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Abstract

Many machine learning applications, such as feature selection, recommendation, and social
advertising, require the joint optimization of the global utility and the representativeness for
different groups of items or users. We thus propose a novel multi-objective combinatorial
optimization problem called Submodular Mazimization with Fair Representation (SMFR),
which selects subsets from a ground set, subject to a knapsack or matroid constraint, so
as to maximize a submodular (utility) function f, while a set of d submodular (represen-
tativeness) functions ¢, ..., g4 are also maximized. We show that the maximization of f
might conflict with the maximization of gi, ..., gq, so that no single solution can optimize
all of them at the same time. Therefore, we propose a Pareto optimization approach to
SMFR, which finds a set of solutions to approximate all Pareto optimal solutions with dif-
ferent trade-offs between these objectives. Our method converts an instance of SMFR into
several submodular cover instances by adjusting the weights of objective functions; then it
computes a set of solutions by running the greedy algorithm on each instance. We prove
that our method provides approximation guarantees for SMFR, under knapsack or matroid
constraints. Finally, we demonstrate the effectiveness of SMFR and our proposed approach
in two real-world problems: mazimum coverage and recommendation.

1 Introduction

The problem of subset selection aims to pick a maximum utility subset .S, under a given constraint, from a
ground set V of items. This fundamental problem arises in a wide range of machine learning applications,
such as viral marketing and social advertising (Kempe et al., 2003} |Aslay et al., 2015} |2017; [Tang}, [2018)),
recommendation systems (Tschiatschek et al.| [2017; Mehrotra & Vishnoi, |2023), data summarization (Lin &
Bilmes|, 2010; Mirzasoleiman et al., [2016)), and feature selection (Liu et al., [2013; |[Bao et al. 2022)), to name
just a few. A common combinatorial structure in such problems is submodularity (Krause & Golovin, 2014)),
which naturally captures the “diminishing returns” property: adding an item to a smaller set produces a
higher marginal gain than adding it to a larger set. This property not only captures the desirable properties
of coverage and diversity of subsets, but also enables the design of efficient approximation algorithms.

Among the various combinatorial optimization problems for subset selection in the literature, maximizing
a monotone submodular function subject to a knapsack constraint (SMK) or a matroid constraint (SMM)
has attracted a lot of attention, as such constraints capture common scenarios in which the selected subset
must be limited within a budget (Nemhauser & Wolsey, [1978; [Fisher et al.l |1978} Sviridenko| 2004} Krause
& Guestrinl [2005; [Vondrakl 2008} |Calinescu et al., |2011} [Badanidiyuru & Vondrakl [2013; [Filmus & Ward),
2014} [Buchbinder et al.| 2019} [Ene & Nguyen, |2019a;b; [Huang et al.| 2020} [Yaroslavtsev et al.l [2020; [Tang
et al.l |2021; [Han et al., [2021}; [Feldman et al., 2022; |[Li et al., [2022).

More formally, given a ground set V' of n items, we consider a set function f : 2V — R to measure the utility
f(S) of any set S C V. We assume that f is normalized, i.e., () = 0, monotone, i.e., f(S) < f(T) for any
S C T CV, and submodular, f(SU{v})— f(S) > f(T U{v}) — f(T) forany SCT CVandv e V\T.
We also consider a cost function ¢ : V' — R which assigns a positive cost c(v) to each item v € V, and we
denote ¢(S5) the cost of a set S C V, defined as the sum of costs for all items in S, i.e., ¢(S) = > g c(v).
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For a given budget k¥ € R™, the set of all feasible solutions subject to the knapsack constraint contains all
subsets of V' whose costs are at most k, i.e., Z = {S C V : ¢(S) < k}. The SMK problem on f is thus
defined as S} = argmaxgey, f (S). Furthermore, a matroid M on a ground set V is defined by a collection
Z(M) of subsets of V called the independent sets, that satisfies the following properties: (1) § € Z(M); (2)
forany SCT CV,if T € Z, then S € Z(M) holds; (3) for any S, T C V, if |S| < |T, there exists v € T'\ S
such that SU{v} € Z(M). Here, the size of the maximum independent sets in M is called its rank r(M).
Similarly to SMK, the SMM problem on f is defined as S} = arg maxgez () f(9).

In many real-world problems, in addition to the primary objective of maximizing the utility function f, it is
often essential to take into account the representativeness with respect to different groups of items or users.
For example, consider the following influence maximization problem (Tsang et al., 2019; Becker et al., 2020):

Example 1. Let G = (V, E) be a graph that denotes the relationships between a set of users V' on a social
network. Fach user v € V is also associated with a sensitive attribute A to divide V' into multiple protected
groups. The influence mazimization (IM) problem (Kempe et all [2003) aims to select a subset S C V
of users as seeds to maximize a (monotone, submodular) influence spread function under an information
diffusion (e.g., independent cascade or linear threshold) model. If the information to be spread is related to
education and employment opportunities, fair access to information between protected groups (Tsang et al.,
2019; |Becker et al., |2020) becomes a critical issue. This is often formulated as mazximizing the influence
spread functions specific to all protected groups in a balanced manner so that none of the groups is much
worse off than the others. Furthermore, constraints in different contexts can be imposed on the seed set, e.g.,
to limit the overall budget for the propagation campaign, the cost of the seeds should be within an upper bound
(knapsack constraint), or to achieve a fair representation at the group level, the number of seeds selected from
each group cannot exceed an upper limit (matroid constraint).

The above problem, as well as many other subset selection problems with fairness or other representativeness
considerations (Krause et al., [2008; Mirzasoleiman et al., [2016; Wang et al., [2024), can be formulated as a
multi-objective optimization problem of maximizing a monotone submodular utility function f and a set of d
monotone submodular representativeness functions g1, ..., gq, all defined on the same ground set V', subject
to a knapsack or matroid constraint:

arg max (f(S),gl(S),...,gd(S)). (1)
SeT

We call this problem Submodular Mazimization with Fair Representation (SMFR) since it captures the case
where the submodular utility function is maximized while all the submodular representativeness functions
are also maximized to avoid under-representing any of them.

Our Contributions. To the best of our knowledge, SMFR is a novel optimization problem, never addressed
before (see Section |2| for a detailed discussion of how the related literature differs from SMFR). It is easy
to see that SMFR is at least as hard as SMK and SMM, which cannot be approximated within a factor
better than 1 — 1/e unless P = NP (Feige, [1998; Khuller et al., [1999). However, SMFR is much more
challenging than SMK and SMM due to its multi-objective nature. By providing a counterexample, we
show that there might not exist any single solution to an instance of SMFR that achieves an approximation
factor greater than 0 to maximize f and gi,...,gq simultaneously, even for a special case of d = 1. As
such, we consider approaching SMFR in Eq. [T] by Pareto optimization. Specifically, we call a set S an
(o, B)-approximate solution for an instance of SMFR if S € Z, f(S) > a0PT, where OPT; = maxg ¢z f(5'),
and g;(S) > BOPT,, for all ¢ = 1,...,d, where OPT,, = maxgcz ¢;(S’). An («, §)-approximate solution S is
Pareto optimal if there does not exist any (o, 5’)-approximate solution for any o/ > «, 8’ > 3 (and at least
one is strictly larger). Since computing any Pareto optimal solution to SMFR is still NP-hard, we propose
a general framework to find a set of solutions to approximate the Pareto frontier consisting of all Pareto
optimal solutions. Our framework first uses any existing algorithm for SMK (Sviridenko, |2004; [Yaroslavtsev
et al.l 2020; Tang et all 2021} [Feldman et al., [2022; |Li et al., |2022) or SMM (Fisher et al., |1978; |Vondrak,
2008; (Calinescu et al., 2011; Badanidiyuru & Vondrakl [2013; Filmus & Ward, |2014; Buchbinder et al.,|2019))
to approximate OPT; and each OPT,,. Based on the approximations, our proposal transforms an instance of
SMFR into multiple instances of the submodular cover problem with different weights on OPT; and each
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OPT,, to capture the trade-offs between f and each g;. Then, classic greedy algorithms (Wolsey, [1982; Torrico
et al., [2021) are used to obtain an approximate solution for each submodular cover instance. Finally, all
the above-computed solutions that are not “dominated’ﬂ by any other solution are returned as the set S
of at most O(%) approximate solutions to SMFR, for any € € (0,1). Theoretically, our framework provides
approximation bounds for SMFR under both knapsack and matroid constraints:

o When using a d-approximation algorithm for SMK, it provides a set S such that for any (a, 8)-
approximate Pareto optimal solution of SMFR, there must exist a corresponding (da — €,08 — €)-
approximate solution of cost O(k log g) in S, where k € R™ is the budget of the knapsack constraint.

