two continuous random variables. All the following Rényi axioms
for nonlinear dependence measures (modified by [40]) are satisfied by the SHGR coefficient.

1. SHGR(U, V ) is defined for all pairs of non-constant continuous random variables U , V .

2. SHGR(U, V ) = SHGR(V,U).

3. 0 ≤ SHGR(U, V ) ≤ 1.

4. SHGR(U, V ) = 0 if and only if U and V are independent.

5. For all Borel-measurable bijective functions f : Rp → R and g : Rq → R, SHGR(U, V ) =
SHGR(f(U), g(V )).

6. SHGR(U, V ) = 1 if U = f(V ) or V = g(U), for some Borel-measurable function f or g.

7. If (U, V ) ∼ N (µ,Σ), then SHGR(U, V ) is a strictly increasing function of |r(U, V )|.

3.2 Generalized Neural SHGR

While pairwise correlation analysis is useful, many real-world applications require assessing depen-
dencies between a group of variables and one or more target variables. In a similar manner to the
Canonical Correlation Analysis (CCA) and the Randomized Dependence Coefficient (RDC), we
propose here a natural generalization of our rank-based HGR estimator to this multivariate setting. For
instance, it is often necessary to analyze several pairwise correlations rather than focusing on a single
variable pair. Since training neural networks can be time-consuming, estimating each correlation
independently may be inefficient. We address this limitation by introducing a neural architecture
specifically designed for this purpose. To construct a matrix of SHGR estimates, we extend the neural
SHGR estimator using a stacked cross-encoder design. This architecture is illustrated in Figure 1a for
pairwise (1-vs-1) analysis and in Figure 1b for full (p-vs-q) correlation matrices. An architecture for
multivariate (p-vs-1) settings is provided in Appendix (Figure 9). Typically, for bivariate estimation,
the algorithm considers p input variables u1, . . . , up, and aims to optimize the corresponding entries
in the correlation matrix. The stacked encoder design enables marginal transformations that capture
complex, nonlinear dependencies between variables. The objective function for bivariate estimations
(pairwise correlations) is defined as follows:

LSHGR(u) := −
p∑

i,j=1
i̸=j

[
ρ2
(
fθui

(ui), fθuj
(uj)

)1/2]α
, with α > 0.

The objective function for multivariate analysis (correlations of any order) is thus:

LSHGR(u) := −
p∑

i=1

[
ρ2
(
fθui

(ui), gθui
({uj}j ̸=i)

)1/2]α
, with gθui

: Rp−1 → R.

We also extend this approach to obtain full correlation between two sets of variables u and v of
dimensions p and q respectively (for example, two datasets):

LSHGR(u,v) := −
[
ρ2 (fθu(u), fθv(v))

1/2
]α

, with fθu : Rp → R, fθv : Rq → R.

Similar to the absolute value, we apply a square root transformation of the squared coefficient to obtain
a differentiable operation. We introduce a hyperparameter α that allows weighting the coefficients: a
weight greater than 1 gives more importance to stronger correlations, and their maximization will be
prioritized during training, enabling faster maximization of potential correlations. It is interesting to
note that the Canonical Correlation Analysis (CCA) is a special case of SHGR, corresponding to a
single linear layer without activation and rank transformation.

Practical Remarks (1) Since our loss function depends on rank-based estimation, we use TorchSort
approach [4] to obtain a differentiable approximation of the sorting operation2. (2) Empirically,
SHGR exhibits convergence, with no substantial gain beyond a threshold (illustrated in Figure 12a in

2We used the implementation available at https://github.com/teddykoker/torchsort.
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(a) for bivariate correlations estimation (b) for full correlation estimation

Figure 1: Cross-Encoder Architecture

Appendix F.3.4), motivating the use of an early stopping to balance accuracy and efficiency. (3) Our
estimator supports significance testing via a Spearman-based test. To improve robustness, we apply a
masking rule: correlations not significant at level α are set to zero. (4) An extended version of SHGR
handles mixed-type data by incorporating the correlation ratio (numeric-to-categorical) and Cramér’s
V (categorical-to-categorical) (illustration in Appendix F.3.4).

4 Experiments

We propose to evaluate the SHGR and its competitors with a complete protocol following the analysis
below (defining the multivariate power of correlation measures): (4.2.1) Performance: ability to
capture complex nonlinear correlations without noise ; (4.2.2) Robustness to noise: ability to identify
complex nonlinear correlations with noise ; (4.2.3) Robustness to hallucination: null correlation
in the case of independence ; (4.2.4) Robustness to extreme values: null correlation in the case of
independence, in the presence of extreme values. (4.2.6) Bivariate power of a dependence measure
as proposed by [31] ; (4.2.7) Computation time: fast to estimate correlations ; (4.2.5) Significance
test analysis: possibility of performing a significance test on the coefficient and ability to reject the
null hypothesis (of null correlation) in the presence of noise.

4.1 Experimental Protocol

We apply the multivariate power of correlation measures protocol in three settings: (i) bivariate
(pairwise) correlations (1-vs-1), (ii) multivariate correlations (p-vs-1), and (iii) full (groupwise)
correlations (p-vs-q). For (i), we generate six independent Gaussian variables and five others that
depend nonlinearly on them. For (ii), we simulate 20 variables, including nonlinear dependencies
involving more than two variables. For (iii), we generate two datasets with varying global correlation
structures. Details on data generation are provided in Appendix F.3. Figure 2a presents the pairplot
for bivariate correlations. We estimate nonlinear correlations using SHGR and compare them with the
following alternative methods 3 (some methods are unavailable in the multivariate and full settings):

• The Pearson correlation coefficient: Pearson
• The Spearman correlation coefficient: Spearman
• The Kendall correlation coefficient: Kendall
• The Randomized Dependence Coefficient ([31]): RDC
• The Mutual Information Criterion ([38]): MIC
• The Distance Correlation ([41]): dCor
• Canonical Correlation Analysis ([23]): CCA
• Kernel Canonical Correlation Analysis ([2]): kCCA4

• Alternating Conditional Expectations ([7]): ACE
• HGR estimation with kernel ([33]): HGRkde
• HGR estimation with Neural Net ([16]): HGRnn
• HGR estimation with Lattice ([14]): HGRlat
• HGR estimation with double kernel ([14]): dk

3The used libraries are listed in Appendix F.4
4This approach was not integrated because it was unstable and too time-consuming to calculate
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• HGR estimation with simple kernel ([14]): sk
• The Normalized Hilbert-Schmidt Independence Criterion ([18]): NHSIC
• The Hellinger Correlation ([11]): HR5

We perform our SHGR model for 100, 200, and 500 epochs and with early stopping. A sensitivity
analysis of the SHGR architecture and hyperparameters was performed (details are provided in
Appendix F.2.3). A single architecture and hyperparameter configuration were then used consistently
across all illustrations and experiments. In the analyses below, we generate K = 10 synthetic
datasets and compare the estimated correlations from each method to the true, known, correlations,
referred to as reference correlations. We evaluate the deviation from these reference correlations
using: the pairwise correlation matrix for bivariate correlation, the vector of multiple correlations for
multivariate correlation, and the correlation coefficient for full correlation analysis.

(a) Inputs Pairplot (b) SHGR Transformations Pairplot

(c) Reference Correlation Matrix

(d) SHGR Correlation Matrix

Figure 2: Illustration of SHGR on bivariate correlations

4.2 Results

4.2.1 Performance

Our goal in this experiment is to evaluate the ability of the different approaches to detect perfect
nonlinear correlations in a noise-free setting. Figure 3 shows the results for both bivariate and
multivariate settings. We observe that SHGR closely matches the reference correlation values and
performs on par with the strong baseline ACE. Moreover, we find that varying the number of training
epochs for SHGR (early stopping, 100, 200, or 500 epochs) has little to no effect on performance,
suggesting that the method converges efficiently. In the full-correlation setting, SHGR, together with
RDC, CCA, dk, and sk, successfully captures nonlinear dependencies, whereas other approaches such
as HGRnn, NHSIC, and dCor fail to do so (see Figure in Appendix F.5.3). Further implementation
details and numerical results are provided in Appendix F.5.

(a) Bivariate Correlation (b) Multivariate Correlation

Figure 3: Performance Results: distance to Reference Correlations (lower is better)

5This approach was not integrated because inefficient, limited to pairwise correlations and too time-consuming
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4.2.2 Robustness to Noise

We now evaluate the robustness of correlation measures with respect to additive white noise (zero
mean), assessing their ability to detect significant dependencies as noise increases. To this end, we
reproduce the previous simulations while gradually introducing higher levels of noise in each trial. In
this setting, the true correlation is unknown. Following the approach of [31], we consider a method
more robust if it yields higher correlation values under increasing noise. We therefore adopt the same
evaluation metric as in the previous section: the distance to the reference correlations. Results are
shown in Figure 4, detailed experimental settings and additional visualizations are given in Appendix
F.6. As noise increases (left to right on the x-axis), SHGR consistently outperforms state-of-the-art
baselines across bivariate, multivariate, and full-correlation scenarios. Notably, while ACE performs
well in noise-free settings, its accuracy drops significantly under noise. In the full-correlation setting,
some methods even exhibit hallucinated correlations when applied to independent variables, which is
the case when the value of k on the x-axis exceeds 10.

(a) Bivariate Correlation (b) Multivariate Correlation (c) Full Correlation

Figure 4: Robustness to Noise ((a) and (b): distance to Reference Correlations (lower is better) ; (c):
Decreasing correlation context on the left side (higher is better) and independence context on the
right side (lower is better)) - Results with SHGR are red

4.2.3 Robustness to Hallucination

We evaluate here the ability of correlation measures to avoid hallucinations, that is, to refrain from
reporting spurious correlations on fully independent data. For each scenario, we simulate independent
variables and compute the corresponding estimated correlation coefficients. As illustrated in Figure
5a, our method, SHGR, remains stable and does not produce artificial correlations, unlike several
competing approaches that yield inflated values. Additional details and experimental results are
provided in Appendix F.7.

4.2.4 Robustness to Extreme Values

We evaluate the robustness of correlation measures to hallucinated dependencies induced by extreme
values. Following the previous setup, we simulate independent variables and inject extreme values in
all iterations except the first, which serves as a baseline reference. We then apply various correlation
estimators to assess their stability under such perturbations. As shown in Figure 5b, SHGR remains
stable in the presence of extreme values, while several competing methods, including HGRnn, exhibit
inflated or unstable correlation estimates. Additional results and implementation details are provided
in Appendix F.8.

(a) Robustness to hallucination (b) Robustness to Extreme Values

Figure 5: Analysis of the distances to the Bivariate Reference Correlation Matrix (lower is better)
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4.2.5 Significance Test

SHGR optimizes the Pearson correlation coefficient over nonlinear transformations of the input
variables, in line with the theoretical definition of HGR. As such, it is possible to perform an
asymptotic significance test on the obtained correlation coefficient (when n is sufficiently large) [29].
A non-parametric permutation test can also be applied. Specifically, we test the null and alternative
hypotheses:

H0 : SHGRΘ(u, v) = 0 versus H1 : SHGRΘ(u, v) ̸= 0

We assess the effectiveness of this test across various bivariate and multivariate relationships, each per-
turbed with increasing levels of noise. The results are compared to the significance tests implemented
for MIC, RDC, and dCor, over nine representative types of dependencies. Full details are provided in
Appendix F.9. Overall, the SHGR-based test consistently outperforms the alternatives, demonstrating
greater robustness and a higher ability to correctly reject the null hypothesis of independence.

4.2.6 Bivariate Power of Dependence Measure

In addition to the previous evaluations, we assess the bivariate power of a dependence measure.
Following the protocol introduced in [31] and adopted in subsequent works such as [32] and [15], we
evaluate the robustness of our method by progressively perturbing several nonlinear bivariate and
multivariate relationships. An ideal dependence measure should maintain high correlation values
even as noise increases. Detailed results are provided in Appendix F.10. Overall, SHGR demonstrates
strong robustness, consistently producing higher correlation scores than competing methods across
all tested configurations.

4.2.7 Computation time

SHGR exhibits highly competitive computation times. Unlike many existing approaches, it avoids
iterative loops for estimating multiple correlations, instead performing joint optimization over all
coefficients, which significantly reduces computational overhead. In contrast, baseline methods often
rely on sequential estimation, leading to increased runtimes. On a typical illustrative dataset (2,000
observations and 10 variables), SHGR computes the full pairwise correlation matrix in approximately
5 seconds with early stopping. It consistently outperforms NHSIC, MIC, dk, and HGRlat for bivariate
correlations. In the multivariate setting, its runtime is on par with RDC and CCA. We also evaluate the
method’s scalability with respect to the number of variables and sample size. SHGR remains efficient
in high-dimensional settings: for instance, it requires only 3.5 minutes to estimate multivariate
correlations on a dataset with 10,000 observations, faster than both RDC and CCA, and just 1 minute
to compute bivariate correlations across 1,000 variables. Further computational details are provided
in Appendix F.11. Figure 6 presents the computation time for illustration. In the case of bivariate

(a) Bivariate correlations (b) Multivariate correlations

Figure 6: Computational time Comparison

correlation estimates, i.e., the correlation matrix, the computation time of SHGR, with early stopping,
is around 6 seconds on average. This is faster than MIC, HGRlat, dk and NHSIC. In the case of
multivariate correlation estimates, the computation time of SHGR is 23 seconds on average and is
slightly faster than the CCA, RDC, and dCor methods (3̃3 seconds). The dk method takes far too
long, with almost 14 minutes. The ACE method is instantaneous.
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5 Real-World Applications

To evaluate the practical relevance of our method, we apply it to feature selection on nine real-world
tabular datasets (see Appendix G). For each method, we select the top k features most correlated
with the target y, and assess predictive performance via RMSE on a test set (30%), using a random
forest regressor. To test robustness to limited data, all models are trained on at most 500 samples.
Some results are shown in Figure 7. Across most datasets, SHGR-selected features consistently yield
lower RMSE than competing methods. We also evaluate the multivariate SHGR using a leave-one-out
strategy to estimate each variable’s contribution to the global X-vs-y correlation. Complete results
are reported in Appendix G, confirming the effectiveness of SHGR for real-world feature selection.