o When using a d-approximation algorithm for SMM, it also provides a set S such that for any (a, 8)-
approximate Pareto optimal solution of SMFR, there must exist a corresponding (daw — &,08 — €)-
approximate solution of size O(r log g) in S, where r € ZT is the rank of the matroid constraint.

In our empirical assessment, we evaluate our proposed framework through extensive experiments on the
problems of mazimum coverage and recommendation using real-world data. The numerical results confirm
the effectiveness of our proposal compared to competitive baselines.

Paper Organization. The rest of this paper is organized as follows. We review the related work in
Section Then, we analyze the hardness of SMFR in Section Next, our algorithmic framework for
SMFR is presented in Section[d Subsequently, the experimental setup and results are provided in Section 5}
Finally, we conclude the paper and discuss future work in Section [f] The proofs of theorems and lemmas
and several supplemental experiments are deferred to the appendices due to space limitations.

2 Related Work

Monotone Submodular Maximization with Knapsack or Matroid Constraints. There exists a
wide literature on maximizing a monotone submodular function subject to a knapsack constraint (SMK).
For cardinality constraints, a special case of both knapsack and matroid constraints, Nemhauser et al.| (1978))
proposed a simple greedy algorithm that runs in O(kn) time and yields the best possible approximation
factor 1 — 1/e unless P = NP. However, the greedy algorithm can be arbitrarily bad for general knapsack
or matroid constraints. |Sviridenko| (2004)) first proposed a greedy algorithm with partial enumerations that
achieves the best possible approximation 1 — 1/e for SMK in O(n®) time. Kulik et al. (2021) and Feldman
et al. (2022) improved the time complexity to O(n?) while keeping the same approximation factor. Krause
& Guestrin| (2005) proposed an O(n?)-time 3(1 — 1) &~ 0.316-approximation cost-effective greedy algorithm
for SMK. Tang et al. (2021), [Kulik et al.| (2021), and [Feldman et al.| (2022) improved the approximation
factor of the cost-effective greedy algorithm to 0.405, [0.427,0.4295], and [0.427,0.462] independently. [Ene
& Nguyen| (2019a) proposed a near-linear time (1 — 1/e — ¢)-approximation algorithm for SMK based on
multilinear relaxation. Yaroslavtsev et al.| (2020) proposed a %—approximation Greedy+Max algorithm for
SMK in O(n?) time. |[Feldman et al.| (2022) further provided an approximation factor of 0.6174 in O(n3)
time by enumerating each item as a partial solution and running Greedy+Max on each partial solution. |Li
et al.| (2022)) recently proposed a (% — ¢)-approximation algorithm for SMK in O(% log %) time.

Maximizing a monotone submodular function subject to a matroid constraint (SMM) has also been ex-
tensively investigated. [Fisher et al. (1978) first proposed a %—approximation greedy algorithm for SMM
running in O(nr) time. |Calinescu et al| (2011]) and [Vondrak| (2008) independently proposed randomized
continuous greedy algorithms with rounding for SMM. Both algorithms achieved the best possible (1 —1/¢)-
approximation in expectation but had prohibitive O(n®) running time. [Badanidiyuru & Vondrak| (2013)
proposed a faster continuous greedy algorithm that yielded a (1 — 1/e — ¢)-approximation for SMM in
O(’;—z log? 2) time. Filmus & Ward| (2014) proposed a (1 —1/e — ¢)-approximation algorithm in O(”E—T;) time
and a (1—1/e)-approximation algorithm in O(n2r") time, both randomized and based on non-oblivious local
search. Buchbinder et al.| (2019) proposed the first deterministic algorithm for SMM with an approximation

LA solution S will be dominated by another solution T if the approximation factors a, 8 of S are both no greater than those
of T and at least one is strictly smaller.
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factor over 1/2 in O(nr?) time. Ene & Nguyen| (2019b) also proposed a nearly-linear time (1 — 1/e — ¢)-
approximation algorithm for SMM based on multilinear relaxation. Although the above algorithms cannot
be applied directly to SMFR, any of them can serve as a subroutine in our algorithmic framework for SMFR.

Multi-objective Submodular Maximization. There exist also several variants of submodular maxi-
mization problems to deal with more than one objective. We next consider only multi-objective submodular
maximization problems that are relevant to SMFR. The problem of maximizing the minimum of d > 1 sub-
modular functions g1, ..., gq was studied in (Krause et al.l |2008; [Udwani, 2018} |Anari et al., |2019; Torrico
et al} [2021). This problem differs from SMFR because it does not consider maximizing f and aims to return
only a single solution for all functions. Nevertheless, we draw inspiration from the SATURATE framework first
proposed by |[Krause et al.|(2008) to solve SMFR. Another two relevant problems to SMFR are Submodular
Mazimization under Submodular Cover (SMSC) (Ohsaka & Matsuokal 2021), which maximizes one sub-
modular function subject to the value of the other submodular function not being below a threshold, and
Balancing utility and fairness in Submodular Mazimization (BSM) (Wang et al., 2024), which maximizes a
submodular utility function subject to that a fairness function in form of the minimum of d > 1 submodular
functions is approximately maximized. SMSC and BSM differ from SMFR in the following four aspects:
(7) they still return a single solution to optimize a user-specified trade-off between multiple objectives; (%)
they are specific to cardinality constraints but cannot handle more general knapsack or matroid constraints;
(#7) SMSC is limited to two submodular functions, i.e., a special case of d = 1 in SMFR; (iv) BSM requires
all objective functions to be decomposable. Thus, SMFR can work in more general scenarios than SMSC
and BSM. Due to the above differences, the algorithms for SMSC and BSM cannot be used for SMFR, and
they will be compared to our algorithm after adaptations in the experiments. Very recently, [Tang & Yuan
(2023) proposed a randomized subset selection method to maximize a (submodular) overall utility function
while the (submodular) utility functions for d groups are all not below a lower bound in expectation. They
also considered the problem of submodular maximization with group equality, which ensures that the dif-
ference in the utilities of any two groups is As they limit their consideration to cardinality constraints and
their problem formulations are different from SMFR, their proposed methods are not applicable to SMFR.
The problem of regret-ratio minimization (Soma & Yoshida) [2017} [Feng & Qianl 20215 Wang et al. |2023])
for multi-objective submodular maximization is similar to SMFR in the sense that they also aim to find
a set of approximate solutions for different trade-offs between multiple objectives. However, they consider
denoting the trade-offs as different non-negative linear combinations of multiple submodular functions but
cannot guarantee any approximation for each objective individually.

Finally, several subset selection problems, e.g., (Qian et al., |2015; 2017} |2020; [Roostapour et al.l 2022)),
utilize a Pareto optimization method by transforming a single-objective problem into a bi-objective problem
and then solving the bi-objective problem to obtain a solution to the original problem. These problems are
interesting but orthogonal to our work.