(a) Abalone dataset (b) Appliance dataset (c) Boston dataset

Figure 7: RMSE for test set prediction with feature selection on real-world datasets (lower is better);
Based on maximal (bivariate) correlation - Results with SHGR are red

6 Discussion

The problem of estimating the maximal correlation between two variables has long been a central
challenge in statistics and machine learning. Several approaches have been proposed, most of
which are based on the Hirschfeld-Gebelein-Rényi (HGR) definition, where the goal is to learn
transformations of the input variables that maximize their linear correlation. In this work, we
introduce a new maximal correlation coefficient, SHGR, which generalizes the HGR framework using
rank-based transformations and satisfies Rényi’s axioms. Its estimation relies on a dedicated neural
architecture. Our approach offers several key advantages: (1) it directly optimizes a full matrix of
correlation coefficients in a non-iterative manner, significantly reducing computation time; (2) the
estimator is accurate, robust, and computationally efficient; (3) it enables statistical significance testing
of the estimated correlations; (4) it outperforms state-of-the-art methods across multiple evaluation
settings and real-world experiments; Interestingly, our approach can be combined with existing
methods to improve their results, as shown in Appendix F.14 and, (5) SHGR is fully differentiable,
making it easy to integrate into modern deep learning pipelines. As highlighted by [13], HGR-based
methods may produce "hallucinated" correlations as a result of overfitting. In our illustrations, we
showed that SHGR remains robust to such artifacts. Nevertheless, caution is still required; therefore, it
is important to carefully tune the stacked neural network in our approach, sufficiently expressive to
capture complex dependencies, but not overly flexible to prevent overfitting and artificially inflated
correlation scores. Our experimental design includes a variety of nonlinear dependencies, inspired by
the Power of Dependence Measure protocol suggested by [31]. We assessed performance in both
noise-free and noisy settings.
Further exploration of other types of nonlinear dependencies would be a valuable extension. [13]
also points out that HGR is difficult to interpret. Although this criticism is generally valid, SHGR
provides access to the learned transformations of the input variables, which can provide information
about the nature of the dependency. Indeed, the SHGR approach allows for graphical analysis of
the applied transformations by plotting the encoded of stacked neural networks as a function of
the inputs, as illustrated in Figure 37. Nevertheless, interpretability is not the main objective of
HGR-based measures. Exploring the interpretability of learned functions is an interesting avenue, and
a posteriori visualizations could help to better understand the adjusted transformations and therefore
the dependencies. Although detaching normalization terms reduces theoretical gradient bias, we
found that doing so significantly harmed empirical performance. We thus keep the differentiable form
and leave bias-corrected alternatives for future work. Analyzing its behavior in high-dimensional
settings remains an open question. Extending the framework to large-scale neural architectures and
multimodal learning tasks, as well as applying it to fairness-aware scenarios, represents promising
directions for future research.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Contributions are listed in the introduction and summarized in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are presented in the discussion section
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All demonstrations of the proposals in the paper are rigorously detailed in the
Appendix, with references where necessary. Unfortunately, due to space constraints, we are
unable to give a short proof sketch.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code and datasets are not provided at submission time but will be released
upon acceptance, along with the camera-ready version. The synthetic data generation
process is fully detailed, and the sources of the real-world datasets used in our experiments
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are explicitly cited. Additionally, we provide a pseudo-code description of the algorithm and
illustrate the construction of the stacked cross-encoder architectures for all three correlation
settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No] / [Yes]

Justification: The code and datasets are not provided at submission time but will be released
in case of acceptance, along with the camera-ready version. The synthetic data generation
process is fully detailed, and the sources of the real-world datasets used in our experiments
are explicitly cited. Additionally, we provide a pseudo-code description of the algorithm and
illustrate the construction of the stacked cross-encoder architectures for all three correlation
settings.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All hyperparameters are documented in the Appendix, including network
architectures, training settings, and data simulation parameters. We also conduct sensitivity
analyses to assess the robustness of our method with respect to these choices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For each analysis, we performed at least 10 randomized runs (with fixed seeds
for reproducibility) to ensure robust and reliable results. We report outcomes using various
formats: heatmaps of correlation scores, ranking tables, and visualizations such as boxplots
or confidence-interval curves, depending on the context.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational ressources and computation time are detailed in the Appendix.
NOus avons également réalisés une étude de sensibilités de temps de calcul par rapport à la
taille de l’échantillon et au nombre de vairales.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the research conducted in the paper is conform, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Proposition of a new maximal correlation coefficient, without societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

18

https://neurips.cc/public/EthicsGuidelines


• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets (code, data, and models) are properly referenced, with their original
papers. The datasets are sourced from public repositories such as the UCI Machine Learning
Repository, with URLs provided. The models used in the baselines are implemented using
publicly available R or Python libraries, or retrieved from open-access GitHub repositories
(with URL). Licenses are indicated wherever applicable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: details about training, license, limitations, etc. will be communicated in case
of acceptance
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: The use of large language models (LLMs) was limited strictly to writing
assistance, editing, and formatting. No LLMs were used for developing core research ideas,
designing experiments, or generating results.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Renyi’s axioms

1. General definition: D(X,Y ) is defined for all pairs of non-constant random variables X
and Y .

2. Symmetry: D(X,Y ) = D(Y,X)

3. Natural bounds: 0 ≤ D(X,Y ) ≤ 1

4. Zero under independence: D(X,Y ) = 0 if and only if X and Y are statistically independent.

5. Invariance under bijective transformations: For all Borel-measurable bijective functions
f, g : R→ R, D(X,Y ) = D(f(X), g(Y ))

6. Unit value under deterministic functional dependence: D(X,Y ) = 1 if Y = f(X) or
X = g(Y ), for some Borel-measurable function f or g.

7. Agreement with Pearson correlation in the Gaussian case: If (X,Y ) ∼ N (µ,Σ), then
D(X,Y ) = |ρ(X,Y )|

8. where ρ(X,Y ) denotes the Pearson correlation coefficient.

B Related Work

Table 1: Comparison of correlation estimation approaches across multiple criteria (*** for good
score, * for bad score, based on bivariate illustrations)

Approach Non-Lin. Mult. Perf. Noise Halluc. Extreme Rényi Marg. Inv.

Pearson ✗ ✗ * * ** ✗ ✗ ✗
Spearman ✗ ✗ * * ** ✓ ✗ ✓
Kendall ✗ ✗ * * ** ✓ ✗ ✓
RDC ✓ ✓ *** *** * ✓ ✓ ✓
MIC ✓ ✗ *** ** * ✓ ✗ ✗
dCor ✓ ✓ ** ** * ✗ ✗ ✗
CCA ✗ ✓ * * ** ✗ ✗ ✗
kCCA ✓ ✓ * * ** ✗ ✗ ✗
ACE ✗ ✓ *** *** *** ✗ ✓ ✗
HGRkde ✗ ✗ ** ** ✓ ✓ ✓
HGRnn ✓ ✓ ** ** * ✗ ✓ ✓
HGRlat ✗ ✗ * * ** ✗ ✓ ✓
dk ✓ ✓ ** *** * ✗ ✓ ✓
sk ✓ ✓ ** *** * ✗ ✓ ✓
SHGR (ours) ✓ ✓ *** *** *** ✓ ✓ ✓

C Pearson coefficient Analysis

The following figure illustrates the differences between Pearson and Spearman correlation coefficient
estimates. In Figure 8b, the relationship is purely monotonic with the exponential function and the
Pearson coefficient poorly captures the correlation. It is also observed that the Pearson coefficient is
distorted if an extreme value is present (Figure 8d). Finally, both coefficients do not capture nonlinear
relationships, such as a quadratic relationship, as shown in Figure 8c.

Sensitivity of Pearson’s correlation to extreme values We demonstrate the sensitivity of Pearson’s
correlation coefficient to extreme values using a simple counterexample. Let X and Y be two
independent, centered random variables, such that E[X] = E[Y ] = 0 and Cov(X,Y ) = 0. Consider
an i.i.d. sample of n pairs (xi, yi)

n
i=1 drawn from these variables, with empirical Pearson correlation

coefficient ρn close to 0 due to independence. Now suppose we add a single extreme data point
(x∗, y∗) = (K,K) with K ≫ 1. Let x̄n+1 and ȳn+1 denote the empirical means computed over
the n + 1 observations (including the extreme point). The updated empirical Pearson correlation
becomes:
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ρn+1 =

∑n
i=1(xi − x̄n+1)(yi − ȳn+1) + (K − x̄n+1)(K − ȳn+1)√∑n

i=1(xi − x̄n+1)2 + (K − x̄n+1)2 ·
√∑n

i=1(yi − ȳn+1)2 + (K − ȳn+1)2

Now observe that:

x̄n+1 =
1

n+ 1

(
n∑

i=1

xi +K

)
≈ K

n+ 1

so that:

K − x̄n+1 ≈ K − K

n+ 1
=

nK

n+ 1
⇒ (K − x̄n+1)

2 ≈
(

nK

n+ 1

)2

= O(K2)

and similarly for Y .