3 Hardness of SMFR

In this paper, we focus on the Submodular Mazimization with Fair Representation (SMFR) problem in
Eq. [I] subject to a knapsack or matroid constraint. Next, we formally analyze the theoretical hardness of
SMFR. Since SMK and SMM are both NP-hard and cannot be approximated within a factor 1 —1/e+¢ in
polynomial time for any ¢ > 0 unless P = N P (Feige, 1998} |Khuller et al., [1999), the problem of maximizing
f or each g; individually can only be solved approximately. We provide a trivial example to indicate that
the maximization of f and the maximization of each g; could conflict with each other, and there might not
exist any S € Z with approximation factors greater than 0 for both of them, even when d = 1.

Example 2. Suppose that d = 1 and the set of feasible solutions T is defined by a cardinality constraint
1, iie., T ={S CV :|S| <1}. Note that a cardinality constraint is a special case of both knapsack and
matroid constraints. For the two functions f and g1, we have OPT; = f({vo}) =1, OPTy, = g1 ({v1}) =1,
gi({vo}) =0, f{uv1}) =0, and f({v;}) = g1({v;}) =0 for any j > 1. In the above SMFR instance, there
is no set S € T such that f(S) >0 and ¢g1(S) > 0.

Given the above result, we are motivated to introduce Pareto optimization, a well-known concept for multi-
objective optimization (Qian et al.,|2015; Soma & Yoshiday, [2017)) which provides more than one solution with
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different (best possible) trade-offs between multiple objectives. We call a set S € Z an («, §)-approximate
solution for an instance of SMFR if f(S) > aOPT; and g;(S) > BOPT,, for each i € [d]. An («,f)-
approximate solution S is Pareto optimal if there does not exist any (o', 8’)-approximate solution for o > «
and 5’ > 8 (and at least one is strictly larger). Ideally, by enumerating all distinct Pareto optimal solutions
(which form the so-called Pareto frontier), one can obtain all different optimal trade-offs between maximizing
f and each g;. However, computing any Pareto optimal solution is still NP-hard. To circumvent the barrier,
a feasible approach to SMFR is to find a set S of approximate solutions, in which, for any Pareto optimal
solution, at least one solution close to it is included. This is the approach we follow in our framework.

4 The SMFR-Saturate Framework

To find approximate solutions to an instance of SMFR, we propose to transform it into a series of instances
of its corresponding decision problems, that is, to determine whether there exists any («, §8)-approximate
solution for the SMFR instance. Then, we introduce the SATURATE framework first proposed in (Krause
et al., |2008)) to approximately solve each instance of the decision problem as Submodular Cover (SC), that
is, the problem of finding a set S with the minimum cardinality/cost such that f(S*) > L for some L € R™.
Now, we formally define the decision problem and analyze why the transformation follows.

Definition 1 (SMFR-DEC). Given an instance of SMFR and two approximation factors a, § € [0, 1], find
a set S € Iy such that f(S) > aOPTy and ¢;(S) > BOPT,, for each i € [d], or decide that there does not exist
any set that can meet the conditions.

Assuming that OPT; and each OPT,, are already known, the above conditions can be equivalently expressed
as O{D(lfr) > 1 and gD’PTS) > 1. Then, using the truncation technique in (Krause et al., [2008), SMFR-DEC is

converted to decide Whether the objective value of the following problem is d + 1:

max F, 3(S) := min{l7 1(5) }—&—zd:min{l, 9:(5) } (2)

Sez aOPT; OPT,,

Note that F, g is ill-formulated due to division by zero when «, 8 or OPTy, OPT,, are equal to 0. To solve
this problem, the first term of F, g is replaced by 1 when a = 0 or OPT; = 0; the second term of F, g is
replaced by d when 3 = 0 or OPT,, = 0 for any i € [d].

The above conversion holds because F,, (S) = d+1 if and only if f(S) > aOPT; and g;(S) > BOPT,,, Vi € [d].
In addition, F,, g is a normalized, monotone, and submodular function because the minimum of a positive
real number and a monotone submodular function is monotone and submodular (Krause et al., 2008), and

the nonnegative linear combination of monotone submodular functions is monotone and submodular (Krause
& Golovin, 2014). In this way, SMFR-DEC is transformed to SC on Fy g.

Since computing OPT; and OPT,, is NP-hard, we should use any existing algorithm for SMK (Sviridenko|
2004; [Yaroslavtsev et al., 2020; [Tang et al., 2021} |[Feldman et al., [2022} |Li et all [2022) or SMM (Fisher
et all 1978} [Vondrak] |2008; |Calinescu et al., 2011} [Badanidiyuru & Vondrak, 2013} |Filmus & Ward, [2014;
Buchbinder et al.,2019) to compute their approximations. Suppose that we run an approximation algorithm
for SMK or SMM to obtain OPT} < OPT; and OPTy, < OPT,,, Vi € [d] accordingly. The problem in Eq. [2|is
relaxed as follows:

d
. f(S) . gi(9)
ipax Fo5(S) i= min {1 QOPT, & ; min {1, 30PT,, b ®)
where the problem of division by zero is solved in the same way as for F,, 3 when «, 8 or OPT/, OPT;i are
equal to 0. Next, the following lemma indicates that SMFR-DEC can still be answered approximately by
solving the relaxed problem in Eq. l

Lemma 1. If F] 5(S) > d+1— § for any set S € I, then S is a (6a — 5,68 — §)-approzimate solution
to SMFR, where 5 € (0,1 —1/¢] ZS the approximation factor of the appm:zrzmatzon algorithm for SMK or
SMM. If there is no set S € I with F}, 5(5) =d+ 1, then no («, B)-approzimate solution to SMFR exists.

Proof. See Appendix [AT] for the proof. O
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Algorithm 1: SMFR-SATURATE

Input: Normalized, monotone, and submodular set functions f, g1,...,gq : 2¥ — R*; Cost function c :
V — R* and budget k € RT (for knapsack constraint) or Collection of feasible sets Z(M) C 2V
and rank 7 € Z* (for matroid constraint); Error parameter ¢ € (0, 1)
Result: A set S of approximate solutions to SMFR
Initialize S + 0;
Run an algorithm for SMK or SMM to maximize f,¢1,...,gq subject to the constraint Z or Z(M) to
compute OPT/;, OPTy ,...,0PTy ;
for <+ 0; 8<1; 3« B+ 5 do
Initialize e < 1, Qmin < 0;
while a4z — Qmin > 5 do
Set @ + (@maz + Qmin)/2 and define F(’!”B(S) according to Eq.
S < CostEffectiveGreedy(f, ¢1,...,9d, ¢, k, €) (for knapsack constraint) or
IterativeGreedy(f, g1, .., 94, Z(M), ) (for matroid constraint);
if I, 5(S) > d+1— 5 then
Qmin < o and S, 3 + S
else
‘ QUmag <
end

end

Add S,,,,, s to S and remove all Sy g with &' < @i, and ' < 5 from S;
end

return S;

Function CostEffectiveGreedy(f,g1,...,94, C, k, €):
Initialize S « 0;
while Jv € V'\ S such that ¢(SU{v}) < k(1 + In 2£2) do
I+ {veV:c(SU{v}) <k(l+In2E2)}
v 4~ argmax,c; (F(’yﬁ(S’ U{v}) = F/ 5(5))/c(v) and S - SU {v*};
end
return S

Function IterativeGreedy(f,q1,...,94, Z(M), €):
for | + 1;1 < 1+ [log, 27,1+ 1+ 1 do
Sl — @;
while Jv € V: S;U {v} € Z(M) do
I+ {veV:SUu{veI(M)};
v* 4 argmax,c; F, 5(U5_) S5 U{v}) — F), 5(UL_;S;) and S; < Sy U {v*};
end
end

1+[log, H
return S + Ul:[ og2 7| Si;

Based on Lemmal[I} we propose SMFR-SATURATE in Algorithm [I|for SMFR. Generally, SMFR-SATURATE
follows the same framework to handle the knapsack and matroid constraints but uses different greedy al-
gorithms to obtain approximate solutions to SC on F O’t 5- We first run an algorithm for SMK or SMM on
each objective function individually with the same knapsack constraint Zj or matroid constraint Z(M) to
calculate OPT/, OPT, ,...,0PT, . Then, we iterate over each value of 3 from 0 to 1 with an interval of 5. For
each value of 3, we perform a bisection search on « between 0 and 1. Given a pair of o and 3, we formulate

an instance of SC on F(’Xﬁ in Eq.

To address SC on F (’X 3, we adopt two different types of greedy algorithms specific to the knapsack and matroid
constraints, respectively. For a knapsack constraint 7, we run the CostEffectiveGreedy algorithm, which
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starts from S = ) and adds the most “cost-effective” item v* with the largest ratio between its marginal
gain w.r.t. S and its cost c(v*) until no more items can be added with a relaxed knapsack constraint with
a budget k(1 4 In2%42) to find the candidate solution S. For a matroid constraint Z(M), we run the
IterativeGreedy algorithm, which performs the classic greedy algorithm for SMM (Fisher et al., [1978)
iteratively in 1 + [log, djll rounds. In the /-th round, we start from S; = () and add the item v* that
satisfies S;U{v*} € Z(M) and has the largest marginal gain w.r.t. Ué.:lSj until no more items can be added
to S; under the knapsack constraint Z(M). Finally, we return the union of the items selected over all rounds,

ie., l1+1ﬂog2 = S;, as the candidate solution S.
After computing a candidate solution S, if F, 5(S) > d + 1 — §, that is, S reaches the “saturation level”

w.r.t. a, 8 according to Lemma [1} we set S as the current solutlon Sa,p and search in the upper half for a
better solution with a higher value of «; otherwise, we search in the lower half for a feasible solution. When
Omaz — Qmin < 5, we add the solution S,,,,, s to S, remove all solutions dominated by S,,,,,,s, and move
on to the next value of 8. Finally, all non-dominated solutions in S are returned for SMFR.

The theoretical guarantees of SMFR-SATURATE for SMFR with knapsack and matroid constraints are
analyzed in the following two theorems, respectively.

Theorem 1. For SMFR with a knapsack constraint ), SMFR-SATURATE runs in O(dt(A) + é log 1)
time, where t(A) is the time complexity of the (5-appr0:cimatz'on algorithm for SMK, and provides a set S
of solutions with the following properties: (1) |S| = O(%), (2) ¢(S) = O(klog ¢) for each S € S, (3) for
each (a*, *)-approzimate Pareto optimal solution S* to SMFR there must emst its corresponding solution

S € S such that f(S) > (da* — €)0PTy and ¢;(S) > (6% — €)0PTy,, Vi € [d].
Proof. See Appendix for the proof. O

Theorem 2. For SMFR with a matroid constraint T(M), SMFR-SATURATE runs in O(dt(A) + = log? 4)
time, where t(A) is the time complexity of the d-approximation algorithm for SMM, and provides a set S
of solutions with the following properties: (1) |S| = O(2), (2) |S| = O(rlogg) for each S € S, (3) for
each (a*, *)-approzimate Pareto optimal solution S* to SMFR, there must exist its corresponding solution
S € S such that f(S) > (6a* —€)0PTs and g;(S) > (68* — €)0PT,,, Vi € [d].

Proof. See Appendix [A-3] for the proof. O

5 Experiments

In this section, we present extensive experimental results to evaluate the performance of our proposed algo-
rithm (SMFR-SATURATE) on two benchmark problems, namely Maximum Coverage and Recommendation,
using several real-world datasets. We compare SMFR-SATURATE with the following non-trivial baselines.

o GREEDY+MAX (or GREEDY): The original greedy algorithms for single-objective submodular max-
imization. For SMK, we adopt the O(n?)-time GREEDY+MAX algorithm by [Yaroslavtsev et al.
(2020); and for SMM, we adopt the O(nr)-time GREEDY algorithm by |[Fisher et al.| (1978). Both
algorithms have the same approximation factor of 1/2.

e SATURATE: The bicriteria approximation algorithms for the problem of multi-objective submodu-
lar mazimization (MOSM) that maximizes the minimum among multiple (submodular) objective
functions. As for SMFR, we should maximize the minimum among the d + 1 functions of f and
g1, ---,94- In particular, SATURATE for MOSM with knapsack and matroid constraints is presented
n (Krause et al., 2008) and (Anari et al., |2019), respectively.

o SMSC: A (0.16,0.16)-approximation algorithm for the problem of Submodular Maximization under
Submodular Cover (SMSC) (Ohsaka & Matsuokal, 2021)), which can be used for SMFR, only when
d = 1 by maximizing f under the submodular cover constraint defined on g;.
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e BSM-SATURATE: The instance-dependent bicriteria approximation algorithm for balancing wutility
(i.e., maximizing f) and fairness (i.e., maximizing the minimum of ¢, ..., gq4) in (Wang et al., [2024)).

o OPT: Formulating an instance of SMFR as an integer-linear program (ILP) and using a solver to
enumerate its Pareto optimal solutions in the worst-case exponential time. The ILP formulations of
SMFR for Mazimum Coverage and Recommendation are deferred to Appendix [B]

All algorithms are appropriately adapted to provide solutions without violating the specified constraints. We
implemented them in Python 3, and for the OPT algorithm, we applied the Gurobﬂ optimizer to solve the
ILP formulations of the Mazimum Coverage and Recommendation instances. All algorithms except OPT
were accelerated using the lazy-forward strategy (Leskovec et all 2007), as this strategy cannot be applied
to OPT. All experiments were run on a MacBook Pro laptop with an Apple M1 Max processor and 32GB
memory running MacOS 14. For reproducibility sake, our code and data have been published anonymouslyﬂ

5.1 Maximum Coverage

Setup. In this subsection, we evaluate the performance of different algorithms for SMFR on the Mazimum
Coverage problem using two real-world datasets: Facebook and DBLP. The Facebook dataset (Mislove et al.,
2010) is an undirected graph of 1,216 nodes and 42,443 edges representing the friendships between Rice
University students on Facebook, and the DBLP dataset (Dong et al., 2023) is an undirected graph of 3,980
nodes and 6,966 edges denoting the coauthorships between researchers.

Our settings for Maximum Coverage follow those used in the existing literature on submodular maximization
(Halabi et al., 2020; |Ohsaka & Matsuoka) 2021; Wang et al., [2024). Given a graph G = (V, E), the utility
(i.e., coverage) function is defined as f(S) := |U,cg N (v)|, where N'(v) is the set of nodes consisting of v and
its neighbors in G. That is, the coverage of a set S C V is measured by the number of nodes in the union of
the neighborhoods of all nodes in S. To define the representativeness functions g1, gs, . . ., g4, we divide the
node set into d communities C1, ..., Cy such that U?Zl C; = V. For each i € [d], the function g; is associated
with a particular community C; as g;(S) := |J,cg N (v) N Cy|. That is, the representativeness of a set S for
a community C; is measured by the number of nodes in C; covered by S. For both datasets, the node set
V' is partitioned into four disjoint groups using the Louvain method (Blondel et all [2008)) for community
detection. We then index the four communities according to their sizes as |Cy| > |Cs2| > |C3| > |Cy|. For
the DBLP dataset, we follow the scheme of (Jin et all [2021) to define a knapsack constraint by assigning
a cost of 0.2 times its degree to each node and then normalizing all costs by the minimum cost. For the
Facebook dataset, we define a partition matroid constraint by dividing all nodes into 4 disjoint groups based
on a sensitive attribute (i.e., age). We then follow the rule of equal representation (Halabi et al.| 2020)) to
set the same upper bound k € Z* for each age group, resulting in a partition matroid of rank r = 4k.