This shows that both the covariance term and the variances are asymptotically dominated by the
contribution of the extreme point. Therefore, as K →∞:

ρn+1 ≈
(K − x̄n+1)(K − ȳn+1)√

(K − x̄n+1)2 ·
√

(K − ȳn+1)2
= 1

This confirms that a single well-aligned extreme point can drive the Pearson correlation arbitrarily
close to 1, even when the underlying variables are entirely independent. This illustrates the high
sensitivity of Pearson’s correlation coefficient to outliers and highlights the potential for misleading
empirical estimates in the presence of extreme values.

(a) Independence (b) Monotonic correlation

(c) Quadratic correlation (d) Independence with an extreme value

Figure 8: Pearson (r) and Spearman (rho) coefficients for different cases

D Proofs

In the proofs, when there is no ambiguity, we simplify notation by writing f in place of fu, g in place
of gv , F in place of FU or Ffu(U), G in place of GV or Ggv(V ), depending of the situation.
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D.1 Proof of Proposition 1

We have

ŜHGR− SHGRΘ = sup
f,g

ρ(f(u), g(v))− sup
f∗,g∗

ρ(f∗(u), g∗(v))

where f∗, g∗ stand for the neural approximation functions.

Let ξ > 0. By definition of the supremum, there exist functions f0, g0 in E(U) and E(V) such that:

ρ(f0(u)g0(v)) ≥ sup
f,g

ρ(f(u)g(v))− ξ.

Therefore:

ŜHGR− SHGRΘ ≤ ρ(f0(u), g0(v))− sup
f∗,g∗

ρ(f∗(u), g∗(v)) + ξ

≤ ρ(f0(u), g0(v))− ρ(f∗
0 (u), g

∗
0(v)) + ξ (1)

= r(F̂f0(u), (f0(u))Ĝg0(v)(g0(v)))− r(F̂f∗
0 (u)

(f∗
0 (u)), Ĝg∗

0 (v)
(g∗0(v))) + ξ,

where f∗
0 and g∗0 stand for the neural approximations of f0 and g0 respectively. Since the random

variables U and V are bounded on the compact supports E(U)) and E(V)), we can prove by the
universality of the neural approximation [22] that when n tends to infinity,

r(F̂f0(u)(f0(u)), Ĝg0(v)(g0(v)))− r(F̂f∗
0 (u)

(f∗
0 (u)), Ĝg∗

0 (v)
(g∗0(v))) → 0.

The argument of such a proof is similar to those used in [15]. Finally, since the inequality (1) holds
for every ξ > 0, we obtain the result.

D.2 Proof of Proposition 2

We have

ŜHGR− SHGR = sup
f,g

r(F̂ (f(u)), Ĝ(g(v)))− sup
f,g

r(F (f(U)), G(g(V ))).

Let ξ > 0. By definition of the supremum, there exist functions f0, g0 in E(U) and E(V) such that:

r(F̂ (f0(u)), Ĝ(g0(v))) ≥ sup
f,g

r(F̂ (f(u)), Ĝ(g(v)))− ξ.

Therefore:

ŜHGR− SHGR = r(F̂ (f0(u)), Ĝ(g0(v)))− sup
f,g

r(F (f(U)), G(g(V ))) + ξ

≤ r(F̂ (f0(u)), Ĝ(g0(v)))− r(F (f0(U)), G(g0(V ))) + ξ (2)

=
1

n

n∑
i=1

(
F̂ ′(f0(ui))Ĝ

′(g0(vi))− E(F ′(f0(U))G′(g0(V )))
)
+ ξ

:=
1

n

n∑
i=1

Ai + ξ,

where, for abbreviation, F ′(x) = (F (x)− µF )/σF denotes the normalized version (centered and
reduced) of F . We can decompose

1

n

n∑
i=1

Ai =
1

n

n∑
i=1

(
F̂ ′(f0(ui))Ĝ

′(g0(vi))− F ′(f0(ui))G
′(g0(vi))

)
+
1

n

n∑
i=1

(F ′(f0(ui))G
′(g0(vi))− E(F ′(f0(U))G′(g0(V ))))

:=
1

n

n∑
i=1

Bi +
1

n

n∑
i=1

Ci.
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We have

|F̂ ′(f0(ui))Ĝ
′(g0(vi))− F ′(f0(ui))G

′(g0(vi))| ≤ |F̂ ′(f0(ui))− F ′(f0(ui))| sup |Ĝ′(g0(vi))|
+|Ĝ′(g0(vi))−G′(g0(vi))| sup |F ′(f0(ui))|.

Since Ĝ′ and F ′ are bounded, by the Glivenko-Cantelli Theorem we obtain the uniform convergence:
supBi → 0, as n tends to infinity and by the Cesàro Lemma we deduce that

1

n

n∑
i=1

Bi → 0.

Since the Ci are iid centered random variables, for i = 1, , · · · , n, by the law of large numbers, we
have almost surely

1

n

n∑
i=1

Ci → 0,

and finally

1

n

n∑
i=1

Ai → 0.

Since inequality (2) holds for every ξ > 0, we have:

ŜHGR− SHGR → 0,

as n tends to∞.

D.3 Proof of Proposition 3

• Points 1-3 are immediate.
• Point 4. If U and V are independent, we obviously have SHGR = 0. Conversely, let U and
V be two continuous dependent random variable. It implies that CU,V the copula associated
to (U, V ) is not the independent copula. By Proposition 1 in [3] their exists a non null
copula coefficient ρ associated to CU,V , that is there exists two functions f and g such that
ρ = E(f(U)g(V )) = δ ̸= 0. Write X = f(U), Y = g(V ). We get

ρ =

∫
xyfX,Y (x, y)dxdy = δ ̸= 0,

where fX,Y denotes the joint density of (X,Y ). Without loss of generality, we can assume
δ > 0. Then there exists a set S such that for all x, y ∈ S, fX,Y (x, y) > 0 and FX(x) > 0,
FY (y) > 0. It implies that

E(FX(X)FY (Y )) =

∫
FX(x)FY (y)fX,Y (x, y)dxdy

≥
∫
S

FX(x)FY (y)fX,Y (x, y)dxdy > 0,

which gives the result.
• Point 5 follows from the construction of the SHGR.
• Point 6. If U = f(V ), choosing fu = identity and fv = f , we obtain
r(Ffu(U)(fu(U)), Ffv(V )(fv(V )) = r(FU (U), FU (U)) = 1. By construction of the
SHGR, by normalizing with a function g such that E(g(U)) = 0 and E(g2(U)) = 1,
we obtain the result.

• Point 7. In the Gaussian case we have the following relation (see for instance [27]):

ρS(Xi, Xj) =
6

π
arcsin

(
ρij

2

)
,

which yields the result.
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Figure 9: A Cross-Encoder Architecture for multivariate case (illustration with p = 3 variables)

E SHGR Algorithm

In addition to figures 1a and 1b, figure 9 shows an example of architecture on a set of 3 variables.

Based on neural networks, the SHGR algorithm is defined in two stages: one for building the architec-
ture and the other for training the model. At each epoch, the correlation is measured on the inputs
(in whole), and the model retains the model with the lowest loss (i.e. the highest correlation) on the
inputs. If the results no longer improve (to within an epsilon) during a given number of iterations,
then learning stops.