Results. Figures and present the trade-offs between o and 3 achieved by each algorithm for
different instances of SMFR on Mazimum Coverage with knapsack and matroid constraints on the DBLP
and Facebook datasets, respectively. We fix k = 40 for the knapsack constraint and k = 5 (and thus r = 20)
for the matroid constraint. We set d = 1,2, and 4 by considering the representativeness functions on the
first group C4, the first two groups C; and C5, and all four groups from C7 to C4. In each of these figures,
the x- and y-axes represent the values of o and 3 for all solutions with a distinct marker for each algorithm.
Furthermore, we also use a black line and a red line to denote the optimal Pareto frontier returned by OPT
and its approximation returned by SMFR-SATURATE. From the results, we observe that the Pareto frontiers
provided by SMFR-SATURATE are equal or very close to the optimal ones. This confirms the effectiveness of
SMFR-SATURATE for the SMFR problem. We also find that the GREEDY+MAX and GREEDY algorithms,
which focus solely on maximizing f, generally provide solutions with low values of 3, indicating a significant
neglect of representativeness functions. Furthermore, SATURATE, which maximizes the minimum among all
representativeness and utility functions and does not allow for any trade-off between f and g by design,
in some cases (e.g., Figures , it provides a solution with the highest 8 value while having a value
of « equal or close to that of SMFR-SATURATE and OPT for maximum §. However, it returns inferior

2https://wuw.gurobi.com/solutions/gurobi-optimizer/
Shttps://anonymous.4open.science/r/Fair-Representation-in-Submodular-Subset-Selection-A-Pareto-Optimization-Approach-B5B5
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Figure 1: Results for Mazimum Coverage on the DBLP dataset, with knapsack constraints.

solutions dominated by those of SMFR-SATURATE in other cases. BSM-SATURATE and SMSC provide
different trade-offs between f and g by adjusting the threshold value 7 in their definitions. The trade-offs
reported by SMSC are marginally better than those of SMFR-SATURATE on the Facebook dataset with
matroid constraints (Figure . Conversely, it performs poorly for knapsack constraints (Figure . In
fact, SMSC is a special case of SMFR when d = 1, the matroid/knapsack constraint is reduced to the
cardinality constraint, and the trade-off between f and g is predetermined by 7. It is also noted that SMSC
cannot work when d > 1. Although BSM-SATURATE does not have the restriction of d = 1, its trade-offs
are never better than those obtained by SMFR-SATURATE, and significantly worse for Mazimum Coverage
on the DBLP dataset with knapsack constraints (Figures [TaHId).

Figures [IdHIf and 2dH2] report the effect of the parameter k, which directly decides the solution size, on the
performance of each algorithm for different instances of SMFR in the context of Mazximum Coverage with
knapsack and matroid constraints on the DBLP and Facebook datasets, respectively. In each plot, the x-axis
represents the value of k in the knapsack or matroid constraint, and the y-axis represents the maximum
utility value f(S) among all solutions with a certain level of representativeness, i.e., the value of 3 reaches a
given threshold, provided by an algorithm. We also set d = 1,2, and 4 by considering the representativeness
functions on Cq, C1&Cs, and C1-Cy. Only solutions with S > 0.8 are considered for d = 1, § > 0.4 for
d =2, and f > 0.2 for d = 4. A unique marker and a distinct line color are used for each algorithm.
From Figures we observe that the solutions provided by SMFR-SATURATE consistently achieve the
highest utility value f(S) across all values of k in the knapsack constraint. The absence of SMSC and
BSM-SATURATE indicates that they fail to provide solutions with an adequate level of representativeness
(i.e., the value of 3 is below the given thresholds), with the only exception shown in Figure [l when k = 100.
Furthermore, although SATURATE provides valid solutions in all cases, the gap in the utility value f(S5)
between SMFR-SATURATE and SATURATE widens as the knapsack restriction becomes less stringent (i.e.,
increasing k), for all values of the number of representativeness functions d. Figures show that across
all values of k, the solutions provided by SMFR-SATURATE always achieve utility values f(S) higher than
those of BSM-SATURATE and SATURATE. Unlike the case of knapsack constraints, the gap in the utility
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Figure 2: Results for Maximum Coverage on the Facebook dataset, with matroid constraints.

value f(S) among all methods decreases as the matroid constraint becomes less stringent (i.e. increasing
k), for all values of the number of representativeness functions d. In the case of d = 1, SMSC and SMFR-
SATURATE exhibit the same performance, as shown in Figure The above results confirm that when the
trade-off level between f and g is pre-specified, one can still find a corresponding solution from those of
SMFR-SATURATE that is comparable to or better than those provided by other baselines.

5.2 Recommendation

Setup. In this subsection, we evaluate the performance of different algorithms for SMFR on the Recommen-
dation problem using another two real-world datasets: X-Wines (de Azambuja et al],[2023) and MovieLend]
The X-Wines dataset consists of 150 000 ratings from 10561 users on 1007 wines, where each rating takes a
value in the range [1.0,1.5,...,5.0]. Moreover, each wine in the dataset is associated with one or more food
types that pair with the wine itself; we group these food types into four categories: “meat”, “fish”, “pasta”,
and “cheese”. The MowvieLens dataset consists of 100 000 ratings from 600 users on 9 000 movies, where each
rating takes a value in the range [0.5,1.0,...,5.0]. Each movie in the dataset is associated with one or more
genres, with a total of 20 genres.

Our experimental settings are similar to those adopted in (Ohsaka & Matsuokal, 2021)). In the following, we
use the term “item” to refer to either a wine in the X- Wines dataset or a movie in the MovieLens dataset. By
performing the non-negative matrix factorizatiorﬁ (NMF) on the user-item rating matrix with p = 32 factors,
we obtain a 32-dimensional feature vector for each item and user. Denoting by v; € RP the feature vector of
item 4, and by u; € RP the feature vector of user j, the inner product (v;,v;) between two feature vectors
associated with two items measures their similarity. The same holds for users and items as well: (v;,u;)
indicates the level at which a user likes an item. To design the utility function f according to the facility
location objective, we select a subset T of items with at least 54 ratings (|T'| = 503 for the X-Wines dataset,

4https://grouplens.org/datasets/movielens/
Shttps://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
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Figure 3: Results for Recommendation on the X-Wines dataset, with knapsack constraints.

and |T'| = 403 for the MovieLens dataset), and define f : 2 — R* as f(S) := Y,y maxges (v, v¢), where
V is the set of all items in each dataset: |V| = 1007 for the X-Wines dataset, and |V| = 9000 for the
MowvieLens dataset. The function f captures how well the selected subset S can represent all items in 7" in
the sense that for any item ¢ € T, there exists an item in S that is highly similar to it. This function, as
defined, is known to be monotone and submodular (Erieze, [1974). To define the representativeness functions
91,92, - - -, 94, we consider using, for the X-Wines dataset the food type categories with which a wine pair,
and for the MovieLens dataset the genres to which a movie belongs. Specifically, for the X-Wines dataset, we
divide wines into four groups according to their associated food type categories as Gy (meat), Ga (fish), G3
(pasta), and G4 (cheese). Similarly, for the MovieLens dataset, we divide movies into four groups according
to their genres as Gy (dramas), Ga (comedies), Gs (thrillers), and G4 (action movies). Then, each g;
function is associated with a particular set of items and is defined as g;(S) := |[S N G;|. To be specific, the
representativeness of S for G; is measured by the number of items in S selected from G;. For the X-Wines
dataset, we define a knapsack constraint by assigning to each item (wine) a random integer cost in the
range [1,10]. For the MovieLens dataset, to define a matroid constraint, we partition the movies into 7
groups according to their release dates: [1900,1950), [1950,1970), [1970,1980), [1980,1990), [1990,2000),
[2000,2010), and [2010,2019). We also use an equal upper bound k € Z% for each group, resulting in a
partition matroid of rank r = 7k.

Results. Figures [3] and [4 present the performance of each algorithm for different instances of SMFR
on Recommendation with knapsack and matroid constraints on the X-Wines and MowvieLens datasets, re-
spectively. In general, we observe results similar to those for Mazimum Coverage and further confirm the
effectiveness of SMFR-SATURATE for SMFR in different applications. The absence of OPT in Figures [{a}-
is due to the inefficiency of the ILP solver: it cannot finish on any SMFR instance for the MovieLens
dataset within one hour. We also find that SMFR-SATURATE shows more significant advantages over SMSC
and BSM-SATURATE for the knapsack constraints than for the matroid constraints. In particular, SMSC
slightly outperforms SMFR-SATURATE when d = 1 on the MovieLens dataset, with matroid constraints.
This is because the solutions with cardinality constraints are typically very close to those with the partition
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Figure 4: Results for Recommendation on the MovieLens dataset, with matroid constraints.

matroid constraints that we define but differ significantly from those with knapsack constraints. As such,
SMSC, which is designed specifically for cardinality constraints, achieves good performance under matroid
constraints without adaptations. Again, we note that SMSC is not comparable to SMFR-SATURATE in
other cases.

Finally, we omit the remaining experimental results due to space limitations. Please refer to Appendix [C] for
those results, which further confirm the effectiveness of SMFR-SATURATE in other experimental settings
and provide additional evaluations for the efficiency of SMFR-SATURATE and other baselines.

6 Conclusion and Future Work

In this paper, we study a novel multi-objective combinatorial optimization problem called Submodular Maz-
imization with Fair Representation (SMFR), which aims to select subsets from a ground set under a specific
knapsack or matroid constraint such that a submodular (utility) function f is maximized while d submod-
ular (representativeness) functions g1, ..., gq are also maximized. We show the hardness of finding optimal
solutions to SMFR and propose a Pareto optimization approach, SMFR-SATURATE, to enumerating a set of
approximate solutions to all Pareto optimal solutions with different trade-offs between multiple objectives for
SMFR. Finally, we demonstrate the effectiveness of SMFR-SATURATE in two classic submodular problems,
Mazimum Coverage and Recommendation, using real-world data.

In future work, we would like to extend SMFR to more general classes of functions in subset selection
problems, including non-monotone and weakly submodular functions. In addition, it would also be interesting
to expand the realm of fair submodular optimization (Halabi et al., 2023} Mehrotra & Vishnoi, |2023)) by
considering more novel and practical notions of fairness.
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A Proofs of Lemmas and Theorems

A.1 Proof of Lemma[dl

Lemma 1. If F], 5(S) > d+1— § for any set S € I, then S is a (6a — 5,68 — §)-approzimate solution
to SMFR, where 5 € (0,1 —1/¢] zs the approximation factor of the appro:mmatzon algorithm for SMK or
SMM. If there is no set S € I with F, 5(5) =d+ 1, then no («, B)-approzimate solution to SMFR exists.

Proof. For the proof of the first statement, we first consider the two special cases of « = 0 and 5 = 0. When

a=0o0r =0, if F(;ﬁ(S) > d+1— 5, we will have ggéf,) > 1 — 5 for every i € [d] or fo(fT), >1—-£5.In

the general case of , 8 > 0, if F}, 5(5) > d+1— 5, we will have fD(PT)’ >1-5 and ﬁgééf,) > 1— 5 for every
i € [d] at the same time. Thus, it holds that

f(S)>(1- g)aOPT’f > 0ol — %)OPTf > (b — %)DPT}«

and
€ £ £ .
g:(S) > (1 — §)BDPTQH >668(1 — §)opTgi > (08 — §)DPTgi, Vi € [d].

Therefore, S is a (da — 5,3 — 5)-approximate solution to SMFR.

For the proof of the second statement, if F}, 5(S) < d + 1, then we will have f(S) < aOPT} < aOPT; or
there is some i € [d] with g;(S) < BOPTy, < BOPTy,. Therefore, if F}, 5(S) < d+ 1, S will not be an
(a, B)-approximate solution to SMFR. Consequently, if there is no set S € Z with F&yﬁ(S) = d + 1, then
there is no («, 8)-approximate solution to SMFR. O

A.2 Proof of Theorem [

Theorem 1. For SMFR with a knapsack constraint Zi,, SMFR-SATURATE runs in O(dt(A) + "?2 log 1)
time, where t(A) is the time complexity of the 6-app7“oximati0n algorithm for SMK, and provides a set S
of solutions with the following properties: (1) |S| = O(%), (2) ¢(S) = O(klog %) for each S € S, (3) for
each (a*, *)-approzimate Pareto optimal solution S* to SMFR there must emst its corresponding solution
S €S such that f(S) > (da* — €)0PTy and g;(S) > (6% — €)0PT,,, Vi € [d].

Proof. Let us first analyze the time complexity of SMFR-SATURATE for a knapsack constraint Zj. First,
it runs the SMK algorithm d + 1 times to compute OPT} and OPT, for every i € [d]. Then, it iterates over
[%] values of 8 in the for loop. For each value of 3, it attempts to use O(log %) different values of a in
the bisection search. Finally, the subroutine CostEffectiveGreedy takes O(n?) time for SC on each F(;”B
In summary, the time complexity of SMFR-SATURATE for a knapsack constraint Zj, is O(dt(A) + "?2 log 1)
time, where t(.A) is the time complexity of the SMK algorithm.

For the solution & of SMFR-SATURATE, it is easy to see that [S| < [2] and thus |S| = O(1) because SMFR-
SATURATE adds at most one set to S for each value of 5. Then, due to the condition in the while loop of the
subroutine CostEffectiveGreedy, it must hold that ¢(S) < k(1 + In 222) and thus ¢(S) = O(klog ¢) for
each S € S. Finally, given an (a*, 5*)-approximate Pareto optimal solution S*, there must exist a value of
B in the for loop such that 0 < 8* — 3 < £. Let S,,,,,,5 be the solution of SMFR-SATURATE w.r.t. such
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and its corresponding ain. Since F,  5(Sa,....8) = d+1-5, Sa,,,,.,5 152 (5amm 5,0 — 5)-approximate
solution according to Lemma [} Furthermore, we have F, ~ 5(Sg:) < d+1— §, where S, is the solution
w.rt. F) e, With a relaxed knapsack constraint for a budget k(1 + In 2d+2) returned by the subroutine
CostEffectlveGreedy in Algorithm (1}, and @pae — Qmin < 5. Suppose that S is the first intermediate
subset of Sy, with c(Sgr) > l<:1n2dT'|r2 constructed using the cost-effective greedy procedure. Let S; =
argmaxger, F,  5(S) and OPTp, = o (S}). According to the monotonicity and submodularity

Amaz,B
/
of F,, .. 5 wehave

. i c(v)-A vS(Q
APCHES C RS DERNUD RS A P DR

ves;\S{ veS\S{

for any Sgr C Sy, after i iterations and A(U|S§i)) F, 5( Ju {v}) - F, ﬁ(SgZ})). Let u} be the i-th

item added to S’ for any i = 1,...,[S;,|. Based on the cost- effectlve greedy selection in Algorithm
Aluzy|Si) o AISH)
c(uiy) T cv)
for any v € S§ \ ng}) and i € [0,...,|S;, — 1[] because c(v) < k for any v € S} and thus no item from Sj;

is excluded from consideration due to budget violation when uj, is added to Séi«). Therefore, we further
obtain

A(“fﬂ |Ss(71r))