Input: Input matrices X , [Y ], number of epochs E, batch size B, learning rate η, hidden layer
dimensions dimHL, early stopping threshold ε, maximum patience Pmax, correlation
type (Spearman or Pearson)

Output: Trained model M∗, encoded outputs, loss history
Initialize model M with input dimensions of X [and Y ], hidden layer dimension dimDL;
Initialize optimizer (AdamW) with learning rate η;

Convert X [and Y ] ;
for epoch = 1 to E do

Shuffle X [and Y ] and create mini-batches;
foreach batch (xb[, yb]) do

Compute encoded representation using M(xb[, yb]);
Compute loss L:

• If Spearman: use L← SHGR_rank_correlation(xb[, yb])

• If Pearson: use L← SHGR_linear_correlation(xb[, yb])

Perform backpropagation and update model weights;
Record loss;

end
Compute full-batch loss on (X,Y ) as Lval;
Apply early stopping if Lval does not improve beyond ε for Pmax epochs;
If Lval improves, save current model as best model M∗;

end
Compute encoded outputs using best model M∗ on all inputs;
return M∗, encoded outputs, loss history, best epoch

Algorithm 1: train_SHGR: Training of the SHGR model

Remark: as is classic with neural networks, it’s customary to apply a standard scaler to the input
data. Even though the algorithm also works with raw data, we noticed an improvement when using a
standard scaler. The encoded is then standardized, allowing the HGR constraint to be respected: the
transformations are indeed of zero expectation and unit variance.
Examples of possible architecture are defined below in the illustration.
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F Experiments Details

F.1 Computational resources

The computations were performed on a personal desktop computer with the following specifications:
NVIDIA GeForce RTX 4080 graphics card, 64GB of memory (but the memory usage did not exceed
30GB), Intel i9-14900KF processor.

F.2 Model Architecture and hyperparameters

F.2.1 Hyperparameter

For the illustration, we have chosen the following hyperparameters:

• epoch number: 200 maximum

• batch size: 64

• learning rate: 10e−3

• hidden layer dimensions : [64, 32, 16, 8]

• epsilon for early stopping : 0.5

• iteration max for patience early stopping: 20

• penalization for differentiable ranks (as defined in [4]): 1

• α power parameter in SHGR loss function: 2.0

F.2.2 Architectures

The architecture of our SHGR for bivariate (pairwise) correlations between variables u1, · · · , up is
defined as follows:

• an encoder for each ui with i = 1, · · · , p consisting of 5 hidden Layers:

– HL1 of dimensions (1, 64)
– HL2 of dimensions (64, 32)
– HL3 of dimensions (32, 16)
– HL4 of dimensions (16, 8)
– HL5 of dimensions (8, 1)

• activation function are all Tanh() expect the first one that is Relu.

The architecture of our SHGR for multivariate correlations between variables u1, · · · , up is defined as
follows:

• an encoder for ui with i = 1, · · · , p consisting of 5 hidden Layers:

– HL1 of dimensions (1, 64)
– HL2 of dimensions (64, 32)
– HL3 of dimensions (32, 16)
– HL4 of dimensions (16, 8)
– HL5 of dimensions (8, 1)

• an encoder for {uj} ≠ ui with j = 1, · · · , p consisting of 5 hidden Layers:

– HL1 of dimensions (p− 1, 64)

– HL2 of dimensions (64, 32)
– HL3 of dimensions (32, 16)
– HL4 of dimensions (16, 8)
– HL5 of dimensions (8, 1)

• activation function are all Tanh() expect the first one that is Relu.
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The architecture of our SHGR for full correlations between u (of dimensions p) and v (of dimensions
q) is defined as follows:

• an encoder for u consisting of 5 hidden Layers:

– HL1 of dimensions (p, 64)
– HL2 of dimensions (64, 32)
– HL3 of dimensions (32, 16)
– HL4 of dimensions (16, 8)
– HL5 of dimensions (8, 1)

• an encoder for v consisting of 5 hidden Layers:

– HL1 of dimensions (q, 64)
– HL2 of dimensions (64, 32)
– HL3 of dimensions (32, 16)
– HL4 of dimensions (16, 8)
– HL5 of dimensions (8, 1)

• activation function are all Tanh() expect the first one that is Relu.

F.2.3 Sensibilities

Even though this criterion has been analyzed, as the calculation time is very satisfactory, it does
not come into play in the following evaluation. Our aim here is rather to analyze and optimize the
architecture and hyperparameters of the estimated correlation, which should be as close as possible to
the reference correlation. Here we use the simulations shown in the numerical illustration and the
bivariate correlations.. For the architecture, we tested the following parameters:

• batch size: 32, 64 and 128

• learning rate: 10e−2, 10e−3 and 10e−4

• hidden layer dimensions: 1 : [5, 5, 5, 5], 2 : [10, 10, 10, 10], 3 : [64, 32, 16, 8] and 4 :
[128, 64, 32, 16]

(a) Batch size and hidden layer di-
mensions (b) Batch size and learning rate

(c) learing rate and hidden layer di-
mensions

Figure 10: Sensitivities of architecture and hyperparameter of cross encoders

Concerning the learning rate, except with a batch size of 128, which seems too high to capture
correlations on a dataset, using 10e−3 seems preferable as it reduces the distance to the reference
correlation (Figures 10b and 10c. Concerning batch size, using 64 seems more stable than 32 and
128 (Figures 10a and 10b), even if 32 seems slightly better in median. Finally, for the dimensions of
hidden layers, 3:[64,32,16,8] seems more stable than the others. (Figures 10a and 10c).

We also analyzed the sensitivity and impact of the results to the hyperparameter power α in the loss
function and to the differentiable rank regularization parameter as defined in [4]. Figure 11 presents
the results obtained. We can clearly see the benefits of using a power of 2 for correlations. This
allows the networks to quickly focus on the strongest correlations. With regard to differentiable rank
regularization, the values 0.1, 0.5 and 1 seem fairly comparable. We choose to use the default value
of 1.
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(a) Distance to reference correlation matrix according
to power (α) and regularization of differentiable ranks

(b) Distance to reference correlation matrix (focus) ac-
cording to power (α) and regularization of differen-
tiable ranks

Figure 11: Sensitivities of power and regularization of differentiable ranks: with bivariate correlations

F.3 Synthetic Dataset Generation

F.3.1 Bivariate correlations

We generate a synthetic dataset composed of n samples and 11 input features (X0, . . . , X10), where
the first 5 variables are drawn independently from a standard normal distribution. The remaining
features are nonlinearly correlated with the first ones. For performance analysis, we generate noise-
free data (s = 0). For robustness analysis, the s noise increases progressively. Specifically, the data
generation process is as follows:

• X0 to X4 ∼ N (0, 1) independently,

• X5 ∼ N (X3
0 , 3s): cubic relationship with X0 plus Gaussian noise,

• X6 ∼ N (sin(2X1), s/5): sinusoidal transformation of X1 plus noise,

• X7 is a discretized, piecewise-constant function of X2, mapped into 7 quantile bins, and
then perturbed with N (0, s/10) noise,

• X8 ∼ N (exp(X3), s): exponential transformation of X3 with additive noise,

• X9 ∼ N (X2
4 , s): squared transformation of X4 with noise,

• X10 ∼ N (0, 1)2: squared standard normal variable, i.e., χ2(1)-distributed.

Figure 12 gives an illustration of correlations with the pairplot (2a), the SHGR transformation (with
2b,) and loss functions. Figure 2 compare the reference correlation matrix and its estimation with
SHGR.