NN ,
(S0 < L5+ 2l sy < sy + Bl )
c(uiyy) ) c(uiyy)
vESF\Syr
After rearranging the inequality above, we have
/ (S5) — F (S(i+1)) <(1- C(u;'kﬂ))(F/ (S5) — F! (S( )))
Amaz,B\FPk amaz, gr = L Umaz,B\Pk amax,ﬁ .
Moreover, since 1 —x < e~® for any x > 0, it holds that 1 — % < exp(—%). Therefore,
. ; c(uiyy) . i
dzmaz,ﬁ(sk) - c/ymax,ﬁ(s( +1)) < exp(— 7;1 ) (Fo/tmaz,ﬁ(sk) - émaz,ﬁ(s( )) (4)
By applying Eq. {4 recursively to i = 0,...[S.| — 1, we have
] c(uit) .
e 8(SE) = Flty(Sgr) < exp(===2) - (FL,, L 6(S8) = Fi,. 5(55))
c(uity) c(uy) i
< exp(— kH ) exp(— A )(F2,,0n8(SE) — o/émmﬁ(s( )
[Sg.1—1 *
<...... < eXp(—M)F&mwﬁ(&:)
c(Sgr) ] c(Sgr)
= exp(— kg Ve 5(S0) :exp(—Tg)UPTF;m”
Since ¢(S;,.) > kln 2d+2 'it holds that
c(Sg) €
e (Sgr) = (1 —exp (— ;. ))OPTp > (1— YR 2)0PTFMWB
In addition, F, ~ 5(Sgr) = F,  5(Sg,) since Sy, C Sy, Therefore, we have OPTf, < d+1 and,

according to Lcmma ' there does not exist any (amax, B)-approximate solution of cost at most k. Since
S* is an (a*, §*)-approximate Pareto optimal solution and f < £*, S* must be an (a*, )-approximate
solution of cost at most k. As such, we obtain ., > o and o, > a® — % Because we have shown
that S,,,.,.5 18 a (damin — 5,00 — §)-approximate solution, S,,,,, 3 is guaranteed to be a (da* —¢,4* —¢)-
approximate solution. If S, g is 1ncluded in §, we will conclude the proof directly; otherwise, the solution

in & dominating S,,,,,.s can confirm our conclusion. O

18



Under review as submission to TMLR

A.3 Proof of Theorem

Theorem 2. For SMFR with a matroid constraint Z(M), SMFR-SATURATE runs in O(dt(A) + = log? 4)
time, where t(A) is the time complexity of the d-approxzimation algorithm for SMM, and provides a set S
of solutions with the following properties: (1) |S| = O(), (2) |S| = O(rlog %) for each S € S, (3) for
each (a*, B*)-approximate Pareto optimal solution S* to SMFR, there must exist its corresponding solution
S € S such that f(S) > (da* — €)0PT; and g;(S) > (§5* — €)0PT,,, Vi € [d].

Proof. Let us analyze the time complexity of SMFR-SATURATE for a matroid constraint Z(M). First, it
runs the SMM algorithm d + 1 times to compute OPT) and OPT, for every i € [d]. Then, it iterates over
[%] values of 8 in the for loop. For each value of 3, it attempts to use O(log %) different values of a in
the bisection search. Finally, the subroutine IterativeGreedy takes O(nr) time per round and runs in
O(log g) rounds. In summary, the time complexity of SMFR-SATURATE for a matroid constraint Z(M)
is O(dt(A) + *F log g log 1) time, where ¢(A) is the time complexity of the SMM algorithm, and can be
simplified as O(dt(A) + 2 log” 4).

For the solution & of SMFR-SATURATE, it is easy to see that [S| < [2] and thus |S| = O(1) because SMFR-
SATURATE adds at most one set to S for each value of 5. Then, because the subroutine IterativeGreedy
runs in at most 1 + [log, %1 rounds and the size of each S; is bounded by the rank r of the matroid M,
it must hold that |S| < r- (1 + [log, %1) and thus |S| = O(r logg) for each S € S. Finally, given an
(a*, B*)-approximate Pareto optimal solution S*, there must exist a value of § in the for loop such that
0<B"—=pB<5. Let Sy, 5 be the solution of SMFR-SATURATE w.r.t. such 8 and its corresponding amin-
Since F), . 5(Sapi.p) = d+1—35, Sa,in.p 18 @ (00min — 5,08 — §)-approximate solution according to

2
Lemma Furthermore, we have I,  5(Sgr) < d+1— 5, where Sy, is the solution w.r.t. F, 5 returned

Qm
by the subroutine IterativeGreedy in Algorithm (1} and cnae — Qmin < 5. Since IterativeGreedy runs
a %—approximation greedy algorithm for submodular maximization with matroid constraints in each round,
we have )

Fl;m(ll‘7ﬂ(51) - Ff;rna‘tyﬁ(@) 2 (1 - 5) : SlIejrlIa&)-/{\A‘)(FéﬁL(L.Z)ﬂ(Sl) - Fé’IYLO/(E)/B(w)).

Since f(S) = f(SUA) — f(5) is nonnegative, monotone, and submodular if f(-) is nonnegative, monotone,
and submodular for any A C V', we can extend the above result for each round [ > 1 as follows:

/ / — ].
(U_1S)) - (UZhs) = (1-3)

foars boron 3) " e (Pl (SO UES)) = Pl s(USS))
> (1= 5) o (Flp(5) = P (U485,
By induction, we obtain the following:
, . 1 y , 1
e tUg=153) 2 (1= 37) - s P, (5) = (1= 30)0PTe
Since Sy = Ujl-:lrlogZ %WSJ', we have
Fl  5(Sgr) > (1— %) "OPTp > (1- 2d7) -O0PTpr .
amaz +2 amazB
Therefore, we have OPTF&,,M. < d+ 1 and, according to Lemma , there does not exist any (Qmaz, 8)-

approximate solution under matroid constraint Z(M). Since S* is an (o, §*)-approximate Pareto optimal
solution and 8 < #*, S* must be an (a*, §)-approximate solution under matroid constraint Z(M). As such,
we obtain ez > @ and ami, > o — 5. Because we have shown that S, .5 is @ (6cmin — 5,66 — 5)-
approximate solution, S, . g is guaranteed to be a (da* — £,d8* — ¢)-approximate solution. If S, ;. 3
is included in S, we will conclude the proof directly; otherwise, the solution in & dominating S,,,,..s can
confirm our conclusion. O
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B ILP formulations

In this section, we present the integer linear programming (ILP) formulations for the Mazimum Coverage
and Recommendation problems, specifically tailored to the SMFR problem, as defined in Section [5.1] and
Section [5.2] respectively. Any ILP solver can be employed to identify optimal solutions for small SMFR,
instances on Mazimum Coverage and Recommendation. For our experimental results in Section [5| and
Appendix [C] we refer to this approach as the OPT algorithm. Note that these formulations are specifically
designed for these settings and cannot be applied directly to general SMFR, problems.

Problems and@ are specialized versions of the standard ILP formulation of SMFR on Mazimum Covemgeﬁ
in Section [5.1] with knapsack and partition matroid constraints, respectively.

max Z Yj (5) max Z Yj (6)

j€lm] Jj€lm]
subject to Z qr; <k subject to Z x; < k, Yt € [p]
l€[n] S1EV;:
e; €S e €S
Sy > popT,,  Vield) >y > BOPT,,  Vie[d
ejeCi EJ'ECq',
y; €{0,1}, Vj € [m] y; €{0,1}, Vj € [m]
x; € {0,1}, Vi € [n] x; € {0,1}, Vi € [n]
These ILPs maximize the coverage (i.e., the utility function f in SMFR) on a universe U = {e1,...,en}
of m elements and a collection V' = {S1,...,S5,} of n sets (S; C V,VI € [n]), subject to additional coverage
constraints on each subset C1,...,Cy of U (w.r.t. each representativeness function g1, ..., g4 in SMFR). In

both formulations, z; indicates whether S; € V' is included in the solution S, and y; indicates whether e; € U
is covered by S. Problem [5| is specific to the knapsack constraint defined on a budget k¥ € Z™ and a cost
function ¢(+). Problem |§| is specific to the partition matroid constraint, where V is divided into p disjoint
partitions Vi,...,V, and at most k sets can be selected from each partition. Solving optimally Problems
and |§| with 8 =0 and U = C; yields the value of OPT,, for each representativeness function g; corresponding
to the knapsack and the partition matroid constraints, respectively.

Problems [7] and [§] are specialized versions of the ILP formulation for capacitated facility locatior[} with a
benefit matrix B = {b;; = (v;,v;) : j € [m],l € [n]} € R™*™ (m = |T| and n = |V|), specifically designed
for SMFR on the Recommendation setting in Section [5.2] with knapsack and partition matroid constraints,
respectively.

max Z Z bjlyjl (7) max Z Z bjlyjl (8)

JE[m]I€[n] JE[m] l€[n]
subject to Z ar; <k subject to Z x; <k, vt € [p]
le[n] e €Vy
doyi<, Vj € [m] Yoy <, vj € [m]
l€[n] le[n]
Y1 <y, Vi € [m],l € [n] yiu < i, Vj € [m],l € [n]
> @ > BOPT,, Vi € [d] > @ > BOPT,, Vi € [d]
e €C; e eC;
Yjl S {Ov 1}7 Vj S [m]al S [n] Yji S {07 1}7 vj € [m],l € [n]
x; € {0,1}, Vi € [n] x; € {0,1}, vl € [n]

Shttps://en.wikipedia.org/wiki/Maximum_coverage_problem
"https://en.wikipedia.org/wiki/Optimal_facility_location
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Given a set V = {ey,...,e,} of n items, both ILPs maximize the total benefit (i.e., the utility function f in
SMFR) provided by a set S C V for a subset ' C V of m items, subject to representativeness constraints on
each Cy,...,Cqsubset of V (i.e., the representativeness functions g1, . .., g4 in SMFR). In both formulations,
x; indicates whether e; € V' is included in the solution S, and y;; indicates whether e; € T takes the benefit
from item e; € V. Problem @ is specific to the knapsack constraint defined on a budget k € Z* and a cost
function ¢(+). Problem |8 is specific to the partition matroid constraint, where V' is divided into p disjoint
partitions Vi,...,V,. For the knapsack constraint, the value of OPT,, for each representativeness function
g; can be easily computed by sorting the items in C; ascendingly according to their costs and finding the
maximum number of items whose cumulative cost does not exceed k. For the partition matroid constraint,
the value of OPT,, for each representativeness function g; is trivially the maximum between k and |C;].

C Additional Experiments
In this section, we complement the experimental analysis described in Sections and

C.1 Additional Experiments on Maximum Coverage

In this section, we use the same datasets and settings as in Section for the Maximum Coverage prob-
lem. For the Facebook dataset, we alternatively define the knapsack constraint in the same way as for the
DBLP dataset. For the DBLP dataset, we alternatively define a partition matroid constraint based on
the geographic area of the researchers, with five groups: Asia, Furope, North America, Oceania, and South
America. We also set the same upper bound k¥ € ZT for each geographic group, resulting in a partition
matroid of rank r = 5k. Figures 5] and [6] present the performance of each algorithm for different instances of
SMFR on Mazimum Coverage with knapsack and matroid constraints on the Facebook and DBLP datasets,
respectively. Generally, we observe trends similar to those already presented in Section [5.1} which further
confirm the effectiveness of SMFR-SATURATE.

C.2 Additional Experiments on Recommendation

In this section, we use the same datasets and settings as in Section for the Recommendation problem.
For the MovieLens dataset, we alternatively define a knapsack constraint by assigning to each item (movie) a
random integer cost in the range [1,10]. For the X- Wines dataset, we alternatively define a partition matroid
constraint based on the continent of origin for wine production: Africa, Asia, Europe, North America, South
America, and Oceania. We also set the same upper bound k € Z* for each geographic group, resulting in a
partition matroid of rank r = 6k. Figures [7] and [§] present the performance of each algorithm for different
instances of SMFR on Recommendation with knapsack and matroid constraints on the MovieLens and X-
Wines datasets, respectively. Generally, we observe trends similar to those already presented in Section [5.2
which further confirm the effectiveness of SMFR-SATURATE.

C.3 Time Efficiency

Figure |§| reports the running time (in seconds) of SMFR-SATURATE, SATURATE, BSM-SATURATE, and
SMSC for SMFR on both Mazimum Coverage and Recommendation instances. We use the same settings
as in Sections and In each plot, the x-axis represents the value of k£ in the knapsack or matroid
constraint and the y-axis represents the running time (in seconds) used by each algorithm to solve an SMFR
instance. We present the results for d = 1 and 4 in Figure [9

All algorithms take less than a minute to complete on each tested instance. SMFR-SATURATE is faster than
SMSC in all cases. For the knapsack constraints, SMFR-SATURATE generally runs faster than or close to
BSM-SATURATE. However, for the matroid constraints, SMFR-SATURATE is slower than BSM-SATURATE.
SATURATE is the fastest method in most configurations. This is because SATURATE does not allow for any
trade-off between utility (f) and representativeness (g) by design and thus is run only once for each instance.
However, all other algorithms should be run multiple times with different values of 5 or 7.
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Figure 5: Results for Maximum Coverage on the Facebook dataset, with knapsack constraints.
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Figure 6: Results for Maximum Coverage on the DBLP dataset, with matroid constraints.

22



Under review as submission to TMLR

[0 creedy+Max

V saturate <4 BSM-Saturate () SMSC
1.00 1.00
* N N
+H+ ] -
095y T 0951
0.90 0.90
S oes S 0851
0.80 0.801
075 ® 0.751 i
020 040 060 080  1.00 020 040 060 080 100
ﬁour Bout
(a) MovieLens (d =1,k = 50) (b) MovieLens (d = 2,k = 50)

1e6

le6

= OPT X SMFR-Saturate
1.00
i VR
¢ 3%
0.95{ 1 =+
* +++
. 0.90
3
S
0.85
0.80
0.75 |
0.10 0.20 0.30 0.40 0.50 0.60

Bout
(c) MovieLens (d = 4,k = 50)

le6

1.0 )(—9(’)(_)(-_)(_)(_)(_)(_)(_)( 1.0 ar)é—)ﬁ(—)(—x—x—)H(—x
1.00 T-F-3
0.9 \‘_ I )
0.8 VvV Ve eV 0.95 0.8 V---V‘--V-iV--V---V'\‘--V‘"V"V"V
g 3 0.90 @ | ! !
(e TR
Los6 a 206 Vo \
| I | \
05 0.85 i V1 \
. L | 1
0.41 Vi 1
03{ 7 o0.80{ * | \
021V V- V-V V- e - 0.2 + L8
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
k k

(d) MovieLens (d =1,3 > 0.8)

(e) MovieLens (d =2, > 0.4)

(f) MovieLens (d =4, > 0.2)

Figure 7: Results for Recommendation on the MovieLens dataset, with knapsack constraints.
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Figure 8: Results for Recommendation on the X-Wines dataset, with matroid constraints.
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Figure 9: Running times (in seconds) of SMFR-SATURATE, SATURATE, BSM-SATURATE, and SMSC for
SMFR when d = 1,4). Here, the Facebook and DBLP datasets are used for Mazimum Coverage (MC); the
X-Wines and MowvieLens datasets are used for Recommendation (RE). In addition, the matroid constraints
(Mat.) are imposed on the Facebook and MowvieLens datasets; the knapsack constraints (Kna.) are imposed
on the DBLP and X-Wines datasets.
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