(a) SHGR Loss Function on batch (b) SHGR Loss Function on input

Figure 12: SHGR training: loss function for bivariate correlations
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F.3.2 Multivariate correlations

We generate a synthetic dataset composed of n samples and 20 input features (X0, . . . , X19), where
the first 11 variables are drawn independently from a standard normal distribution. The remaining
features include nonlinear and additive combinations, introducing structured dependencies. For
performance analysis, we generate noise-free data (s = 0). For robustness analysis, the s noise
increases progressively. Specifically, the data generation process is as follows:

• X0 to X10 ∼ N (0, 1) (independent standard normal variables),

• X11 = X2
2 +X2

3 + ε11,

• X12 = 3X4 + 2X5 + 0.9X2
6 + ε12,

• X13 = sin(X7) + 0.5X8 + ε13,

• X14 to X17 ∼ N (0, 1) (independent noise),

• X18 = Z2
18, with Z18 ∼ N (0, 1),

• X19 = Z2
19, with Z19 ∼ N (0, 1),

where each εi ∼ N (0, s2) is an optional noise term added to introduce variability. The seed is
randomly initialized unless otherwise specified. Figure 13 gives an illustration for multivariate
correlations.

(a) SHGR Loss Function on batch (b) SHGR Loss Function on input

(c) Reference Correlation

(d) SHGR Correlation

Figure 13: Multivariate correlations: reference vs SHGR

F.3.3 Full correlations

We generate a synthetic dataset consisting of n samples and p input variables (X1, . . . , Xp). The data
is constructed as a weighted combination of two independent standard Gaussian matrices, controlled
by a mixing parameter α ∈ [0, 1]. Specifically, we first generate a base matrix Z ∼ N (0, Ip) of size
n× p, then add a perturbation to create X as follows:

X = α · Z + (1− α) · Z ′,

where Z ′ is an independent Gaussian matrix of the same dimension. When α = 1, the data is purely
Gaussian with no noise; when α = 0, the data is entirely random. This allows control over the
signal-to-noise ratio in the generated features. The final output is returned as a labeled DataFrame
with columns (X1, . . . , Xp).
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F.3.4 Mixed bivariate correlations

A mixed-data version was designed to handle both quantitative and categorical variables within
a dataset. Specifically, the correlation ratio is used to assess correlations between numerical and
categorical variables, while measures such as Cramér’s V are employed for correlations between
categorical variables. By way of illustration, we generate a dataset with mixed correlations (between
numeric, between numeric and categorical, and between categorical). We then apply the SHGR
approach, applicable to mixed data, and obtain the matrix below, in comparison to the true (reference)
matrix. Figure 14 gives an illustration of the mixed correlation matrix estimation.

(a) Reference mixed bivariate correlations (b) SHGR mixed bivariate correlations

Figure 14: Application of SHGR on mixed data

F.4 State-of-the-Art Methods

We estimate nonlinear correlations using SHGR and compare them with alternative methods; note that
some baselines are unavailable in the multivariate and full cases.

• The Pearson correlation coefficient from python library numpy: Pearson
• The Spearman correlation coefficient from python library numpy: Spearman
• The Kendall correlation coefficient from python library numpy: Kendall
• The Randomized Dependence Coefficient ([31]) from R library AlterCorr: RDC
• The Mutual Information Criterion ([38]) from R library AlterCorr: MIC
• The Distance Correlation ([41]) from R library AlterCorr: dCor
• Canonical Correlation Analysis from R library stats: CCA
• Kernel Canonical Correlation Analysis ([2]) from R library kernlab: kCCA [but not inte-

grated because unstable and too time-consuming to calculate]
• Alternating Conditional Expectations ([7]) from R library acepack: ACE
• HGR estimation with kernel ([33]) from python package maxcorr 6 and from github reposi-

tory HGR_NN 7 for multivariate correlations: HGRkde
• HGR estimation with Neural Net ([16]) from python package maxcorr and from python

github HGR_NN for multivariate and full correlations: HGRnn
• HGR estimation with Lattice ([14]) from python package maxcorr: HGRlat
• HGR estimation with double kernel ([14]) from python package maxcorr: dk
• HGR estimation with simple kernel ([14]) from python package maxcorr: sk
• The Normalized Hilbert-Schmidt Independence Criterion ([18]) from python library HSIC8:

NHSIC
6https://pypi.org/project/maxcorr/0.1.1/
7https://github.com/fairml-research/HGR_NN
8https://github.com/amber0309/HSIC
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• The Hellinger Correlation ([11]) from R library HellCor: HR [but not integrated because
inefficient, limited to pairwise correlations and too time-consuming to calculate] We perform
our SHGR model for 100, 200, and 500 epochs with early stopping. A sensitivity analysis of
the

The python package maxcorr is available from this github repository with the following license: MIT
License, Copyright (c) 2024 Luca Giuliani, Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions: The above copyright notice
and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

The python package numpy is available with the following license:Copyright (c) 2005-2024, NumPy
Developers. All rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: i) Redistributions of
source code must retain the above copyright notice, this list of conditions and the following disclaimer.
ii) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.
iii) Neither the name of the NumPy Developers nor the names of any contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission. THIS
SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The License of R package AlterCorr is GPL2 The github repository HGR_NN is public.

The license of R package acepack is as follow : License: MIT + file LICENSE Copyright (c)
<YEAR>, <COPYRIGHT HOLDER> Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions: The above copyright notice
and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

F.5 Performance analysis details

In this section, we analyze the performance of the methods, i.e. their ability to identify perfectly
non-linear correlations. These performances are analyzed for the estimation of bivariate, multivariate
and full correlations.
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F.5.1 Bivariate Correlation

The objective is that:

i) the estimated correlation matrix is as close as possible to the reference correlation matrix.
We therefore analyze the results based on the distance to the reference correlation matrix:

d_CMref :=
∑
i

∑
j

|CMest[i, j]− CMref [i, j]|

where CMest[i, j] ∈ [0, 1] (resp. CMref [i, j] ∈ [0, 1]) is the estimated (resp. reference)
correlation between variables i and j.

ii) the 5 nonlinear correlations are exactly identified. We therefore analyze the results based on
the focused distance to the reference correlation matrix:

d_CMrefFocus :=
∑
i

∑
j

|CMest[i, j]− CMref [i, j]| ×mask

where mask filters the 5 coefficients of interest. It is indeed important to measure perfor-
mance on these 5 correlations, as some coefficients introduce spurious correlations in their
estimates, which can degrade overall results.

In Figure 15 we can observe that the methods ACE and SHGR achieve the best scores regarding the
distance to the reference correlation matrix (d_CM_ref . When focusing on the five non-linear
correlations, we notice that the methods ACE, RDC, MIC and our approach SHGR yield the best
results. This can be explained by the fact that these methods are able to effectively identify non-linear
correlations. However, the methods RDC and MIC tend to introduce false correlations where none
exist, which degrades their performance relative to the reference matrix.

F.5.2 Multivariate Correlation

In Figure 16, we observe that SHGR gives good results but not as good as the ACE method. It is,
however, better than the other methods RDC, dCor, CCA, HGRnn, dk, sk and NHSIC.

F.5.3 Full Correlation

In Figure 17, we see that only the methods SHGR, CCA, RDC, dk and sk manage to capture perfectly
non-linear correlations between the two datasets. The methods HGRnn, NHSIC and dCor show
deviations from the reference correlation.

F.6 Robustness to Noise

Here, we analyze the robustness to noise of methods: their performance in the presence of white noise
(null average). We therefore propose to reproduce the previous simulations while introducing noise
that increases with each simulation. Under these conditions, the true correlation is unknown. However,
following the analysis of [31], the metrics producing the highest coefficients will be considered the
most robust. For this reason, we retain the same metric as in the previous section: the distance to
reference correlations. In this scenario, the noise is progressively introduced (the x-axis represents
increasing noise from left to right).

F.6.1 Bivariate Correlation

For the analysis of bivariate correlations, through the correlation matrix, we use the same two metrics
as for performance: distance to the reference correlation matrix and distance to the 5 non-linear
correlations only. In Figure 18, we can see that the SHGR approach outperforms the other methods.
Indeed, it gives the lowest distances to reference correlations, even though the ACE method still
delivers good results. However, it’s interesting to note that the performance of ACE deteriorates
rapidly with the addition of noise: the SHGR approach remains below, i.e., closer to the reference
correlations. By analyzing the distances to the focus matrix, i.e. to the 5 non-linked correlations, we
can see that the MIC method excels in the absence of noise, but its performance deteriorates sharply
with increasing noise.
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(a) Lineplot of distances to Reference Correlation
(d_CMref )

(b) Boxplots of distances to Reference Correlation -
focus (d_CMrefFocus)

(c) Heatmap of distances to Reference Correlation
(d_CMref )

(d) Heatmap of distances to Reference Correlation -
focus (d_CMrefFocus)

(e) Heatmap of ranks of distances to Reference Corre-
lation (d_CMref )

(f) heatmap of ranks of distances to Reference Correla-
tion - focus (d_CMrefFocus)

Figure 15: Performance: distance to Reference Correlation Matrix (lower is better) ; results for
bivariate correlations

(a) Heatmap of ranks of distances to Reference Corre-
lation (d_CMref )

(b) Heatmap of distances to Reference Correlation
(d_CMref )

Figure 16: Performance: distance to Reference Correlation Matrix (lower is better) ; results for
multivariate correlations

F.6.2 Multivariate Correlation

In Figure 19, we see that the SHGR method gives the best results: smallest distance to reference
correlations. Once again, the ACE method is significantly better in the absence of noise, but results
deteriorate with the addition of noise; our SHGR approach remains more stable.
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(a) Boxplots of distances to Reference Correlation (b) Heatmap of distances to Reference Correlation

Figure 17: Performance: distance to Reference Correlation Matrix (lower is better) ; results for full
correlations

(a) Lineplot of distances to Reference Correlation
(d_CMref )

(b) Lineplot of distances to Reference Correlation -
focus (d_CMrefFocus)

(c) Heatmap of distances to Reference Correlation
(d_CMref )

(d) Heatmap of distances to Reference Correlation -
focus (d_CMrefFocus)

(e) Heatmap of ranks of distances to Reference Corre-
lation (d_CMref )

(f) heatmap of ranks of distances to Reference Correla-
tion - focus (d_CMrefFocus)

Figure 18: Robustness to noise: distance to Reference Correlation Matrix (lower is better) ; results
for bivariate correlations

F.7 Robustness to Hallucination

In this section, we evaluate the correlation measures to avoid hallucination, indicating correlation on
independent data (ten independent Gaussian variables). For each context, we simulate independent
data and apply the correlation coefficients. In Figure 20, we observe that our approach SHGR remains
very robust to hallucinations, whatever the type of correlations estimated.

35



Figure 19: Robustness to noise: distance to Reference Correlation Matrix (lower is better) ; results
for multivariate correlations

Figure 20: Robustness to hallucination: distance to Reference Correlation Matrix (lower is better) ;
for bivariate correlations (up), multivariate correlations and full correlations (down)

F.8 Robustness to Extreme Values

In this section, we evaluate the correlation measures to avoid hallucinations due to extreme values.
As above, we simulate independent data with extreme values (except for the first iteration, to measure
the impacts). In Figure 21, we see that the approaches ACE, CCA, HGRnn, HGRlat, Pearson, dk, sk
and dCor obtain values of 30 and are therefore very sensitive to extreme values. Methods HGRkde,
MIC and RDC show values significantly different from 0 (due to hallucinations). Methods with low
values are Spearman, Kendall, NHSIC and SHGR.
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(a) Boxplots of distance to Reference Correlation
Matrix (b) Heatmap of distance to Reference Correlation Matrix

Figure 21: Robustness to Extreme Values: distance to Reference Correlation Matrix (lower is better) ;
for bivariate correlations

F.9 Significance Test

SHGR optimizes the Pearson linear correlation coefficient based on transformations of the original
variables, in line with the theoretical definition of HGR. As such, it is possible to perform an
asymptotic significance test on the obtained correlation coefficient (when n is sufficiently large) [29].
Specifically, we test the following null and alternative hypotheses:

(H0) : SHGRΘ(u, v) = 0 versus (H1) : SHGRΘ(u, v) ̸= 0.

We apply the existing significance test for the Spearman coefficient (more robust than the Pearson
test, also sensitive to extreme values), using it on the transformed variables provided by the method.
We evaluate the performance of this test across several bivariate and multivariate correlations, which
we progressively add noise to. This test is compared to the ones available for MIC, RDC and RDC
for nine types of relationships. Figure 22 shows the p-value (y-axis) and the noise addition (x-axis)
(increasing towards the right). We can see that the significance test is fairly low for the SHGR approach,
i.e., the test generally rejects the null hypothesis of the correlation coefficient fairly robustly.

Figure 22: Performance Significance test: for bivariate correlations (lower is better)

F.10 Power of Dependence Measure details

In addition to the previous analyses, we now perform the bivariate power of a dependence measure.
Following the analyses conducted in [31], [32] and [15], we assess the robustness of our method by
progressively perturbing several nonlinear bivariate/multivariate correlations. The coefficient should
ideally remain as high as possible.
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Figure 23: Power of Dependence Measure: results for bivariate correlations (higher is better)

Figure 23 shows correlation coefficients (ordinate) as a function of added noise (abscissa): increasing
towards the right. We can see that our approach SHGR outperforms the other methods: higher and
manages to capture correlations even in the presence of noise.

Figure 24: Power of Dependence Measure: results for multivariate correlations (higher is better)

Figure 24 shows correlation coefficients (ordinate) as a function of added noise (abscissa): increasing
towards the right. In this scenario, unlike the bivariate case where only 2 variables are generated,
we generate 4 variables x1, x2, x3 as reduced-centered Gaussian. We then define y correlated non-
linearly with x1 + x2, x3 being a spurious variable. We can see that our approach SHGR outperforms
the other methods: higher so manages to capture correlations even in the presence of noise.

F.11 Computation time

Here we compare the computation times of SHGR with those of other methods. These analyses are
carried out for bivariate and multivariate correlations (the full ones being quite fast).

38



(a) Bivariate correlations (b) Multivariate correlations

Figure 25: Computational time Comparison

F.12 Sensitivity to sample size

This section presents an analysis of the performance and computation time of the SHGR method,
compared with other methods, as a function of sample size. More precisely, we present an analysis
that allows us to analyze computation time and performance indicators by varying the number of
observations as follows: [50, 100, 500, 1000, 5000, 10000] (resp. [1000, 10000, 100000, 1000000]),
with the number of variables always fixed at 11. These results are analyzed first on bivariate
correlations and then on multivariate correlations.

F.12.1 Bivariate correlations

Computation Time We can see in Figure 26 that the MIC and NHSIC methods are not usable, as
they take respectively 10 minutes and 47 minutes for 1000 observations, and 30 minutes and 274
minutes for 10,000 observations. The dCor method also takes 18 minutes for n = 10, 000.

Figure 26: Computational time according to sample size: for bivariate correlations

Figure 27: Computational time according to sample size: for bivariate correlations (bis)

In this second analysis (Figure 27), where time-consuming methods are removed, we estimate bivari-
ate correlations by varying the number of observations as follows: [1000, 10000, 100000, 1000000],
with the number of variables always fixed at 11. The SHGR approach is quite long for 100,000
observations but faster for 1,000,000 observations: faster than RDC and as fast as ACE, for example.
The dk method is far too long for a large number of observations. It’s interesting to note that the
SHGR method, being based on neural networks, can be parameterized to optimize computation time
(notably on batch size and epochs parameters).
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Performance Figures 28 and 29 show the performance results obtained on bivariate correlation
estimates. They show that the performance of the SHGR approach outperforms that of competitors,
regardless of sample size.

Figure 28: Performance according to sample size: for bivariate correlations: distance to reference
correlations (lower is better)

Figure 29: Performance according to sample size: for bivariate correlations (bis): distance to reference
correlations (lower is better)

F.12.2 Multivariate correlations

Computation Time Figure 30 presents the computation time to estimate multivariate correlations
by varying the number of observations as follows: [50, 100, 500, 1000, 5000, 10000], with the number
of variables always fixed at 20. Our method SHGR is quite fast, even faster than RDC or dCor or CCA.
The dk method takes far too long to calculate.

Figure 30: Computational time according to sample size: for multivariate correlations

Performance Figure 31 presents the performance to estimate multivariate correlations by varying
the number of observations as follows: [50, 100, 500, 1000, 5000, 10000], with the number of vari-
ables always fixed at 20. The results show that the SHGR method gives very good results, whatever
the sample size.

F.13 Sensitivity to the number of variables

This section presents an analysis of the performance and computation time of the SHGR method,
compared with other methods, as a function of number of variables.
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Figure 31: Performance according to sample size: for multivariate correlations: distance to reference
correlations (lower is better)

F.13.1 Bivariate correlations

Here we present an analysis that allows us to analyze computation time and performance indicators
by varying the number of variables as follows: [1, 2, 5, 10]× p = 11 with the number of observations
always fixed at 1000. These results are analyzed first on bivariate correlations and then on multivariate
correlations.

Computation Time Figure 32 shows the computation times for estimating multivariate correlations
by varying the number of observations. The results show that the SHGR method has very satisfactory
levels. The methods HGRlat, NHSIC and dk present relatively long times.

Figure 32: Computational time according to number of variables: for bivariate correlations

Performance Figure 33 shows the performance for estimating multivariate correlations by varying
the number of observations. The results show that the SHGR method outperforms its competitors.

Figure 33: Performance according to number of variables: for bivariate correlations

F.13.2 Multivariate correlations

Computation Time Figure 34 presents the computation time to estimate multivariate correlations
by varying the number of variables as follows: [20, 30, 40, 70, 120], with the number of observations
always fixed at 2000. SHGR shows fairly long computation times, higher than ACE, CCA,RDC and
dCor but faster than NHSIC and HGRnn.

41



Figure 34: Computational time according to number of variables: for multivariate correlations

Performance Figure 35 presents the performance to estimate multivariate correlations by varying
the number of variables as follows: [20, 30, 40, 70, 120], with the number of observations always
fixed at 2000. Compared with other methods, the results of SHGR deteriorate slightly as the number
of variables increases. To improve results, it might be more efficient to loop over the estimation of
correlations, like the other methods, accepting a slight loss in calculation time.

Figure 35: Performance according to number of variables: for multivariate correlations

F.14 Improving existing methods

To guarantee the relevance of our approach, we compare the results obtained with the best competitors:
using input data vs. transformed data from the SHGR. Figure 36 shows the gains (correlation on SHGR
encoded - correlation on inputs) obtained with the benchmark applied on the SHGR encoded rather
than inputs (with the same simulations as bivariate Power of Dependence Measure above). All results
are enhanced: correlation is greater when combined with SHGR than when applied directly to inputs.

Figure 36: benchmark methods gain (%) when applied on SHGR encoded rather than inputs
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F.15 Transformation Visualization

Our SHGR approach allows us to recover the transformations of the inputs (encoded by stacked neural
nets). This makes it easy to graphically analyze the transformations applied by plotting the outputs of
the stacked neural nets as a function of the inputs. Figure 37 illustrates a graphical analysis of the
transformations in a bivariate context.

Figure 37: Illustration of the graphical analysis of the transformations: on a bivariate setting
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G Real-World Applications details

To assess the relevance of our method, we apply it to 9 real-world datasets for feature selection.

The experiments are conducted on the following datasets:

• Abalone, composed of 9 variables and 4177 observations. Available in the imbalanced re-
gression datasets benchmark ([5]) in the public repository: https://paobranco.github.
io/DataSets-IR/

• AirQuality, composed of 15 variables and 9358 observations ([43]). This dataset is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. Available at
https://archive.ics.uci.edu/dataset/360/air+quality

• Appliance, composed of 28 variables and 19735 observations ([8]). This dataset is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. Available at
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction

• Bank8fm, composed of 9 variables and 4499 observations. Available in the imbalanced re-
gression datasets benchmark ([5]) in the public repository: https://paobranco.github.
io/DataSets-IR/

• Boston, composed of 14 variables and 505 observations. Available in the imbalanced regres-
sion datasets benchmark ([5]) in the public repository: https://paobranco.github.io/
DataSets-IR/

• concrete, composed of 9 variables and 1030 observations ([50]). This dataset
is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)
license. Available at https://archive.ics.uci.edu/dataset/165/concrete+
compressive+strength

• CpuSm, composed of 13 variables and 8192 observations. Available in the imbalanced re-
gression datasets benchmark ([5]) in the public repository: https://paobranco.github.
io/DataSets-IR/

• N02, composed of 8 variables and 500 observations. Available in the imbalanced regression
datasets benchmark ([5]) in the public repository: https://paobranco.github.io/
DataSets-IR/

• Temperature, composed of 24 variables and 4137 observations ([39]). This dataset is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. Available at
https://archive.ics.uci.edu/dataset/274/sml2010

Note that we only consider numerical features.

G.1 Maximal Correlation

We perform regression tasks using the top k features selected by each method, i.e., the k features
most correlated with the target variable y. We then analyze the root mean squared error of test set
predictions for each value of k and each method. Predictions are made on a test set (30% of the
original dataset), randomly sampled, using a random forest model. The training set consists of at
most 500 observations for all datasets (to assess the robustness of the methods to sampling). Figures
38 present the obtained results.

G.2 Contribution to Maximal Correlation

We perform regression tasks using the top k features selected by each method, i.e., the k features
that contribute most to the maximum correlation of features with the target variable y (Contr(xi) :=
SHGR(y,X) − SHGR(y,X \ Xi)). We then analyze the root mean squared error of test set
predictions for each value of k and each method. Predictions are made on a test set (30% of the
original dataset), randomly sampled, using a random forest model. The training set consists of at
most 500 observations for all datasets (to assess the robustness of the sampling methods).
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(a) Abalone dataset (b) AirQuality dataset (c) Appliance dataset

(d) Bank8FM dataset (e) Boston dataset (f) Concrete dataset

(g) CpuSm dataset (h) NO2 dataset (i) Temperature dataset

Figure 38: Feature selection on real-world datasets with SHGR shown in red (lower is better): based
on maximal correlation (bivariate correlation)

(a) Abalone dataset (b) AirQuality dataset (c) Appliance dataset

(d) Bank8FM dataset (e) Boston dataset (f) Concrete dataset

(g) CpuSm dataset (h) NO2 dataset (i) Temperature dataset

Figure 39: Feature selection on real-world datasets with SHGR shown in red (lower is better): based
on maximal correlation contribution (multivariate correlation)
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